Evaluation of the Daytime corrected AVHRR Land Surface Temperature Time Series

Philipp Reiners, Stefanie Holzwarth, Claudia Kuenzer

German Aerospace Center (DLR), German Remote Sensing Data Center (DFD)

The TIMELINE Project – Geophysical Products over Europe from ~40 Years of AVHRR Data

- Sensors: AVHRR-1 (4 Channels), AVHRR-2 (5 Channels) & AVHRR-3 (6 Channels) onboard NOAA 7 19 [integrated] and MetOp-A, -B, & -C [being integrated]
- **Resolution:** 1 km (LAC + HRTP data)
- Coverage: Europe and North Africa

TIMELINE LST Product Generation Overview

[1] Frey, C.M.; Kuenzer, C.; Dech, S. Assessment of Mono- and Split-Window Approaches for Time Series Processing of LST from AVHRR—A TIMELINE Round Robin. *Remote Sens.* **2017**, *9*, 72. https://doi.org/10.3390/rs9010072

[2] Reiners, P.; Asam, S.; Frey, C.; Holzwarth, S.; Bachmann, M.; Sobrino, J.; Göttsche, F.-M.; Bendix, J.; Kuenzer, C. Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST—A TIMELINE Thematic Processor. *Remote Sens.* **2021**, *13*, 3473. https://doi.org/10.3390/rs13173473

Generation of Daily Minimum and Maximum LST

AVHRR observation times over Europe

Fusion of SEVIRI continuous LST with AVHRR LST

Available Area for diurnal LST cycles from SEVIRI

- LST model parameters derived from Seviri LST by Sismanidis et al (2021)
- 1 km resolution Dataset containing the annual LST cycle parameters (ACPs) on a pixel level for every 30 min interval of the day

→ Can be used to calculate gap free LST in 30 min resolution

 $\Delta LST_{1} = LSTS_{EVIRI} (13h, doy) - LST_{SEVIRI} (t_{1}, doy)$ $\Delta LST_{2} = LSTSE_{VIRI} (13h, doy) - LSTS_{EVIRI} (t_{2}, doy)$ $\Delta LST = \Delta LST_{1} + (t - t_{1}) * \frac{\Delta LST_{2} - \Delta LST_{1}}{t_{2} - t_{1}}$ $LST_{AVHRR} (13h) = LSTAV_{HRR} (t) + 0.75 * \Delta LST$

 $LST_{AVHRR}(t)$: AVHRR LST at observation time $LST_{AVHRR}(13h)$: AVHRR LST at 13h $LST_{SEVIRI}(t_1, t_2)$: Modelled SEVIRI LST at nearest times to t $LST_{SEVIRI}(13h)$: SEVIRI LST at 13h doy = day of the year

Validation Strategy

Cross Validation with "Same Day Observations" from different platforms

Time Series Comparison with Daily CCI LST (1996-2018) Time Series Comparison with EUSTACE Air Temperature Data (1982-2018)

6

Validation Areas

V01 (Hungarian Plain)

V02 (Spain)

V03 (Germany)

Validation Areas – Air Temperature Measurement Stations

V03 (Germany)

V01 (Hungarian Plain)

V02 (Spain)

Cross Validation with "Same Day Observations"

- Direct comparison of observations from the same day but from different platforms
- Assumption: Differences only occur because of the different daytime of the observations and should be eliminated through the Orbit Drift correction

Before Correction

11

Time Series Comparison with Daily CCI LST (1996-2018)

- CCI L3S LST: Harmonized LST dataset derived from ATSR-2, AATSR, Sentinel 3A, and MODIS Data
- Dataset corresponds to 10:30h local time
- Daytime normalization should remove trends in the differences between TIMELINE and CCI LST

-5.0 ⊢ -7.5 −10.0	0						incita	
	2010	2012	2014	2016	2018			
	Platf	orm		Bi	as	М	AD	Trend
	NOA	A-14		-2	.62	3.	.61	-1.467
	NOA	A-16		-0	.25	2.	.29	-0.414

-2.9

-0.68

-0.32

Before Correction

3.21

2.18

2.07

-0.156

0.03

-0.095

After Correction

Platform	Bias	MAD	Trend
NOAA-14	-0.79	2.42	0.009
NOAA-16	-0.01	2.25	-0.296
NOAA-17	-0.96	2.03	-0.073
NOAA-18	-0.48	2.23	0.03
NOAA-19	0.16	2.01	0.086

NOAA-17

NOAA-18

NOAA-19

Before Correction

Results for the Cross Validation for V02

After Correction

Time Series Comparison with EUSTACE Air Temperature Data (1982-2018)

- Comparison between monthly LST and air temperature anomalies at 300 measurement stations
- Correlation between the anomalies and comparison between LST and air temperature trends

Correlation between Orbit Drift corrected Land Surface Temperature and Air Temperature

Time Series Comparison with Air Temperature

18

Conclusions

Fusion with SEVIRI LST enables daytime normalization of the AVHRR LST

- Daytime Normalization reduces biases between the LSTs of different NOAA platforms
- > Daytime Normalization reduces spurious trends in the comparison with CCI LST
- Daily maximum AVHRR LST anomalies show high correlation with air temperature anomalies
- Therefore, this time series can be used to map global and climate change in Europe in 1 km resolution

In preparation of publication (2024):

Fusing AVHRR LST with geostationary SEVIRI LST to create a long-term daily Maximum LST Time Series over Europe

Thank you for your Attention ③

Corresponding: Philipp.Reiners@dlr.de

Before Correction

DLR

V02

V02

Results for the Cross Validation for V02

After Correction

Platform	Bias	MAD	Trend
NOAA-14	-0.29	2.79	-0.286
NOAA-16	0.85	2.68	0.554
NOAA-17	-1.09	2.41	-0.122
NOAA-18	0.35	2.36	0.167
NOAA-19	0.02	2.41	-0.135

NOAA-14	-2.9	4.09	-1.557
NOAA-16	-0.09	2.44	0.206
NOAA-17	-3	3.44	-0.328
NOAA-18	0.02	2.29	0.102
NOAA-19	-0.8	2.56	-0.499

Before Correction

Results for the Cross Validation for V02

After Correction

24

Spatial Distribution of significant LST and Air Temperature Trends

DLR

South Germany shows a cluster of high LST and air temperature trends.

Platform	Bias	MAD	Trend
NOAA-14	-1.11	2.41	-1.146
NOAA-16	0.03	2.15	-0.273
NOAA-17	-2.44	2.75	-0.161
NOAA-18	-0.69	1.89	0.115
NOAA-19	-0.26	1.9	-0.138

Before Correction

Results for the Cross Validation for V03

After Correction

Platform	Bias	MAD	Trend
NOAA-14	0.16	2.09	0.123
NOAA-16	0.35	2.2	-0.258
NOAA-17	-0.82	1.79	-0.142
NOAA-18	-0.49	1.89	0.059
NOAA-19	0.24	1.89	0.066

Before Correction

Results for the Cross Validation for V03

After Correction

