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ABSTRACT

We present a GPU-accelerated, computationally efficient seismic
imaging approach implemented in CUDA for use on NVIDIA’s
edge device, the Jetson Nano. The presented implementation in-
tends to enable fast seismic imaging in autonomous exploration
tasks on robotic platforms where electrical power and weight are
limiting factors. For the imaging method we consider traveltime
tomography, a seismic imaging technique based on first-arrival trav-
eltimes. To this end, we rely on the fast iterative method that solves
the eikonal equation in a parallel fashion and provides first-arrival
traveltime maps. Furthermore, we employ a gradient-based ray
tracer to reconstruct wave paths through the subsurface. We im-
plement ray tracer and parts of the tomography update in a parallel
fashion for efficient computation on the GPU of the Jetson Nano.
We demonstrate the imaging capability of our implementation for
synthetic as well as real seismic data. We also show that our edge
device implementation achieves imaging results in a comparable
time range as a state-of-the-art geophysical inversion tool running
on a powerful desktop CPU.

Index Terms— Seismic imaging, traveltime tomography, edge
devices, CUDA, GPGPU

1. INTRODUCTION

Seismic imaging is done in an offline-processing manner where
measurement data from receivers are processed at a remote location
with high computational capabilities. This is mainly due to the high
amount of data that is recorded. Recently, powerful and compact
edge devices with high computational capabilities such as Nvidia’s
Jetson Nano are available on the market. Such a device is equipped
with a graphics processing unit (GPU) that allows for highly par-
allelized computations. In light of such edge devices the question
arises to which extent seismic imaging methods can be performed
on them. In this work, we intend to shed light on this question.

Performing imaging on such devices comes with a variety of ad-
vantages. Due to their small form factor they are highly suited for
applications where mobility, portability and on-site processing play
an important role. Furthermore, such implementation will enable
faster imaging at the location where the seismic survey takes place.
One specific application example is the autonomous exploration of
planetary subsurfaces by multiple robotic agents [1, 2, 3]. Here, a
network of multiple robotic agents conducts a seismic survey in a
cooperative manner to image interesting features within the near-
surface. This shall be done without forwarding measurement data
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via a remote connection to Earth for processing but directly within
the network of agents. To this end, the complete imaging task needs
to be conducted locally on the agents’ computing boards. Further-
more, since the agents need to be mobile, heavy computing hardware
is not suited for such a task. Hence, imaging on a portable device
such as the Jetson Nano is highly relevant for such an application.

In this work, we specifically focus on traveltime tomography
(TT), an imaging method in geophysical exploration. We present an
implementation of TT that performs the imaging task with reason-
able spatial resolution within a few seconds on a Jetson Nano device.
To this end, we implement the complete TT on the GPU of the Jetson
Nano and exploit parallelization where possible. The related kernels
are written in the CUDA programming language to enable direct im-
plementation on NVIDIA GPUs. We test our implementation with
both synthetic as well as real seismic data. For the real data set
we employ measurement data from a seismic refraction survey over
a highway tunnel. We show that our proposed implementation re-
covers the main structure of the tunnel. With regard to timing we
compare our implementation to a state-of-the-art inversion package
that runs in parallel over multiple CPU cores on a powerful desktop
machine. We demonstrate that tomographic imaging is realizable in
a computationally efficient way on a compact, mobile, low-power
edge device such as the Jetson Nano.

2. TRAVELTIME TOMOGRAPHY

2.1. Main Algorithm

TT is a seismic imaging technique that employs first-arrival travel-
times to reconstruct a subsurface image w.r.t. the P -wave velocity
[4]. To acquire seismic data we consider NR geophones or receivers
and NS sources which are released in a sequential manner. A seis-
mic source can be e.g. a hammer strike, an explosive or a vibrating
source [5]. Receivers as well as sources are placed on the surface.

In its ordinary form TT deals with the minimization of a least-
squares cost between measured traveltimes tobs ∈ RNR and synthe-
sized traveltimes tsyn ∈ RNR of all NR receivers w.r.t. the P -wave
slowness m(x) (i.e., inverse velocity) over spatial coordinate x ∈
R2. Assuming a spatial discretization using e.g. finite differences
of the two-dimensional subsurface domain Ω ⊂ R2 into Nx × Nz

grid points, the P -wave slowness has dimension m ∈ RNxNz . The
optimization problem of TT reads

min
m∈RNxNz

J (m) =
1

2

NS∑
s=1

||tsyn,s(m)− tobs,s||22. (1)

The measured traveltimes tobs are obtained by picking first-arrival
events of the P -wave in the measured seismograms, either manually



Fig. 1: Schematic overview of proposed implementation of the traveltime tomography on a GPU. The CPU generates the starting model that
is used to solve the eikonal equation on the GPU. Then rays are traced using Runge-Kutta on the traveltime map t(x). The rays are used to
compute the gradient and Hessian of the inverse problem. From this an update is calculated in form of a slowness perturbation that is applied
to the model. This process is repeated until a satisfactory imaging result is obtained.

or by a picker algorithm. To synthesize traveltimes tsyn(m) the
eikonal equation

|∇t(x)|2 = m(x)2, s.t. t(xs) = 0,x ∈ Ω. (2)

needs to be solved w.r.t. t(x). This provides a map of first-
arrival traveltimes based on m which is sampled at receiver po-
sitions xr, r = 1, . . . , NR to give tsyn(m). The operator ∇ is a
discretized spatial gradient, while t(x) is the discretized traveltime
map. As initial condition, the traveltime has to be zero at source
position xs. The eikonal equation (2) can be solved via the fast
marching method [6] or fast sweeping method [7]. However, both
these methods do not allow for a parallelized computation of the
traveltime map t(x). In contrast, the fast iterative method (FIM)
proposed in [8] solves the eikonal equation in a parallel fashion
allowing for an efficient implementation on a GPU. In more detail,
grid points where traveltimes need to be updated are stored in a
structure called active list. This list contains grid points where the
traveltimes have not converged yet. The key step here is that all grid
points in the active list are updated at once without any special order.
This allows for easy parallelization on a GPU. This is in contrast to
FMM which uses a heap that sorts the update order of the grid points
[9]. Thus, in our implementation we employ the FIM as forward
solver of the eikonal equation.

For TT, problem (1) needs to be solved subject to the sampled
traveltime map obtained by (2). Due to the absolute norm included
in the eikonal equation (2) TT is a nonlinear inverse problem w.r.t.
m. Furthermore, cost (1) is highly non-convex containing multi-
ple local minima. To obtain a subsurface image m, TT employs
a steepest-descent strategy. To this end, we require the gradient
of J (m) w.r.t. m which can be obtained by ray tracing [10], by
the adjoint-state method [11, 12] or by calculating sensitivities [6].
Here, we employ a ray tracer that provides ray paths between source
and receivers through the subsurface domain Ω since it can be easily
parallelized over the receivers as proposed in [13]. Using ray trac-
ing the forward problem of synthesizing traveltimes tsyn(m) can be
linearized. From ray theory it is known that by integrating over a ray
path one obtains the time the ray travels along that path [10]. For
the discrete case, this line integral can be approximated by a sum
through all grid points i = 1, . . . , NxNz in the discretized spatial
domain. For each grid point i, the contribution of the ray within
the current point li is multiplied by the respective slowness value
at point i: tray ≈

∑NxNz
i=1 lim(xi). If for each ray r and source s

the respective segments in each grid cell i are collected in a matrix
Gs ∈ RNR×NxNz the synthesized traveltimes can be approximated

via the linear model

tsyn,s(m) ≈ Gsm. (3)

Matrix Gs is the sensitivity matrix and its r-th row contains all ray
segments over all grid cells for receiver and ray r through the sub-
surface domain for source s. By replacing tsyn,s(m) in (1) with (3)
gradient and Hessian can be computed directly via

∂J (m)

∂m
=

NS∑
s=1

GT
s (Gsm−tobs),

∂2J (m)

∂m ∂mT
=

NS∑
s=1

GT
sGs. (4)

To improve estimates of the slowness model m iteratively Newton’s
method can be applied using gradient and Hessian information. For
numerical stability in the inversion of the Hessian a scaled identity
matrix is added:

m←m−∆m

= m−
NS∑
s=1

(GT
sGs + γI)−1GT

s (tsyn,s − tobs,s). (5)

In each iteration, the eikonal equation (2) needs to be solved for the
current slowness model m. Afterwards, rays between source and
receivers are traced to generate an updated sensitivity matrix Gs.
Using Gs the gradient and Hessian are computed following (4) and
the slowness model m is updated (5), cf. Fig. 1. In a practical
implementation a smoothing filter is applied on the update term in
(5) to obtain slowness changes over a broader spatial area. Without
applying such filter the slowness model m will only be changed
along the ray paths in the sensitivity matrix Gs.

2.2. Gradient-based Ray Tracer

In the following, we introduce the ray tracer that is used in our TT
implementation. Besides various possibilities to implement a seis-
mic ray tracer (see [10] for an overview), we rely on a gradient-based
method since FIM provides a traveltime map t(x) in an efficient
manner which can be fed into the ray tracer. In particular, we rely
on our previous work [13] where a gradient-based, parallelized ray
tracer has been successfully implemented on the GPU of a Jetson
Nano module. However, in [13] an ordinary steepest-descent tech-
nique has been used. In this work, we employ a 4th-order Runge-
Kutta scheme to enhance accuracy and stability of the ray tracer.



Fig. 2: Overview of building blocks for the implementation on the GPU with details w.r.t. parallelization. In the FIM, parallelization is imple-
mented over the grid points in the active list. For the ray tracer and the sensitivity matrix, we utilize parallelization over the rays/receivers r
and the sources s. To efficiently update the slowness model following (5) we employ a conjugate gradient solver implemented by using the
cuSPARSE library to accelerate the involved matrix inversion.

In the traveltime map t(x) the source location xs represents a
global minimum. Hence, a steepest-descent scheme can be applied
to trace a ray path from a receiver location to the source location.
If xk denotes the current coordinate of the ray path, the steepest-
descent strategy is expressed by xk ← xk + α∇t(x)|x=xk where
∇t(x) is the gradient of the traveltime map and α is a positive step
size. Since each ray path is independent of any other ray path all
rays can be traced in parallel, i.e., computation of gradient, angle
and decision on the next ray coordinate are conducted on one thread
in one CUDA core. For details the reader is referred to [13].

In the steepest-descent strategy the gradient of the traveltime
map ∇t(x) is evaluated at a single coordinate xk only. This can
result in inaccurate and diverging ray paths especially in highly het-
erogeneous media. To enhance accuracy of the ray tracer we use
the 4th-order Runge-Kutta method [14] where the gradient∇t(x) is
evaluated at four different positions. Afterwards gradient informa-
tion from all four positions is used to obtain the next ray coordinate.
The respective four positions are calculated via

xk,1 = xk, xk,2 = xk +
α

2
∇t(xk,1), (6)

xk,3 = xk +
α

2
∇t(xk,2), xk,4 = xk + α∇t(xk,3). (7)

The ray coordinate is then updated by

xk ← xk +
α

6

(
∇t(xk,1) +∇t(xk,2) +∇t(xk,3)

+∇t(xk,4)
)

(8)

Again, since computation of a ray path is independent of any other
ray the algorithm can be easily parallelized over the rays.

3. IMPLEMENTATION DETAILS

To use the parallel compute power of the Jetson Nano we implement
critical sections of the imaging scheme as GPU kernels using CUDA.
We exploit the CUDA programming model and GPU capabilities at
four different instances in the imaging process, i.e., in the eikonal
solver, the ray tracer, the construction of the sensitivity matrix and
the update of the slowness model. Fig. 2 gives an overview of the
different processing blocks with information about parallelization.

3.1. Eikonal solver

As described in Section 2 the FIM can update traveltimes at multiple
grid points in parallel in every iteration, leading to faster computa-
tion of the traveltime map t(x) compared to sequential solvers such

as FMM and FSM. One iteration in FIM comprises three parallel ker-
nels that conduct the following operations: Firstly, updating travel
times in the active list, then reducing the list by removing converged
grid points and lastly propagating changes to directly neighbouring
grid points. As soon as the active list is empty, all computed travel-
times have converged and FIM outputs the final traveltime map. We
use the original FIM code which can be accessed on GitHub1.

3.2. Ray tracing

The ray tracer is implemented in a data parallel way over the to-
tal number of rays which is equal to the number of receivers NR.
Each block in the kernel grid on the GPU is responsible for one
source s and executes with the number of receivers NR as thread
count. Therefore, each thread processes tracing of one ray. The re-
sulting rays are written into a pre-allocated continuous linear mem-
ory region. Since in CUDA kernels use fixed size static arrays suf-
ficient memory space needs to be allocated in advance for the rays.
To this end, we conservatively assume three times the largest edge
of the subsurface domain Ω, i.e., either Nx or Nz . In scenarios with
obstacles that could lead to rays longer than traversing the edges of
the domain (e.g. obstacles that have to be circumvented), a differ-
ent heuristic is needed to assure appropriate space for each ray. We
choose the described approach to avoid having to reallocate device
memory during ray tracing. By parallelizing the ray tracer we can
consider measurement scenarios with more receivers participating,
without incurring significant, additional run time cost. Following
the 4th-order Runge-Kutta in Section 2 the next point in the ray is
determined by the direction of steepest descent. In the discrete do-
main we need to map the next point of the ray to the grid point that
coincides best with the calculated descent angle. To this end, we
partition the unit circle into multiple sections that define decision
boundaries for the next point. We implemented the option to use ei-
ther 8 or 16 sections, respectively. In general, the utilized ray tracing
approach works best for smooth velocity variations.

3.3. Sensitivity matrix and model update

In TT, the matrix Gs needs to be rebuilt for each source s in each
iteration based on the updated slowness model m. This impact can
also be offset by parallelization using the inherent data parallelism
in the building process. Each row in each Gs corresponding to one
ray r traced through the domain for source s can be independently

1https://github.com/SCIInstitute/StructuredEikonal
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Fig. 3: Imaging results of our implementation onb the Jetson Nano for two scenarios with synthetic velocity anomalies: (a) symmetric
rectangular high velocity region, (b) asymmetric scenario with two high velocity regions. Receiver and source positions are depicted by
yellow and red markers, respectively.

calculated by its own thread. One thread scans the ray r correspond-
ing to the respective row and populates it with values for the segment
lengths of the ray. For this purpose we interpret the grid points as
nodes forming square cells. A row of Gs is then a representation of
the segment length for each cell in the computational domain.

In the update (5) of the subsurface model m a matrix of dimen-
sion NxNz ×NxNz needs to be inverted for each source s. Clearly,
such computation will require long processing time. To reduce the
computation time we use a general matrix-vector linear solver in
each iteration for each source s. More specifically, we employ paral-
lel sparse matrix-vector multiplication and sparse decomposition for
the system matrix (GT

sGs+γI)−1 from the cuSPARSE library pro-
vided by NVIDIA to implement a conjugate gradient (CG) method
[15]. The CG method is known to be particularly suited for large
sparse linear systems as we encounter here. Due to memory limita-
tions of the Jetson Nano we solve the linear system of equations for
each source s, separately. In general, forming a block matrix over
all sources and applying the CG method is possible but can quickly
occupy the complete memory of the Jetson Nano. In this case, swap-
ping data needs to be used which again increases computation time.

In the implementation, the system matrix in (5) is only invert-
ible for a high regularization parameter γ due to the singular ma-
trix product GT

sGs. To compensate for the strong regularization
we build the mean over the contributions from all sources in the
update vector ∆m and add a scaling factor α that decays expo-
nentially to enable a smooth cost minimization, i.e., m ← m −
α
NS

∑NS
s=1(G

T
sGs + γI)−1GT

s (tsyn,s − tobs,s). Such modification
of the subsurface model update leads to a numerically stable imple-
mentation of TT.

4. PERFORMANCE EVALUATION

To evaluate our implementation we focus on imaging results using
synthetic as well as real seismic data recorded over a highway tunnel.
We employ a Jetson Nano with 2GB RAM and 2 streaming multipro-

cessors (SM). Furthermore, we compare timing performance against
a CPU implementation using the pyGIMLi package [16] that does
not have to abide by power or space constraints as our implementa-
tion on the Jetson Nano. The desktop machine uses an i7-1185G7
CPU and has 16GB RAM available.

4.1. Imaging synthetic velocity anomalies

We report results for two scenarios with synthetic subsurface mod-
els. The first scenario is a symmetric setup with a rectangular high
velocity zone. Secondly we consider an asymmetric setup with a
rectangular and an ellipsoidal anomaly. For both scenarios we use
NR = 128 receivers and NS = 15 sources placed on the surface.
We assume a regular grid spacing with a cell size of ∆x = ∆z =
1m that results in grid size of 30 × 200 points. For TT we set
γ = 1000, α = 10 and NTT = 4. Furthermore, for the Gaussian fil-
ter we choose a high standard deviation in the range of σ = 3, . . . , 5
to smooth out the model update ∆m.

Fig. 3 depicts the imaging results for both scenarios with the re-
spective true velocity model and the starting model that is used by
our TT implementation on the Jetson Nano. One can observe that
for both cases the anomalies are visible in the reconstructed images
in particular for the rectangular anomaly. In both images the res-
olution is low. This is due to the resolution limits imposed by the
first-arrival traveltime data [17]. In Tab. 1 we compare computation
time of our implementation against PyGIMLi running on a desktop
machine. Here we additionally report computation times for models
with a lower resolution to demonstrate the impact of model scale.
One can see that PyGIMLi consumes lower computation time for the
considered examples than our implementation on the Jetson Nano.
However, one should note that PyGIMLi runs on a powerful desktop
machine that consumes a multiple of power compared to the Jetson
Nano that draws 5 − 10W only. Furthermore, PyGIMLi exploits
parallel computing over multiple CPU cores. Under this considera-
tion, our implementation achieves reasonable computation times.



Scenario Resolution Method Time
Box 140× 30 Ours 22.25 s

PyGIMLi 4.27 s
200× 30 Ours 51.32 s

PyGIMLi 7.68 s
Box + Ellipse 140× 30 Ours 21.76 s

PyGIMLi 7.18 s
200× 30 Ours 42.04 s

PyGIMLi 14.15 s

Table 1: Timing results for our implementation on the Jetson Nano
and PyGIMLi running on a desktop CPU.

Fig. 4: Imaging result for real traveltime data recorded over a high-
way tunnel [18]. The source and receivers are placed at the surface
and marked in red and yellow, respectively.

4.2. Imaging a highway tunnel

In this example, we use real seismic measurement data that was
recorded over a highway tunnel using hammer strikes as a source
[18]. For the measurements we used a receiver line of NR = 16
geophones with NS = 8 shot positions. To image the tunnel we
use a discretization of ∆x = ∆z = 0.25m for the spatial domain.
We use γ = 100, α = 3, σ = 5 and NTT = 6 as parameters
for TT. In this scenario, our Jetson Nano implementation requires
39.60 s of computation time. The imaging results using our pro-
posed TT implementation are illustrated in Fig. 4. One can clearly
see that the tunnel structure is recovered by TT. Based on ground
truth information of the measurement site the highway tunnel is lo-
cated at approximately 4 − 5m depth and 18m distance from the
first geophone of the array. These data also coincide well with the
reconstructed image. Our imaging result shows the ability of TT to
resolve the top and boundaries of the tunnel. Resolving the lateral
boundaries is possible albeit blurred.

5. CONCLUSION

We presented an efficient implementation of the traveltime tomogra-
phy on the NVIDIA Jetson Nano, a GPU-equipped edge device. Our
proposed implementation places the complete tomography method
on the GPU where forward solver, ray tracing and slowness model
update are all implemented in a parallelized fashion to run efficiently
over multiple CUDA cores. With regard to timing performance,
we compared our implementation with the package PyGIMLi that
is suited for desktop CPUs. Our implementation on the compact and
power-limited Jetson Nano, although slower, showed to be in com-
parable range with PyGIMLi. Further optimization of the inversion
involved in the slowness model update will decrease this gap.
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