
Demo Abstract: Temporal Behavior Trees – Segmentation
Sebastian Schirmer
Johann C. Dauer
first.lastname@dlr.de

DLR German Aerospace Center
Braunschweig, Germany

Jasdeep Singh
Emily Jensen

Sriram Sankaranarayanan
first.lastname@colorado.edu

University of Colorado Boulder
Boulder, USA

Bernd Finkbeiner
finkbeiner@cispa.de

CISPA Helmholtz Center for
Information Security
Saarbrücken, Germany

ABSTRACT
We present our tool for the segmentation of temporal behavior trees
(TBT), a novel formalism for monitoring specifications. TBTs can
be easily retrofitted to behavior trees, commonly used to program
robotic applications. Our tool supports the robustness semantics
of TBT and generates trace segmentations. In other words, given a
TBT specification and a trace, it determines the optimal assignment
of TBT nodes to sub-traces. To illustrate its application, we use
the example of an autonomous ship deck landing. We showcase
the user inputs required and demonstrate how the outputs can be
interpreted to identify challenging task aspects, contributing to a
comprehensive system analysis.

KEYWORDS
CPS, Offline segmentation, temporal behavior trees, temporal logic
ACM Reference Format:
Sebastian Schirmer, Johann C. Dauer, Jasdeep Singh, Emily Jensen, Sriram
Sankaranarayanan, and Bernd Finkbeiner. 2024. Demo Abstract: Temporal
Behavior Trees – Segmentation. In 27th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC ’24), May 14–16, 2024, Hong
Kong, Hong Kong. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3641513.3652534

1 MOTIVATION
Behavior trees (BT) [1] are a popular mathematical model to pro-
gram robotic applications that represent a plan to execute behav-
iors. They consist of tree nodes that specify a sequence of sub-plans
(Seq); falling back to a different sub-plan if the current sub-plan
fails (Fback); and conducting many sub-plans in parallel until the
number of sub-plans that have succeeded exceeds a specified lower
limit 1. In Figure 1, we present a BT that facilitates two different
landing maneuvers for an unmanned aerial vehicle (UAV) on a ship
deck. The BT starts with the Straight-In maneuver, involving the
UAV moving behind the ship (1) and then maintaining this position
for a designated time (3). If either (1) or (3) fails, the UAV switches to
the 45-Degree maneuver, encompassing diagonal movement behind
the ship (2) and then maintaining this position for a designated
time (4). Following the successful completion of either (3) or (4), the
1www.behaviortree.dev

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0522-9/24/05
https://doi.org/10.1145/3641513.3652534

Seq

Fback

Seq
Straight-In

1 3

Seq
45-Degree

2 4

5 6

Figure 1: Behavior tree with twomaneuvers to land on a ship.

execution proceeds with moving above the touchdown point (5),
before then descending (6). Despite the prevalence of BTs for execut-
ing behaviors, our novel formalism temporal behavior trees (TBT)
fills the gap of providing a native and straightforward formalism to
monitor behavior executions.

2 TEMPORAL BEHAVIOR TREE
Temporal behavior trees (TBT) retrofit monitoring properties to
BT by specifying temporal properties at their leaf nodes and pro-
viding a formal semantics for BT operators. The syntax, semantics,
and the technical details, such as algorithms to monitor and seg-
ment TBT over traces, are provided in our companion paper that
accompanies this tool description [4]. Our tool2 supports the robust
semantics of signal temporal logic (STL) to specify temporal prop-
erties on the leaf nodes [2, 3]. Thus, a formula yields a numerical
value upon evaluation, with a positive value indicating satisfaction
and a negative value indicating violation. Further, the numerical
value is proportional to the degree of satisfaction. Figure 2 provides
temporal formulas for each leaf node in Figure 1. The formulas (1)
/ (2) and (3) / (4) differ in their target position that should even-
tually be reached. The information received from the system are
the position of the UAV (𝑝𝑢𝑎𝑣 ) and the ship (𝑝𝑠 ), as well as their
respective heading ℎ𝑢𝑎𝑣 and ℎ𝑠 . The variable 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 is a constant
and 𝑝𝑡𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛 is computed based on 𝑝𝑠 . It’s noteworthy that a
fundamental characteristics of TBT is that the user does not di-
rectly dictate the transition from one leaf node to the next. Instead,
this transition decision becomes the responsibility of an algorithm
utilizing TBT as a specification language.
2https://github.com/DLR-FT/TBT-Segmentation

https://doi.org/10.1145/3641513.3652534
https://doi.org/10.1145/3641513.3652534
www.behaviortree.dev
https://doi.org/10.1145/3641513.3652534
https://github.com/DLR-FT/TBT-Segmentation


HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

Leaf Temporal Formula
1 ♢ 𝑏𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑣 )

2 ♢ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐵𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑣 )

3 □[0,5] (𝑏𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑣 ) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑,ℎ𝑠 , ℎ𝑢𝑎𝑣 ) )

4 □[0,5] (𝑑𝑖𝑎𝑔𝐵𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑣 ) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑,ℎ𝑠 , ℎ𝑢𝑎𝑣 ) )

5 ♢ (𝑚𝑜𝑣𝑒_𝑡𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛 (𝑝𝑠 , 𝑝𝑢𝑎𝑣 ) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑,ℎ𝑠 , ℎ𝑢𝑎𝑣 ) )

6 ♢ (𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑑 (𝑝𝑡𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛, 𝑝𝑢𝑎𝑣 ) )

Figure 2: TBT that retrofits formulas to the BT in Figure 1.

3 SEGMENTATION
The first algorithm that uses TBT as specification language is an
offline algorithm to segment traces [4]: Given a TBT and a trace of
a system, the algorithm optimally assigns nodes of the TBT to sub-
traces. Figure 3 visualizes such a computed segmentation. Dotted
lines represents the best positions relative to the ship. The numbers
indicate the corresponding leaf nodes in Figure 2. Compared to
other monitoring approaches [2, 3], which compute a single verdict
for the whole trace, our tool decides optimal transitions between
tree nodes and provides a satisfaction verdict for each segment.

4 TOOL DESCRIPTION FOR SEGMENTATION
The TBT monitoring, robustness, and segmentation toolbox is writ-
ten in Rust. It requires the user to implement two functions:

(1) fn get_trace(...) -> Trace that produces a Trace, e.g.,
by reading and parsing a CSV-logfile, and

(2) fn get_tree(...) -> Tbt that constructs the TBT speci-
fication as a syntax tree.

To run the application, we build it after defining the two functions
above and input a logfile representing the trace:
tbt-segmentation --logfile <your-logfile-location>

The optional flags --sampling and --lazy enable the use of the
stuttering reduction and lazy computation as described in our pa-
per [4]. By default, the tool provides information for all nodes in
the TBT. For instance, there is one line in the output for each TBT
node similar to: “lower: 0 upper: 506 value: 0.49829227
segment: Seq(22)” where lower represents the starting index of
the TBT node in the logfile, upper the ending index, value repre-
sents its robustness value, segment represents the corresponding
node. Thus, the line corresponds to the node with ID 22 – the root
node in Figure 1. The root node was assigned to the segment that
starts at Index 0 in the logfile and ends at Index 506. Since its value
is positive, the segment satisfies the TBT. Other similar format-
ted output lines that correspond to leaf nodes further refine the
analysis and help to identify the most challenging segments, i.e.,
which leaf node contributes the value. By providing --children
as command-line-argument only leaf information are printed.

By default, not only the optimal segmentation but also three
alternative segmentations are computed. This can be changed by
--amount <number>. Further, the search for alternative segmenta-
tions can be regulated through the parameters --tau <number>
and --rho <number>. These parameters specify that in an alterna-
tive segmentation, the segments must differ by at least tau in their

Figure 3: Segmentation result of an UAV 45-Degree ship deck
landing maneuver specified in Figure 1.

starting and ending indices. Additionally, at least the robustness of
one segment must differ by rho. These constraints are useful since
otherwise already minor changes, e.g., changing the upper value
of Seq(22) from 506 to 505, would result in a valid alternative seg-
mentation. Note that if a different leaf node is utilized or the order
of leaf nodes are altered in an alternative segmentation, then both
conditions are satisfied. Therefore, by selecting a parameter that
is “unachievable”, such as setting tau to a value greater than the
trace length, an alternative segmentation must opt for distinct leaf
nodes. In our example, if the optimal segmentation corresponds to
a 45-Degree maneuver, the alternative must then be a segmentation
using the Straight-In maneuver.

5 CONCLUSION
We presented our tool for the segmentation of traces using TBT
specifications. The tool’s robustness verdict of the segmented root
node determines whether the given trace satisfied its TBT specifi-
cation. Additional robustness verdicts of other nodes then further
assist in identifying the most challenging parts of the executed be-
havior. Furthermore, examining alternative segmentations, beyond
the optimal one, offers insights into the execution’s robustness. For
example, users can scrutinize that minor changes in the parameters
tau and rho result in the same leaf nodes being assigned. The tool
can also serve for debugging unexpected behaviors. For instance,
although the operator executed a 45-Degree maneuver the segmen-
tation assigned a Straight-In maneuver. These features have proven
to be useful for understanding and validating executed complex
behaviors for the use-cases presented in [4].

REFERENCES
[1] Michele Colledanchise and Petter Ögren. 2018. Behavior trees in robotics and AI:

An introduction. CRC Press.
[2] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic over

real-valued signals. In International Conference on Formal Modeling and Analysis
of Timed Systems. Springer, 92–106.

[3] Georgios E Fainekos and George J Pappas. 2006. Robustness of temporal logic
specifications. In International Workshop on Formal Approaches to Software Testing.

[4] Sebastian Schirmer, Jasdeep Singh, Emily Jensen, Johann Dauer, Bernd Finkbeiner,
and Sriram Sankaranarayanan. 2024. Temporal Behavior Trees: Segmentation and
Robustness (HSCC ’24).


	Abstract
	1 Motivation
	2 Temporal Behavior Tree
	3 Segmentation
	4 Tool Description for Segmentation
	5 Conclusion
	References

