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Abstract 
The paper introduces the in-orbit antenna pattern measurement by a dedicated small measurement satellite flying in Dou-

ble-Cross-Helix formation. Two approaches are discussed, one with a fixed difference in the ascending nodes and one 

with a drifting difference. Both approaches provide a full two-dimensional pattern measurement in azimuthal and polar 

angle. The fixed approach is faster but requires a few more active orbit maneuvers of the measurement satellite. A third 

approach provides elevation angle cuts at different azimuth angles. It is particularly advantageous for feed-array-reflector 

based digital beamforming systems, but is also of interest for classical SAR systems. A quantitative example is provided 

for an L-band SAR system with digital beamforming, i.e., Tandem-L. Orbit simulations verify the proposed approaches. 

 

1 Introduction 
Digital beamforming will be an integral part of many future 

SAR missions. SCan On REceive (SCORE) is one exam-

ple, e.g. [1], [2], [3]. In Tandem-L, a 2D-feed array is com-

bined with a large 15-m-reflector [3], and a digital SCORE 

operation in elevation is linked with different analog fixed 

feed-array settings in azimuth. The system is designed for 

single-, dual- and quad-polarization. The feed array con-

sists of 6 azimuth x 35 elevation elements. Each feed ele-

ment illuminates via the reflector a different but adjacent 

area on the ground. Due to the fixed azimuth settings, 35 

individual elevation channels are input to the on-board dig-

ital beamforming. For SCORE, the received signals of a 

varying number of adjacent feed-array elevation elements 

are digitally combined to form multiple beams that follow 

the echo on ground [3]. A sketch of a Tandem-L like an-

tenna system with a small measurement satellite as is dis-

cussed in this paper is shown in Figure 1. 

Unlike in phased-array systems, the single element second-

ary patterns, i.e. feed array element plus reflector, are dif-

ferent from each other and need individual measurements 

with high accuracy in amplitude and phase, also beyond the 

3dB-width and into the sidelobe area. This applies even 

more to Tandem-L, which has been designed for multiple 

elevation beams and staggered SAR operation that both 

make the system vulnerable to range ambiguities [4]. 

Sufficient pattern measurement with the radar satellite in 

space can be achieved for phased antenna arrays with the 

established ground calibration approach based on ground 

targets and elaborated antenna models [5],[6],[7]. For the 

antenna models, element pattern measurements can be ob-

tained on-ground before launch. However, a measurement 

of the secondary element beams in case of large reflectors 

can hardly be realized before launch, simply due to the 

large dimensions. On top of this, the secondary element 

patterns are not separable into azimuth and elevation beams 

[4]. Further, the feed-array-reflector geometry in space and 

after a potential reflector unfolding will deviate from that 

before launch on ground. The measurement of the second-

ary far field pattern of individual feed-elements by using 

ground targets is further limited by the acquisition geome-

try. 

 
Figure 1  Two-way pattern measurement for a radar SAR 

satellite (RSS) with two-dimensional feed-array and large 

parabolic reflector by means of a small measurement satel-

lite (MES). Feed-array depiction adapted from [3]. 

With ground targets, it is also not possible to measure an-

gles beyond the main-lobe in azimuth as well as in eleva-

tion. A 2D measurement of the patterns is not possible, 

only the azimuth pattern in receive can be measured in high 

angular sampling by a ground receiver, and only the two-

way pattern in elevation can be measured, whereby for 

each elevation sample a dedicated ground target is re-

quired. Rain forest measurements allow for highly sampled 

elevation patterns, but suffer, e.g., from ambiguities. 

In [4], a technique for the estimation of the individual feed-

array element’s relative secondary far field patterns is pro-

posed with the radar satellite in-orbit. It is based on cali-

bration flights over natural acquisition areas with known 

topography in a transparency mode where the signals of 

one or more individual feed-array elements are recorded 

and downlinked without any on-board digital beamform-

ing, i.e., each channel is downlinked separately. From a se-

ries of those calibration flights the relative secondary far 

field patterns are estimated. The challenges of this tech-

nique are the high downlink volume and/or reduction of the 

signal (chirp) bandwidth to reduce the data rate [4]. The 

major disadvantage is that only one of the many patterns 

can be measured during one overflight. A pulse-wise elec-

tronic switching of many patterns would reduce the PRF 
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and thus extremely increase the azimuth ambiguities. Fur-

ther, all the distortions known from SAR data acquisition 

apply, which include atmospheric and ground distortions. 

Due to ambiguities and SNR limitations, meaningful far 

field element pattern measurements can only be obtained 

in the high gain areas of the main peak. 

Recently, a novel approach for the 2-D in-orbit antenna 

pattern measurement by means of a dedicated small meas-

urement satellite that flies in close formation with the SAR 

satellite has been proposed [8]. It allows for a full two-di-

mensional (2D) antenna pattern measurement up to ±90° 

angular range. The Double-Cross-Helix formation [8] 

shapes the geometry between radar and measurement sat-

ellite in such a way that during one orbit period one central 

cut of the two-dimensional antenna pattern is obtained. 

Since this means a slow scan along the central cut, many 

antenna patterns can be measured interleaved by switching 

them electronically in the course of the orbit. 

In this paper, the radar SAR satellite (RSS) parameters of 

Table 1 are used. They are based on the Tandem-L mission 

proposal of DLR [3]. The parameters of the measurement 

satellite (MES) are with respect to the RSS ones. 

Table 1  Parameters for the RSS and MES satellites. 
 RSS  MES  

semi-major axis aRSS 7123 km aMES = aRSS 

argument of perigee RSS 90° MES = RSS 

eccentricity eRSS 0.001036 eMES = eRSS +e 

inclination iRSS 98.373° iMES = iRSS +i 

ascending node RSS 90° MES =RSS + 

time at central orbit  

position (COP) 
RSS 0 s MESS =RSS +  

side-looking offset (right) off 33.5°   

radar center frequency f0 1.258 GHz   

diameter radar reflector  15 m   

2 Double-Cross-Helix Measurement 
As shown in Figure 1, the measurement satellite MES is 

equipped with a spherical reflector that permanently faces 

the parabolic reflector of the radar SAR satellite RSS. The 

spherical reflector provides several benefits. Its small radar 

cross section supports short distance measurements in re-

gard of high radar power. Its reflection is direction-inde-

pendent, and it shields the MES’s bus from radar illumina-

tion. Both satellites fly approximately the same orbit, but 

small differences in the MES’s orbit parameters adjust a 

Double-Cross-Helix formation. In this formation, MES 

fully revolves RSS during one orbit in all the three dimen-

sions along-track, cross-track, and radial of the RSS local 

coordinate system. 

The well-known helix-orbit of the Tandem-X mission 

[9],[10] that is generated by differences in the eccentricities 

e (along-track and radial baseline components [12]), and 

the ascending nodes  (cross-track component) also re-

sults in a full revolution. However, as is derived in [8], a 

second cross-track baseline component generated by a dif-

ference in the inclinations i is required to consider the 

side-looking SAR geometry. Figure 2 illustrates the two 

cross-track baseline components and its generating orbit 

parameter differences. 

 
Figure 2  Illustration of the two across-track baseline com-

ponents in the RSS local system that are generated by an 

inclination difference (left) and a difference in the ascend-

ing nodes (right). The argument of perigee  is 90°. 

In Figure 1 and the paper, a two-way measurement is dis-

cussed. Of course, one-way measurements of individual 

transmit and receive patterns can be achieved with the 

same orbit geometry. For this, the MES in Figure 1 could, 

e.g., be turned by 180° and a transmitting/receiving an-

tenna could be attached to the side then facing the RSS. 

2.1 Antenna Pattern Central Cut Geometry 
Figure 3 shows the Cartesian and spherical radar antenna 

pattern coordinate systems. The superscripts in the axes xA, 

yA, and zA designate the Antenna system.  

 
Figure 3  RSS Cartesian Antenna coordinate system A and 

related spherical system. Relative position of MES to an-

tenna center in the baseline components BA
along, BA

cross, and 

BA
rad. The relative movement in one orbit supplies a pass 

of polar angles ψ at a fixed azimuthal angle ξ. 
 

With (1), the spherical coordinates radial distance d, polar 

angle ψ and azimuthal angle ξ can be calculated from the 

baseline components. The measurement considers the an-

tenna pattern to be two-dimensional in ψ and ξ. At each 

measurement position, the distance d is available from the 

orbit geometry and thus known with high accuracy.  

( ) ( )
 

( ) ( )
 

( ) ( ) ( )

2 2

2 2

2 2 2

sin 90 90

tan 90 90

A

cross

A A

along cross

A A

along cross

A

rad

A A A

along cross rad

B
  ; ,

B B

B B
; ,

B

d B B B

 

 

=  −  

+

+
=  −  

= + +

 
(1) 

The MES orbit parameters are derived for a relative move-

ment w.r.t. RSS that transits all polar angles ψ at a constant 

azimuthal angle ξ. Figure 3 illustrates this movement by 

the blue bow. Setting different measurement satellite’s or-

bit parameters results in different central cuts, i.e., different 

azimuthal angles ξ. 



2.2 Central Cut Approaches 
There are two approaches to calculate the required orbit pa-

rameters that adjust central cuts [8]. The fixed- ap-

proach sets first a fixed value for the ascending nodes dif-

ference  based on a required minimum distance be-

tween the satellites. In this paper, a 2 km minimum distance 

is desired, which corresponds to a fixed  of 73.2 mdeg 

for the parameters of Table 1. For more details please refer 

to [8]. The drifted- approach exploits the difference in 

the ascending node drift rates that is due to a difference in 

the radar and measurement satellite’s inclinations i. 

2.2.1 Fixed- Calculation Approach  

The required differences in the orbit parameters eccen-

tricity e, inclination i, ascending node , and also a 

fourth required orbit parameter, the orbit time difference at 

the RSS Central Orbit Position (COP)  are derived in [8]. 

The COP is either the perigee or the apogee of the radar 

satellite’s orbit. At this position, the along-track and the 

cross-track components of the baseline in the Antenna sys-

tem become zero, while the radial component is positive. 

The desired orientation of the MES spherical reflector to-

wards the radar reflector goes along with a positive radial 

baseline component. For this reason, the measurement of a 

central cut at negative azimuthal angles  needs to be 

around perigee, and at positive ones, the measurement 

needs to be around apogee. For a desired azimuthal angle 

, the required eccentricity and inclination differences can 

be calculated with (2) and then with (3). 
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In (3), the upper and lower signs are for  < 0 and  > 0. 

The subscript RSS indicates parameters of the radar satellite 

RSS. The small orbit time shift  adjusts the Antenna sys-

tem’s along-track baseline at perigee/apogee to zero. 
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In (4), a is the semi-major axis that is identical for RSS and 

MES, and vs is the satellite velocity at COP. 

Due to the tan-term in the denominator of (2), an azi-

muthal angle  close to 0° is not allowed to prevent from a 

too large eccentricity difference e that would cause too 

large baselines. Likewise, -values too close to ±90° cause 

e to vanish, which means too similar and thus insecure 

RSS and MES orbits in terms of local systems radial and 

along-track baselines. In order to keep  away from these 

extreme values, an azimuthal offset angle off is introduced, 

which rotates the radar satellite around its antenna z-axis. 

This splits the azimuthal angle  in (5) into two parts, i.e., 

an azimuthal cut angle cut and an azimuthal offset angle 

off. By doing so, the azimuthal angle of the central cut in 

Figure 3 becomes cut, and the azimuthal angle  in the 

equations above is within save limits. Figure 4 (a) provides 

the off angles as applied in the paper’s example. 

cut off cut off     = +  = −  (5) 

 
 (a) (b) 

Figure 4  (a) Azimuthal offset angles off for cut angles cut 

in 10°-steps and resulting   as input to the equations. (b) 

Deviation from the fixed  −value per orbit due to the dif-

ference in i. The right vertical axis provides the deviation 

converted into cross-track baseline at the equator. 

In the end, a small numerical correction of i and  is 

added that is due to the approximations required in the der-

ivations [8], which are in the order of 0.03 mdeg and 1 ms, 

respectively.  

The inclination difference i causes a small drift in the dif-

ference of the ascending nodes  [8] that is in the order 

of 0.2 mdeg per orbit as shown in Figure 4 (b). This can be 

considered by small   updates in (2) and (4). A 2D meas-

urement lasts a few days. 

2.2.2 Drifted- Calculation Approach  

The drift effect is exploited, which increases the measure-

ment time for a two-dimensional measurement to a few 

months, but decreases the required V. The differences in 

e and i are kept fixed. Due to the drift in  , the desired 

azimuthal angles  adjust after particular times. The de-

tailed derivation can be found in [8]. Here, a brief summary 

is provided. The measured azimuthal angle  can be ex-

pressed as a function of the number of drifted orbits ndrifted 

counted from the measurement start with a start.  
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(6) 

Torbit is the orbit period, rE,equator the Earth radius at equator, 

and J2 is the J2-term of the geopotential. start can be cal-

culated from the minimum required distance between the 

satellites, i.e. 2 km for the example, and the offset off at 

±90° azimuthal angle (c.f. Figure 4). The inclination differ-

ence i results from setting ndrifted to zero 
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and the eccentricity difference e is then  
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with the upper signs for  ≤ 0 and the lower ones for  > 0. 

The drifted orbits number as a function of the desired  is 
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2.2.3 Results for Fixed- and Drifted- Approaches 

The Double-Cross-Helix parameters were calculated for 

the L-band system parameters of Table 1 in steps of 10° of 

azimuthal cut angle cut. Then the orbits were simulated, 



the local and antenna system baselines were computed, and 

finally the azimuthal cut angle cut, the polar angle , and 

the antenna pattern azimuth az and elevation el angles 

were calculated. The latter two can also be estimated from 

the baseline components in the antenna system [8]. 
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Figure 5 provides the differential orbit parameters for the 

fixed −approach that adjust the azimuthal cut angles 

cut. The x-axes are organized in the sequence of cut meas-

urements; first from 0° to the largest positive cut > 90°, and 

then from -90° to the largest negative cut <0°.  

  
 (a) (b) 

 
 (c) (d) 

Figure 5  Differential parameters for fixed  approach. 

(a) Ascending nodes , (b) eccentricity e, (c) inclination 

i, and (d) time at central orbit position  at COP. 

The baseline components in the local and antenna systems 

that result from the differential orbit parameters provide a 

deeper insight into the Double-Cross-Helix concept, but 

for a more in-depth discussion, please refer to [8]. 

For the drifted  approach, the first important result is the 

number of drifted orbits ndrifted until a desired cut can be 

measured, i.e., until the proper ascending node difference 

 adjusts. Due to the identical azimuthal angles  (cf. 

Figure 4), the first azimuthal cut angles -90°, -80° and -70° 

in Figure 6 are measured in consecutive orbits with identi-

cal orbit parameters. After about 100 orbits, cut = 60° is 

measured. Before measuring cut = 0°, i, and e are 

switched in sign for positive -values (cf. Figure 7). This 

means a reversal of the  drift direction.  
 

 

Figure 6  Number of drifted orbits until  adjusts for a 

next cut. Right vertical axis provides the duration in days.  

Figure 7 provides the parameters for the drifted -ap-

proach. Due to the sign-change of i, the decrease in  

changes to an increase for positive cut. A full 2D-measure-

ment lasts 93 days, also in case of a denser cut -sampling. 

 
 (a) (b) 

 
 (c) (d) 

Figure 7  Differential parameters for drifted -approach. 

Note the different sequence on the cut-axes w.r.t. Figure 5.  

Figure 8 provides the measurement angles from the fixed 

 approach. The results for the drifted approach are iden-

tical. Plot (c) provides additional 1°-steps in a ±5° range 

around cut = 0°, and a ±10° range around cut = 90° (dotted). 

 
 (a) (b) (c) 

Figure 8  Fixed  approach measurement angles. (a) az-

imuthal cut, (b) polar, (c) azimuth and elevation angles.  

Figure 9 provides for the fixed and drifted  approaches a 

first estimation of the V required to change the MES or-

bits with non-combined maneuvers. A fixed approach 2D 

measurement is faster. In case of 10° steps and updating 

the MES parameters each orbit it lasts 29 hours. The drift-

ing approach lasts 91 days. A higher cut sampling in-

creases the duration of the fixed approach but not of the 

drifted one. The required V does not increase for both.  
 

 
 (a) (b) 

Figure 9  V for 2-D measurement in 10°-steps, e.g., V 

at 30° is for change to 40°. Eccentricity (ecc), phasing after 

ecc. (ecc ph), inclination (inc), and t. Fixed (a) and 

Drifted (b)  approach. 

3 Two-Dimensional Feed-Array 
The third approach calculates MES orbits in such a way 

that the cuts are very close to elevation patterns, i.e., trav-

ersing elevation angles at almost constant azimuth angles. 

It is advantageous if an accurate 2-D pattern is required in 

a central region of the pattern, e.g., for the derivation of 



optimum beamforming coefficients, which then allow for 

a smaller reflector size. In the Tandem-L example of Fig-

ure 8 (c), the red central high accuracy measurement region 

extends ±35° in elevation angle and ±3° in azimuth, i.e., 

beyond the nadir-direction at 33° elevation angle, and be-

yond the second azimuth pattern side lobes, respectively. 

3.1 Elevation Patterns Measurement 
The Double-Cross-Helix fixed approach is modified. The 

measurement orbit for cut = -90° is used repeatedly. It pro-

vides the central cut elevation pattern. An additional rota-

tion of the RSS satellite by a delta azimuth angle az 

around the antenna system yA-axis is introduced before the 

final RSS rotation by cut around the zA-axis (cf. [8]). Fig-

ure 10 illustrates the az -rotation. The violet curve shows 

the relative MES movement without az, and the brown 

curve with additional az. As well as the cut -rotation, the 

az -rotation is realized by updating the RSS attitude steer-

ing angles. Figure 11 shows for initial RSS attitude angles 

of zero the resulting yaw (b), pitch (c), and roll angles (d) 

for a constant off of 27° and az values that increase from 

-3° in steps of 0.1° to +3°. With regard to the large reflector 

structure, the change in the attitude angles from orbit to or-

bit is very small and steady. 

 
Figure 10  Elevation patterns measurement by additional 

rotation around antenna system yA-axis. Relative move-

ment of the MES satellite in violet color for zero az, and 

in brown color for a non-zero az.  

For the elevation pattern approach, the numerical update 

(cf. [8]) is adapted by substituting the updates in orbit time 

 and inclination i differences by a numerical update of 

az. The RSS and MES orbits are simulated, the baseline 

components at COP are measured, and the residual delta 

azimuth angle az,res is estimated from the residual along-

track baseline BA
COP,along,res, i.e. the difference between the 

BA
COP,along expected for az and the measured one. Then, 

az,res is subtracted from az in the next iteration. 
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Figure 11 (d) provides the resulting updated az together 

with the desired value. The simulations were performed 

with the parameters of the fixed approach, and the resulting 

orbit parameters can be found in Figure 5 at cut = -90° on 

the abscissa.  

 
 (a) (b) 

 
 (c) (d) 

Figure 11  Yaw (a), pitch (b), and roll angles (c) to rotate 

the RSS satellite by cut = 27° around the antenna z-axis 

and by a az ranging from -3° to +3° in steps of 0.1°. (d) 

Desired and final az values after the numeric iteration.  

Since all the MES orbit parameters are kept constant there 

is no V required. Nevertheless, a small V must be spent 

to keep the difference in the ascending nodes  constant. 

The i of 10.2 mdeg results in a difference in the RSS and 

MES drifts of 0.0825 mdeg/orbit. The accumulation for 61 

measurement orbits results to 5 mdeg. Since Drift is 

small, both values can be converted [13] into the required 

VDrift,correction to compensate the drift difference. It re-

sults to 10.68 mm/s in one orbit and to 0.65 m/s for all 61 

measurement orbits. Vs is the satellite velocity. Figure 12 

provides finally the measurement angles. 

sins RSSV V i   ,Drift,correction Drift
, (12) 

 
Figure 12  Measurement angles estimated from orbit sim-

ulations for desired az from -3° to +3° in steps of 0.1°. 

3.2 Concurrent Patterns Measurement 
A power calculation with the Tandem-L parameters [3] 

showed that one measurement pulse, i.e., one azimuth 

pulse, is sufficient to achieve a SNR of 35 dB for a band-

width of 85 MHz, and a partial pulse integration of 0.33 s 

out of a full pulse of 9.52 s. The partial integration moves 

along the full pulse length and thus keeps the inherent fre-

quency dependency of the antenna pattern measurement by 

using, e.g., a chirp waveform [8]. So, the burst length re-

quired to measure at one elevation angle position equals 

1/PRF, e.g., 0.24 ms for a PRF of 4200 Hz. Note, this value 

is not necessarily related to the Tandem-L system PRF.  

As can be observed in Figure 13 (a), for constant orbit time 

sampling intervals, the elevation angle sampling interval 



varies due to the orbit geometry. If equidistant elevation 

angle sampling intervals are desired, the sampling time in-

terval varies. Figure 13 (b) shows for 0.01° elevation angle 

sampling at az = 3° and cut = 27° the time sampling in-

terval in red color, and in blue color the length of a meas-

urement burst, i.e. 1/PRF. The minimum gap is 32.77 ms. 

      
(a)     (b) 

Figure 13  (a) Elev. angle for az = -3° and cut = 27° ( = 

63°) for equidistant time interval of 60 s. (b) Varying time 

sampling for constant elevation angle sampling of 0.01°. 

Min. gap between burst interval and length is 32.77 ms. 

In the time gap between two measurement bursts the sec-

ondary element patterns of different feed array elements 

can be measured. The concurrent measurement is with 

identical azimuth offset angle az for all electronically 

switched feed elements. Dividing the minimum gap by the 

measurement burst length results in 137 secondary feed ar-

ray element patterns that can be concurrently measured 

(1370 patterns for 0.1° sampling). Note that ground echoes 

can be avoided by appropriate timing. For the Tandem-L 

example, this means that the 70 secondary far field eleva-

tion element patterns (35 in H- and 35 in V-polarization) 

can be measured in the same orbit at the same azimuth an-

gle. After 61 orbits covering all different az angles in a 

0.1° sampling, the 2D measurement of the central region of 

the antenna pattern in azimuth/elevation angle can be com-

pleted with a small required V = 0.65 m/s. 

4 Conclusion 
Fixed and drifted approaches of the in-orbit antenna pattern 

measurement by using a small measurement satellite flying 

in Double-Cross-Helix formation were introduced. For the 

discussed Tandem-L example, both approaches provide a 

full 2-D pattern measurement in azimuthal and polar angle.  

A third approach was proposed that measures elevation an-

gle cuts at different azimuth angles. The modifications of 

the approach w.r.t. the fixed approach were discussed. 

Since the same measurement orbit is constantly used, the 

required V restricts to counterbalancing the difference in 

the ascending node drifts that is due to the inclination dif-

ference i. In the example, V results to 0.65 m/s for the 

required 61 measurement orbits. The slow change of the 

elevation (or polar) measurement angle allows the concur-

rent measurement of many patterns at the same fixed azi-

muth (or azimuthal) angle. For Tandem-L, all the 70 feed-

array secondary far field element patterns can be measured 

easily in one orbit at the same azimuth angle position with 

high elevation angle sampling. The in-orbit two-dimen-

sional pattern measurement with the Double-Cross-Helix 

formation is a free-space measurement and thus avoids all 

the distortions that are involved in a measurement with 

ground-based equipment, e.g., atmosphere, ionosphere, 

ground clutter or multipath effects, ambiguities, and vol-

ume scattering. The thus highly accurate measurement al-

lows to measure also the antenna phase pattern and exact 

polarimetric patterns. The phase patterns are required for 

the derivation of optimized beamforming coefficients. 

5 Acknowledgement 
The authors want to thank Sigurd Huber for helpful dis-

cussions related to Tandem-L.  

Co-funded by the European Union (ERC, DRITUCS, 

101076275). Views and opinions expressed are however 

those of the authors only and do not necessarily reflect 

those of the European Union or the European Research 

Council Executive Agency. Neither the European Union 

nor the granting authority can be held responsible for them. 

6 Literature 
[1] M. Suess, B. Grafmueller, R. Zahn, “A novel high res-

olution, wide swath SAR System”, Proc. IGARSS 01. 

[2] Federica Bordoni, Gerhard Krieger, “Mitigation of the 

SAR Image Radiometric Loss Associated with the 

SCORE DBF in Presence of Terrain Height Varia-

tions”, Proc. of EUSAR 2022. 

[3] S. Huber et al., “Tandem-L: A Technical Perspective 

on Future Spaceborne SAR Sensors for Earth Obser-

vation”, IEEE TGRS, Vol. 56, No. 8, Aug. 2018. 

[4] G. Krieger, S. Huber, M. Younis, A. Moreira, J. 

Reimann, P. Klenk, M. Zink, M. Villano, F. Queiroz 

de Almeida, “In-Orbit Relative Amplitude and Phase 

Antenna Pattern Calibration for Tandem-L”, Proc. of 

EUSAR 2018. 

[5] T. Freeman, “SAR Calibration: An Overview,” IEEE 

Transactions on Geoscience and Remote Sensing, Vol. 

30, pp. 1107–1121, 1992. 

[6] J. Reimann, M. Schwerdt, K. Schmidt, N. Tous Ra-

mon, B. Döring, “The DLR Spaceborne SAR Calibra-

tion Center,” Frequenz, 2017. 

[7] M. Bachmann, M. Schwerdt, B. Bräutigam, “Ter-

raSAR-X Antenna Calibration and Monitoring Based 

on a Precise Antenna Model,” IEEE Trans. Geosci. 

Remote Sensing, Vol. 48, pp. 690–701, 2010. 

[8] J. Mittermayer, G. Krieger, M. Villano, “A Novel Ap-

proach for In-Orbit Satellite Antenna Pattern Measure-

ment using a Small Satellite Flying in Double-Cross-

Helix Formation”, submitted for TGRS. 

[9] A. Moreira, G. Krieger, and J. Mittermayer, “Satellite 

configuration for interferometric and/or tomographic 

remote sensing by means of synthetic aperture radar 

(SAR)”, U.S. Patent 6 677 884 Jul. 1, 2002. 

[10] R. Kahle, B. Schlepp, F. Meissner, M. Kirschner, and 

R. Kiehling, “The TerraSAR-X /TanDEM-X for-

mation acquisition – From planning to realization,” J. 

Astronautical Sci., vol. 59, pp. 564–584, 2012. 

[11] S. D’Amico, O. Montenbruck, C. Arbinger, and H. 

Fiedler, “Formation flying concept for close remote 

sensing satellites,” in Proc. 15th AAS/AIAA Space 

Flight Mech. Conf., Copper Mountain, CO, 2005, pp. 

831–848. 

[12] D. Massonnet, J.-J. Martin, „Radar Interferometry De-

vice”, PCT WO 99/58997, 18.11.1999. 

[13] C. Klüver, “Space Flight Dynamics”, John Wiley & 

Sons, LCCN 2017042818, 2018, page 316. 


