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ABSTRACT

The trend in the development of highly automated ve-
hicles goes towards scenario-based methods. Traf-
fic Sequence Charts are a visual but yet formal lan-
guage for describing scenario-based requirements on
highly automated vehicles. This work presents an ap-
proach for finding inconsistencies (conflicts) in a set
of scenario-based requirements formalized with Traf-
fic Sequence Charts. The proposed method utilizes
satisfiability modulo theories solving on two-sided
approximations of possible vehicle behavior. This
ensures that found inconsistencies are not caused by
approximations, but also occur when applying exact
methods. Applicability and scalability of the analysis
technique is evaluated in a case study.

keywords Scenario-based Development, Traffic
Sequence Charts, Consistency, ISO 26262, Satisfia-
bility Modulo Theories, Bounded Model Checking

1 INTRODUCTION

The development of highly automated vehicles
(HAVs) has to deal with highly complex environ-
ments. In SAE Level 3 (SAE J3016_202104, 2021)
and above, the automated vehicle is expected to drive
safely within its design domain. The challenge of
ensuring provably safe behavior starts already in the
early phases of the development process. Potentially
critical driving situations have to be identified, and
strategies need to be defined that lower risks to an
acceptable minimum (Kramer et al., 2020; Neurohr
et al., 2021). The number and complexity of differ-
ent situations is enormous as it includes both static
and dynamic aspects, such as road and weather con-
ditions, different traffic participants, and driving ma-
neuvers (Koopman and Fratrik, 2019). Therefore,
the trend goes towards scenario-based approaches that
aim at clustering this unmanageable set of different
situations and scenarios into a manageable set of sce-
nario classes (Kalisvaart et al., 2020; Menzel et al.,

2018; Riedmaier et al., 2020). During the whole de-
velopment process, scenario descriptions of different
granularity are used. For example, identified criti-
cal scenario classes are characterized by textual sce-
nario descriptions, so-called functional scenarios dur-
ing the concept phase, while testing requires concrete
scenarios that allow an exact reproduction in a (vir-
tual or physical) test bed (Menzel et al., 2018).

This rigorous scenario-driven approach calls for
specifying also the behavioral requirements on the
system, i.e., how the HAV shall behave in certain situ-
ations, in a scenario-based manner. Traffic Sequence
Charts (TSCs) (Damm et al., 2018a) are a graphical
formalism that enables exactly this. In a TSC, traf-
fic situations are graphically depicted and assembled
to formalized versions of functional scenarios, called
abstract scenarios (Neurohr et al., 2021). With the
same technique, TSCs also allow to formalize require-
ments.

As a research contribution to the field of scenario-
based development of HAV, this paper reports on the
author’s doctoral thesis entitled “A Consistency Anal-
ysis Method for Traffic Sequence Charts” that is cur-
rently under work. In short, the thesis aims on the
development and experimental evaluation of an auto-
mated consistency analysis approach for TSCs.

The remainder of the paper is structured as fol-
lows. Section 2 presents the research problem and ob-
jectives of the thesis. Section 3 presents background
work, followed by an introduction to TSCs in Sec-
tion 4. Section 4 also introduces the running example.
In Section 5, key ideas of the methodology and ex-
pected results are named. The proposed consistency
analysis method is then described in more detail in
Section 6. Some experimental evaluation results are
presented in Section 6.3. Finally, Section 7 concludes
the paper with a short discussion and outlook to future
work.



2 RESEARCH PROBLEM AND
OBJECTIVES

Good systems engineering practice mandates that re-
quirements shall comply to the three big Cs cor-
rectness, completeness, and consistency (Zowghi and
Gervasi, 2003; Kamalrudin and Sidek, 2015). Cor-
rectness is usually defined as the combination of
completeness and consistency (Zowghi and Gervasi,
2003). Normative standards – such as ISO 26262
(ISO 26262, 2018) in the automotive domain – state
completeness and consistency as mandatory proper-
ties of any requirements specification. Completeness
is quite hard to grasp, and only be defined relatively,
for example with respect to the outcome of a pre-
ceding hazard analysis (Leveson, 2000). Consistency
means that a set of requirements is free of contradic-
tions. This includes both contradictions within itself
and with respect to other requirements (ISO 26262,
2018). Detecting inconsistencies early in the develop-
ment process avoids implementation faults and saves
time and money (Feiler et al., 2010).

A lot of different approaches (e.g. (Jaffe et al.,
1991; Ellen et al., 2014; Becker, 2018; Filipovikj
et al., 2017; Aichernig et al., 2015; Post et al., 2011))
exist that formally define consistency, but none of it is
directly applicable to TSCs. Therefore, the presented
PhD thesis addresses two major research questions

1. How can consistency for traffic sequence charts
be defined formally?

2. How can a consistency check that uses these defi-
nitions of consistency be automated?

The research objectives of the thesis can be sum-
marized as follows.

1. Develop adequate consistency notions for TSCs

2. Define a decision procedure for the consistency
notions

3. Formally prove correctness of the encoding

4. Prototypically implement the approach

5. Evaluate effectiveness and scalability of the ap-
proach

The experiments for evaluation are further described
in Section 6.3.

3 STATE OF PRACTICE

Consistency analysis for TSCs bridges research from
different fields.

In the automotive industry, scenario-based devel-
opment (Kalisvaart et al., 2020; Menzel et al., 2018;

Riedmaier et al., 2020) is the answer to the growing
complexity of HAV. Menzel et. al. (Menzel et al.,
2018) identified a wide range of applications of sce-
nario descriptions in a traditional development pro-
cess. As already mentioned in the introduction, sce-
narios are used in different abstraction levels. Traf-
fic sequence charts (Damm et al., 2017; Damm et al.,
2018a) have been developed to formally describe sce-
narios with a high abstraction level. TSCs have been
used in a wide range of applications, e.g. scenario
mining (Damm et al., 2019), test design (Damm et al.,
2019) and runtime monitoring (Grundt et al., 2022).
In contrast, OpenSCENARIO1 XML has been devel-
oped as an industrial standard for describing automo-
tive scenarios on a lower abstraction level. Open-
SCENARIO mainly targets simulation of scenarios
and is supported by industrial-grade driving simula-
tors. There is also an approach to generate Open-
SCENARIO XML specifications from TSCs (Becker
et al., 2022). Another ASAM standard, OpenSCE-
NARIO DSL2, allows to specify abstract scenarios,
but there is no complete tool support for these new
features, yet.

In the ENABLE-S3 research project (Leitner
et al., 2019), a reference process for scenario-based
development has been defined. Here, consistency
analysis is one step in the requirement and scenario
elicitation activity, but is not discussed further. How-
ever, automated consistency analysis has already been
developed for other types of formal requirement spec-
ifications. For example, the software cost reduction
(SCR) toolset (Jaffe et al., 1991; Heitmeyer et al.,
1996) provides an automated consistency analysis for
automata-like specifications. More recent work (Ellen
et al., 2014; Becker, 2018; Filipovikj et al., 2017;
Aichernig et al., 2015; Post et al., 2011) considers
pattern-based requirements.

In most of the aforementioned work, satisfiabil-
ity modulo theories (SMT) solving in connection with
bounded model checking (BMC) is used to find in-
consistencies. All these works consider discrete tran-
sition systems. Consistency is then reduced to ex-
istence of system runs that satisfy the requirements.
SMT is well suited for consistency analysis because it
is capable of both synthetizing system runs (which are
a witness for consistency) and proving non-existence
of satisfying runs (which proves inconsistency). In

1https://www.asam.net/standards/detail/
openscenario-xml/, accessed on 2024-02-28. OpenSCE-
NARIO XML was formerly known as OpenSCENARIO
1.x

2https://www.asam.net/standards/detail/
openscenario-dsl/, accessed on 2024-02-28. OpenSCE-
NARIO DSL was formerly known as OpenSCENARIO
2.0

https://www.asam.net/standards/detail/openscenario-xml/
https://www.asam.net/standards/detail/openscenario-xml/
https://www.asam.net/standards/detail/openscenario-dsl/
https://www.asam.net/standards/detail/openscenario-dsl/


the authors earlier work (Becker, 2020), this idea is al-
ready applied to TSCs. Instead of discrete transition
systems, the translation process to SMT is based on
earlier work about duration calculus, which has some
similarities to TSCs. However, it over-approximates
possible vehicle behavior which means that correct-
ness of witness trajectories cannot be guaranteed. The
aforementioned generation of OpenSCENARIO from
TSCs (Becker et al., 2022) is based on the same
method, but extends it with a simple vehicle dynamics
model. As a consequence, generated concrete scenar-
ios are correct, but not all possible scenarios can be
found. A similar technique is also applied by Eggers
et al. (Eggers et al., 2018) to scenario specifications
that are similar to existential TSCs, but more restric-
tive. To the author’s knowledge, these are the only
works that tackle consistency of traffic scenario spec-
ifications.

The present work builds upon the existing work
on TSC consistency analysis (Becker, 2020) and ex-
tends it with the TSC instantiation technique (Becker
et al., 2022) that has already been used for Open-
SCENARIO generation. The latter uses a conser-
vative linear approximation of vehicle dynamics in
conjunction with Bézier spline trajectory planning.
Alternatives would be statespace exploration tech-
niques for hybrid systems (Henzinger et al., 1997;
Frehse, 2005; Frehse et al., 2011; Chen and Sankara-
narayanan, 2016; Eggers et al., 2011). However,
these numerical approaches focus on ordinary differ-
ential equations without a known closed form solution
and unfortunately scale badly with high dimensional
state spaces. Plaku et al. (Plaku et al., 2007; Plaku
et al., 2013) overcome these limitations by combin-
ing searches on a discrete state spaces to guide exact
simulations. The approach depends on a discrete ap-
proximation of the reachable state space which needs
to be provided manually. Therefore, it is not suited
for an automated consistency analysis.

4 TRAFFIC SEQUENCE CHARTS

TSCs have been developed with the goal of creating
a description language that connects the intuitiveness
of depicting traffic situations graphically with well-
defined semantics. The core concept of a TSC is
a so-called invariant node that graphically depicts a
traffic situation (or, as we will see later, a combina-
tion of situations). Here, symbols stand for objects,
and their placement indicates spatial relations. Invari-
ant nodes are assembled to basic charts by combining
them using the operators sequence, choice, and con-
currency depicted in Figure 2. The operators can be

arbitrarily nested. Furthermore, it is possible to add
timing annotations (Figure 2d) to basic charts—time
pins ( ) with the same label synchronize time points,
and hour glasses ( , ) express duration constraints.
The full TSC formalism (Damm et al., 2018b) also al-
lows negation of basic charts, which has been omitted
for this paper. Experience shows that negation is sel-
dom needed in practice because it allows almost any
(also unintended) behavior. So, this is only a minor
limitation.

A requirement TSC resembles a typical specifi-
cation pattern, sometimes called response property3

(Dwyer et al., 1999; Konrad and Cheng, 2005). It
consists of three parts depicted in Figure 1: a bulletin
board declaring symbols referring to global object
variables, a pre-chart describing a triggering condi-
tion split into history (left part) and future (right part),
and the consequence defining a reaction to the trig-
ger that is synced with the future. It expresses that
whenever the pre-chart is observed, then also the con-
sequence shall be observed; thereby, the consequence
has to happen in parallel to the future. For simplic-
ity, we denote a requirement TSC by a triple ⟨H,F,C⟩
made of history H, future F , and consequence C.

4.1 Interpretation of Spatial Views

TSCs are always interpreted with respect to a world
model and a symbol dictionary. The world model de-
fines the domain ontology for the specification. At
least, it defines the object types that a TSC may speak
about together with the attributes. There is no unique
way of defining a world model. For example, one
could define the world model in terms of a UML class
diagram (Booch, 2005) or description logic (Baader
et al., 2007). Earlier work on TSCs (Damm et al.,
2018b) sees the world model as a network of commu-
nicating hybrid automata.

The symbol dictionary (Figure 4) defines the sym-
bols that are used to represent objects from the world
model within spatial views. This way, it provides the
link between the world model and the TSC. Each ob-
ject symbol has a type and a set of anchors. Anchors
bind selected points of a symbol to positions in a 2D
space. In this paper, the anchor points are always
placed in the four corners of a symbol and describe the
object bounding boxes in our global coordinate sys-
tem. So, the bottom-left anchor binds to (x,y) and the
top-right anchor to (x̄, ȳ) in object attributes. The al-
ternative symbol variants (second column of Figure 4)
are used to make bulletin board symbols visually dis-
tinguishable (e.g., carI from carJ in Figure 1).

3With the full TSC language specified in (Damm et al.,
2018b) also a wide range of other patterns can be realized.



carI

carJ

aLane

︸ ︷︷ ︸
bulletin-board

history︷︸︸︷ future︷ ︸︸ ︷

︸ ︷︷ ︸
pre-chart

︸ ︷︷ ︸
consequence

Figure 1: A TSC and its parts. The bulletin-board declares object symbols with global scope in the TSC; the pre-chart is a
triggering condition for the TSC, where history describes past behavior; the consequence is the requirement obligation that
shall be maintained during the future behavior.

A B

(a) Sequence

A

B

(b) Choice

A

B

(c) Concur-
rency

d d<10s

A

p q

B C

D
p

E
q

F

(d) Timing annotations (e) Empty in-
variant

(f) Invariant node

Figure 2: Syntax of basic charts

Now, we come to spatial views. As said above,
symbols declared in the bulletin board stand for ob-
jects of the corresponding type. Somewhere boxes
(green dashed rectangles) and nowhere boxes (red
crossed rectangles) are special symbols that structure
a spatial view into a hierarchy of frames—the spatial
view spans the top-level frame and each somewhere
or nowhere box spans an inner frame. The anchors of
symbols and boxes are used to define spatial relations
between the objects. In each frame, the left-to-right
and bottom-to-top orderings of anchors induce an or-
dering of corresponding positions along x and y axes
of the global coordinate system. This creates implicit
spatial relations between objects directly contained in
the same frame. Hence, the traffic situation depicted
in a somewhere box takes place somewhere within
the region spanned by the frame. Explicit spatial re-
lations are defined by so-called distance arrows that
constrain distances between anchors in x or y direc-
tion. Additional constraints over the object attributes
are displayed as a textual label connected to the object
symbols.

The following examples show how spatial views
can be translated to mathematical formulae. The al-
gorithm to construct the formulae can be found in
(Damm et al., 2018b).

Example 1. The following is the semantics of the spa-
tial views in Figure 3 when using the bulletin-board in
Figure 3a.

SV 1 expresses that carI crosses the border between

carI

carJ

lLane

rLane

(a) bulletin-board (b) SV 1

> 5m

(c) SV 2

v < 120[km/h]

(d) SV 3 (e) SV 4
Figure 3: Spatial views from Example 1

the left and the right lanes.
rLane.x= lLane.x

< carI.x< carI.x̄
< rLane.x̄= lLane.x̄

∧ rLane.y< carI.y
< rLane.ȳ= lLane.y
< carI.ȳ< lLane.ȳ

SV 2 expresses that carI is more than 5m behind
carJ. Note that because of the somewhere box
around carJ only spatial relations in x-directions
are evaluated4.

carJ.x−carI.x̄> 5 m
SV 3 shows a textual annotation that constraints the

speed of carI:
carI.v< 120 km/h

4Because the left and right borders of carJ and the
somewhere box are aligned, carJ can be located on the y-
axis arbitrarily within the box, but not on the x-axis.



SV 4 requires that there is no other car c between
carI and carJ on some lane l:

∃l ∈ Lane :
l.x< carI.x< carI.x̄

< carJ.x< carJ.x̄< l.x̄

∧l.y< carI.y< carI.ȳ< l.ȳ

∧l.y< carJ.y< carJ.ȳ< l.ȳ

∧∄c ∈ Car : carI.x̄< c.x< c.x̄< carJ.x

∧l.y< c.y< c.ȳ< l.ȳ

The object variables l and c are existentially
quantified because the corresponding symbols are
not contained in the bulletin board.

4.2 Chart Semantics

On top of the semantics of spatial views we define the
semantics of charts. Satisfaction of a chart is defined
with respect to a concrete trajectory.

Definition 1. A trajectory over a set O of objects
(each having some type from the world model) is a
function

π : R≥0 → UA(O)

that assigns, for any point t ∈ R≥0 in time, a value to
any attribute o.a ∈ A(O) of any object o ∈ O. Here,
U is the universe of values used by the world model
(e.g., reals and Booleans).

Given some trajectory, we can evaluate a spatial
view at any point in time using the derived formula
(given correct typing and that the global objects from
the bulletin board are present in the trajectory). A spa-
tial view is satisfied at time t if the formula evaluates
to true under the evaluation of all object attributes (in-
cluding derived ones) given by π(t).

Satisfaction of a basic chart is always defined with
respect to an interval [b,e] ⊆ R≥0. Furthermore, a
time value tp is selected for every time pin p.

Definition 2. Given some trajectory and time values
tp for time pins p, a basic chart is satisfied on some
interval [b,e] if the following holds.

• Invariant nodes: b < e and the spatial view holds
for all t ∈ [b,e).

• Empty invariant node: b < e
• Sequences (Figure 2a): there exists some m ∈
[b,e] such that A is satisfied on [b,m] and B on
[m,e].

• Choices (Figure 2b): A or B is satisfied on [b,e].

• Concurrency (Figure 2c): both A and B are satis-
fied on [b,e].

For charts with timing annotations, the following has
to hold additionally.

• Sequences with a time pin p require m = tp.
• Charts with a sequence p1, . . . , pn of time pins re-

quire b ≤ tp1 ≤ ·· · ≤ tpn ≤ e.
• Charts with an hour glass labeled with a free vari-

able d and a constraint ψ(d) over d require that
ψ(e− b) evaluates to true (i.e., when replacing d
by e−b).

A requirement TSC is satisfied on a trajectory, if for
all b ≤ m ≤ e ∈ R≥0 holds: whenever there are time
pin values such that the history is satisfied on [b,m]
and the future is satisfied on [m,e], then there are time
pin values such that the consequence is satisfied on
[m,e].

Note that for invariant nodes, the end point e is ex-
plicitly excluded from the interval. This allows non-
overlapping sequences of invariants.

Example 2. The chart in Figure 2d is satisfied on an
interval [b,e] if e−b < 10s and there are time points
m1,m2,m3,m4 such that subcharts A, B, C, D, E, and
F are satisfied on [b,m1], [m1,m2], [m2,e], [b,m3],
[m3,m4], and [m4,e] respectively, and

b ≤ m1 ≤ tp < tq ≤ m2 ≤ e
b ≤ m3 = tp ≤ m4 = tq ≤ e .

Because time pins are existentially quantified, this is
equivalent to

b ≤ m1 ≤ m3 ≤ m4 ≤ m2 ≤ e .

In Section 6.1, consistency is reduced to sat-
isfiablility of TSCs. Satisfiability asks whether
there exists at least one trajectory that satisfies the
TSC. Therefore, we assume that a world model
WM, beneath a type hierarchy, defines the universe
Traj(WM) of all possible trajectories. In other words,
it describes all possible behavior. The concrete world
model used throughout this paper is introduced later
on in Section 4.3

Definition 3. A basic chart BC is satisfiable in a
world model WM, written SATWM(BC), if there ex-
ists a a trajectory π ∈ Traj(WM), a time point e > 0
and time pin values such that BC is satisfied on π on
[0,e].

A TSC TSC is satisfiable in a world model WM,
written SATWM(TSC) if there exists a trajectory π ∈
Traj(WM) such that TSC is satisfied on π.



Symbol Alternatives Type

x x

y

y⊗

⊗⊗

⊗
Car

x x

y

y⊗

⊗⊗

⊗
DrivingLane

x x

y

y⊗

⊗⊗

⊗
AccelerationLane

Figure 4: Symbol dictionary for the running examples

Car

Dynamic Object

Object

Static Object

Lane

Driving Lane Acceleration Lane

Figure 5: The world model that is used in the use case. Each
box represents an object type, arrows denote inheritance

4.3 Use Case World Model

Figure 5 shows an excerpt of the world model used
during this paper5. Every object type defines a set of
attributes and invariants. The attributes include po-
sitions in form of the minimum (x,y) and maximum
(x̄, ȳ) coordinates of the object’s bounding box. We
use a road coordinate system where the reference line
of the rightmost lane is chosen as the x-axis. Lane
boundaries are then expressed in terms of start,
length, and width of the lane. This does not mean
that all roads symbolized in a TSC are straight roads
in reality. Coordinate transformations such as Lanelet
transformation (Bender et al., 2014) allow to interpret
spatial views on curved roads, too.

The bounding box of a car is expressed by offsets
bb(x|y)(min|max) to the reference point as denoted in
Figure 6.

Cars move according to a single track model given
by

ẋ= vcosθ ẏ= vsinθ θ̇ =
v

r
=

tanδ

L
v v̇= a

subject to the constraints |δ| ≤ δmax and lateral accel-
eration |alat | = |vθ̇| ≤ 0.4g. The lateral acceleration
bound of 0.4g ≈ 3.92 m/s2 is stated in the literature
(Schramm et al., 2014) as a validity constraint for the
single track model.

5It is used by both the examples and the evaulation case.

G

L

F W

r = L
tanδ

(x,y)

x x̄

y

ȳ

−bbxmin bbxmax

b
b
y
m
a
x

−
b
b
y
m
i
n

θ

δ

δ

Figure 6: Bounding box for a car and illustration of the sin-
gle track model. Constants F , G, L and W together describe
the vehicle dimensions. The turning radius r depends on
wheel base L and Ackermann steering angle δ.

4.4 Satisfiability Modulo Theories and
Bounded Model Checking

Satisfiability modulo theories (SMT) solving is an ex-
tension of classical satisfiability (SAT) solving that al-
lows to combine different theories, e.g., linear arith-
metics and bit vectors. An overview on SMT solv-
ing can be found in (Barrett et al., 2009). An SMT
solver (supporting a set of theories) takes as an input a
problem description in form of a set Φ of constraints.
The solver then tries to either find a satisfying assign-
ment (returning sat) or prove unsatisfiability (return-
ing unsat) of Φ within the used theories. If the solver
cannot do either (e.g., because of a timeout or incom-
pleteness of the implemented decision procedure), it
returns unknown.

With bounded model checking (BMC) (Armando
et al., 2009), SMT solving is utilized to check
bounded reachability in symbolic transition systems.
In BMC, the state vector is encoded in a set X of
variables. A BMC problem is a triple (I,T,F) of
constraints over X. The constraints I(X) and F(X)
characterize the initial and final states of the system.
The possible transitions are encoded in the constraint
T (X,X′) that evaluates to true whenever there is a
transition between the current state X and the next
state X′. Introducing an instance Xi of X for every
step i = 0, . . . ,n, the constraint

I(X0)∧
n∧

i=1

T (Xi−1,Xi)∧F(Xn)

characterizes all accepting runs with n steps.



5 METHODOLOGY AND
EXPECTED RESULTS

The consistency analysis shall be based on a rigorous
formal method. Due to the incompleteness of sce-
nario descriptions and domain models in early phases
of the development process, validity of the found in-
consistencies is mote important than completeness
of the findings. Following some of the existing ap-
proaches (Ellen et al., 2014; Becker, 2018; Filipovikj
et al., 2017), it seems a good idea to base a con-
sistency notion for TSCs on the existence of satis-
fying trajectories. Because TSCs describe require-
ments as sequences of invariants, SMT solving seems
a promising approach to tackle the problem. Some
of the related work (Ellen et al., 2014; Becker, 2018;
Filipovikj et al., 2017; Eggers et al., 2018) also uses
SMT solving for the generation of trajectories.

The consistency analysis shall provide feedback
about a scenario specification already in early phases
of the development process. Here, scenario specifica-
tions may be still incomplete. Furthermore, the op-
eration environment and physical constraints of the
HAV may be under-specified. Because the consis-
tency analysis has to deal with large sets of require-
ments in a potentially underspecified context, perfor-
mance shall be favored over completeness of the re-
sults. TSCs describe scenarios in a dense time do-
main, and require to consider non-linear movement
given usually as differential equations or hybrid au-
tomata (Damm et al., 2018a). Numerical approaches
to explore this kind of continuous-time hybrid sys-
tems exist (Henzinger et al., 1997; Frehse, 2005;
Frehse et al., 2011; Chen and Sankaranarayanan,
2016; Eggers et al., 2011), but scalability of these
methods is an issue. The TSC semantics adds an-
other layer of complexity. Results on Duration Cal-
culus (that has similar operators to TSCs) (Chaochen
et al., 1993; Bouajjani et al., 1995) show that this
might easily lead to state explosion. Therefore, the
consistency analysis uses two-sided approximations.
As explained in detail in Section 6.2, both a necessary
and a sufficient condition for the existence of trajec-
tories is developed. The former produces discrete ap-
proximations that don’t ensure validity (except from
continuity). The latter is incomplete, but produces tra-
jectories that are valid with respect to the TSCs and a
realistic vehicle dynamics model. Because the con-
sidered requirement specification mainly address ma-
neuver and trajectory planning, a single-track model
(explained in Section 4.3) is sufficient. For reasons of
efficiency, the methods are designed to be usable with
solvers for mixed Boolean and linear real arithmetic.

The developed prototype shall be applied to

medium sized (sets of) TSCs, thereby evaluating scal-
ability (i.e., in terms of runtime) and completeness
of the approach. It is expected that the experimental
evaluation shows that an SMT-based automated con-
sistency analysis for TSCs is practicable. By the na-
ture of SMT solving, it must be expected that the ex-
ecution time for solving the generated SMT problems
is expnential to the size of the TSCs. However, it shall
be possible to design the analysis method in a way the
overall number of SMT problems to be solved in prac-
tice grows only polynomial to the size of the specifi-
cation, and that each SMT problem is small enough
to produce a result in acceptable time. Furthermore,
it is expected that the experiments show some limita-
tions of the approach wrt. completeness of found in-
consistencies, but that the chosen approximations are
sufficient to find common specification faults.

6 STATE OF WORK

The following is a summary about the developed con-
sistency analysis method, including the translation of
TSCs into SMT problems. For reasons of space, most
of the constructions can only be presented by exam-
ples. The complete constructions including correct-
ness proofs will be given in the author’s PhD thesis.

6.1 Defining Consistency

The idea behind the formal definition of a set of TSCs
being consistent is not totally new. The following
consistency notions adopt ideas from related work
(Becker, 2018; Becker, 2020; Filipovikj et al., 2017;
Ellen et al., 2014).

In general, consistency asks the question: “Is it
possible to build a system that satisfies all my require-
ments?” Usually, this question cannot be answered
unless you build the system itself. Therefore, some
weaker question is used: “Does there exist at least
one trajectory (called a witness trajectory), i.e., a sys-
tem observation, that does not violate one of my re-
quirements?” Obviously, if the answer to the second
question is “No” then it is impossible to build a sys-
tem that implements all the requirements together. In
other words, there is some conflict in the requirements
specification that makes implementation impossible
and needs to be resolved.

As a starting point for formally defining consis-
tency of requirement TSCs we take the second ques-
tion. For specifications consisting of a single TSC,
we can write it as SATWM(TSC). However, this can
be trivially answered with true for may TSCs, sim-
ply by providing a trajectory where the pre-chart is



not satisfied. So, SATWM(TSC) alone is not an ap-
propriate consistency criterion. Similar observations
have been made in all of the related work (Becker,
2018; Becker, 2020; Filipovikj et al., 2017; Ellen
et al., 2014) that considers requirements in implica-
tion form. It is solved typically by requiring that the
premise of the requirement – in TSC terms the pre-
chart – occurs at least once on the trajectory. For
TSCs ⟨H,F,C⟩, we realize this by asking for satis-
fiability of the basic chart

HFCTSC = H
F

C

with H, F , C being history, future and consequence of
the original TSC. Formally, it expresses the following

• The pre-chart, H followed by F , occurs at least
once.

• The consequence C is satisfied at least once in par-
allel to the future F .

This includes only a weak approximation of the
formal TSC semantics (because the consequence is
checked only in parallel to one occurrence of the fu-
ture, but there may be more occurrences) but is indeed
a necessary condition for what we would achieve and
turns out to be sufficient to find typical specification
faults6. As a side effect, this removes the implicit
implication between pre-chart and consequence. In
related work (Becker, 2020; Ellen et al., 2014), this
form of consistency is called existential consistency.

Now we lift this idea to sets (with size > 1) of
TSCs. For sets of TSCs, the witness trajectory shall
show that all TSCs are satisfied together. Recall that
TSCs only constrain those time intervals on a trajec-
tory where history and future hold. Hence, if we have
witnesses for existential consistency of each TSC in
a set, a witness for the whole set may be easily con-
structed by putting the individual witness trajectories
in sequence, with some glue parts between them that
are not covered by the specification. Hence, this does
not give more insight on consistency of the specifi-
cation than consistency of each TSC alone (Becker,
2020). The interesting case in a set of TSCs, how-
ever, are those cases where TSCs are active in par-
allel. Here, consequences from different TSCs must
be satisfied in parallel, which may cause actual con-
flicts. Of course, a specification may contain sub-sets
where the pre-charts are mutual exclusive such that

6The specification fault that is observed most often is
a discontinuity between consecutive spatial views in a se-
quence that is only satisfiable when vehicles are teleported.

they, by intention cannot be active together. There-
fore, the consistency notion proposed for sets of TSCs
does the following.

• Each sub-set of TSCs is checked separately.

• For each set, check if the TSCs can be active in
parallel.

• If so, check whether also the consequences can be
satisfied in parallel to the futures.

The term active in parallel is realized by choosing
one TSC from each subset as the “innermost” TSC.
For other TSCs, let the future start before the inner-
most TSC’s future, and end afterwards. This way,
all the TSCs are active in parallel. For some in-
nermost TSC TSC = ⟨H,F,C⟩ and a context T =
{⟨H1,F1,C1⟩, . . . ,⟨Hn,Fn,Cn⟩} this is encoded in the
basic charts BCTSC,T

1 and BCTSC,T
2 shown in Figure 7,

where BCTSC,T
1 does include the consequences and

BCTSC,T
2 does not. Because timing constraints may

restrict the duration of the future, it is for some TSCs
not possible to be the innermost TSC. Therefore, ev-
ery TSC is tried as the innermost one.

As already mentioned before, we don’t try
to solve the satisfiability problem exactly. In-
stead, we approach it from both directions building
two semi-decision procedures CHECKSATNWM and
CHECKSATSWM. They check a neccessary respec-
tively sufficient condition for satisfiability of a basic
chart in context of our world model WM. Taking
some basic chart BC as input, the two functions each
do the following.

1. Derive a BMC problem from BC and WM, and an
unrolling depth n.

2. Unroll the BMC problem for n steps yielding a
constraint Φ

3. Send Φ to an SMT solver and return the result.

The functions differ in the constructed BMC prob-
lem and chosen unrolling depth and are ex-
plained in more detail in the following sections.
CHECKSATNWM(BC) returns unsat only if BC is
unsatisfiable and CHECKSATSWM(BC) returns sat
only if BC is satisfiable within WM.

Algorithm 1 lists the procedure for finding incon-
sistencies in a set TSC using both approximations.
Recall that a single TSC is existentially inconsis-
tent if CHECKSATNWM (HFCTSC) = unsat. In the
case T = /0 is BCTSC,T

2 equivalent to HFCTSC above.
Hence, the algorithm reports also existetial inconsis-
tencies of single TSCs in the set. Note also that
CHECKSATN and CHECKSATS are chained in a way
that an inconsistency is only reported if an exact deci-
sion procedure would yield the same result. Provided
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Figure 7: Definitions of the charts BCTSC,T
1 and BCTSC,T

2

1 foreach TSC ∈ TSC do
2 foreach T ⊆ TSC\{TSC} do
3 if T = /0 or

CHECKSATSWM

(
BCTSC,T

1

)
= sat

then
4 if

CHECKSATNWM

(
BCTSC,T

2

)
=

unsat then
5 Report inconsistency of

{TSC}∪T ;
6 end
7 end
8 end
9 end

Algorithm 1: Finding inconsistencies in TSCs

that the implementation is sound, the approximations
cannot result in spuriously reported inconsistencies.

The algorithm has much room for optimization.

• Usually, the user is interested in the minimum in-
consistent subsets, i.e., inconsistent sets that be-
come consistent when removing one TSC. So we
can skip any subset where we know that it con-
tains an inconsistent subset.

• For sets S ⊇ T , unsatisfiability of BCTSC,T
1 im-

plies unsatisfiablility of BCTSC,S
1 (the same

holds for the corresponding BMC prob-
lems). So we can skip any superset of T if
CHECKSATSWM

(
BCTSC,T

1

)
= unsat in line 3 of

the algorithm.

• The BMC problem generated by CHECKSATS
is usually harder to solve than the one from
CHECKSATN. so we check it only if

CHECKSATNWM

(
BCTSC,T

2

)
= unsat.

The prototype used for evaluation implements these
optimizations, and experiments (see Section 6.3)
show that most of the cases can be skipped.

6.2 Semi-deciding Satisfiability of Basic
Charts

Both CHECKSATS and CHECKSATN work by encod-
ing a basic chart as a BMC problem, unrolling it for n
steps, and running an SMT solver on it. As a neces-
sary condition for satisfiability, we use SMT solving
to find a satisfying witness trajectory. The same tech-
nique has been used in related work (Becker, 2020)
for simulation of TSCs. The same idea is also fol-
lowed for the necessary condition. The differences
are described later on in Section 6.2.3. In both cases,
the BMC problem (I,T,F) is of the form

I ≡ Ichart

T ≡ Tchart ∧TWM∧
∧

sv∈SV

(bsv ↔ Tsv)

F ≡ Fchart

The triple (Ichart,Tchart,Fchart) encodes the chart struc-
ture, where satisfaction of a spatial view sv in the cur-
rent step is substituted by some variable bsv. The ac-
tual formula for sv (ranging over all spatial views in
the chart) is encoded in the constraint Tsv. Finally,
TWM encodes world model constraints, i.e. it restricts
solutions to trajectories from the world model.

6.2.1 Encoding the Chart Structure

Encoding of the chart structure is the same for
both sufficient and necessary conditions, except



that CHECKSATS uses a fixed time step7 and
CHECKSATN variable step size. Start and end of sub-
charts (with index i) is encoded with Boolean vari-
ables startedi and completei.

Example 3. Encoding the chart structure of
A leads to the constraints shown in Ta-

ble 1. The invariant nodes are numbered from left
to right. Note that no variable started1 is needed for
the first sub-chart, because it always starts with the
trajectory. The variable ok2 keeps track of the second
invariant after start of the sub-chart (for empty spa-
tial views this is not needed because they cannot be
violated).

Another example can be found in the related work
(Becker, 2020).

6.2.2 Sufficient Conditions for Invariants

Now, we have a closer look to the spatial view con-
straints Φsv and world model constraints ΦWM. At-
tribute values of non-dynamic objects (such as lanes)
are represented by free variables in the BMC prob-
lem. So, for some lane l we’d introduce four vari-
ables yl, startl, and endl – derived attributes can
be inlined and don’t need variables. The modeling of
cars is more complicated and differs for CHECKSATS
and CHECKSATN. In the following, CHECKSATS is
described.

The trajectories of cars are described as quadratic
Bézier splines. Each segment of the spline is de-
scribed by control points

p0 =(x0,y0), p1 =(x1,y1), p2 =p′
0 =(x′0,y

′
0) .

Start and end point of consecutive segments are
shared. Each segment describes the movement within
one unrolling step of the BMC problem. The position
at time t after start of the current step (with step size
∆) is given by the function

p(t) = p0

(
1− t

∆

)2
+2p1

(
1− t

∆

) t
∆
+p2

t2

∆2

and the velocity vector is determined by its deriva-
tive. Other attributes, such as the bounding box ex-
tends, are encoded by two variables standing for safe
upper and lower bounds in the current step. The spe-
cial properties of Bézier splines (see (Prautzsch et al.,
2013) for an overview) allow a quite convenient en-
coding of spatial views. For example, distances be-
tween Bézier splines can be expressed as pairwise dis-
tances between their control points. Furthermore, ev-

7Because of efficiency and decidability, we restrict our-
selves to linear inequalities only. With variable time steps,
the relation between velocity and position becomes non-
linear.

ery Bézier spline segment lies within the convex poly-
gon spanned by its control points. These properties
make it possible to conservatively approximate spatial
views by linear constraints over the control points.
Example 4. In CHECKSATS, the spatial view in Fig-
ure 3c is encoded as∧

i∈{0,1}

(
xcarJ,i +bbxminl

carJ

−xcarI,i −bbxmaxu
carI > 5m

)

∧
(

x′carJ,0 +bbxminl
carJ

−x′carI,0 −bbxmaxu
carI ≥ 5m

)

If this formula holds, then the spatial view is sat-
isfied on the whole spline segment.

The world model constraints ΦWM ensure that
bbxminl and bbxmaxu are safe upper and lower
bounds. Because they depend on the heading angle
θ, we choose a piece-wise approximation where dif-
ferent heading angles are approximated by a finite set
I of intervals I ∈ I . E.g., bbxmax of carI is charac-
terized by a constraint∨

I∈I
φcarI.θ∈I ∧

(
bbxmaxl ≤ inf

θ∈I
{bbxmax(θ)}

∧bbxmaxu ≥ sup
θ∈I

{bbxmax(θ)}
)

where φcarI.θ∈I is a linear constraint describing that
the heading is within I. The infimum and supre-
mum of the heading-dependent bounding box extend
bbxmax(θ) can be calculated numerically when gen-
erating the BMC problem. Furthermore, constrains
are added that ensure that the trajectory is continu-
ously differentiable with curvature |κ| ≤ tanδmax

L and
lateral acceleration |alat | = |v2κ| = |(ẋ2 + ẏ2)κ| ≤
0.4g. These ensure that generated trajectories are
solutions of the single track model specified in Sec-
tion 4.3.

6.2.3 Necessary Conditions for Invariants

For CHECKSATN, the chart structure is encoded the
same way in the BMC problem, but the constraints
TWM and Tsv are relaxed. Following a result by
Fränzle and Hansen about positive Duration Calculus
(Fränzle and Hansen, 2007), we know that the chart
structure BMC problem is either unsatisfiable or has
a solution after m+ 1 unrolling steps, with m being
the number of sequence operation in the TSC. How-
ever, in a solution with minimum unrolling depth, a
single BMC step may cover an arbitrarily long time
interval. For example, during one step, a whole over-
taking maneuver may take place. Therefore, instead
of describing and restricting the exact vehicle move-
ment, invariants are checked at discrete time points
only.



Table 1: The chart structure of A encoded in a BMC problem.

Initial Transition Final
¬complete1 started′2 → (complete1 ∨ started2) complete3
¬complete2 complete′2 ↔ (started2 ∧ok′2)
ok2 ok′2 ↔ (started2 → ok2 ∧bA)
¬complete3 started′3 → (complete′2 ∨ started3)

complete′3 ↔ started3

Example 5. In CHECKSATN, the spatial view in Fig-
ure 3c is encoded as

xcarJ+bbxmincarJ− xcarI−bbxmaxcarI > 5m

∧ x′carJ+bbxmin′carJ− x′carI−bbxmax′carI ≥ 5m

where variables stand for object attribute values in
the current, respective next, step.

By checking spatial views (as in the above for-
mula) both at beginning and end of a step, we catch
both contradictions between parallel as well as con-
secutive invariant nodes. Note that, because the end
time e is excluded in Definition 2 when evaluating in-
variant nodes, we must only enforce non-strict spa-
tial relations for the end of a step. Because we don’t
need to characterize the evaluation of the bounding
box for the whole unrolling step anymore, the upper
and lower bounds can be replaced by single variables.

6.3 Evaluation

To avoid that the results are biased by the author’s in-
tention when designing the use case, the evaluation is
based on an earlier case study (Esterle, 2021). In this
work, common highway traffic rules have been for-
malized in LTL. In the original work (Esterle et al.,
2020), they have been used to examine databases of
recorded traffic data for rule violations. In order to
translate them to TSCs, first spatial views have been
designed that match the atomic propositions in the
LTL rules. An example is the proposition succi↣ j

saying carI is the successor of carJ shown in Fig-
ure 3d. Then, the LTL expressions have been trans-
lated to TSCs using a set of pre-defined patterns. The
result is a set of nine TSCs – rules that do not apply
to two-lane highways have been omitted.

The analysis finds that the TSCs shown in Figure 8
are pairwise inconsistent. Taking a closer look at the
TSCs shows that TSC (a) forbids to use any other lane
than the right one, making lane-change rules (TSCs
(b) and (c)) inapplicable. The conflict between (b)
and (c) comes from the chosen formalization of (b)
as a TSC: the forbidden behavior (right overtaking) is
in the pre-chart, and the exception (being on an ac-
celeration lane) to this rule forms the consequence.

From the TSC semantics point of view, this is correct,
but breaks the intuition behind premise-consequence
charts.

The BMC problems for CHECKSATS have been
configured with a step size of 3 s and unrolled for 10
steps8. From the 2304 cases that need to be checked
in the worst case when analyzing consistency of nine
TSCs, only 467 (21 %) must be handed over to the
SMT solver; the rest could be inferred from exist-
ing results using the optimizations mentioned at the
end of Section 6.1. In total, the analysis takes about
1 min and 20 s on a Windows 10 notebook with an
Intel Core i7-4700MQ CPU @ 2.39 GHz and 8 GB
RAM, using version 4.6.0 of the Z3 solver (de Moura
and Bjørner, 2008) with default settings. The results
show that in practice only small subsets (up to size
3 in the experiment) of TSCs need to be checked, so
there is only a polynomial growth in the number of
cases, and the individual SMT problems remain man-
ageably small. In (Becker et al., 2022), it has been
shown that also more complex TSCs can be checked
for satisfiability in reasonable time.

A similar experiment has been carried out on a
specification done by a non-expert in formal speci-
fication9. This second experiment shows that the con-
sistency analysis is especially strong in finding for-
malization errors such as unsatisfiable spatial con-
straints or impossible sequences. The scalability of
the TSC encoding has been evaluated in the context
of already published work (Becker et al., 2022).

6.4 Practical Application

The consistency analysis prototype has been inte-
grated into a graphical specification tool for TSCs
(Figure 9). It is part of a tool chain for scenario-based
development that is under ongoing development at the
DLR SE institute. Other parts of the tool chain in-
clude generation of OpenSCENARIO files (Becker
et al., 2022) and scenario monitors (Grundt et al.,

8The unrolling depth for CHECKSATN is calculated au-
tomatically

9A student employee at the author’s institute who was
not under the author’s supervision.
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Figure 8: Conflicting traffic rules found in the evaluation

Figure 9: Screenshot of the graphical specification tool for
TSCs

2022). The tooling is actively used both internally and
in cooperation with industry partners. Furthermore,
tooling and methods are extended to the railway and
maritime transport domains as well. The future use of
the specification tooling will yield more insight about
practical suitability of the consistency analysis.

7 CONCLUSION AND OUTLOOK

This work proposes a consistency analysis technique
for TSCs. Although being grounded on the formal se-
mantics of TSCs, the goal is not to produce a certifi-
cate of formal requirements consistency, but to find
real conflicts in the specification on a well-defined
basis. Consistency is reduced to satisfiability of ex-
istential TSCs, which in turn is encoded as a BMC
problem. For reason of space, the latter has only been
sketched here with some examples. The full construc-
tion, including correctness proofs, will be given in the
author’s PhD thesis. It shall be highlighted that the
implementation (that has been used to carry out the
presented evaluation) assumes the shown parameter-

ized vehicle model, but otherwise is not bound to a
specific domain ontology.

The proposed consistency analysis re-uses basic
ideas from earlier work (Becker, 2020). The consis-
tency notion for single TSCs remains the same. The
idea for consistency of non-singleton sets is also sim-
ilar. Both approaches split analysis cases each into a
premise (can the TSCs be active in parallel?) and a
consequence (is there a trajectory where TSCs are ac-
tive in parallel?). However, the technical realization
of the term “active in parallel” has been reworked.
The earlier work synchronizes invariant nodes from
pairs of TSCs. Although it is possible to extend this
to larger subsets, these number of analysis cases per
subset explodes. In contrast, the current approach
work only requires n cases per subset of size n, and
it is possible to re-use information and skip some of
the cases. Furthermore, the earlier work uses a nec-
essary condition for both the premise and the conse-
quence. So, there is no guarantee that false incon-
sistencies are ruled out. In the present work, this is
solved by generating a satisfying trajectory (Becker
et al., 2022) instead of an approximation thereof. The
analysis tool then creates a trajectory for every (min-
imal) inconsistent subset that shows how a conflict-
ing situation arises. By the use of a Bézier spline
encoding technique with additional constraints (see
Section 6.2.2), the generated trajectories are solutions
of a single-track vehicle dynamics model. Simpler
(e.g., piece-wise linear) trajectories would not have
this property, while alternative trajectory encodings
(such as arc segments or clothoids) can be hardly ex-
pressed by linear constraint systems. Related work
(Becker, 2020) shows that the generated trajectories
can be simulated.



The experimental results demonstrate practical
applicability of the approach. Furthermore, it turns
out that it scales in practice because constraint solv-
ing is only needed for small subsets. However, it
would be worthwhile to support the experimental re-
sults with further case studies. So far, the present case
study shows that the consistency analysis catches both
contradicting as well as ill-structured (violating speci-
fication patterns) requirements. Therefore, it is future
work to develop explicit specification guidelines for
the work with TSCs, and to extend the consistency
analysis to handle a broader set of specification pat-
terns.

Besides the application in the presented consis-
tency analysis method, parts of the used techniques
(and their implementation) are planed to be re-used in
other applications of TSCs. For example, trajectory
generation can be used for simulation in the context
of criticality analysis, as well as test case generation.
Translation of spatial invariants to constraint systems
is also required for monitoring.
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