Supported by:

on the basis of a decision by the German Bundestag

FORECASTING MULTIPLE ATTRIBUTES CONSIDERING UNCERTAINTIES IN A COUPLED ENERGY SYSTEMS MODEL

CFE-CMStatistics, 16th of December 2023, Berlin

Ulrich FREY⁽¹⁾, A. Achraf EL GHAZI⁽¹⁾, <u>Evelyn SPERBER</u>⁽¹⁾, Fabia MIORELLI⁽¹⁾, Christoph SCHIMECZEK⁽¹⁾, Stephanie STUMPF⁽²⁾, Anil KAYA⁽²⁾, Steffen REBENNACK⁽²⁾

(1) Deutsches Zentrum für Luft- und Raumfahrt, (2) Karlsruher Institut für Technologie

Motivation: Massive uncertainties

- Recent geopolitical disruptions increase uncertainties & change prosumer reactions
- →Energy systems pathways highly uncertain
- → Assumptions (e.g. fuel prices) might be off
- → Prosumer reactions largely unknown
 - Buy an electric vehicle?
 - Buy PV + storage?
 - Buy a heat pump?

Research questions

- How to represent prosumer investment decisions under uncertainty?
- How to abstract individual decisions of prosumers so they can be integrated in energy systems models?

Idea

- Model individual decisions:
 - Simulate actual optimal operation of PVS, HP, EV
 - Diffusion model of household investment decisions (PVS, HP, EV)
- Large energy system models:
 - Feed these models into an agent-based simulation of electricity markets, AMIRIS
 - Couple AMIRIS with a stochastic optimization model for the supply side
- → Ability to model uncertainties between all these components of the energy system comprehensively

Model Setup

Coupling models

How to model individual household decisions?

Problem

- Many different households
- High computational effort per optimization
- → Dispatch optimization of all household types not possible within AMIRIS simulation

Idea

- Individual household dispatch optimization done for multiple input variations (weather,...)
- Aggregate household results
- Train Neural Net to predict household aggregated behavior based on given input variations

Input variation for heat pump model

Exploring various household's decisions

18 building types

3 user comfort types

2 heat pump types

6 weather locations

Total demand

- High computational effort per optimization → Produce training data via input variations
- Train Neural Nets to predict household aggregated behavior i → dynamic reaction possible in AMIRIS

Introducing Focapy – A new Python package

What is it?

- Provides Time Series forecasting
- Covers the whole workflow from data preparation to automatic plot generation
- Built around Darts 3.8
- GPU use possible

Felix Nitsch (2023). Focapy: Timeseries forecasting in Python. https://doi.org/10.5281/zenodo.7792750

pipeline status coverage report DOI 10.5281/zenodo.7792750 License Apache 2.0 code style black

focapy - Timeseries Forecasting in Python

focapy is a package built to conduct timeseries forecasts. It is built around the framework darts.

https://gitlab.com/focapy

Comparison of Machine Learning Architectures

The competitors:

- NaiveSeasonal
- ExponentialSmoothing
- ARIMA
- LinearRegressionModel
- LightGBMModel
- RandomForest
- NBEATS
- RNN
- TFT

And the winner for the aggregated demand of typical households is...

TFT = Temporal Fusion Transformers

Results of diffusion model

There are four different subgroups of renewable technology patterns:

(84.5%) (5.4%) (7.05%) (3.0%)

- Interested households tend to install multiple electric technologies together
- A household's technology profile is mainly influenced by age and education
- Household income did not significantly predict class membership
- Small percentage of EE-adopters: just 3 out of 20 types of households

GAMS optimization model:

- Minimizes operating cost of residential heat pumps
- Flexibility by varying temperature within boundaries
- Electricity demand calculated bottom-up by reduced-order thermodynamic models of building archetypes¹⁾

¹⁾ Sperber, Frey, Bertsch: Reduced-order models for assessing demand response with heat pumps – Insights from the German energy system, Energy & Buildings vol. 223, 2020

Heat pump model: Aggregation of individual household decisions

- User comfort types
- Heat pump types

- Best Model = LSTM with 500 K params
- Look-back-size: 24 h
- Train / Predict: 5 locations / 1 other location
- Data resolution: 8760 h in ¼ h resolution

Aggregation of individual household decisions

PVS micro-model

- 16 aggregations
- 40 Mio HH
- HH types
- PVS settings

- Best Model: Temporal Fusion Transformer
- Look-back-size: 24 h
- Train / Predict: 5 locations / 1 other location
- Data resolution: 8760 h resolution
- Error: MAE: 296 MWH for range -3200 / +1414

Heat pump model: Encapsulating aggregated household decisions with ML

Results: PVS with ML, exemplary predictions

High-level Conclusion

DLR

 Model coupling helps to analyze multiple aspects of the energy system at the same time

 Abstracting individual decisions with ML is a general solution for integrating computationally intensive tasks into simulations that were previously impossible

 Combining an ABM in a feedback-loop with an optimization model produces robust scenario pathways that are in fact economically viable

Supported by:

on the basis of a decision by the German Bundestag

Contact: ulrich.frey@dlr.de

Karlsruher Institut für Technologie

Diffusion model: Survey + latent class analysis

LCA resulted in a 4-class model

(1) Non-adopters of renewable energy technologies (84.5%)

(2) PV owners living in (semi-)detached houses (5.4%)

(3) Heat pump owners with comprehensive retrofit (7.05%)

(4) Multiple renewable energy technology adopters (3.0%)

Stochastic optimization: Power production in TWh

Capacity per technologies Technology

Stochastic optimization: first results

Frey et al. – Modelling Uncertainty

Observations:

- Planning horizon: Direct impact on retirement decisions and investment on renewables
- Wind yield profile per state: Investment projects with higher yield profiles are prioritized..

