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Abstract—In multipath assisted positioning schemes, the spa-
tial information contained in multipath propagation of wireless
radio systems is exploited for localization of a receiver. However,
such schemes suffer from a high computational complexity.
We have proposed before a fingerprinting localization system
based on multipath assisted positioning, where the fingerprinting
database is encoded in a deep neural network (DNN). Within
this paper, we propose and evaluate a mixture density network
approach in our DNN to analyze ambiguities among fingerprints
at different locations. We show that our scheme shows a very
good positioning performance with an error of around 2m for
the most part, while having a low computational complexity in
the online stage and a very low effort compared to traditional
fingerprinting schemes.

Index Terms—cooperative Channel-SLAM, deep learning, fin-
gerprinting, localization, simultaneous localization and mapping

I. INTRODUCTION

A promising alternative to global navigation satellite sys-
tems (GNSSs) for indoor localization are terrestrial radio
frequency (RF) systems such as cellular or wireless local
area network (WLAN) systems. While such systems are
typically deployed for communication, they can be used for
localization as well. Nevertheless, multipath propagation tends
to deteriorate the localization performances.

With multipath assisted positioning, the spatial information
contained in multipath components (MPCs) is exploited by
regarding each MPC as a line-of-sight (LoS) signal from a
so-called virtual transmitter. The locations of the virtual trans-
mitters are typically unknown, but can be estimated jointly
with the receiver position with simultaneous localization and
mapping (SLAM) [1]–[3]. Physical transmitters can be WLAN
routers or cellular base stations. With cooperative Channel-
SLAM [4], [5], we have introduced such an approach, where
multiple users estimate their own position jointly with the
locations of physical and virtual transmitters in the scenario.
While cooperative Channel-SLAM is a promising approach
with good positioning performance, it suffers from a very high
computational complexity, making a practical implementation
infeasible. In the following, the term transmitter includes both
physical and virtual transmitters. The term user refers to either
a mobile user or the radio receiver the user is equipped with,
depending on the context. We assume the physical transmitter
and the receiver to be perfectly time-synchronized.

A different approach to positioning are fingerprinting
schemes [6]. In contrast to model-based positioning schemes,

fingerprinting schemes are data-driven and work in two stages.
In the offline stage, fingerprints are collected at known loca-
tions and stored in a database with the respective locations. In
the online stage, users can be localized by matching measured
fingerprints against the database. Fingerprints can be channel
features, magnetic signatures or visual features, for example.

A big drawback of fingerprinting schemes is the huge effort
in the offline stage. A third-party positioning system is typi-
cally necessary for obtaining the locations of the fingerprints.
When the environment changes, the database needs to be
updated and the third-party positioning system deployed again.

We have proposed a fingerprinting scheme named DNN-
CC-SLAM in [7], where the fingerprints are times of arrival
(ToAs) of received signal components, including the LoS path
and MPCs. The locations of the collected ToAs are estimated
with cooperative Channel-SLAM in the offline stage without
the need of a third-party positioning system. A deep neural
network (DNN) is trained in the offline phase to estimate the
user position and covariance based on the ToAs of signal
components. A Kalman filter tracks the user position based
on these estimates from the DNN in the online stage.

Within this paper, we implement this DNN as a mixture
density network (MDN) [8] to gain insight into the ambiguities
among fingerprints at different user locations.

The remainder of this paper is organized as follows. In
Section II, we introduce cooperative Channel-SLAM and
fingerprinting. Section III presents DNN-CC-SLAM and our
MDN architecture. The user tracking is explained in Sec-
tion IV. We perform simulations to evaluate our scheme in
Section V, and conclude the paper in Section VI.

II. COOPERATIVE CHANNEL-SLAM AND
FINGERPRINTING

A. Cooperative Channel-SLAM

Fig. 1 illustrates the principal idea behind multipath assisted
positioning in a simplified scenario with one reflecting wall
and one point scatterer. Omitting the LoS path from the
physical transmitter Tx to the two user locations for clarity,
there are two possible propagation paths shown. In the case
of a reflection of the signal at the wall, the virtual transmitter
vTx1 is at the location of the physical transmitter mirrored at
the wall. The corresponding propagation paths are drawn blue.
The case of scattering at the point scatterer is illustrated by
the red propagation path. The corresponding virtual transmitter
vTx2 is located at the point scatterer. In the case of scattering,
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Fig. 1. The reflected and scattered signal components are regarded as LoS
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Fig. 2. The two stages of Channel-SLAM are channel and position estimation.

there is a delay offset τ0 between the physical and the
virtual transmitter, corresponding to the Euclidean distance
τ0c0 between the two, where c0 is the speed of light. This
delay offset can be interpreted as clock offset.

The cases of single reflections and scattering can be ex-
tended to multiple interactions of the transmit signal with
objects in the environment in a straightforward manner [1].

Note that the locations of the virtual transmitters are
independent from the user location. With Channel-SLAM,
we jointly estimate the user location and velocity with the
positions and clock offsets of the transmitters. We do not
distinguish between physical and virtual transmitters, i.e.,
between the LoS path and MPCs. Each signal component
corresponds to one transmitter, and the physical and virtual
transmitters are covered by the same model. Hence, localiza-
tion of the user is possible with a single physical transmitter.
Channel-SLAM works in two steps as indicated by Fig. 2.

In the first step, a channel estimator tracks the parameters
of signal components over time. Within this paper, we use
the Kalman Enhanced Super Resolution Tracking (KEST) [9]
algorithm. At each time instant k, the parameter estimates are
stored in the vector zk. Tracking the parameters inherently
yields a data association among signal components, and thus
transmitters, for neighboring time instants.

In the second step, the estimates from the channel estimator
are used as measurements in a recursive Bayesian estimation
scheme to jointly estimate the locations and clock offsets
of the transmitters and the user position and velocity with
SLAM. We define the joint user and transmitter states from
time instants zero to k by x0:k and seek the corresponding
minimum mean square error (MMSE) estimator x̂0:k ,MMSE.
If information on the transmitter states from a prior map is
available, this information can be incorporated as well.

Due to the high non-linearity of the estimation problem,
the second step of Channel-SLAM is implemented as a
particle filter, which is a non-optimal solution to recursive
Bayesian estimation. The idea is to represent the involved
probability density functions (PDFs) with weighted samples,
so-called particles, in the state space. To reduce the very high
complexity of the estimation problem, we split the overall
state x0:k into the user state xu,0:k and the transmitter state
xTX,0:k, each of them from time instants zero to k,

p (x0:k|z1:k,u1:k) = p (xu,0:k|z1:k,u1:k)

× p (xTX,0:k|z1:k,xu,0:k) ,
(1)

where z1:k are measurements obtained from KEST from time
instants one to k. Additional sensors such as an inertial
measurement unit (IMU) can be incorporated in the second
step as control input u1:k as indicated by Fig. 2.

While an extension to multiple physical transmitters is
straightforward, in particular if their transmit signals are
separable in one domain such as time, frequency or code, we
restrict ourselves to the case of one physical transmitter within
this paper. Furthermore, switching roles to a transmitting
mobile user and static physical receivers is straightforward.

Note that we model point scatterers such that they distribute
the energy of an impinging signal perfectly uniformly to all
directions. Nevertheless, other effects such as diffraction or
imperfect scatterers can typically be well modeled as point
scatterers in Channel-SLAM.

In [5], we have presented cooperative Channel-SLAM,
where users jointly estimate the states of the transmitters and
therefore improve their positioning performance drastically.

B. Fingerprinting for Localization

In contrast to model-based approaches such as Channel-
SLAM, fingerprinting approaches for localization are based
on collected data. They work in two stages.

In the offline stage, fingerprints are taken at known locations
and stored in a database together with these locations. Finger-
prints can be any location-specific features, and are typically
features of the wireless radio channel, such as channel state
information (CSI) or received signal strength indicator (RSSI).
In the online stage, a user can be localized by matching a
measured fingerprint against the database.

One advantage of fingerprinting is that no complex models
are needed. Accordingly, it tends to be of very low complexity
and often shows good positioning performances. In addition,
it naturally works with different radio technologies, such
as WLAN, ultra-wideband (UWB) or Bluetooth. However,
fingerprinting schemes come with major drawbacks. First, a
third party positioning system typically needs to be deployed
in the offline stage to obtain the locations where finger-
prints have been collected. Second, the fingerprints need to
be collected, which takes some effort before localization is
possible. Third, since no models are assumed, the fingerprints
need to be collected in a dense grid for a good localization
performance. Fourth, an appropriate or even optimum metric
for the similarity of two fingerprints may be very hard to find.
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Fig. 3. The flow chart of DNN-CC-SLAM.

These challenges hinder a wide-spread use of fingerprinting
methods in large-scale systems. Nevertheless, more recent
publications on fingerprinting try to deal with these challenges
with various methods using machine learning [10], [11]. For
example, encoding the fingerprinting database in a DNN can
solve the problem of finding a metric for the similarity of
fingerprints. In addition, a DNN is able to generalize to some
extent, leading to a better interpolation and extrapolation.

III. MULTIPATH ASSISTED POSITIONING-BASED
FINGERPRINTING

In [7], we have proposed a new fingerprinting scheme
named DNN-CC-SLAM that can overcome some disadvan-
tages of classical fingerprinting approaches and the high com-
plexity of cooperative Channel-SLAM. In contrast to classical
fingerprinting, the locations of the taken fingerprints in the
offline stage are obtained with cooperative Channel-SLAM.
A flowchart of DNN-CC-SLAM is presented in Fig. 3.

In the offline stage, one or more users roam through
a scenario localizing themselves with cooperative Channel-
SLAM. The estimated user locations p̂u,m and ToAs zToA,m

of signal components from the mth user are used to train the
feedforward DNN to predict the user location based on the
fingerprints, i.e., the ToAs of signal components.

In the online stage, a channel estimator processes the
received signal and passes the estimated ToAs zToA to the
DNN for inference. Since a single antenna is assumed at
the user and no tracking, but only a point estimation of the
ToAs is required, a very efficient channel estimator can be
used. Within the scope of this paper, we use the superfast line
spectral estimation (SFLSE) [12]. A Kalman filter then tracks
the user position and velocity.

Compared to classical fingerprinting, a huge advantage
is that no third party positioning system needs to be de-
ployed, neither for creating the database in the first place,
not for re-collecting fingerprints in case of changes in the

environment. In addition, fingerprint collection can be easily
automated, for example by equipping a mobile robot with
a RF receiver. While the offline stage of DNN-CC-SLAM,
containing cooperative Channel-SLAM and training the DNN,
is computationally complex, the necessary operations can be
performed offline on a server or in the cloud. In the online
stage, the complexity is very low. First, an efficient channel
estimator can be used. Second, inference of the DNN is of low
complexity. Third, the Kalman filter implementation is very
efficient, since each measurement is a position, which is part
of the state space. Encoding the fingerprinting database in a
DNN does not only improve interpolation and extrapolation,
but also avoids the difficulty of finding an appropriate metric
between two fingerprints, i.e., two sets of ToAs.

We train the DNN to learn the user position from finger-
prints, which are a vector of ToAs of signal components. We
denote the input vector corresponding to the fingerprints by
q and the vector corresponding to the user position by p. In
particular, we seek to learn the underlying distribution p (p|q)
based on a set of training data, i.e., samples pj and qj .

Fingerprinting relies on the assumptions that (i) two fin-
gerprints taken at two user positions close to each other are
close in some dedicated metric, and that (ii) fingerprints taken
at two locations far away from each other are far away in the
same metric. However, these assumptions are sometimes not
satisfactorily fulfilled due to symmetries in the scenario as
well as noise and its influence on channel estimates.

In order to deal with corresponding ambiguities, we imple-
ment a MDN following [8], where p (p|q) is modeled as a
Gaussian mixture model (GMM) consisting of NN normally
distributed components with normalized weights αi,

p (p|q) =
NN∑
i=1

αi(q)N (p;µi(q),Ci(q)) , (2)

where N (p;µi(q),Ci(q)) is the PDF of a normal distribution
in p with mean µi(q) and covariance matrix Ci(q), which
explicitly depend on q.

The loss function in the DNN training is the negative log-
likelihood function regarding the PDF in Eq. (2). We write
the loss function L (w) explicitly as a function of the DNN
parameters w, i.e., weights and biases,

L (w) = −
NS∑
j=1

log

NN∑
i=1

αi(qj ,w)N (pj ;µi(qj ,w),Ci(qj ,w)),

(3)
where NS is the number of samples available for training.

The output layer of the network consists of 6NN neurons,
corresponding to a weight, a two-dimensional mean, and three
entries of the 2 × 2 symmetric covariance matrix for each
component in a GMM. If NN = 1, the weight αi and the
index i can be dropped.

IV. USER TRACKING

In the online stage of DNN, the estimated ToAs of signal
components are passed to the DNN for inference, and the
resulting estimates to the Kalman filter for tracking of the



user. The state vector in the Kalman filter at time instant k is
given by

xk =
[
pk

T vk
T
]T

, (4)

where pk and vk are the position and velocity of the user. The
movement model is a linear, pedestrian random walk model.

The output of the GMM at time instant k are the parameters
µi,k, a vector of length two, Ci,k, a matrix of size 2× 2, and
αi,k for each of the NN components. For initialization of the
Kalman filter, the initial position p̂0 and position covariance
matrix L̂0 are chosen to be from the Gaussian component with
highest of the weights αi,0 from the DNN. The full initial
state estimate mean and the corresponding covariance matrix
at time instant 0 are then given by

x̂0 =
[
p̂T
0 0T

]T
and P̂0 =

[
L̂0 O

O σv,01

]
, (5)

respectively, where σv,0 denotes the initial variance on the
velocity, O is the all-zero matrix and 1 is the identity matrix.
The posterior state estimate mean at time instant k is denoted
by x̂k and the corresopnding covariance matrix by P̂k.

In the Kalman filter, we interpret the output of the DNN
as a measurement of the user position. In particular, the
position measurements in the filter are the mean µi,k and the
measurement covariance the corresponding covariance matrix
Ci,k for some index i. Hence, no complicated measurement
model needs to be assumed, but the observation model corre-
sponds to an identity matrix of corresponding dimensions. The
innovation covariance in the Kalman filter is a 2× 2 matrix,
who’s inverse can be obtained efficiently in closed form.

If NN = 1, the output of the network is directly passed
on to the Kalman filter as measurement. If NN > 1,
we obtain from the DNN multiple weighted hypotheses for
measurements of the user position. For the sake of a low
computational complexity, we take a hard-decision in favor of
the hypothesis with lowest distance towards the current user
position in the Kalman filter. In particular, at time instant
k, we decide for the Gaussian component with index îk,
for which the Kullback–Leibler divergence (KLD) between
the corresponding Gaussian component N (µi,k,Ci,k) and the
current user position PDF in the Kalman filter N

(
p̂k, L̂k

)
with mean p̂k and covariance matrix L̂k is the lowest. Note
that in line with Eqs. (5), p̂k corresponds to the first two
entries of x̂k and L̂k is the upper left 2× 2 submatrix of P̂k,
i.e., the matrix containing the first two rows and columns of
P̂k. In addition, we weight this KLD by the respective inverse
of the weight αi,k of the Gaussian component, and thus decide
for the Gaussian component with index

îk = argmin
i∈{1,...,NN }

1

αi,k
KLD

(
N (µi,k,Ci,k) ,N

(
p̂k, L̂k

))
.

(6)

V. SIMULATIONS

A. Simulation Environment and Parameters
We evaluate our approach with simulations in the scenario

in Fig. 4, showing the top view of an indoor mall with one

Fig. 4. Top view of the simulation scenario.

physical transmitter depicted by the red triangle labeled Tx.
The black lines and points represent walls and scatterers,
respectively. We refer to the user track depicted by the blue
line running from START to END as reference track.

The physical transmitter continuously transmits a signal
which is known to the users. The center frequency of the signal
is 1.9GHz and its bandwidth 100MHz. Based on the walls
and scatterers, a channel impulse response (CIR) is simulated
with ray-tracing for every user position. In Channel-SLAM,
the users record a snapshot of the received signal every 10ms
as input for the channel estimator to obtain a position estimate.

In Channel-SLAM, the users are equipped with an antenna
array consisting of nine elements arranged uniformly in a
3 × 3 grid. The channel estimator tracks both the ToAs and
angles of arrival (AoAs) of signal components, which are then
used as measurements in the particle filter. Turn rates from
a gyroscope that is rigidly mounted to the receiver and thus
aligned with the user heading are incorporated as control input
in the particle filter. In the online stage of DNN-CC-SLAM, no
IMU is used, and a single antenna at the receiver is assumed.

Our DNN is a fully connected feedforward neural network
with sigmoid activation functions. The input layer is of size
32, corresponding to the number of ToA estimates of signal
components. If the model order, i.e., the number of signal
components estimated by the channel estimator, is less or more
than 32, we apply zero-padding or truncation, respectively. In
the DNN, the number of hidden layers is six with 1000, 300,
200, 100, 50 and 30 neurons. The loss function is given by
Eq. (3) and the DNN is trained with the Adam optimizer.

B. Simulation Results

As depicted in Fig. 3, the DNN is trained with data, i.e.,
estimated ToAs and user positions, from multiple users going
through the scenario with cooperative Channel-SLAM. For
our evaluations, the training data is obtained from 44 different
users with a total traveled distance of approx. 8.86 km. Given



Fig. 5. Positioning error for the reference user using different numbers of
Gaussian components in the MDN.

Fig. 6. Positioning error for NN = 1 before the Kalman filter.

a speed of 1m/s, there are 88,640 data points, of which 90%
are used for training and 10% as validation data.

Fig. 5 shows the positioning error of a user going along
the reference track depicted in Fig. 4 for different numbers
of components NN in the GMM. All results in Fig. 5 are
averaged over 50 repetitions due to the stochastic nature
of the particle filter in cooperative Channel-SLAM and of
the optimization in training the DNN. Near the end of the
reference track, there is less training data available compared
to the rest of the track, leading to a higher error in general. The
positioning error averaged over the entire traveled distance of
the user are 2.80m, 2.41m, 2.57m and 2.60m for NN = 1,
NN = 2, NN = 3 and NN = 5, respectively. We see that
all curves are mostly very similar. Only towards the end of
the track, where fewer training data is available, the error for
NN = 1 is considerably higher than for the other cases.

Fig. 6 shows the positioning error for NN = 1 before

tracking, i.e., the raw output of DNN predicting the user
position. There are considerable outliers in the beginning and
especially near the end of the track. The lack of training data
near the end leads to an offset from the true user position.

We conclude for our scenario, that in regions with relatively
few training data, ambiguities regarding the user position are
more likely, and a MDN with more than one component is
beneficial. In contrast, if enough training data is available,
ambiguities are unlikely. Since the averaged error increases
from NN = 2 to NN = 5 in Fig. 5, we suspect that if
such ambiguities arise, they occur mainly between two, but
not more user positions. Increasing NN beyond two does not
improve the performance, and with NN = 2, our approach
can well handle ambiguities in the prediction from the DNN.

VI. CONCLUSION

We have presented an MDN approach for our multipath
assisted positioning-based fingerprinting scheme DNN-CC-
SLAM and analyzed ambiguities arising in the DNN. As
expected, these ambiguities arise if the user is in an area with
few training data. For the most part, ambiguities arise only
between two different locations in our scenario. Hence, MDNs
with two components are sufficient, and more components do
not improve the performance in our scenario.
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