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Abstract—When faced with the challenge of now- and
forecasting infectious diseases, multiple data sources and
state-of-the-art models have to be considered. Automatic
aggregation, processing, and publishing to relevant data
sinks is paramount to achieving consistent, reproducible, and
timely results given daily-reported data. To facilitate scientific
collaboration and reproducibility of workflows, open and
extensible architectures for compute pipelines are required.

In this research, we devise an architecture realizing
the seamless management and processing of reproducible
pipelines. Our case-study is a daily pipeline for nowcasting
the state of SARS-CoV-2 in Germany based on public data
and state-of-the-art models implemented in the simulation
software MEmilio. The results of our pipeline are pushed to
ESID (Epidemiological Scenarios for Infectious Diseases), a
user interface to epidemiological simulations.

To realize the given pipeline, a workflow management
system is required to ensure pipeline processing and secure
access to multiple heterogeneous data storages. For this
purpose, we based our work on an open-source workflow
management system - Apache Airflow, which provides the
orchestration, coordination and management of complex
connected tasks. S3 is utilized as an intermediate data
storage service for sharing data between workflow steps and
persisting experiment output. We provide a comprehensive
view on our work on automated, end-to-end and reproducible
pipelines, with detailed commentary on use case, and its
realization.

I. INTRODUCTION

As demonstrated by the recent COVID-19 pandemic,
infectious diseases carry substantial risk of disrupting
societies on a global scale [1], [2]. Non-pharmaceutical
interventions (NPIs) are a key strategy to complement
pharmaceutical or medical treatment and to protect popula-
tions. However, NPIs impact the daily lives of large groups
of people and may temporarily curtail personal rights.
Thus, NPIs need to be minimized for economic and social
impacts [3]–[5]. Aside from retrospective analyses, as a
consequence, interventions and their impact on infectious
disease dynamics must be monitored for efficacy in regu-
larly updated nowcasts. Furthermore, for timely reaction,

continuous updates in response to dynamic situations need
forecasting.

Two ingredients are required for a reliable now- and
forecasting recipe. Firstly, accurate and robust statistical
and mathematical models are required to describe the
spread of the infectious disease as well as its ramifications
on public health. Secondly, the practical application of
these models requires complex, multistep workflows, and
a robust compute and data infrastructure, including appro-
priate tools and technologies centered around a suitable
workflow management system.

A broad body of mathematical-epidemiological model-
ing literature exists, which has only been expanded in the
wake of the SARS-CoV-2 pandemic, see, e.g. [6]–[10]; in
particular for Germany many different groups have used a
variety of different models [11]–[19]. For the purpose of
this paper, we consider the problem of accurately modeling
the spread of infectious diseases to be solved sufficiently
well.

The blueprint of processing these models com-
prises several steps, which may consist of data-
staging, pre-processing, model-execution, and finally post-
processing [20] of the results. In the data-staging step,
data, such as daily case numbers, census, vaccination, and
hospitalization data, is aggregated from various sources.
Then, in compute-intensive tasks, the model generation
goes through multiple processing steps of the data staged
in the previous phase to compute the model output. Finally,
the produced results are persisted and can be utilized
further for data visualization purposes.

Typically, workflows conducting the simulation of infec-
tious diseases are invoked either automatically, scheduled
or based on conditional parameters. Some scenarios are,
for instance, ingestion of new data or explicit re-run with
variation of parameters reaching a certain threshold. There-
fore, a workflow management system should be capable of
supporting this requirement of managing and controlling



Fig. 1. Architecture showing the interaction of end user and Airflow deployment

pipeline execution with more control temporally, and also
able to transfer data from or to different sources.

The envisioned pipelines are motivated by the FAIR
and FAIR4RS principles, which are practical guidelines
aimed at maximizing the value and quality of research
data and software, respectively [21], [22] Generally, the
usefulness of the FAIR and FAIR4RS principles is evident
when considering sharing and reproduction of research
data and software. The FAIR principles suggest that all
used and produced data should be made available pub-
licly to create trust and acceptance and to foster wider
scientific cooperation. In the context of non-pharmaceutical
interventions affecting the public, open data also helps
justifying and explaining political decisions to the public.
Regarding the FAIR4RS principles [21], for example,
modular and reusable workflows support quick adaption
of existing pipelines to new and unseen circumstances,
such as new virus variants or the roll-out of vaccines. That
said, the envisioned infrastructure and the pipeline should
also be open and documented in a way that other scientific
communities can reproduce and adapt the implementation
in an interoperable and reusable manner.

Guided by these principles, we provide a multi-tier
architecture using state-of-the-art and open-source infras-
tructure and workflow management system. To validate
and demonstrate our architecture, we construct a daily
and spatially resolved nowcasting pipeline for the state of
COVID-19 in Germany based on publicly available data.
The highlighted models are considered state-of-the-art and
to be implemented in the software MEmilio [23] and visu-
alized via the web application ESID [24] (Epidemiological
Scenarios for Infectious Diseases). The initiative is part
of the project LOKI 1(Local Control System for Infection
Outbreaks). The focus of the LOKI project can be divided
into four different areas. Firstly, as model outputs can
only be as good as the data input, large efforts go into
the collection and processing of data sets. Secondly, to

1LOKI https://www.helmholtz.de/loki-pandemics/

create reliable model outputs, spatially and demograph-
ically resolved models integrating important effects like
vaccination or waning immunity are developed. In order
to have timely model outputs, all models are implemented
in highly efficient C++, parallelized where possible, and,
additionally, surrogate models based on artificial intelli-
gence are developed. HPC infrastructure and visualization
are the essence of the third work package of LOKI and
finally, regular feedback loops and user experience studies
are conducted with pilot local health authorities. LOKI
aims to increase the pandemic preparedness in Germany,
by giving local health authorities the tools to effectively
monitor local outbreaks and simulate NPIs to see their
effect in infectious disease dynamics’ mitigation. Naturally,
a workflow management system is required to serve the
realization of aforementioned LOKI scenarios.

The rest of the paper is structured as follows. Section
II gives a background on technologies involved. Section
III discusses the related work. The architectural realization
is described in Section IV, and Section V presents our
scientific use case. We conclude the paper in Section VI.

II. RELATED WORK

The objective of predicting infectious disease dynamics
and to assess the effect of NPIs has seen largely increased
with the emergence of Sars-CoV-2 [25]–[28]. Aside from
LOKI, several research consortia with different foci in
infectious disease modeling have been formed and brought
together under the roof of the Modeling Network for
Severe Infectious Diseases (MONID) 2. Related works
from different MONID consortia are given by, e.g. [11]–
[19]

Extensive research is done in the area of scientific work-
flows, which enable compute- and data-intensive applica-
tions. While analyzing the implementation perspective of
our use case, the adaption of Apache Airflow by scientific
applications is not common, however in industrial appli-

2https://webszh.uk-halle.de/monid/?p=113



cations it is widely embraced. We found [29], and [30],
related to the work presented here. Their approach is
well supported by the FAIR principles with the same
intent as the focus of our work, but one subtle difference
is their implementation baseline. It is based on Docker
executors, whereas in our case the scalable and robust
ecosystem of Kubernetes is employed. Two further aspects
distinguishing our implementation with the related work
are: firstly, the integration of Git-based code repository,
through which the Apache Airflow image deployment is
automated through continuous-integration and continuous-
delivery patterns. Secondly, the output data ingested to the
S3-interfaced object store can be versioned and can easily
be traced back to the past experiment runs. This implies
the storage clients compliant with the S3 interface can be
re-used by the resulting output of the pipeline presented in
this manuscript.

III. BACKGROUND

This section provides an overview of the technical areas
of concern and the respective technologies in the scope of
the presented work.

A. Workflow Management

Forecasting of infectious diseases involves the process-
ing of multiple steps and repeated data access in multiple
steps. As swift reactions to infectious disease spread are
of uttermost importance, the orchestration and automation
of multiple processes are indispensable. This brings us
to the requirement of low make-span and the seamless
execution and monitoring of such workflows. Therefore, an
automated mechanism built on an adequate infrastructure
ecosystem is required to realize the scientific pipelines.

In this scenario a workflow management system is
required to compose and manage a complex set of tasks
and data dependencies. There are several open-source
options available in the area of workflows and pipelines. To
name a few, there are Apache Airflow [31], Luigi 3, and
Apache Nifi 4. They all provide workflow orchestration
and enactment capabilities, but are distinct in some areas.
As in our scenario, firstly the workflow tasks should be
self-contained, i.e. the tasks invoking applications have dif-
ferent set of dependencies, therefore the task execution in
containerized form is of prime concern. Luigi and Apache
Nifi provide a limited support of, and integration with,
containerization ecosystems. Secondly, the integration with
the identity and access management is also not trivial
in these solutions. On the other hand, Apache Airflow
caters well the containerization and the integration with the
state-of-the-art identity management systems, it provides
an extensible mechanism to dispatch tasks as containers,
and can integrate with the container orchestration environ-
ments. Apache Airflow is mainly an open-source work-
flow framework that allows the execution, monitoring, and
authoring of distributed workflows as DAGs (Distributed

3Luigi https://luigi.readthedocs.io/
4Nifi https://nifi.apache.org/

Acyclic Graphs), so called pipelines. The framework can
manage workflow tasks in a batch-oriented manner, and
schedule the underlying tasks on atomic, user-defined, and
frequency-based intervals.

Apache Airflow is based on the “Workflows as code”
methodology where users can author pipelines as Python
code, and with that it provides a flexible baseline of
extensible workflows. The workflow code can be hosted
on a version control repository, such as Git. In this manner
it can directly be exported to the Apache Airflow service,
and instantly visible to its web user interface (UI).

The main elements of the Apache Airflow architecture
are as follows. A DAG folder: host a set of DAGs, which
can be a directory hosted on a remote file system or version
control. A scheduler: which schedules a batch workload of
individual tasks within a DAG. An executor: runs a task on
executors - act as a tool to process tasks. In our implemen-
tation, a Kubernetes executor is configured to run tasks as
a pod in a Kubernetes-managed environment. A webserver:
provides a web interface to end users. More details of the
core concept can be found in the documentation5.

B. Container Orchestration

In order to host a workflow platform wherein the
tasks are supposed to be running as containers, a scal-
able container orchestration environment is required to
facilitate the management, scheduling, and monitoring
multiple containers. Docker Swarm6 and Kubernetes7 are
found to be the most relevant options. Docker Swarm
supports containerized workloads similar to Kubernetes,
but is particularly well-suited for deployments within the
Docker-based ecosystem. In our case, where interoperable
container execution is a concern, it is important not to be
bound to one specific container runtime. Kubernetes excels
in accommodating a wide range of container formats, is
capable of handling dynamic workloads at scale. In our
research, Kubernetes has proven to be a feasible alternative
for our scenario in automating and deploying workflows.
Furthermore, it offers broader community support, inter-
operability, and a vibrant ecosystem of services including
scheduling, load balancing, service discovery, and storage
mounts.

C. Storage Service

In the realm of modern cloud-enabled data management
and storage, the Simple Storage Service (S3) has emerged
as a common solution, providing scalable, durable, and
highly available object storage. S3, developed by Amazon
Web Services (AWS), has become the de facto standard
for cloud-based storage, facilitating seamless storage and
retrieval of vast amounts of data. MinIO is a notable
player in the open-source landscape that has redefined S3
compatibility. It is an object storage server designed for
cloud-native and containerized environments, and provides

5https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/
6Docker Swarm https://docs.docker.com/swarm/
7Kubernetes https://kubernetes.io



an open source alternative to proprietary S3 solutions
supporting large scale data lake and database workloads.
MinIO enables organizations to take advantage of the
benefits of S3 without being locked into a specific cloud
vendor.

IV. ARCHITECTURAL DEPLOYMENT

This section gives an overview of the integrated de-
ployment and platform architecture. As shown in Fig 1,
the architecture is composed of three layers. From top
to bottom, the front end or the user facing tier of the
deployment encompasses a user domain. In this tier, the
main roles are data engineer and end user. The data
engineer’s role is to setup and configure workflow site and
push environment-specific Airflow container image to the
container registry. The end user is the domain scientist
which is responsible to author and publish DAGs to the
DagBag repository. For this setup, a Git repository is
used to host DAGs, and this is enabled by using Apache
Airflow’s git-sync feature. In order to access the site, the
end user has to be known to the site’s identity provider. The
access control is supported through an OpenID Connect
(OIDC)8-compliant service, called Unity IdM9. Further in
this direction, the Apache Airflow’s security model follows
the OAuth 2.0 Authorization Framework’s Authorization
Code Grant 10 to grant access to the users.

As soon as the end user is successfully authenticated and
authorized, he is taken to the Airflow’s web user interface
that interacts with the workflow management tier. On this
layer, the interface between end user and the workflow
management service - Apache Airflow is established to
run and manage remote DAG tasks. From the deployment
perspective, Apache Airflow provides several alternatives,
namely, stand alone, distributed, and containerized. In our
approach the containerized option is used. It is because the
container orchestration engines implicitly manage the life
cycle of containers without exposing internal intricacies to
service users. Given that, the Apache Airflow instance is
deployed on an on-premise Kubernetes Management sys-
tem called Rancher. Rancher provides a KaaS (Kubernetes
as a Service) platform for hosting multi-tenant Kubernetes
instances. In our scenario, a typical end user interaction
begins with a request to a load balancing server called
NGINX (Ingress-based). This server takes the request to
the web UI, where end user sees the DAGs stored on Git
repository. The scheduled DAGs or tasks are managed by
the Scheduler, which then forwards the incoming request to
the Executor. The Executor is responsible for running the
tasks of a DAG. In our case, Apache Airflow’s Kubernetes
Executor is used, which facilitates DAG tasks as individual
Pods11, so called TaskPods. The executor can be config-
ured to have tasks managed as a local Airflow managed
executor, while considering a deployment within container

8OpenID Chttps://openid.net
9Unity IdM https://unity-idm.eu
10OAuth 2.0 https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
11Pod: Pod is the basic abstraction that encapsulates one or more

containers.

orchestration KubernetesExecutor environment seems to be
the optimal choice. It is because the KubernetesExecutor is
integrated within the environment and can better delegate
the job of spawning, re-scheduling and suspending tasks
to the Kubernetes’ scheduler.

Managing such an infrastructure mandates careful moni-
toring and alerting of deployed services. In our deployment
we are using Prometheus12 for aggregating the monitoring
and alerting data. As it is well suited for containerized en-
vironments, the integration and support is favorable to our
deployment. The data aggregation and summarising is one
part, the visualization gives a visual insight. To visualize
the gathered data and serve this purpose Grafana is used.
Apache Airflow does not directly support Prometheus, but
rather exports metric data to statsd-exporter13 and then to
the Prometheus endpoint. Fig. 1 shows the interconnect of
the monitoring and workflow management sub-systems.

In the Kubernetes environment, the deployment of ap-
plications such as workflow management system and re-
spective data stores, the associated Pods as deployment
units require to be configured with confidential tokens,
for instance, username and password or certificates. In
such cases, Kubernetes’ Secret objects are utilized and can
directly be attached to the deployment descriptor. In our ap-
proach the Secret management is automated by fetching the
required Kubernetes Secrets from the JSC infrastructure’s
centrally managed HashiCorp’s Vault14 instance. The pre-
sented architecture utilizes a myriad of underlying services
provided by the native Kubernetes environment. As this
description goes beyond the scope of this paper, we refer to
the Kubernetes documentation for more information. The
lowest layer of our implementation is based on the cloud
hosting layer, which uses Openstack15 as an Infrastructure-
as-a-Service (IaaS), called JSC-Cloud16.

V. SCIENTIFIC USE CASE

We use the presented architecture for nowcasting the
number of mild infections, hospitalized patients, patients
in intensive care, and deaths as returned by the model
proposed in [32]. Specifically, the model is based on
hybrid graph-ordinary differential equations, in order to
include travel and commuting activities; see [33]. The
model applies a metapopulation strategy and constructs
one ODE-SECIR-type model for each county in Germany,
which are then connected via a multi-edge graph to allow
for exchange of local populations. The local ODE-SECIR-
type model was extended to include vaccinations and
reinfections in [32].

We now describe our workflow library MEmiliflow,
available at [34]. MEmiliflow is designed as the connecting
piece between MEmilio [23] and Airflow, and contains
several useful CLI-scripts in its pipeline subdirectory. Each

12Prometheus https://prometheus.io/
13statsd-exporter https://github.com/prometheus/statsd_exporter
14HashiCorp Vault https://www.vaultproject.io/
15Openstack https://www.openstack.org/
16JSC-Cloud https://cloud.jsc.fz-juelich.de/



Fig. 2. Visualization of the execution and data flows for our nowcasting DAG dag_loki_ESID_datapipeline.py.

workflow step, i.e. DAG task in Figure 2, has a corre-
sponding CLIscript, that also takes care of data transfers
to and from S3. Furthermore, we design each workflow
step to be idempotent to enable easier repetition of failing
steps and debugging. The data downloaded from public
sources and the produced (intermediate and final) data are
stored in compressed form in S3 for archiving purposes.
We use GitLab Ops to automatically build and provide
docker images of MEmiliflow.

Next, we describe our DAG for nowcasting, available
at [35]. Figure 2 details the DAGs’ steps, each one mapping
to a CLIscript in MEmiliflow. On each day, Airflow auto-
matically downloads the available public data on reported
infections and uses the initialization strategy described
by [32] to estimate the total number of individuals currently
undergoing, e.g. a mild infection or a hospitalization. Be-
cause the reported data is uploaded with a delay of one day,
our estimations refer to the previous day. We then run the
model with ranges for all the different model parameters
that have been obtained from the literature and previous
study results [32]. The output of the model is written
to the S3-compliant MinIO instance. The final steps are
repackaging the data to a format compatible with ESID’s
database and finally the upload to the ESID [24] web
application running at [36]. Akin to continuous delivery,
the DAG automatically fetches the latest MEmiliflow’s
docker image from the Container Registry, as soon as code
changes are applied to the image descriptor (Dockerfile).

In the future, we will extend our scientific use case
in three ways. Firstly, we are currently working towards
including forecasts, i.e. adding predictions into the near
future using the model. Secondly, we aim to add automatic
parameter estimation and updates based on the recent
time series of infected individuals and hospitalizations.
Thirdly, we are working on updating the pipeline to allow
for variable model selection to include different levels of
granularity as well as important aspects such individual
behavior, stochasticity, or waning immunity. Including
these updates into our presented architecture by creating
additional DAGs is technically straightforward.

VI. CONCLUSION

With the widespread distribution of vaccines on the
global scale, the share of severe or critical infections
has largely declined. Consequently, the demand and need
for automatic nowcasting of COVID-19 has naturally
declined too. However, the SARS-CoV-2 pandemic has
clearly demonstrated the benefit of digital tools for decision
makers, public health experts and local health authorities
to react in a swift and suitably adapted manner. As the
frequency of pandemics is expected to increase [37], auto-
matic workflows have to be set up to be prepared for any
potential future infectious diseases that might emerge.

Inspired by the FAIR and FAIR4RS principles, we
presented a multi-tier architecture to accommodate the
deployment of a dynamically provisioned workflow man-
agement system in a containerized ecosystem. Specifically,
our architecture consisting of open-source components
with permissive or copy-left licenses, is implementable by
third-parties and our MinIO bucket has public readonly
access. It can furthermore be used as a reference model
for case studies required to run DAGs on Kubernetes-
based environments. Our scientific case study on COVID-
19 is demonstrated with real datasets and state-of-the-art
models to validate our approach. As a future direction, we
foresee two enhancements. Firstly, compute- and memory-
intensive tasks will be ported to high-performance com-
puting (HPC) resources. Therefore, it requires enhancing
Apache Airflow’s DAG interoperability with HPC end-
points. Secondly, the current Apache Airflow implemen-
tation cannot manage multi-tenancy in its entirety. The
current implementation will be adjusted to expand multiple
user groups with fine-grained access control.
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