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Abstract—We discuss single-shot decoding of quantum
Calderbank-Shor-Steane codes with faulty syndrome measure-
ments. We state the problem as a joint source-channel coding
problem. By adding redundant rows to the code’s parity-check
matrix, we obtain an additional syndrome error correcting code
which addresses faulty syndrome measurements. Thereby, the
redundant rows are chosen to obtain good syndrome error
correction capabilities while keeping the stabilizer weights low.
Optimal joint decoding rules are derived which, though too
complex for general codes, can be evaluated for short quantum
codes.

Index Words—Optimal decoding, Calderbank-Shor-Steane
(CSS) codes, quantum error correcting codes, joint source-
channel coding.

I. INTRODUCTION

Recently, quantum information technologies have attracted
great interest, since for certain applications they promise
significant advantages compared to conventional technologies.
One prominent example is Shor’s algorithm for finding the
prime factors of an integer [1], which provides an exponential
speed-up compared to the best known classical algorithm. A
major challenge for quantum computers is decoherence, i.e.,
the unintended interaction of qubits with their environment that
leads to a loss of quantum information. This calls for powerful
quantum error correction schemes. Although the noisy code-
word cannot be observed directly, syndrome measurements
can be performed using ancilla qubits to extract information
about errors that affect a quantum system [2]. However, the
quantum circuits used to extract these syndrome measurements
are themselves faulty. Thus, one has to deal with both qubit
and syndrome measurement errors.

A straightforward approach to combat syndrome errors is
to repeat the syndrome measurements multiple times [3],
a process known as Shor’s syndrome extraction. In Shor’s
syndrome extraction, the number of measurement repetitions
has to scale linearly with the code distance in order to achieve
fault tolerance. An alternative is to rely on so-called single
shot error correction [4], which implies carrying out redundant
syndrome measurements, which are not necessarily repetitions
of previously carried out measurements, but rather linear
combinations thereof [5].
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Such linear combinations might be subject to higher mea-
surement uncertainty, but when employing them, it is some-
times possible to achieve fault tolerance using only a constant
number of measurement rounds [4].

This work focuses on single-shot decoding of quantum
error-correcting codes. In particular, by stating the problem as
a joint source-channel coding problem, we gain further insight
into the construction of the syndrome error-correcting code.
We derive the optimal joint decoding rule (for the qubit and
syndrome codes) as well as a relaxation thereof that ignores
error degeneracy. The evaluation of the resulting expressions
is, in general, complex, albeit feasible for small codes. Finally,
the experimental results illustrate the performance of different
syndrome error-correcting code constructions.

II. QUANTUM ERROR CORRECTION

We consider [[nq, kq]] CSS codes [6]. The code constraints
can be represented by a binary (nq − kq)× 2nq parity-check
matrix of form

Hq =

[
HX 0
0 HZ

]
. (1)

The (nq −kx)×nq and (nq −kz)×nq sub-matrices HX and
HZ (with kq = kx + kz − nq) must fulfill HXH⊺

Z = 0 to
comply with the commutation requirement of the stabilizers.

In quantum systems, it is not possible to measure the qubits
without perturbing the state. Instead, quantum error correction
is performed relying on so-called (quantum) syndrome mea-
surements that yield a syndrome vector sq . This vector can be
expressed as

s⊺q = Hqe
⊺
q (2)

where eq = [eZ |eX ] is a binary vector of length 2nq uniquely
associated with a Pauli error. The X and Z components of
the error vector are swapped in (2) in order to implement the
symplectic product [7]. In particular, when the i-th qubit is
subject to a Pauli X error, the i-th element in eX is set to
one, whereas when it is subject to a Pauli Z error, the i-th
element of eZ is set to one.

III. SYSTEM MODEL

As in [7], we model the channel error vector eq = [eZ |eX ]
as the output of a binary symmetric channel (BSC) which
introduces independent Z and X errors with the same proba-
bility ϵ. Due to the independence of X and Z errors, we can
decode them independently using the matrices HZ and HX ,
respectively. To simplify notation, in the following, we drop
the subscripts X and Z. Thus, we denote by H the (n−k)×n
binary parity-check matrix of an (n, k) linear block code C.
The error vector is denoted by e. The (error-free) syndrome s
is computed as s = eH⊺.
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In quantum systems, not only the qubits are subject to
errors, but also the syndrome measurements can be faulty.
In this work, we model errors in syndrome measurements
as the transmission of the syndrome over a BSC with error
probability δ. To provide resilience against syndrome errors,
s is encoded using an (m,n− k) binary linear code Cs with
an (n− k)×m generator matrix Gs. This yields a redundant
(or encoded) syndrome z. Figure 1 illustrates the abstracted
model of our transmission system.

A. Syndrome Error Probability

The rows of matrix H are denoted as h1, . . . ,hn−k. In the
field of quantum error correction, these rows are also known
as stabilizers of the code. Each stabilizer is connected to a
syndrome measurement. In order to perform the syndrome
measurement associated with the i-th stabilizer hi, typically
an ancilla-qubit is injected, and it needs to interact with w(hi)
data qubits, where w(hi) denotes the Hamming weight of hi.
A simple error model for syndrome measurement errors is
obtained assuming that each of these interactions fails with
a given probability q [5], yielding the following syndrome
measurement error probability

Pr(zj ̸= z̃j) =
∑

i is odd

(
w(hj)

i

)
qi(1− q)w(hj)−i. (3)

Observe that the probability in (3) increases with the Ham-
ming weight of hj .

Since hj for j ∈ {1, . . . ,m} may not have constant weights,
it is convenient to define the average error probability δ as

δ =

∑m
j=1 Pr(zj ̸= z̃j)

m
(4)

which is the syndrome error probability assumed throughout
this work.

IV. SYNDROME ERROR CORRECTING CODE

Elaborating on the redundant syndrome z, we obtain

z = sGs = eH⊺Gs = eH⊺
o (5)

By definition, we have rank(Gs) = n−k and rank(H) = n−
k. Exploiting well-known results from linear algebra, it follows
that matrix Ho = Gs

⊺H has size m × n and rank(Ho) =
n− k, since

rank(Ho) ≤ min(rank(Gs), rank(H))

rank(Ho) ≥ rank(Gs) + rank(H)− (n− k),

where the lower bound on the rank of Ho is also known as
Sylvester’s inequality.

We make the following observations. First, the m×n matrix
Ho, m > n − k, is overcomplete, i.e., it contains linearly
dependent rows. These linearly dependent rows enable correc-
tion of syndrome errors. Second, (5) describes a joint source-
channel coding problem [8], where e is first compressed with
the help of H and then s is encoded to z.

A. Code Construction

Let

Ho =

[
H
P

]
(6)

where the (m−n+k)×n matrix P represents the redundant
part of Ho. Note that any matrix Ho can be rearranged as
in (6), e.g., by means of Gaussian elimination that identifies
n − k linearly independent rows. Then, the generator matrix
Gs = [I|A] (in systematic form) of the syndrome error-
correcting code is the solution of

A⊺H = P . (7)

One may use Gaussian elimination to solve (7) for A.
In the sequel, we assume that the stabilizers of the quantum

error-correcting code C, hence H , are given. Given this
constraint, our focus lies on the development of the syndrome
error correcting code denoted as Gs. The classical code design
approach is to find a code Cs with good distance and thus good
error correction properties. However, in the quantum setting,
we aim for matrices Ho with low-weight rows that not only
facilitate implementation, but also minimize the probability
of syndrome measurement error δ (see Section III-A). More
precisely, we would like to ensure that P is sparse, which is
not necessarily guaranteed even when H and Gs are sparse.

In this work, starting from H we generate low-weight
redundant rows. The problem of finding a sparse representation
of a code can be addressed, e.g., by relying on proba-
bilistic approaches as in [9]. For the short code examples
in Section VI we can directly exploit the structure of H
and construct m′ > m low-weight redundant rows (which
form P ) . Alternatively, with a combinatorial approach, it is
possible to investigate any possible combination of j rows
with j ∈ {2, n− k}. Once P is obtained, by solving (7), the
matrix A′ is evaluated. Consequently, the generator matrix
G′

s = [I|A′] of an (m′, n − k) code C′
s is constructed.

Finally, we select a sub-space of m rows of P to obtain
an (m,n − k) code Cs. For the codes under consideration,
the selection of the m rows among the m′ candidates can
be done by an exhaustive search to maximize the minimum
distance (and minimize the multiplicity of minimum weight
codewords) of Cs. Alternatively, we will also provide examples
of a concatenation of the syndrome error correcting code with
a repetition code, since it is always possible to repeat the
syndrome measurements.

V. DECODING

A. Degenerate Maximum A Posteriori Decoding

In the quantum setting, two error vectors e and ẽ are said to
be degenerate if their modulo-2 sum e+ ẽ is a stabilizer, that
is, if it belongs to the row span of H . Degenerate errors are in-
distinguishable from each other and lead to the same quantum
state (see [10] for a detailed discussion on degeneracy). Thus,
it is possible to group the error operators into cosets E , which
can be thought of as equivalence classes. All errors in a coset
E can be corrected by the same recovery operator. The task of



Fig. 1. Classical error model. Pauli X and Z errors are assumed to be independent events, resulting in an associated binary error vector eq = [eZ |eX ]. It
can be seen as the output of a BSC with error probability ϵ, where eZ and eX can be inferred independently. Therefore, the figure only shows one component
where the subscripts X and Z are omitted. The vector e is never actually observed. Instead, a corrupted version z̃ of the encoded syndrome z = eH⊺Gs

is measured. Measurement errors are modeled by a BSC with error probability δ. The decoder provides an estimate ê of the error vector e.

a degenerate decoder is to identify the right coset and apply
the respective correction to the corrupted state. As in [10], the
decoder aims to find the coset that minimizes the probability of
error given the syndrome, extending the optimal decoding rule,
e.g. maximum a posteriori (MAP), to the quantum scenario.

Hence, a degenerate MAP decoder computes the most
probable coset given the noisy syndrome observation z̃ as

Ê = argmax
E

Pr(E|z̃) = argmax
E

Pr(z̃|E) Pr(E)
Pr(z̃)

= argmax
E

Pr(z̃|E) Pr(E). (8)

Elaborating on Pr(z̃|E) we obtain

Pr(z̃|E) = Pr(z̃, E)
Pr(E)

(a)
=

1

Pr(E)
∑
e∈E

Pr(z̃, e)

=
1

Pr(E)
∑
e∈E

Pr(z̃|e) Pr(e), (9)

where in (a) we exploited the fact that the error events in E
are all disjoint. Inserting (9) into (8) we obtain

Ê = argmax
E

∑
e∈E

Pr(z̃|e) Pr(e). (10)

Note that evaluating the expression in (10) requires processing
of all 2n different error vectors, and is thus only feasible for
small values of n.

In this paper, the following error model is assumed. Let
d(z, z̃) be the Hamming distance between the vectors z and
z̃. The probability associated with an error vector e over a
BSC with crossover probability ϵ is defined as,

Pr(e) =

(
ε

1− ε

)w(e)

(1− ε)n. (11)

Similarly, over a BSC with crossover probability δ, we have

Pr(z̃|e) = Pr(z̃|z(e)) =
(

δ

1− δ

)d(z(e),z̃)

(1− δ)m, (12)

where z(e) is the redundant syndrome vector induced by the
error pattern e.

B. Maximum A Posteriori Decoding

Ignoring the effect of degeneracy, a classical MAP decoder
would compute

ê = argmax
e∈Fn

2

Pr(e|z̃) = argmax
e∈Fn

2

Pr(z̃|e) Pr(e)

= argmax
e∈Fn

2

Pr(z̃|z(e)) Pr(e). (13)

The expression in (13) can be computed using (11) and (12).

Note again that evaluating (13) requires processing all 2n

error vectors. Let us now see how this complexity can be
reduced. First, Pr(z̃|z(e)) = Pr(z̃|s(e)) has to be evaluated
for 2n−k different syndrome vectors. This is because all the
2k error vectors in a coset differ by a stabilizer and yield the
same corrupted state, thus also the same syndrome. Second,
for a given syndrome vector s, the lowest weight error vector
e∗(s) which is consistent with s maximizes the expression
in (13).1 Therefore, before decoding, we can determine a one-
to-one mapping between s and e∗(s). For this step, we need
to check at least 2n−k error patterns, but usually less than 2n.
This step has to be performed once for a given code prior to
decoding. Thus, we can reformulate MAP decoding as follows

ŝ = argmax
s∈Fn−k

2

Pr(z̃|s) Pr(e∗(s)). (14)

The estimated error vector ê∗(ŝ) can be directly obtained from
ŝ through the one-to-one mapping. According to (14), 2n−k <
2n syndrome vectors must be processed during decoding.

VI. EXPERIMENTAL RESULTS

We present experimental results for two families of CSS
codes whose parity-check matrix structure is as in (1). In both
cases, the submatrices HX and HZ represent two equivalent
codes. Therefore, similarly to [7], we only show simulation
results for the code represented by HX over the BSC with
error probability ϵ. Simulations are performed under both
MAP and degenerate MAP decoding for fixed syndrome error
probability δ. We determine the probability of decoding failure
Pe versus ϵ by Monte Carlo simulations. A decoding failure
is declared whenever a logical error occurs, i.e., when the
decoded error pattern is not in the same coset as the one
introduced by the channel. Note that the redundant rows of
the parity-check matrix may have different weights in our
experiments. Therefore, for a fixed q in (3), δ in (4) will
change depending on the code that is considered. For a fair
comparison, different codes must be compared for different
values of δ.

1We require ϵ < 0.5 and in case there are multiple error vectors with the
lowest weight, we pick one of them randomly.



Fig. 2. Decoding failure rate versus error probability ϵ for the [[16, 2]] product
code with q = 0.013 (red) and q = 0.021 (blue).

A. [[16, 2]] Product Code

We consider the [[16, 2]] quantum product code [11]. The
8× 16 binary matrix HX in (1) is given by

HX =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


.

Note that HX by construction already contains one redundant
weight-4 row. Additional redundant rows of weight 6 are
generated by exploiting the code structure. By dividing the
rows of matrix HX into two sets, namely the first four rows
and the remaining rows, it is possible to generate a total of
16 weight-6 rows. This can be achieved by taking any linear
combination of one element from each set. As a result, we
obtain a (24, 7) syndrome error-correcting code C(24,7)

red with
dmin = 8. For completeness, the submatrix A of the code’s
generator matrix Gs = [I|A] is

A =


1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

 .

We now remove three of the weight-6 redundant rows and
obtain a (21, 7) syndrome error-correcting code C(21,7)

red with
dmin = 6. Likewise, we consider HX without the last
redundant row and repeat the seven syndrome measurements
three times. The result is a (21, 7) syndrome error-correcting
code C(21,7)

rep with dmin = 3. For a fair comparison between
the codes, a higher δ has to be considered for C(21,7)

red due to
the higher stabilizer weights. Figure 2 shows the probability
of decoding failure versus ϵ for different values of δ. While

Fig. 3. Decoding failure rate versus error probability ϵ for the [[16, 2]]
product code and q = 0.013.

for C(21,7)
rep we consider δ = 0.05 and δ = 0.08, for C(21,7)

red we
consider δ = 0.0654 and δ = 0.1 due to the additional weight-
6 rows. Although C(21,7)

red shows a visible performance gain for
both values of δ, degenerate MAP (deg-MAP) decoding does
not yield performance benefits compared to MAP decoding for
the current setup. We provide further code design examples
of syndrome error-correcting codes. First, we consider HX

including the last redundant row, and repeat the eight measure-
ments three times. Formally, the resulting (24, 7) syndrome
error-correcting code C(24,7)

con with dmin = 6 can be described
as the serial concatenation of a (8, 7) single parity-check code
with dmin = 2 and a (24, 8) code with dmin = 3. The (24, 8)
code repeats each of the eight information bits three times. Its
generator matrix is I⊗[1 1 1], where I is an 8×8 identity ma-
trix. Second, we consider HX without the last redundant row
and repeat the seven syndrome measurements four times. The
result is a (28, 7) syndrome error-correcting code C(28,7)

rep with
dmin = 4. Third, we consider C(24,7)

red and repeat only the first
four measurements once. The resulting code is a concatenation
of a (24, 7) code with dmin = 8 and a (28, 24) code with
dmin = 1. The concatenated code C(28,7)

con has parameters (28, 7)
and dmin = 9. The probability of decoding failure versus
ϵ is shown in Fig. 3. Again, for a fair comparison, δ has
been adjusted to account for the change in stabilizer weights.
Observe that plain repetition of the syndrome measurements
leads to noticeable losses in performance. In contrast, using
redundant measurements, including also concatenated schemes
(with an inner repetition code), leads to an improvement in
performance. Again, degenerate MAP decoding does not yield
visible advantages.



B. [[18, 2]] Toric Code

The second code investigated is the [[18, 2]] toric code [12]
with

HX =



1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1


(15)

HX has only one redundant row. The last row of HX in (15)
can be obtained as the sum of all other rows. Overall, we can
construct additional 24 weight-6 redundant rows yielding a
(33, 8) code C(33,8)

t−red with dmin = 10. The submatrix A of the
code’s generator matrix Gs = [I|A] is

A =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1
1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1
1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1


.

Next, we show examples of codes with different code
parameters. First, removing 9 weight-6 redundant rows, we
obtain a (24, 8) code C(24,8)

red with dmin = 6. Recall that the
removal is done such that the minimum distance is kept
as large as possible. Similarly, a (24, 8) code C(24,8)

rep can be
constructed by repeating the first 8 non-redundant syndrome
measurements 3 times. However, this code has dmin = 3.
Second, removing 6 rows, we obtain a (27, 8) code C(27,8)

red with
dmin = 8. A (27, 8) code C(27,8)

con can be constructed by
repeating all 9 syndrome measurements. This code can be seen
as a serial concatenation of a (9, 8) single parity-check code
and a code with generator matrix I ⊗ [1 1 1], I being a 9× 9
identity matrix. Third, removing one weight-6 row, we get a
(32, 8) code C(32,8)

red with dmin = 9. A (32, 8) code C(32,8)
rep with

dmin = 4 can be obtained by repeating the 8 non-redundant
syndrome measurements 4 times.
The probability of decoding failure versus ϵ for all codes
is shown in Fig. 4. Overall, we observe the same trends as
for the product code. Degenerate MAP decoding does not
show visible advantages compared to classical MAP decoding.
Also in this case, repeating measurements yields the worst
performance. By contrast, the concatenation of a repetition
code with other syndrome correction codes yields good results,
and it has the advantage that stabilizer weights can be kept low.
The best results for certain code parameters are obtained by
choosing appropriate subsets of weight-6 stabilizers that define
the syndrome error correcting code.

VII. CONCLUSIONS

We studied single-shot decoding of quantum Calderbank-
Shor-Steane (CSS) codes with faulty syndrome measurements
and re-stated the problem as a joint source-channel coding

Fig. 4. Decoding failure rate versus error probability ϵ for the [[18, 2]] toric
code with q = 0.013.

problem. By introducing low-weight redundant rows in the
CSS code’s parity-check matrix, a syndrome error-correcting
code is obtained which provides additional resilience against
faulty syndrome measurements. By means of code examples,
we illustrated that employing a syndrome error-correcting
code based on redundant rows outperforms repeated syn-
drome measurements. Such codes can also be concatenated
with an additional repetition code. In our experiments, we
considered classical maximum a posteriori (MAP) decoding,
which identifies the most likely Pauli error, and the more
complex degenerate MAP decoding which subdivides valid
error patterns into cosets and identifies the most likely coset.
In our case, the more complex degenerate MAP decoding
turned out to perform similarly to classical MAP decoding.
Experiments with more realistic error models of quantum
circuits are left for further work.
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