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Motivation: Massive uncertainties A#y
DLR

= Recent geopolitical disruptions increase
uncertainties & change prosumer reactions

UNCERTAINTY \
\_ AHEAD

- Energy systems pathways highly uncertain
- Assumptions (e.g. fuel prices) might be off

->Prosumer reactions largely unknown
* Buy an electric vehicle?
= Buy PV + storage?
* Buy a heat pump?
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Research questions

= How to represent prosumer investment
decisions under uncertainty?

= How to abstract individual decisions of
prosumers so they can be integrated In
energy systems models?

Frey et al. — Modelling Uncertainty




ldea

» Model individual decisions:
= Simulate actual optimal operation of PVS, HP, EV
= Diffusion model of household investment
decisions (PVS, HP, EV)
» L arge energy system models:

» Feed these models into an agent-based
simulation of electricity markets, AMIRIS

= Couple AMIRIS with a stochastic optimization
model for the supply side

- Ability to model uncertainties between all
these components of the energy system
comprehensively
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Model Setup
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Coupling models
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How to model individual household decisions? ‘#7
DLR

Problem

= Many different households

Neural Net

<

Input =» Output

= High computational effort per
optimization

=>» Dispatch optimization of all
household types not possible within
AMIRIS simulation

Household types

temperature
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. Vi i indiviéually aggregated
Individual household dispatch weather ’\ ; optimized | r— /\//l—net demand /
dispatch feed-in

optimization done for multiple input

variations (weather,...) price profie_f\ A/ /
« Aggregate household results ANy A -
» Train Neural Net to predict household :
. : disaggregated
aggregated behavior based on given micro-economic
input variations model
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@ Input variation for heat pump model

DLR
= Exploring various household’s decisions
18 building types 3 user comfort types 2 heat pump types 6 weather locations Total demand
= o
B e k
LB
/[ @7
medm/mm

Annual Electricity Demand

= High computational effort per optimization — Produce training data via input variations

= Train Neural Nets to predict household aggregated behavior i — dynamic reaction possible in AMIRIS
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Introducing Focapy — A new Python package

DLR
What is it?

= Provides Time Series forecasting

= Covers the whole workflow from data
preparation to automatic plot generation

= Built around Darts 3.8

» GPU use possible
P Felix Nitsch (2023). Focapy: Timeseries forecasting in Python. https://doi.org/10.5281/zenodo.7792750

[7) README.md

PP ERS EIUER I Ts[-N¢=ele]gd DOI 10.5281/zenodo.7792750 | License Apache 2.0 | code style black

focapy - Timeseries Forecasting in Python

focapy is a package built to conduct timeseries forecasts. It is built around the framework darts.

https://gitlab.com/focapy
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@D Comparison of Machine Learning Architectures 4#7
DLR

Results Machine Learning The COmDEtitOFS:

NBeats Il (P +RE) « NaiveSeasonal

« ExponentialSmoothing
| N e « ARIMA

* LinearRegressionModel
* LightGBMModel
 RandomForest

« NBEATS

« RNN

hour ef
Fig.: Timesecies of hislarical prices (black) and forecashed prices (green) L] T FT

And the winner for the aggregated demand of typical households is...
TFT = Temporal Fusion Transformers
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i DLR

» There are four different subgroups of renewable technology patterns:
PO
845%) MY (5.4%) W (7.05%) VI (3.0%)
» Interested households tend to install multiple electric technologies together
» A household’s technology profile is mainly influenced by age and education
* Household income did not significantly predict class membership

= Small percentage of EE-adopters: just 3 out of 20 types of households
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@ Heat pump model ‘#;L:

W Electricity demand  OElectricity price

ul
w
ul

= GAMS optimization model: = 30
S 25 S
* Minimizes operating cost of 5 3 zo%
residential heat pumps 3, 15 £
= Flexibility by varying £ e
temperature within boundaries Sy V' .

. . 8209 8219 8229 8239 8249 8259 8269
= Electricity demand calculated

—Ind Irt t
bottom-up by reduced-order ndoor air temperature

. 24
thermodynamic models of 5 23
c
. . 1) = 22
building archetypes Ty
-+
© 20 i ‘
g 19 — -
1) Sperber, Frey, Bertsch: Reduced-order models for assessing demand response with GEJ 18 ===l ——- ——-d
heat pumps — Insights from the German energy system, Energy & Buildings vol. 223, 2020 =17

8209 8219 8229 8239 8249 8259 8269

Simulation hour
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Heat pump model: Aggregation of individual household
decisions
DLR
8,000
= 7,000
=
I %
T §
w

= Building types
» User comfort types
= Heat pump types

= Best Model = LSTM with 500 K params
Look-back-size: 24 h

Train / Predict: 5 locations / 1 other location

Data resolution: 8760 h in ¥4 h resolution

Frey et al. — Modelling Uncertainty




YR Aggregation of individual household decisions ‘#7
DLR

PVS micro-model
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Best Model: Temporal Fusion Transformer
Look-back-size: 24 h

16 aggregations
40 Mio HH

HH types

PVS settings

Train / Predict: 5 locations / 1 other location

Data resolution: 8760 h resolution
Error: MAE: 296 MWH for range -3200 / +1414
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Heat pump model: Encapsulating aggregated household
decisions with ML iR

Aggregated electricity demand in GW
w
—
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YR\ Results: PVS with ML, exemplary predictions

DLR
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High-level Conclusion

* Model coupling helps to analyze multiple aspects of the
energy system at the same time

» Abstracting individual decisions with ML Is a general
solution for integrating computationally intensive tasks
Into simulations that were previously impossible

* Combining an ABM in a feedback-loop with an
optimization model produces robust scenario pathways
that are in fact economically viable
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LCA resulted in a 4-class model

(]| —]
H_fl/h (1) Non-adopters of renewable energy technologies M|,
(84.5%) '

ﬁ\ (2) PV owners living in (semi-)detached houses
(5.4%)

g (3) Heat pump owners with comprehensive retrofit
(7.05%) |

|/\;\| (4) Multiple renewable energy technology adopters |

(3.0%)
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Stochastic optimization: Power production in TWh
/ DLR

Capacity per technologies Capacity per sources

Technology

Solar Wind Coal  Matural g.. Bicenergy Hydro Qil Muclear Other

Source

B Coal

B natural gas
W Nuclear

W il

B Renewables

Capacity (GW) 7

Renewables

64%

) A

Capacity (GW)
|

1.00 &7.60
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Stochastic optimization: first results

DLR
Case / Technology Obsewatlons:
LS et » Planning horizon: Direct impact on retirement
0.8242 decisions and investment on renewables

*  Wind yield profile per state: Investment
projects with higher yield profiles are prioritized..
0.6773

I/D Ratio

20 Years - Case

0.3227

0.1758

Upper bound Lower bound

. { O e s ia Y b= oo | -
Hard coa Bioenerqgy Wind latural Gas
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