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Abstract

Machine learning and especially deep convolutional networks (ConvNets) are increasingly being used for various image
analysis tasks in Earth observation. Despite their strong performance, ConvNets are considered black boxes lacking
explainability of their predictions. Methods under the umbrella term “explainable machine learning” or more “explainable
AI” (XAI) aim to provide human-interpretable reasoning for why a model made a particular prediction. Amongst them,
perturbation techniques explore changes in the prediction when the input is locally distorted. We investigate the influence
of different parameter choices on the quality of explanations in the context of flood detection using SAR images.

1 Introduction

In recent years, the use of machine learning (ML) meth-
ods has grown considerably in the remote sensing (RS)
and Earth observation (EO) community. Especially deep
convolutional networks (ConvNets) are the established go-
to models for numerous image analysis tasks [1]. Being
trained with regard to high accuracy, deep ConvNets typ-
ically are composed of millions of interdependent param-
eters. Their sheer number and extreme connectivity yield
highly complex functional relationships [2]. Although the
overall model structure, its individual components, as well
as the general learning algorithm are commonly known,
the created model complexity makes it impossible to even
grasp what the model has actually learned, whether it
works as intended, or if its prediction is sensible. This lack
of interpretability and explainability gives deep ConvNets
the reputation of being black box models [3].
In broader terms, the demand for explainability in ML can
be linked to trust, accountability, robustness, etc. of the
model and its predictions. As opposed to creating inher-
ently interpretable models, under the umbrella term of "ex-
plainable AI" (XAI) methods have been developed that aim
to open black box models and understand their decisions
[4]. XAI techniques that provide explanations to already
trained models in a post-hoc manner can broadly be cat-
egorized into gradient-based [5, 6, 7, 8] and perturbation-
based [9, 10, 11, 12] approaches. Both provide local ex-
planations, i.e. explanations concerning the prediction of
single instances. While the former approaches leverage
gradients computed at individual instances to explain pre-
dictions [13], the latter ones monitor changes in the predic-
tion associated with locally distorted input with respect to
the original input [14].
Compared to gradient-based methods, perturbation-based
techniques do not require an understanding of the models’
inner workings, i.e. they are model-agnostic and can be ap-
plied to any black box ML model. Moreover, perturbation-

based approaches have the advantage of being particularly
simple in terms of their implementation as well as in the in-
terpretation of their explanations. With perturbation-based
approaches an attribution, i.e. the relevance, of an input
part or feature is computed by occluding it and investi-
gating the changes this causes in the prediction with re-
spect to the original input [14]. Thus, perturbation-based
approaches only require forward passes to obtain predic-
tions for different inputs and provide relevance scores that
are directly linked to the models’ output variables. How-
ever, not only does this come with the cost of computa-
tional load as the number of features to test increases, but
more importantly, the result is strongly influenced by the
methods’ parameters, such as the size and type of the oc-
cluding patches.
This paper presents a survey of perturbation-based XAI
methods used to enhance understanding of ML model pre-
dictions in the context of flood detection from Synthetic
Aperture Radar (SAR) images. Flood events cause more
damage than other natural hazards [15]. Model predic-
tions can assist in mitigating the flood risk, monitoring the
flood progress, optimizing emergency vehicle routing, etc..
For such critical applications, explainability becomes of
upmost importance ensuring accurate and reliable predic-
tions [1]. Particularly, local and global explanation meth-
ods have been used to analyze results for surface water
detection [16] and SHAP [11] to interpret CNN-generated
flood susceptibility maps [17].
In our survey we focus on the analysis of the occlusion-
based methods. For that purpose, we employ a rather stan-
dard segmentation network, the U-Net [18], which we train
and evaluate on the Sen1Floods11 [15] dataset. We extend
the application of perturbation-based approaches from im-
age classification, whereby an image is assigned a single
label, to semantic segmentation, and thus to a pixel-wise
prediction. In our analysis we primarily investigate the
influence the two parameters, window size and occlusion
value, have on the explanation.
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Figure 1 Schematic overview of the occlusion method to estimate the relative importance of single image patches for
the prediction of water in SAR images. Within the probability maps PI and PO estimated from the segmentation net-
work, blue areas represent high probability values for the presence of water, while low probability values are shown
in red. In the computed difference maps, red is associated with a prediction drop, black with an improved prediction,
and gray with no change in prediction. The individual attribution masks exclude water areas inside the occluded patch.
Within the local and global relevance maps blue is attributed to positive and red to negative relevance scores.

2 Occlusion-based Approaches for
Relevance Estimation

Occlusion [9] is a perturbation-based explanation method
that monitors the change of a networks’ output when in-
stead of the original image an image with a locally dis-
torted region is introduced. A probability decrease thereby
indicates the relative importance of the occluded patch for
the prediction. An increase in probability on the other hand
is attributed to a disturbing influence of the occluded area
on the prediction. This allows to investigate whether the
prediction is based on the object itself or the surrounding
context.
Figure 1 exemplary outlines how the relevance of individ-
ual image parts for the prediction of flooded areas in SAR
images is determined using the occlusion method. First,
given input images I and O are forwarded through the seg-
mentation network. While I denotes the original image, O
represents a sample from the set of occluded images cre-
ated from I . By shifting the occlusion window over the
original image, parts of the signal are blocked out causing
local distortions. For both images I and O the segmenta-
tion network outputs the probability of each pixel belong-
ing to the water class, here summarized in probability maps
PI and PO, respectively. For each I and O pair, the rele-
vance of the occluded image part RO is then determined
based on the difference between PI and PO

DO = PI − PO. (1)

To define the area to which the relevance of the occluded
image parts is attributed, binary attribution masks are cre-
ated from the segmentation output of the original image I .
Averaging the difference values DO over the water areas
in the respective attribution mask yields a relevance score

RO of the locally distorted image part, which is visual-
ized as a local relevance map. To avoid the bias on the
relevance coming from large difference values in the oc-
cluded image parts, these regions are ignored in the attri-
bution map. The global relevance map combines the indi-
vidual relevance scores computed for each I and O image
pair. Thereby blue image patches are associated with pos-
itive relevance scores and are considered important for the
prediction of the water areas. Red image patches on the
other hand represent negative relevance scores indicating a
disturbing influence.

3 Experiments

3.1 Setup
Analyzing the occlusion method on a semantic segmenta-
tion task, we employ a standard U-Net which we train and
evaluate on the Sen1Floods11 [15] dataset. The dataset
contains 446 hand-labeled Sentinel-1 images in dual polar-
ization (VV and VH) covering flood events across 11 coun-
tries. Since random cropping is used for data augmentation
in the training stage, during inference the 512×512 images
are split into four patches of size 256×256, which are later
stitched back together. For the analysis of the occlusion
method, this means that the influence of the distorted im-
age part is limited to the prediction of water areas within
the respective 256× 256 patch and has no influence on the
prediction in the remaining patches that belong to the orig-
inal 512× 512 image.
In the analysis, we consider two occlusion parameters,
namely the size of the occluding patch as well as the oc-
clusion type, which both have an influence on the resulting
relevance maps and thus on the explanations the method
provides.



VV VH
x̄ 0.837 1.013
x̄water -1.639 -0.815
x̄non−water 1.439 1.457
min -6.272 -4.244
max 3.521 2.799

Table 1 Image statistics used to investigate the influence
of different occlusion types on the relevance score.

To investigate how the relevance score changes for smaller
and larger occlusion windows, we systematically replace
image parts with occlusion patches of size 128 × 128,
32 × 32, and 8 × 8. Within an occluded window, we test
six different occlusion types. In five out of six cases, we
set all pixels inside the occluded window to a single base-
line value according to the image statistics presented in Ta-
ble 1. In an additional case, we randomly shuffle the pixels
within a window using ten different seeds and average the
estimated relevance maps. This way the original values are
preserved, the image statistics remain unchanged, and the
image appears overall more organic. Yet, rearranging the
pixels disrupts structures that are possibly relevant for the
prediction.

3.2 Results and Discussion
Figure 2 presents a collection of relevance maps obtained
from the experiments investigating the influence of the oc-
clusion parameters, i.e. the window size and occlusion
type, on the relevance estimation. The results indicate a
strong dependence of the relevance score estimation on
both parameters.
As can be expected, the relevance score of an image patch
decreases with its size. Creating stronger distortions by
blocking out larger parts of the original signal naturally
has a greater impact on the prediction compared to small-
scale modifications, as potentially relevant structures not
only might be disrupted but entirely replaced. Note that an
occlusion window of size 128×128 already covers a quar-
ter of the entire image 256× 256 patch. Despite that larger
occlusion patches have a higher impact on the prediction,
they yield rather coarse relevance maps. Obtaining a sin-
gle relevance score, individual contributions within a large
occlusion patch cannot be separated from each other and
are averaged out. The influence of larger patches cannot
be attributed to any particular feature or structure present
in the image. Thus, such coarse relevance maps have little
informative value and do not contribute significantly to the
explanation of the prediction.
Smaller occlusion windows on the other hand yield fine-
grained relevance maps with an overall appearance that
mimics the underlying image structures. The higher res-
olution allows to attribute individual relevance scores to
specific image features providing reasonable explanations
of the prediction. In particular, the relevance map result-
ing from 8× 8 occlusion patches with a replacement value
representing the channel-wise mean of water pixels accen-
tuates the disturbing influence of border regions between
water and non-water areas. At the same time, the influence

smaller image patches have on the prediction is particularly
small, such that they might be neglected or that the network
simply interpolates over them.
While the size of the occlusion window indicates a trade-
off between the resolution of the relevance map and the in-
fluence of individual patches on the prediction, the occlu-
sion value determines the estimated relevance scores and
thus the overall appearance of the relevance map. The rela-
tive importance of water and non-water areas as well as the
boundary region between them strongly depends on the se-
lected occlusion value and how well it represents the origi-
nal signal. We obtain similar relevance maps when replac-
ing pixel values within an occlusion window by the over-
all mean and the mean representing non-water areas. As
non-water areas dominate the overall image, this similarity
is to be expected. Both the medium and high-resolution
relevance maps indicate a slightly disturbing influence of
non-water areas on the prediction, while water areas ap-
pear to be relevant. This can be attributed to the difference
between the occlusion value and the average of water ar-
eas. When replacing water pixels inside an occlusion patch
with a single value that is significantly higher than the wa-
ter mean, closed water bodies can hardly be identified as
those. Particularly small water structures are disrupted and
simply lack the information needed to classify them as wa-
ter deteriorating the prediction. Non-water areas on the
other hand are represented well by both average values.
The variance of pixel values inside an occluded patch over
non-water areas is thereby reduced, yielding slightly better
predictions - but with only little impact.
We observe a similar behavior when using the maximum
of the respective channel as the occlusion value. The strong
difference between the occlusion value and the average
of water bodies completely deteriorates their prediction.
However, the maximum channel value does not seem to be
an appropriate representation of non-water areas as well.
Whether the occlusion patch covers water or non-water ar-
eas, it appears like an outlier to the network, which de-
creases the prediction of the water class. While the net-
work seems to be able to distinguish between water and
non-water pixels, it struggles to identify the occluded patch
as one of the classes.
Occluding non-water patches by the minimum or the aver-
age of the water value as well results in a probability de-
crease for class water. Again, the occlusion patch does not
represent non-water areas well enough and rather interrupts
their structures - which even for small occlusion windows
seemingly are important for the prediction. However, oc-
cluding water areas barely impacts the prediction. When
using the channel minimum, this is quite surprising, given
that the occlusion value is significantly lower than the aver-
age water value. It appears like it is more important for the
network to not have outliers in non-water patches rather
than in water patches and thus to clearly distinguish be-
tween the two classes when forming the prediction. This
becomes particularly visible in the high-resolution rele-
vance map estimated from occlusion values that represent
the water average, which highlights the disturbing influ-
ence of border regions between water and no-water areas.
Replacing border patches with patches representing water
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Figure 2 Experimental results showing the influence of two occlusion parameters, i.e. the size of the occlusion window
(columns) and the occlusion type (rows), on the relevance estimation. Blue patches (positive relevance scores) are im-
portant for the prediction of water areas in the underlying sample image. Red patches (negative relevance scores) have a
disturbing influence on the prediction.



areas in a way enlarges the water bodies and thus increases
the probability of a pixel belonging to the water class. Even
for small occlusion windows of size 8 × 8, there seems
to be an impact on the way the network forms its predic-
tion. We do not observe this effect when using the average
of non-water pixels as the occlusion baseline. We assume
that the border regions contain both water and non-water
pixels and are therefore well represented by the non-water
mean. Thus, we believe the relative importance of border
regions is attributed to the strong cut between the average
water and non-water values. This in turn again indicates
that the occlusion value affects the network’s ability to dis-
criminate water from non-water areas. For the estimation
of relevance scores, this appears to be more important than
preserving the structure inside closed shapes.
The relevance maps estimated by randomly shuffling the
pixels inside an occlusion window show the strongest dif-
ferences from the relevance maps obtained in the previ-
ous cases. Its overall appearance is rather noisy, which
can be attributed to the difference between neighboring
occlusion windows. Although the occlusion patch has a
rather organic structure, it becomes more difficult to inter-
pret the relevance map. It indicates that shuffling pixels
inside closed-water areas slightly improves the prediction
while shuffling pixels in non-water areas yields a slight de-
crease. However, both effects are rather small compared to
the more pronounced relevance scores for border regions.
Shuffling pixels in these patches distorts the separation line
between water and non-water areas. Water pixels poten-
tially appear in non-water areas and vice versa. The ran-
domness between occlusion patches thereby explains why
some border regions appear relevant and others disturbing.
Once more, this confirms that a clear distinction between
water and non-water areas is more important than preserv-
ing the structure within closed areas.
Overall the obtained results indicate that the relevance
score of an image patch heavily depends on the occlusion
value and on how well it represents the occluded patch.
Based on that, either closed water, non-water, or border ar-
eas determine the prediction and are identified to have a
favoring or disturbing influence on it.

4 Concluding Remarks

Explainable machine learning aims to provide human-
interpretable explanations of predictions made by machine
learning models. We are particularly interested in methods
that indicate which parts of an input image have a positive
or negative influence on the estimation. To this aim, we
test several variations of a perturbation approach which is
widely used for its simplicity and direct meaning of the ob-
tained relevance maps. We extend this approach from im-
age classification to the prediction of semantic maps and
evaluate its usefulness in the context of flood prediction
from SAR images.
We demonstrate that using the occlusion method to under-
stand whether an image patch is relevant for the predic-
tion of water bodies or not strongly depends on the size
of the occluded area as well as on the value that is used

to cover that area. On a more general term, the qualita-
tive results clearly show that the obtained relevance scores
highly depend on the selected occlusion parameters and are
often not consistent when these are varied. Thus, different
occlusion parameters yield different explanations for the
same prediction. The lack of consistency makes it hard to
trust the explanation method and turn also the prediction.
Moreover, while the occlusion method indicates whether
certain areas are relevant for the prediction, it remains un-
clear if the prediction changes because the original values
are missing or because new information is inserted.
While a quantitative evaluation of relevance maps is dif-
ficult, there are a few measures available that at least pro-
vide a quality estimate in certain aspects. Future work will
include such performance metrics in the evaluation of the
perturbation-based approach.
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