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ABSTRACT

Excelling in various image analysis tasks, machine learn-
ing (ML) models and especially deep convolutional net-
works (ConvNets) have become a cornerstone in the Remote
Sensing community. However, their complexity makes their
decision-making process opaque, rendering deep ConvNets
as black box models. To address this issue, “Explainable
AI” (XAI) methods have been proposed that aim to pro-
vide insights into the rationale behind ML generated predic-
tions. Amongst them, perturbation-based techniques monitor
changes in the prediction related to local distortions of the
input. Thereby the relative importance of the altered input
area for the prediction is determined that serves as an expla-
nation for the network’s prediction. In the context of flood
detection from SAR images, we investigate the impact of
different parameter settings on the relevance estimation and
thus on the explanation. The experimental results indicate a
strong parameter dependence yielding ambiguous and partly
contradicting explanations.

Index Terms— Explainable Machine Learning, Occlu-
sion, Synthetic Aperture Radar (SAR), Flood Detection

1. INTRODUCTION

Over the last few years, the use of Machine Learning (ML)
has steadily increased in the Remote Sensing (RS) and Earth
Observation (EO) community. Particularly Deep Neural Net-
works (DNNs) have been established as the model of choice
for various image analysis tasks. However, the strong per-
formance of DNNs is linked to their complex structure of
millions of interdependent variables inside a nested nonlin-
ear function. Although all relevant parts within a neural net-
work are in principle accessible, their sheer number, extreme
connectivity, and interdependence make the exact functional
relationships nontransparent. This causes a lack of explain-
ability and interpretability of the actual function the model
has learned and the results it produces, giving DNNs the rep-
utation of being black box models.

The umbrella term “explainable AI” (XAI) refers to ap-
proaches with the aim of opening black box models and
understanding their predictions. Rather than creating so-
called white-box models that are inherently interpretable,
XAI methods provide explanations to already trained models.

Such post-hoc techniques are commonly categorized by their
specificity. While gradient-based approaches [1] consider
how the model or parts of it contribute to the the prediction
by leveraging gradients computed at individual instances,
perturbation-based approaches [2] observe changes in the
prediction related to local distortions of the input.

While both groups have merit, perturbation-based meth-
ods have the advantage of simplicity and being model-
agnostic, i.e. they can be applied to any kind of machine
learning model that is treated as a black box. They compute
the attribution, i.e. the relevance, of an input feature by mask-
ing or altering it and monitoring the difference in prediction
for the new input to the original input. From an implemen-
tation perspective, perturbation-based methods only require
repeated forward passes, without the need to understand the
model’s inner workings. Comparably simple is the interpre-
tation of their explanations, considering that the computed
relevance maps are directly linked to the model’s output vari-
ables. However, with an increasing number of test features,
perturbation-based methods come with the cost of a certain
computational load. As more critical we consider the strong
dependence of the relevance estimation on the method’s pa-
rameters, i.e. the size of the altered patch as well as the value
replacing the original signal. Given that input patches can
be modified arbitrarily, we assume a certain ambiguity in the
explanations perturbation-based methods generate.

This paper presents a survey of perturbation methods used
to generate explanations in the context of flood detection from
Synthetic Aperture Radar (SAR) images. In the context of
natural hazards, in particular flood events, explainability is
of utmost importance since model predictions are potentially
used by responders to organize help or rescue efforts, perform
damage assessment, monitor the progress of the flood, etc.. A
mere prediction of which areas are flooded is often not suffi-
cient but explanations for why the model arrived at a certain
decision are required as well. To focus on the analysis of ex-
plainability, we employ a rather standard DNN, i.e. a U-Net
[3], which is trained and evaluated on the SenlFloods11 [4]
dataset. We evaluate different parameters of a perturbation-
based method, in particular the size and type of the occlusion,
and how they influence the estimated relevance maps.
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Fig. 1. The occlusion method determines the relevance of individual image patches for the prediction of water areas in SAR
images. Within the probability maps P; and Pp, blue areas represent high probability values for the presence of class water,
while low probability values are shown in red. In the difference map, red is associated with a prediction drop, black with an
improved prediction, and gray with no change in prediction for the occluded image with respect to the original image.

2. METHOD

One approach to answer the question whether a model predic-
tion is based on the object itself or the surrounding context,
is the occlusion method [5] which monitors the change of the
models output if an input image with a locally distorted region
is used. A decrease in the classification probability indicates
the relative importance of the occluded patch for the predic-
tion, while a probability increase is attributed to a disturbing
influence of the occluded patch on prediction.

We extend this approach from image classification, i.e.
assigning one label for a whole image, to semantic segmenta-
tion, i.e. every pixel is assigned a semantic label, and apply it
to the use case of flood detection in SAR data. Fig. 1 provides
an overview of the relevance estimation of individual image
patches using the occlusion method for the prediction of water
areas in SAR images. Given are input images I and O, where
I shows the original image and O an occluded version. The
set of occluded images O is created from I by shifting an oc-
clusion window over the original image, thereby blocking out
parts of the original signal. Forwarding I and O individually
through the segmentation network, it outputs the water class
probability on a pixel level, i.e. the probabilistic maps Pr and
Po. For each I and O pair, we compute the relevance score
R0 of an image area from the probability difference Pr — Pp.

To attribute the relevance of single image patches to the
prediction of a certain region, e.g. a water segment, we create
attribution masks from the segmentation output of the original
image I that combine water pixels to larger segments. Aver-
aging the difference values over the water segments results
in a relevance score of the respective patch for the prediction
of water, stored in a local relevance map. To avoid the bias

coming from large difference values within the occluded im-
age part itself, this region is ignored in the attribution masks
in the relevance estimation. The individual relevance scores
are combined in a relevance map of the same size as the origi-
nal image I. Patches with positive relevance scores (blue) are
considered important for the prediction, while patches with
negative relevance scores (red) indicate a disturbing influence.

3. EXPERIMENTAL SETUP

We analyze the occlusion method for semantic segmenta-
tion and employ a U-Net, which we train and evaluate on
the SenlFloods11 [4] dataset. The dataset consists of 446
hand-labeled Sentinel-1 images in VV and VH polarization
collected from flood events across 11 countries. According
to [4], the 512 x 512 images are split into four 256 x 256
patches in the inference stage and are stitched back together
later. This means, as illustrated by the difference maps shown
in Fig. 1, that the distortion only affects the prediction within
a 256 x 256 patch and does not affect the prediction of wa-
ter areas inside the remaining patches that together form the
original 512 x 512 image.

We investigate the influence of two occlusion parameters,
i.e. the size of the occluding patch and the occlusion type, on
the relevance estimation and thus on the explanations qual-
ity. We systematically cover image parts with patches of size
8 x 8, 32 x 32 and 128 x 128 to observe how the relevance
scores change for smaller and larger occlusion windows. To
understand the influence of the occlusion value, we consider
the following five cases:

(A) The patch stores the channel-wise mean of Ty = 0.84
and Ty g = 1.01 as a single, constant value.



(B) Each pixel value inside a patch is randomly sampled
from a normal distribution where mean and standard de-
viation are estimated from pixels belonging to the water
class. For each patch, ten occlusion windows are created
by drawing new samples leading to ten relevance maps
which are then averaged.

(C) Each pixel value in the patch is randomly sampled from
a normal distribution where mean and standard devia-
tion are estimated from pixels surrounding the patch. As
above, ten occlusion windows are created and their rele-
vance maps averaged.

(D) Using ten different seeds, the pixels inside a patch are
randomly shuffled. For each seed a relevance map is pro-
duced which is then averaged.

(E) The whole patch is replaced by another patch extracted
from a different image. Using ten external patches, the
individual relevance maps are combined to an average.

4. RESULTS AND DISCUSSION

Figure 2 summarizes the relevance maps obtained for the dif-
ferent experimental settings. The size of the occlusion patch
indicates a trade-off between the resolution of the relevance
map and the influence of individual patches on the prediction.
As it can be expected, the relevance score decreases with the
size of the occlusion patch. Covering larger image parts with
patches that carry different information than the original im-
age, naturally has a greater impact on the prediction compared
to when smaller image parts are distorted. Structures that are
relevant for the prediction might not only be distorted but en-
tirely removed. An occlusion window of size 128 x 128 for in-
stance already covers a quarter of the image. While larger oc-
clusion patches yield higher relevance scores, and thus in turn
have a greater impact on the prediction, the relevance maps
have a coarse resolution. Their interpretation is not straight-
forward, as the individual patches mostly cover both water
and non-water areas. Combined in a single relevance score
the contributions of both classes are averaged out and can-
not be distinguished from each other anymore. Although an
occluded patch is estimated to have a contributing or disturb-
ing influence on the prediction, it is unclear what exactly the
influence is attributed to. Thus, such coarse relevance maps
have little informative value and do not add to explainability.
On the other hand, relevance maps estimated from smaller
occlusion windows yield more detailed relevance maps that
follow the underlying image structures and allow to attribute
relevance values to specific image features. Although this im-
proves explainability, the influence small image patches have
on the prediction is particularly small, such that they might be
neglected by the network when forming the prediction.

The occlusion value primarily determines the relevance
scores of individual image patches and therefore also the over-
all appearance of the relevance map. Whether water, non-
water or the bank region separating the two classes have a

positive or negative contribution to the prediction, depends
on how well the occlusion value represents the original sig-
nal. The prediction of water areas for instance deteriorates
in Cases A and E when water bodies are occluded. Given
that both, the mean of the test image as well as the external
patches are dominated by background pixels, water bodies
cannot be represented well enough leading to worse predic-
tions. On the other hand, occluding non-water areas by such
patches barely has any effect. However, given that there is
no variance between the pixels inside an occlusion patch in
Case A, the patch appears rather smooth to the network yield-
ing slightly better predictions when applied on non-water ar-
eas. The pixel variance and randomness that is present in
Case F stands in contrast to that. While in Cases A and E
the patch rather represents the background, in Case B the
pixels inside a patch are randomly sampled values from the
normal distribution of water pixels. Thus, the prediction is
barely affected when covering water bodies by such patches,
but it deteriorates in case of the non-water areas. We observe
more pronounced relevance scores in the bank region sepa-
rating water from non-water pixels. Occluding border pixels
by water-like patches in a way enlarges the water bodies and
thereby increases the probability for actual water pixels be-
ing classified correctly. A similar effect can be observed in
Cases C and D. While in Case C statistics of the surround-
ing area are introduced as occlusion values, in Case D the
statistics inside the patch are kept. However, through shuf-
fling, image features are disrupted that might be important for
the classification of water areas. In both cases the bank area
separating water from non-water pixels is distorted, such that
water-like pixels appear in the non-water area and vice versa.
This variance within and between occlusion patches explains
that some pixels in the bank area have a favoring and some
a disturbing influence on the prediction. Overall, the results
indicate the network’s ability to correctly classify the image
pixels. For the estimation of relevance scores, a clear sepa-
ration of the two classes appears to be more important than
preserving closed shapes.

5. CONCLUDING REMARKS

With explainable Al a wide range of methods have been pro-
posed that aim to provide an understanding of ML models and
their predictions. Perturbation-based XAI approaches moni-
tor changes in the prediction linked to modifications of the
input and estimate the relevance of the altered input for the
prediction. They are particularly popular due to their sim-
ple implementation and allegedly straightforward interpreta-
tion of the explanation. To this aim, we investigate several
variations of the occlusion method using different parameter
choices in the context of flood segmentation in SAR images.
Our experimental results indicate a strong influence of
the method’s parameters on the relevance estimation. While
the explanations obtained from the occlusion method demon-
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Fig. 2. Influence of occlusion parameters on the relevance of image patches for the prediction of water areas in SAR images.
Five occlusion types (channel-wise mean, statistics of the surrounding area, statistics of class water, random shuffling, and
external patches) are arranged in rows for three patch sizes (128 x 128, 32 x 32, 8 x 8) arranged column-wise. Blue patches
are attributed to positive relevance scores and are considered important for the prediction of the water class. Red patches on the
other hand stand for negative relevance scores and indicate a disturbing influence on the prediction.

strate the network’s ability to perform the downstream seg-
mentation task, the estimated relevance maps are not consis-
tent with changed parameter settings. Besides the ambiguity
of explanations, another drawback of the method is its limita-

tion to only indicate whether an input patch has a contributing
or disturbing influence on the prediction. It does not allow to
conclude whether the prediction changes because the original
values are missing or because new information is inserted.
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