
Temporal Behavior Trees: Robustness and Segmentation
Sebastian Schirmer

DLR German Aerospace Center

Braunschweig, Germany

sebastian.schirmer@dlr.de

Jasdeep Singh

University of Colorado Boulder

Boulder, USA

jasdeep.singh@colorado.edu

Emily Jensen

University of Colorado Boulder

Boulder, USA

emily.jensen@colorado.edu

Johann C. Dauer

DLR German Aerospace Center

Braunschweig, Germany

johann.dauer@dlr.de

Bernd Finkbeiner

CISPA

Saarbrücken, Germany

finkbeiner@cispa.de

Sriram Sankaranarayanan

University of Colorado Boulder

Colorado, USA

srirams@colorado.edu

ABSTRACT
This paper presents temporal behavior trees (TBT), a specification
formalism inspired by behavior trees that are commonly used to

program robotic applications. We then introduce the concept of

trace segmentation, wherein given a TBT specification and a trace,

we split the trace optimally into sub-traces that are associated with

various portions of the TBT specification. Segmentation of a trace

then serves to explain precisely how a trace satisfies or violates

a specification, and which portions of a specification are actually

violated. We introduce the syntax and semantics of TBT and com-

pare their expressiveness in relation to temporal logic. Next, we

define robustness semantics for TBT specification with respect to a

trace. Rather than a Boolean interpretation, the robustness provides

a real-valued numerical outcome that quantifies how close or far

away a trace is from satisfying or violating a TBT specification.

We show that computing the robustness of a trace also segments

it into subtraces.Finally, we provide efficient approximations for

computing robustness and segmentation for long traces with guar-

antees on the result.We demonstrate how segmentations are useful

through applications such as understanding how novice users pilot

an aerial vehicle through a sequence of waypoints in desktop exper-

iments and the offline monitoring of automated lander for a drone

on a ship. Our case studies demonstrate how TBT specification

and segmentation can be used to understand and interpret complex

behaviors of humans and automation in cyber-physical systems.

KEYWORDS
Cyber-physical system, segmentation, temporal behavior trees, tem-

poral logic, offline analysis

ACM Reference Format:
Sebastian Schirmer, Jasdeep Singh, Emily Jensen, Johann C. Dauer, Bernd

Finkbeiner, and Sriram Sankaranarayanan. 2024. Temporal Behavior Trees:

Robustness and Segmentation. In 27th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC ’24), May 14–16, 2024, Hong
Kong, Hong Kong. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3641513.3650180

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0522-9/24/05.

https://doi.org/10.1145/3641513.3650180

1 INTRODUCTION
Behavior trees are increasingly popular in robotic applications.

They were originally used in computer games to animate complex

sequences of actions for characters. A behavior tree is a program-

matic specification of a plan or sequence of possible actions by an

autonomous agent. It includes operators that enable us to specify a

sequence of sub-plans executed one after the other; falling back to a

different sub-plan if the current sub-plan encounters an unexpected

failure; repeating a sub-plan multiple times; and conducting many

sub-plans in parallel until the number of the sub-plans that have

succeeded exceeds a specified lower limit [9]. Figure 1 depicts such

a behavior tree for an autonomous landing of an unmanned aerial

vehicle (UAV) on a ship deck. It specifies a sequence of operations:

(1) move the UAV into position relative to the ship; (2) maintain

this position for sometime; (3) move above the touchdown point;

and (4) descend onto the ship.

In this paper, we use behavior tree operators in a specification

language. Our goal is to describe an acceptable sequence of states/ac-

tions in a manner identical to popular temporal logics such as linear

temporal logic (LTL), metric temporal logic (MTL), and signal tem-

poral logic (STL). Temporal logics have been widely adopted as

a specification language for cyber-physical systems (CPS) and ro-

botics. It forms the backbone for specifying desired behaviors in

synthesizing controllers [8, 19, 25, 26, 32]. Nevertheless, the diffi-

culty of writing complex specifications in temporal logic is well-

known [18]. Our formalism called temporal behavior trees (TBTs)

Seq

Seq

Move to position 1 Stay in position 2 Move to touchdown 3

Descend 4

Figure 1: A behavior tree that implements a maneuver for
landing on a ship deck. It uses two Sequence operators to
execute its children from left to right.

https://doi.org/10.1145/3641513.3650180
https://doi.org/10.1145/3641513.3650180
https://doi.org/10.1145/3641513.3650180

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

use the common behavior tree operators from the literature (se-

quence, fallback, parallel, kleene, and timeout) with the leaf nodes

of the behavior trees decorated by temporal logic formulas, which

are given finite trace semantics. We demonstrate that the resulting

formalism is strictly more powerful than standard temporal logic

with Next, Globally, Finally, and Until operators.

Next, we present the robustness semantics for TBTs in line with

the robustness semantics for standard temporal logics introduced

by Fainekos and Pappas [13], Donze and Maler [12] and Rizk et

al [33]. We interpret a trace under a behavior tree as yielding a

real-valued robustness wherein a non-negative value of robust-

ness indicates satisfaction of the trace by the specification while

a violation corresponds to a negative robustness. We also show

that robustness leads to a segmentation of the trace into subtraces

wherein one associates the subtraces with corresponding subtrees

of the TBT. Figure 2 shows a segmentation for the maneuver de-

picted in Figure 1. Assume that the robustness of segment (1) is

positive, whereas that for segment (2) is negative. Therefore, we

conclude that the UAV moved to the target position as required, but

then failed to stay in position. Such a segmentation is very useful

in our analysis of the trace: for a trace that violates a specification,

it shows specific portions of the trace violated which sub-parts

of the overall specification, potentially leading us to diagnostic

explanations. It also allows us to rank these failures in terms of

the robustness from worst to best. Similarly, for a satisfying trace,

we can examine which parts of the trace came closest to violating

the corresponding parts of the specifications. Although the exact

algorithm for computing robustness and segmentation is at most

cubic time in the size of the trace and linear in the size of the tree,

we find that in practice this is forbiddingly expensive for long traces

with hundreds or thousands of samples per second. We present

two systematic approaches to speeding up the computations by

orders of magnitude: (a) sub-sampling of the trace using a carefully

calculated stride length that preserves the Boolean semantics but

approximates the robustness; and (b) a lazy evaluation scheme to

rapidly compute an approximate answer.

We show that segmentation is very useful in CPS applications

through two empirical case studies based on data from realistic

applications. In one study, we examine a detailed TBT specification

of a UAV landing on a ship through one of four possible maneuvers,

each involving multiple stages to ensure a safe and robust landing

even in the presence of disturbances. We also present the use of

TBTs and segmentation to analyze human operator performance

in flying a UAV inside a desktop-based simulation environment.

By specifying the task as a TBT, we demonstrate how segmenta-

tion reveals surprising patterns in the data that were not apparent

through a whole trace analysis.

1.1 Related Work
Behavior trees (BT) first were invented to enable modular AI in

computer games [23], but have become increasingly popular in

robotics [1, 15, 20, 22, 35, 38] and beyond [21, 24, 29, 40]. There

are several properties that make them attractive including compos-

ability, reactivity, and human-readability. The purpose of behavior

trees is to specify complex behaviors and execute them. Temporal

behavior trees, introduced here, are complementary and can be

1

2

3

4

1

2

3

4

Figure 2: Segmentation result of a UAV 45-Degree ship deck
landing maneuver. (1) The UAV starts with moving in posi-
tion, then (2) it stays for the required amount of time there,
before (3) moving above the touchdown, and (4) finally de-
scending. The trajectory of the ship is the purple curve at
the bottom with 𝑧 = 0. Dotted lines represents best positions
relative to the ship, i.e., left diagonally behind the ship and
above touchdown. The various segments are shown in differ-
ent colors with numbers alongside. These are automatically
computed by the algorithm described in this paper.

retrofitted to BT. Their purpose is to specify successful or failed

behavior properties that can be used to segment or monitor a trace.

TBTs defined in this paper have semantics over finite traces.

Classically, however, temporal logics have their semantics defined

over infinite traces. When it comes to finite traces, the main concern

is how to handle open obligations at the end of the trace. One

approach is to provide a multi-valued semantics such as the one

based on so-called good, bad, and ugly prefixes by Bauer et al [3].

Our approach is more closely related to the semantics provided by

De Giacomo and Vardi [10]. In fact, the regular language operators

presented in that paper are identical to some of the operators used

in TBT. In this paper, we additionally consider robustness semantics

and define and solve the segmentation problem.

The notion of robustness of a trace with respect to temporal logic

specification for infinite length trace has its origins independently

in the work of Fainekos and Pappas; Donze and Maler; and Rizk et

al [12, 13, 33]. The problem of defining and computing robustness

of finite-length traces has been studied as well. Deshmukh et al [11]

provide a robust interval semantics that maps a finite length trace

(seen as a prefix of an infinite trace) and an STL formula to an

interval over robustness (𝑙, 𝑣) such that for any suffix of the trace,

𝑙 is the greatest lower bound and 𝑣 is the lowest upper bound in

respect to its robustness value. Our robust semantics of TBT is

real-valued, but works over finite traces and introduces robustness

for operators that make TBT more expressive when compared to

standard temporal logics. The sequence operator for TBTs is similar

Temporal Behavior Trees HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

to the “;” operator in regular linear temporal logic [27] and the

“chop operator” in interval temporal logic (ITL) [7]. These ideas go

back to the work of Halpern, Manna, andMoszkowski [16] and later

further developed by many others, including Harel & Peleg [17]

and Rosner & Pnueli [34]. The tool Tempura
1
by Moszkowski and

others is an interpreter for executable ITL and can be used similar

to a programming language whereas we retrofit temporal logics to

executable behaviors trees [30]. Therefore, this paper goes in the

reverse direction: we turn a framework used for specifying plans

into a temporal logic for specifying properties.

Trace segmentation is closely related to timed pattern matching

[39]. However, while timed pattern matching identifies all segments

that satisfy the pattern criteria, segmentation finds the optimal

trace assignment, which may encompass segments that violate its
specification. The pattern matching algorithm, as outlined in [39],

uses a bottom-up zone construction. In contrast, our segmentation

algorithm utilizes dynamic programming in a top-down fashion.

2 TEMPORAL BEHAVIOR TREES
In this section, we recap the definition of signal temporal logic

(STL), the notion of robustness of a formula to a trace. Next, we

define temporal behavior trees (TBTs) by providing their semantics.

We show that temporal behavior trees are strictly more expressive

than STL thanks to the “sequence” and Kleene operators [41].

A trace is a finite sequence of observable states of a system:

𝜎 (1), . . . , 𝜎 (𝑁), wherein 𝜎 (𝑖) denotes the state at time 𝑖 ∈ [1, 𝑁].
We write the length of the trace as |𝜎 |. A trace with |𝜎 | = 0 is the

empty trace. Given trace 𝜎 , we denote 𝜎 [𝑙 : 𝑢] as a slice of the trace
from “offsets” 𝑙 to 𝑢 (inclusive), as follows:

𝜎 [𝑙 : 𝑢] =
{
𝜎 (𝑙 + 1), · · · , 𝜎 (min(𝑢 + 1, 𝑁)), if 𝑙 ≤ 𝑢 and 𝑙 < 𝑁

empty trace otherwise

For convenience, let 𝜎 [𝑙 :] = 𝜎 [𝑙 : 𝑁 − 1] and 𝜎 [: 𝑢] = 𝜎 [0 : 𝑢].

Example 1. Note that offsets begin with 0 and end at |𝜎 | − 1. For
instance, 𝜎 [0 : 3] = 𝜎 (1), . . . , 𝜎 (4) and 𝜎 [5 :] = 𝜎 (6), . . . , 𝜎 (𝑁).

Note that many real-time logics treat time as a continuous vari-

able and each state has a corresponding time stamp. Here, we will

simply assume that the trace states occur at regular time intervals

and thus 𝜎 (𝑖) is associated with some time 𝑡 = 𝑖𝜏 for a time period

𝜏 > 0. The precise value of 𝜏 is not required.

Example 2. The state 𝜎 (𝑖) : (𝑥𝑢𝑎𝑣, 𝑦𝑢𝑎𝑣, 𝑧𝑢𝑎𝑣, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 , ℎ𝑠) for
1 ≤ 𝑖 ≤ 𝑁 describes the positions of a UAV and a ship, wherein the
subscript 𝑠 denotes the state of the ship, 𝑢𝑎𝑣 to those of the UAV, and
ℎ𝑠 is the heading angle of the ship.

An STL formula extends propositional logic by temporal oper-

ators that access future trace events. Let us define a set of atomic
propositions AP = {𝑝1, . . . , 𝑝𝑚} where (for the sake of convenience),
each 𝑝𝑖 is associated with a function 𝑓𝑖 that maps states to a real

number such that 𝜎 |= 𝑝𝑖 for a state 𝜎 iff 𝑓𝑖 (𝜎 (1)) ≥ 0.

1
http://www.antonio-cau.co.uk/ITL/itlhomepagesu14.html

Definition 1. STL formulas over AP have the following syntax:

𝜑 := AP ← Atomic propositions
|¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 ← Boolean combinations
| ♢[𝑙,𝑢] (𝜑) ← Eventually with interval
| □[𝑙,𝑢] (𝜑) ← Globally over interval
| 𝜑 U[𝑙,𝑢] 𝜑 ← Until with interval

Note that some of the formulas are indexed by an interval [𝑙, 𝑢]
wherein 0 ≤ 𝑙 ≤ 𝑢 ≤ ∞. We write ♢(𝜑) as a shorthand for ♢[0,∞) (𝜑),
and similar conventions apply for𝐺 (𝜑) and 𝜑1U𝜑2. The “next-state”
operator ⃝(𝜑) is syntactic sugar for ♢[1,1] (𝜑).

In general, STL formulas are defined over infinite traces, but in

this paper, we will work with finite traces, which are slices of the

form 𝜎 [𝑖 : 𝑗] over a given original trace 𝜎 . There have been many

approaches to provide finite trace semantics for temporal logics

[4, 14]. They differ on how they treat the truth of a formula at the

end of the trace. We will follow a simple approach along the lines of

De Giacomo and Vardi [10], suggested by the standard translation

of temporal logics into first-order logic [5]. The satisfaction of an

STL formula 𝜑 by a finite trace 𝜎 is denoted 𝜎 |= 𝜑 . If 𝜑 is an atomic

proposition 𝑝𝑖 then we have

𝜎 |= 𝑝𝑖 iff

{
𝑓𝑖 (𝜎 (1)) ≥ 0, if|𝜎 | > 0

false, if 𝜎 empty.

If 𝜑 : ♢[𝑙,𝑢]𝜑1 then 𝜎 |= ♢[𝑙,𝑢]𝜑1 iff ∃ 𝑖 ∈ [𝑙, 𝑢], 𝜎 [𝑖 :] |= 𝜑1. Recall

that 𝜎 [𝑖 :] is the empty trace if 𝑖 ≥ |𝜎 |. Likewise, for 𝜑 : □[𝑙,𝑢]𝜑1,
we have 𝜎 |= □[𝑙,𝑢]𝜑1 iff ∀ 𝑖 ∈ [𝑙, 𝑢], 𝜎 [𝑖 :] |= 𝜑1. Finally, for

𝜑 : 𝜑1U[𝑙,𝑢]𝜑2, we have 𝜎 |= 𝜑1U[𝑙,𝑢]𝜑2 iff
∃𝑖 ∈ [𝑙, 𝑢], (∀𝑗 ∈ [0, 𝑖 − 1], 𝜎 [𝑗 :] |= 𝜑1) ∧ 𝜎 [𝑖 :] |= 𝜑2 .

Note that, unlike the semantics for infinite traces, the semantics

of STL for finite traces can be non-intuitive especially when the

truth of formulas involves reasoning beyond the end of the trace.

For instance, the formula ⃝𝑝 is always false for an empty trace,

whereas, ¬ ⃝ ¬𝑝 is always true. ♢𝜑 in a finite trace semantics

specifies that 𝜑 becomes true before the trace ends. □𝜑 specifies

that 𝜑 remains true until the trace ends.

Example 3. Recalling the definition of a state from Ex. 2, the STL
formula ♢□[0,5] 𝑝𝑏𝑒ℎ𝑖𝑛𝑑 represents that the position of the UAV should
eventually be 20 meters behind the ship, and remain in that position
for 5 time steps. The function 𝑓𝑏𝑒ℎ𝑖𝑛𝑑 allows twometers deviation from
a point that is 20 meters behind the ship based on its current heading

angle: 𝑓𝑏𝑒ℎ𝑖𝑛𝑑 = 2 −
√︃

((𝑥𝑠 + 20 · cos(180 +ℎ𝑠)) − 𝑥𝑢𝑎𝑣)2+
((𝑦𝑠 + 20 · sin(180 +ℎ𝑠)) − 𝑦𝑢𝑎𝑣)2 + ((𝑧𝑠 + 20) − 𝑧𝑢𝑎𝑣)2

.

We define the robustness of an STL formula on a trace as a numer-

ical value that we provide to a trace with respect to an STL formula.

Non-negative values of robustness denote that a trace satisfies a

property whereas negative values indicate the reverse. Finally, the

magnitude of the robustness provides us with a measure of how

“far away” a trace that satisfies the formula is from violating it, or

vice-versa [12, 13]. Robustness measures are useful for a variety of

applications, including run-time monitoring and falsification [2].

http://www.antonio-cau.co.uk/ITL/itlhomepagesu14.html

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

Definition 2 (STL Robust Semantics). The robustness of an
STL formula 𝜑 over a trace 𝜎 , denoted 𝜌 (𝜑, 𝜎), is defined as follows:

• 𝜌 (𝑝𝑖 , 𝜎) =
{
−∞, if trace 𝜎 is empty
𝑓𝑖 (𝜎 (1)), otherwise

• 𝜌 (¬𝜑, 𝜎) = −𝜌 (𝜑, 𝜎),
• 𝜌 (𝜑1 ∧ 𝜑2, 𝜎) = min(𝜌 (𝜑1, 𝜎), 𝜌 (𝜑2, 𝜎)),
• 𝜌 (𝜑1 ∨ 𝜑2, 𝜎) = max(𝜌 (𝜑1, 𝜎), 𝜌 (𝜑2, 𝜎)),
• 𝜌 (♢[𝑙,𝑢] (𝜑), 𝜎) = max

𝑖∈[𝑙,𝑢]
𝜌 (𝜑, 𝜎 [𝑖 :]),

• 𝜌 (□[𝑙,𝑢] (𝜑), 𝜎) = min

𝑖∈[𝑙,𝑢]
𝜌 (𝜑, 𝜎 [𝑖 :]),

• 𝜌 (𝜑1 U[𝑙,𝑢] 𝜑2, 𝜎) = max

𝑖∈[𝑙,𝑢]
min

(
𝜌 (𝜑2, 𝜎 [𝑖 :]),

min

𝑗∈[0,𝑖−1]
𝜌 (𝜑1, 𝜎 [𝑗 :])

)
Theorem 1. For trace 𝜎 and STL formula 𝜑 , 𝜎 |= 𝜑 iff 𝜌 (𝜑, 𝜎) ≥ 0.

Proof. We prove the theorem by structural induction on 𝜑 . The

full proof is given in Appendix A. □

2.1 Syntax and Semantics
We will now define the notion of a temporal behavior tree (TBT),

a formalism that borrows operators from behavior trees. A TBT

uses operators known from behavior trees that control the order of

events and has temporal properties in their leaf nodes.

Definition 3 (Syntax of Temporal Behavior Trees). Let 𝜑 be
an STL formula as described by the grammar in Def. 1. We construct
a temporal behavior tree using the following syntax:

T := Leaf (𝜑),
| Fback([T , . . . ,T]),
| Par𝑀 ([T , . . . ,T]), 𝑀 ∈ N
| Seq([T , · · · ,T]),
| Tout𝑡 (T), 𝑡 ∈ N
| ⋆𝑛 (T), 𝑛 ∈ N ∪ {∞}

Informally, an STL formula at a leaf node specifies that the trace

must satisfy the formula. Likewise, Fback([T1, . . . ,T𝑘]) mimics the

semantics of a “fallback” node in a behavior tree: at least one of

the subtrees T1, . . . ,T𝑘 must eventually be satisfied by the trace.

Par𝑀 ([T1, . . . ,T𝑘]) denotes a parallel operator that specifies that
at least𝑀 distinct subtrees must be satisfied simultaneously by the

trace 𝜎 . Seq([T1, · · · ,T𝑘]) is a sequential node that denotes that

𝜎 must be partitioned into 𝑘 parts (some of which may be empty)

𝜎1;𝜎2;𝜎3; · · · ;𝜎𝑘 such that 𝜎𝑖 |= T𝑖 . Tout𝑡 (T) is a timeout node

denoting the subtree T must be satisfied by a prefix of the trace

of size 𝑡 . ⋆𝑛 (T) is a repeat operator node denoting 𝜎 must be

partitioned into 𝑘 ≤ 𝑛 parts 𝜎1;𝜎2;𝜎3; · · · ;𝜎𝑘 such that 𝜎𝑖 |= T .
The presence of the Seq and⋆ operators makes temporal be-

havior trees strictly more expressive than STL (see Theorem 3).

Formally, the satisfaction of a TBT specification T by a trace 𝜎 ,

denoted 𝜎 |= T is as follows:

• If T : Leaf (𝜑) then 𝜎 |= T iff 𝜎 |= 𝜑 , wherein the semantics

of temporal logic have been defined earlier.

• If T : Fback([T1, . . . ,T𝑘]) then there exists a 𝑗 ∈ {1, . . . , 𝑘}
and an 𝑖 ∈ [0, |𝜎 | − 1] such that 𝜎 [𝑖 :] |= T𝑗 . I.e., at least one
of the children is eventually satisfied by 𝜎 .

• 𝜎 |= Par𝑀 ([T1, . . . ,T𝑘]) iff there exists 𝑀 distinct indices

𝑖1, . . . , 𝑖𝑀 ∈ {1, . . . , 𝑘} such that 𝜎 |= T𝑖1 , 𝜎 |= T𝑖2 , · · · , and
𝜎 |= T𝑖𝑀 .

• 𝜎 |= Seq([T1, . . . ,T𝑛]) iff there exists distinct indices 𝑖1 ≤
𝑖2 ≤ . . . ≤ 𝑖𝑛−1 such that 𝜎 [: 𝑖1] |= T1, 𝜎 [𝑖1 + 1 : 𝑖2] |= T2,
· · · , 𝜎 [𝑖𝑛−1 + 1 :] |= T𝑛 .
• 𝜎 |= Tout𝑡 (T) iff 𝜎 [: 𝑡 − 1] |= T if 𝑡 ≤ |𝜎 | or 𝜎 |= T if

𝑡 > |𝜎 |.
• 𝜎 |=⋆𝑛 (T) iff ∃ 𝑘 < 𝑛 indices 𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝑘 such that

𝜎 [: 𝑖1] |= T , 𝜎 [𝑖1 + 1 : 𝑖2] |= T , · · · , 𝜎 [𝑖𝑘 + 1 :] |= T .
We now provide some simple examples of TBTs to show how

the modularity of TBT helps in practice.

Example 4. Let T be a TBT that adds formulas to the leaf nodes
of the BT depicted in Figure 1. We can add requirements “on top of” a
tree, e.g., Par2 ([Leaf (□ ¬𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒),T] to specify that obstacles are
avoided during landing or Fback([Tout𝑡 (T), Leaf (𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦)])
to state that we need to land within 𝑡 time units or otherwise a
contingency needs to be activated. Further, we can add new nodes
within T , e.g., we can replace the leaf node 4, referred to as 𝐿, with
Seq([Leaf (□[0,𝑡]𝑎𝑏𝑜𝑣𝑒 (𝑡𝑝)), 𝐿]) to make sure that we also remain
above the touchdown point for a period of time 𝑡 before descending.

Let us denote𝑚𝑎𝑥𝑀 ([𝑖1, . . . , 𝑖𝑛]) as the function that outputs the
𝑀𝑡ℎ

largest number in the list [𝑖1, . . . , 𝑖𝑛] if𝑀 ≤ 𝑛, and−∞ if𝑀 > 𝑛.

Also, for simplicity, in the following we rewrite Seq([T1, . . . ,T𝑘])
as a sequence Seq([T1, (Seq([T2, · · · , Seq([T𝑘−1,T𝑘])))) for 𝑘 ≥ 2.

Note that Seq([T]) is the same as T .

Definition 4 (Robustness Semantics of TBT). The robustness
of a temporal behavior tree T on a finite execution trace 𝜎 , denoted
𝜌 (T , 𝜎), is defined as shown in Figure 3. As in the case of STL formulas
(Def. 2), it evaluates a given TBT for a trace into a real number, which
denotes the “distance to satisfaction” of the specification by the trace.

We now prove that the robustness 𝜌 for a TBT corresponds to

the notion of satisfaction defined above in the following manner.

Theorem 2. For any trace 𝜎 and TBT T , 𝜎 |= T iff 𝜌 (T , 𝜎) ≥ 0.

Proof. The full proof of the theorem by structural induction on

T is shown in Appendix B. □

STL and TBT are not equivalent in terms of expressiveness.

Whereas any property in finite trace STL can be trivially expressed

as a TBT with a single leaf node, the converse does not hold.

Theorem 3. There exists properties of finite traces specified using
TBT that cannot be written as a finite trace STL formula.

Proof. It is well-known that temporal logics based on the ♢,□,U
and ⃝ temporal operators cannot express the property “p is true in
all odd indexed states of a sequence”, but TBT can. PierreWolper [41]

proves this for LTL over infinite traces. Wolper’s proof carries over

to the version of STL used in this paper. Furthermore, the STL for-

mulas subscripted by finite intervals such as □[𝑙,𝑢]𝜑 can be written

systematically using finitely many nestings of the next operator

⃝ and the unbounded □ operator. Similar considerations apply to

formulas of the form ♢[𝑙,𝑢] (𝜑) and 𝜑1U[𝑙,𝑢]𝜑2. Further, the proof
extends to finite trace semantics as it only requires a finite prefix

𝑝𝑖 that is sufficiently large, i.e., number next operators 𝑙 < 𝑖 .

Temporal Behavior Trees HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

𝜌 (Leaf (𝜑), 𝜎) = 𝜌 (𝜑, 𝜎) 𝜌 (Fback([T1, . . . ,T𝑘])), 𝜎) = max

𝑗∈[1,𝑘]
max

𝑖∈[0, |𝜎 |−1]
𝜌 (T𝑗 , 𝜎 [𝑖 :])

𝜌 (Tout𝑡 (T), 𝜎) = 𝜌 (T , 𝜎 [: min(|𝜎 | − 1, 𝑡 − 1])) 𝜌 (Par𝑀 ([T1, . . . ,T𝑘]), 𝜎) =𝑚𝑎𝑥𝑀
(
𝜌 (T1, 𝜎), · · · , 𝜌 (T𝑘 , 𝜎)

)
𝜌 (Seq([T1,T2]), 𝜎) = max

𝑢∈[0, |𝜎 |−1]
min

(
𝜌 (T1, 𝜎 [: 𝑢]),

𝜌 (T2, 𝜎 [𝑢 + 1 :])

)
𝜌 (⋆𝑛 (T), 𝜎) =

{
𝜌 (Seq([T ,⋆𝑛−1 (T)]), 𝜎), if |𝜎 | > 0 ∧ 𝑛 > 0

∞, otherwise.

Figure 3: Definition of robustness semantics for temporal behavior trees.

However, the even property can be expressed as

⋆∞ (Seq([¬ ⃝ true ∧ 𝑝,¬ ⃝ true]))
Note that ¬⃝ true enforces Seq to chop the trace after reading one

position, as discussed in Sec. 2.1. The⋆-operator repeats this until

reaching the end of the trace. □

2.2 Computing Robustness
Wewill now provide a dynamic programming approach to compute

the robustness efficiently. This will be used to define the notion of

trace segmentation in the next section. For convenience, let 𝜎 be

the given original trace.

Definition 5 (Dynamic Programming for TBT Robustness).

The robustness of a temporal behavior tree T on a finite execution
trace 𝜎 can be implemented in a dynamic programming fashion by
computing 𝜌𝜎 (T , 𝑖, 𝑗) = 𝜌 (T , 𝜎 [𝑖 : 𝑗]), as shown in Figure 4.

The computed robustness values that are stored in a Memo-

Table T can be accessed by T(T , 𝑖, 𝑗) where T is a (sub-)TBT, 𝑖 is

the beginning of the segment, and 𝑗 its end. The size of the table is

𝑂 (𝑁 2 |T |) given a trace of size |𝜎 | = 𝑁 . However, the time taken

to fill out each entry in the memo table can be 𝑂 (𝑁) in the worst

case (see the definition of the Seq node). It also depends on the time

taken to compute the robustness of the temporal logic formulas at

the leaf, which we assume will take time 𝑂 (𝑁 2 |𝜑 |), for a leaf node
Leaf (𝜑), wherein |𝜑 | denotes the size of the formula. Assuming that

|T | includes the size of the temporal logic formulas at the leaves,

as well, we can bound the execution time as 𝑂 (𝑁 3 |T |).

Lemma 1. For any trace 𝜎 and TBT T , the value of 𝜌𝜎 (T , 0, |𝜎 |−1)
from Definition 5 is the same as 𝜌 (T , 𝜎) from Definition 4.

𝜌𝜎 (Leaf (𝜑), 𝑖, 𝑗) = 𝜌 (𝜑, 𝜎 [𝑖 : 𝑗]) (Cf. Definition 2),

𝜌𝜎 (Fback([T1, . . . , T𝑘]), 𝑖, 𝑗) = max

𝑙 ∈ [1,𝑘]
max

𝑖′∈ [𝑖,𝑗]
(𝜌𝜎 (T𝑙 , 𝑖′, 𝑗)) ,

𝜌𝜎 (Par𝑀 ([T1, . . . , T𝑘]), 𝑖, 𝑗) = max𝑀 (𝜌𝜎 (T1, 𝑖, 𝑗), . . . , 𝜌𝜎 (T𝑘 , 𝑖, 𝑗)),

𝜌𝜎 (Seq([T1, T2]), 𝑖, 𝑗) = max

𝑢∈ [𝑖,𝑗]
min(𝜌𝜎 (T1, 𝑖,𝑢), 𝜌𝜎 (T2,𝑢 + 1, 𝑗))

𝜌𝜎 (Tout𝑡 (T), 𝑖, 𝑗) = 𝜌𝜎 (T, 𝑖,min(𝑗, 𝑖 + 𝑡 − 1)),

𝜌𝜎 (⋆𝑛 (T), 𝑖, 𝑗) =
{
𝜌𝜎 (Seq([T,⋆𝑛−1 (T)]), 𝑖, 𝑗), if 𝑛 > 0 and 𝑖 ≤ 𝑗

∞, if 𝑛 = 0 or 𝑖 > 𝑗

Figure 4: Robust semantics of temporal behavior tree ex-
pressed in a form suitable for dynamic programming.

Proof. We prove by induction on the structure of the tree, that

for any two indices 𝑖, 𝑗 , we have 𝜌𝜎 (T , 𝑖, 𝑗) = 𝜌 (T , 𝜎 [𝑖 : 𝑗]). Base
case is for leaf formulas and formulas of the form⋆𝑛 (T) for 𝑛 = 0

or 𝑖 > 𝑗 . In all cases, a comparison of the cases in Figures 3 and 4

shows that they yield the same values. The proof compares each

node type to show that if 𝜌𝜎 and 𝜌 agree on the children of a node,

they also agree on the node itself. Comparing Figures 3 and 4 shows

that they yield the same values. □

3 SEGMENTING TRACES
In this section, we define the problem of segmenting traces with

respect to a TBT specification. We show the connection between

segmentation and the robustness semantics as in Definition 4. The

dynamic programming formulation that computes robustness also

computes the segmentation of a trace. We briefly describe how

the segmentation can be useful, with further demonstrations of

usefulness provided in Section 4.

We begin by defining the segmentation of a trace with respect

to a TBT T . Informally, given a TBT T , the segmentation of a trace

𝜎 splits it into multiple subtraces of the form 𝜎 [𝑖 : 𝑗] such that

(a) every subtree of T is associated with a subtrace; and (b) the

satisfaction and robustness of the specification T by the trace 𝜎 can

be linked to the satisfaction and robustness of each of the subtraces

𝜎 [𝑖 : 𝑗] associated with the corresponding subtree
ˆT . We recall the

definition of robustness 𝜌 (T , 𝜎) from Definition 5 and Figure 4.

Definition 6 (Segmentation of a TBT). The segmentation of a
trace 𝜎 with respect to a TBT T is a graph 𝐺 = (𝑉 , 𝐸) whose vertex
set 𝑉 consists of triples of the form

𝑉 = {(ˆT , 𝑖, 𝑗) | ˆT is a subtree of T , 0 ≤ 𝑖, 𝑗 ≤ |𝜎 | − 1} ,

and edges 𝐸 ⊆ 𝑉 ×𝑉 such that the following conditions hold:

(1) (T , 0, |𝜎 | − 1) ∈ 𝑉 corresponding to the entire tree T and the
entire trace from indices 1 to |𝜎 |.

(2) If a node 𝑣 is of the form (Fback([T1, . . . ,T𝑘]), 𝑖, 𝑗) ∈ 𝑉 , and
𝑖 ≤ 𝑗 then there is precisely one subtree index 𝑙 ∈ [1, 𝑘] and a
single trace index 𝑖′ ∈ [𝑖, 𝑗] such that the edge 𝑣 → (T𝑙 , 𝑖′, 𝑗) ∈
𝐸.

(3) If a node 𝑣 of the form (Seq([T1,T2]), 𝑖, 𝑗) ∈ 𝑉 , there exists a
unique index 𝑢 such that (T1, 𝑖, 𝑢) ∈ 𝑉 , (T2, 𝑢 + 1, 𝑗) ∈ 𝑉 and
the edges 𝑣 → (T1, 𝑖, 𝑢) and 𝑣 → (T2, 𝑢 + 1, 𝑗) belong to 𝐸.

(4) If a node 𝑣 of the form (Par𝑀 ([T1, . . . ,T𝑘]), 𝑖, 𝑗) ∈ 𝑉 , we have
precisely𝑀 distinct indices 𝑙1, . . . , 𝑙𝑀 ∈ [1, 𝑘] such that the set
𝑆 = {(T𝑙1 , 𝑖, 𝑗), · · · , (T𝑙𝑀 , 𝑖, 𝑗)} ⊆ 𝑉 and edges from 𝑣 to each
of the nodes in 𝑆 belong to 𝐸.

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

(5) If a node 𝑣 of the form (Tout𝑡 (T1), 𝑖, 𝑗) ∈ 𝑉 , then the node
𝑣 ′ = (T1, 𝑖,min(𝑗, 𝑖 + 𝑡 − 1)) ∈ 𝑉 with an edge from 𝑣 to 𝑣 ′ in
𝐸.

(6) If 𝑣 is of the form (⋆𝑛 (T), 𝑖, 𝑗) ∈ 𝑆 and 𝑛 ≥ 1 and 𝑖 ≤ 𝑗 ,
then either (a) the node 𝑣 ′ = (T , 𝑖, 𝑗) ∈ 𝑉 with an edge from
𝑣 to 𝑣 ′; or (b) there exists indices 𝑢1 ≤ . . . ≤ 𝑢𝑘 for some
1 ≤ 𝑘 < 𝑛 such that the set of nodes 𝑆 = {(T , 𝑖, 𝑢1), (T , 𝑢1 +
1, 𝑢2), . . . , (T , 𝑢𝑘 + 1, 𝑗)} ⊆ 𝑉 have edges in 𝐸 from 𝑣 to each
node in 𝑆 .

(7) The set of vertices 𝑉 and edges 𝐸 are minimal: i.e, no proper
subsets of 𝑉 , 𝐸 satisfy the conditions stated above.

Note that the last condition of minimality is important to ensure

that we do not add unneeded vertices and edges to a segmentation.

Lemma 2. Any segmentation of a trace 𝜎 and TBT T is a directed
acyclic graph. Furthermore, a node has no outgoing edges if and only
if it is of the form (a) (Leaf (𝜑), 𝑖, 𝑗), (b) (⋆0, 𝑖, 𝑗), or (c) (⋆𝑛, 𝑖, 𝑗)
with 𝑖 > 𝑗 .

Proof. Each edge 𝑣 : (T , 𝑖, 𝑗) → 𝑣 ′ : (T ′, 𝑖′, 𝑗 ′) in the set 𝐸

from Definition 6 goes from a TBT T to its subtree T ′. Therefore,
no cycles can exist in the graph 𝐺 . The second part also follows

from Definition 6. □

Example 5. Consider a trace 𝜎 of length 100 and a specification T
of the form Fback([T1,T2]) where T1 is Seq([Leaf (𝜑1), Leaf (𝜑2)])
and T2 is Seq([Leaf (𝜑2), Leaf (𝜑1)]). The TBT expresses the fact
that eventually 𝜑1 must be satisfied followed by 𝜑2, or the other way
around. One possible segmentation (graph) is provided in Fig. 5 (left).

Consider another TBT of the form⋆3 (Seq([Leaf (𝜑1), Leaf (𝜑2)])).
An example segmentation is shown in Figure 5 (right).

Given a segmentation graph𝐺 = (𝑉 , 𝐸) for a TBT T and trace 𝜎 ,

it induces a value for the robustness of the specification and trace

given the segmentation. Formally, we will define 𝜋𝐺 (ˆT , 𝑖, 𝑗) for each
(ˆT , 𝑖, 𝑗) ∈ 𝑉 as follows:

(1) If
ˆT = Leaf (𝜑) then 𝜋𝐺 (ˆT , 𝑖, 𝑗) = 𝜌 (𝜑, 𝜎 [𝑖 : 𝑗]) using Def. 2.

(2) If
ˆT = ⋆0 (T) or the node is of the form (⋆𝑛, 𝑖, 𝑗) with

𝑖 > 𝑗 , then 𝜋𝐺 (ˆT , 𝑖, 𝑗) = ∞.
(3) Otherwise, 𝜋𝐺 (ˆT , 𝑖, 𝑗) = min({𝜋𝐺 (T1, 𝑖′, 𝑗 ′) | (ˆT , 𝑖, 𝑗) →
(T1, 𝑖′, 𝑗 ′) ∈ 𝐸}), i.e., to the minimum robustness of its given

existing successors in 𝐺 .

1 Fback(T1,T2) 100

15 T2
Seq([Leaf (𝜑2), Leaf (𝜑1)])

100

15 𝜑2 31

32

𝜑1 100

1 ⋆3 (T1) 100

1 T1 42

43

T1 100

1 𝜑1 31

32

𝜑2 42

43

𝜑1 52

53

𝜑2100

Figure 5: Example trace segmentations for the two properties
described in Ex. 5.

Let segs(T , 𝜎) denote all possible segmentations of the trace 𝜎

against the TBT specification T . We say that a segmentation𝐺 is

optimal iff 𝜋𝐺 (T , 0, |𝜎 | − 1) = max𝐺 ′∈segs(T,𝜎) 𝜋𝐺 ′ (T , 0, |𝜎 | − 1).
In other words, the robustness calculated by the segmentation

is maximal among all possible segmentations of the trace with

respect to the specification. Informally, this means that the trace

is segmented in the “best possible light” in an attempt to match it

against the specification.

Theorem 4. Let 𝐺 be an optimal segmentation of 𝜎 w.r.t. T . It
follows that 𝜋𝐺 (T , 0, |𝜎 | − 1) = 𝜌 (T , 𝜎).

Let us consider an example segmentation for the STL formula

provided in Example 3.

Example 6. Consider once again the STL formula used in Ex. 3.
The target position 𝑝 is defined by the euclidean distance as before.
Let Seq([Leaf (♢𝑝), Leaf (□[0,5] 𝑝)]) be the corresponding TBT for
the formula. In this way, a segmentation allows us to identify which
child was successful or not. For instance, given a segmentation that
contains (Leaf (♢𝑝), 0, 99) and (Leaf (□[0,5] , 100, 199) for a trace 𝜎 ,
where 𝜌 (Leaf (♢𝑝), 𝜎 [: 99])) is positive and 𝜌 (Leaf (□[0,5] , 𝜎 [100 :]))
is negative, we can conclude that the UAV reached position 𝑝 but did
not hold that position for as long as necessary.

Computing an Optimal Segmentation. We will now turn to the

problem of computing an optimal segmentation given a trace 𝜎 and

TBT T . As it turns out, an optimal segmentation can be recovered

through the dynamic programming table T(ˆT , 𝑖, 𝑗) used to compute

𝜌𝜎 (T , 0, |𝜎 | − 1). We will outline the steps of this computation

below. To begin with, we will use a worklist of unprocessed vertices.

Whenever the worklist is empty, we have discovered all the nodes

and edges of the optimal segmentation𝐺 . We initialize the worklist

to contain the vertex (T , 0, |𝜎 | − 1). At each iteration, we pop a

node 𝑣 = (ˆT , 𝑖, 𝑗) from the worklist:

(1) If
ˆT = Leaf (𝜑), ˆT = ⋆0 (T ′) or ˆT = ⋆𝑛 (T ′) with 𝑖 > 𝑗 ,

we add no outgoing edges.

(2) If
ˆT = Fback([T1, . . . ,T𝑘]), let
(𝑙, 𝑖′) = argmax(𝑙,𝑖′) ∈ [1,𝑘]×[𝑖, 𝑗]T(T𝑙 , 𝑖′, 𝑗) .

We add the vertex 𝑣 ′ = (T𝑙 , 𝑖′, 𝑗) to the worklist if it does not
exist previously and the edge 𝑣 → 𝑣 ′.

(3) If
ˆT = Seq([T1,T2]), let 𝑢 = argmax𝑢∈[𝑖, 𝑗] (min(T(T1, 𝑖, 𝑢),

T(T2, 𝑢 + 1, 𝑗))). We add the vertices 𝑣1 = (T1, 𝑖, 𝑢), 𝑣2 =

(T2, 𝑢 + 1, 𝑗) to the worklist (if they did not exist previously)

and the edges 𝑣 → 𝑣1, 𝑣 → 𝑣2.

(4) If
ˆT = Par𝑀 ([T1, . . . ,T𝑛]), the list [T(T1, 𝑖, 𝑗), . . . ,T(T𝑛, 𝑖, 𝑗)]

is sorted in descending order, and take the first 𝑀 entries

in the sorted list. We add the vertices (T𝑖1 , 𝑖, 𝑗), . . . , (T𝑖𝑀 , 𝑖, 𝑗)
corresponding to the first 𝑀 sorted entries to the worklist

(if they did not exist previously) and outgoing edges form 𝑣

to all these vertices.

(5) If
ˆT = ⋆𝑛 (T1) and 𝑛 > 0, 𝑖 ≤ 𝑗 , we take the arguments of

the maximum of ∀𝑘 ∈ [1, 𝑛] .𝑢1, . . . , 𝑢𝑘 = arg

max

𝑢1∈[𝑖, 𝑗],...,𝑢𝑘 ∈[𝑢𝑘−1, 𝑗]
min

(
T(T1, 𝑖, 𝑢1), . . . , T(T1, 𝑢𝑘 , 𝑗)

)
.

We add the vertices (T1, 𝑖, 𝑢1 + 1), . . . , (T1, 𝑢𝑘 + 1, 𝑗) to the

worklist (if new) and create edges from 𝑣 to these vertices.

Let 𝐺 represent the segmentation thus obtained.

Temporal Behavior Trees HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Theorem 5. The segmentation obtained using the procedure de-
scribed above is optimal: i.e, 𝜋𝐺 (T , 𝜎) = 𝜌 (T , 𝜎).

The proof of the theorem follows from the construction itself

since it simply “reads off” a segmentation from the dynamic pro-

gramming table T.

Dynamic programming also allows us to rapidly explore alterna-

tive segmentations. Alternative segmentations allow to go beyond

the optimal segmentation and help to better understand the ex-

ecuted behavior, e.g., to identify if there are “other” successful

segmentations. We control finding such alternatives using two pa-

rameters: 𝜏𝑡 and 𝜏𝜌 . 𝜏𝑡 ∈ R+ represents how much the segment

boundary needs to differ in respect to already identified segmen-

tations. 𝜏𝜌 ∈ R+ represents a lower bound of the robustness of

alternatives in respect to given segmentations.

Definition 7 (Alternative Segmentation). Let 𝜎 be a trace
and T be a temporal behavior tree, a segmentation 𝐺 ′ = (𝑉 ′, 𝐸′) is
an alternative to a segmentation 𝐺 = (𝑉 , 𝐸) iff 𝜋𝐺 ′ (T , 𝜎) > 𝜏𝜌 and
either 𝑉 ≠ 𝑉 ′ or there exists a sink vertex (T𝑘 , 𝑖, 𝑗) ∈ 𝑉 with no sink
vertex (T ′

𝑘
, 𝑖′, 𝑗 ′) ∈ 𝑉 ′ for whichT𝑘 = T ′

𝑘
and |𝑖−𝑖′ |+| 𝑗− 𝑗 ′ | ≤ 𝜏𝑡𝑖𝑚𝑒 .

Example 7. Consider the segmentation provided in Figure 2. As can
be seen, Stay at Position was assigned to the subtrace of 𝜎 , annotated
by (2), just before moving towards the ship (3). Using alternative
segmentation, we can analyze whether (2) and (3) have an earlier
or later assignment that also satisfies the specification, i.e., was it
possible to execute the next leaf node earlier or later. To obtain only
satisfying alternatives, we choose 𝜏𝜌 = 0. We also choose 𝜏𝑡𝑖𝑚𝑒 as
the duration of staying in position as specified to make sure that our
alternative is significantly different to the one obtained before. Note
that by choosing 𝜏𝑡𝑖𝑚𝑒 = |𝜎 |, we are guaranteed to find an alternative
that uses a different landing maneuver, if existing.

Computing an alternative segmentation uses the same worklist

algorithm presented above, but imposes the additional constraints

defined in Def. 7 while accessing T. We will present the detailed

approach in an extended version of this paper.

Subsampling traces for approximating robustness. Traces are often
obtained by sampling a continuous signal at regular time intervals.

Often, if the sampling is done rapidly compared to how the sig-

nal varies, we observe the phenomenon of stuttering, wherein the

same truth values of atomic propositions repeat over multiple time

instances. We now show how the truth/robustness on a carefully

subsampled trace relates to the original trace.

Definition 8 (𝛿-stuttering). A trace 𝜎 is 𝛿-stuttering iff (a)
𝛿 divides |𝜎 | and (b) for all 𝑖 such that 𝑖𝛿 < |𝜎 |, the states 𝜎 (𝑖𝛿 +
1), . . . , 𝜎 ((𝑖 + 1)𝛿) are identical in terms of the atomic proposition
truth valuations: 𝜎 (𝑖𝛿 + 1) |= 𝑝 iff 𝜎 (𝑖𝛿 + 𝑗) |= 𝑝 for 𝑗 = {1, . . . , 𝛿}.

We say that a trace 𝜎′ is a subsampling of 𝜎 with stride length
𝛿 ≥ 1 iff 𝜎′ (𝑖 + 1) = 𝜎 (𝑖𝛿 + 1) for 𝑖 ∈ {0, . . . , |𝜎 |

𝛿
− 1}.

Definition 9 (𝛿-preserving TBT). A TBT T is 𝛿-preserving if
(a) all occurrences of U[𝑙,𝑢] in T has 𝑙 = 0 and 𝑢 is divisible by 𝛿 ;
(b) all occurrences of ♢[𝑙,𝑢] ,□[𝑙,𝑢] have 𝑙, 𝑢 divisible by 𝛿 ; and (c) all
occurrences of Tout𝑡 has 𝑡 divisible by 𝛿 .

For 𝛿-preserving TBT T , define TBT T ′ with all occurrences

of Tout𝑡 replaced by Tout𝑡/𝛿 and all occurrences of temporal logic

operators ⊲⊳[𝑙,𝑢] wherein ⊲⊳∈ {♢,□,U} replaced with ⊲⊳[𝑙/𝛿,𝑢/𝛿] .

Example 8. Let TBT T be Seq([□(𝑎 ∧ ¬𝑏), ♢𝑏]) and let 𝜎 be a
trace 𝑎:

𝑏:
(truefalse), (

true
false), (

false
true), (

false
true), then 𝛿 = 2, T ′ remains T , and 𝜎′

is the sequence (truefalse), (
false
true), and 𝜌𝛿 (T , 𝜎) is positive.

Let T be 𝛿-preserving TBT and 𝜎 be a 𝛿-stuttering trace.

Theorem 6. If 𝜎′ |= T ′ then 𝜎 |= T .

Proof. We prove the theorem by induction on the formula. The

full proof is given in Appendix C. □

The theorem shows that by evaluating a TBT on a subsampled

trace for a 𝛿-stuttering trace 𝜎 , if the subsampled trace satisfies

the TBT, then so does the original trace. However, violations on a

subsampled trace need not necessarily be violations on the original

trace. The Seq operator is the reason for the failure of the converse.

Example 9. Consider a trace 𝜎 with atomic proposition 𝑝 : ¬𝑝,¬𝑝,
¬𝑝, 𝑝, 𝑝, 𝑝,¬𝑝,¬𝑝,¬𝑝 , and TBTT : Seq(Leaf (♢𝑝), Leaf (♢𝑝)). Choos-
ing 𝛿 = 3, we obtain 𝜎′ : ¬𝑝, 𝑝,¬𝑝 . The transformed TBT T ′ = T .
Note that 𝜎 |= T whereas 𝜎′ ̸ |= T ′.

Also, it is necessary forU[𝑙,𝑢] occurrences to have 𝑙 = 0. Consider
the trace 𝜎 : 𝑝, 𝑝, 𝑝, 𝑞, 𝑞, 𝑞 and the formula 𝜑 : □((𝑝U[3,3]𝑞) ∨ 𝑞).
Clearly 𝜎 ̸ |= 𝜑 . However, we have 𝛿 = 3 and thus 𝜎′ : 𝑝, 𝑞 with
𝜑 ′ : □((𝑝U[1,1]𝑞) ∨ 𝑞). It follows that 𝜎′ |= 𝜑 .

Note that, for simplicity, we computed the stride length 𝛿 based

on the fact that 𝑝 ∈ 𝐴𝑃 remains unchanged in every subtrace 𝜎 [𝑖𝛿 :

(𝑖 + 1)𝛿 − 1]. This is too stringent in practice. For instance, the for-

mula □(𝑝1∨𝑝2∧𝑝3)∨𝑝4 with𝐴𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} will be replaced
by𝐴𝑃 ′ that consists of 𝑝4 and 𝑞 where 𝑓𝑞 = max(𝑓𝑝1 ,min(𝑓𝑝2 , 𝑓𝑝3)).
For our experiments in Section 4, we implemented this improve-

ment to increase 𝛿 but also to reduce the size of the TBT T .

Approximate Robustness Using Lazy Evaluation. Next, we intro-
duce a lazy evaluation for computing the robustness of a TBT given

a trace. For the lazy evaluation, we use operators common in func-

tional and dynamic programming that rely on iterators and corou-

tines [28, 31]. Using these concepts, we define min𝑙𝑎𝑧𝑦 as follows:

d e f i n e min_ lazy (l i s t _ o f _ e x p r s) :

m in_so_ fa r = ∞
i n i t i a l i z e l a z y e v a l u a t i o n o f a l l e x p r e s s i o n s
l i s t _ o f _ g e n s = [l a z y _ e v a l (e) for e in l i s t _ o f _ e x p r s]

for g in l i s t _ o f _ g e n s :

i f has_nex t (g) :

l = next (g) # t a k e t h e n e x t v a l u e y i e l d e d
i f l < 0 and l < min_so_ fa r :

yield
min_so_ fa r = min (min_so_far , l)

return min_so_ fa r

We define max𝑙𝑎𝑧𝑦 in an analogous manner. The key idea here is

that a call to min𝑙𝑎𝑧𝑦 will yield as soon as it finds a negative value or

a value smaller than what it yielded previously. Many programming

language implement these features, e.g, Python
2
. We execute the

dynamic programming starting until the overall root expression

2
https://realpython.com/introduction-to-python-generators/

https://realpython.com/introduction-to-python-generators/

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

yields its first value and stops. Even if this value is not the exact

robustness, we can relate this value to the exact result obtained

upon a full computation.

Definition 10 (Lazy-Evaluation). Given a TBT T and a trace
𝜎 , we can evaluate the robustness in a lazy manner, denoted as
𝜌𝑙𝑎𝑧𝑦 (T , 𝜎), by replacing all instances of max by max𝑙𝑎𝑧𝑦 and min

by min𝑙𝑎𝑧𝑦 in 𝜌 (T , 𝜎). In addition, we will also use memorization to
cache previously evaluated expressions in order to avoid re-evaluation.

Example 10. Given the same TBT and trace as in Ex. 8. The lazy
evaluation starts by sequencing the trace right after the first position
into two segments. While computing the robustness of the left segment
using □ no lazy return happens since there is only one position. When
computing the right side using ♢ the first lazy return occurs right for
the second value provided by the iterator. The evaluation returns to
the sequence node, where both segments have a positive robustness.
Hence, lazy return will directly return the minimum of these segments.
If only one of the segments would have been negative, the evaluation
would backtrack to the right segment and continues to call the iterator
at the position where it returned before. Note that in this case, the
computed robustness is optimal. This is not necessarily the case.

Theorem 7. Given a TBT T and a trace 𝜎 , 𝜌𝑙𝑎𝑧𝑦 (T , 𝜎) ≥ 0 iff
𝜌 (T , 𝜎) ≥ 0.

Proof. The same algorithm as 𝜌 (T , 𝜎) is used and coroutines

maintain an internal state that allows them to continue an evalua-

tion of max𝑙𝑎𝑧𝑦 and min𝑙𝑎𝑧𝑦 when returning to them. □

4 EMPIRICAL EVALUATION AND
CASE-STUDIES

In this section, we will present different case studies that show

how the segmentation of TBT provides useful insights. Note that

formalizing both use-cases using STL is not possible because our

TBT specification uses the “Sequence” operator, which allows to

chop a trace – an operation not supported by any STL operator.

4.1 Analysis of Human Behavior
We use segmentation to analyze human operator performance. We

obtained data from the study conducted by Byeon et al, wherein

thirteen subjects repeatedly attempted to fly a drone in a simulated

environment using a joystick setup to control the drone’s altitude

and attitude while avoiding the obstacle [6]. Each subject attempted

the same task of navigating through the waypoints 25 times. The

goal of the simulation was to see if the operator through these

repeated trials will learn how to navigate the drone to take off and

fly through six different waypoints, ending up at a pre-specified

position. We used the TBT shown in Figure 6 to specify the overall

task. Note that the entire task is a sequence of moves from one

waypoint to the next reaching the terminus.

We use segmentation of each of the traces of (𝑥,𝑦, 𝑧) trajecto-
ries of the human operator to understand how their performance

evolved over the trials. Note that segmentation is challenging since

human operators often behave in ways we could not predict a priori.

Figure 7 shows the segmentations obtained by our approach for

two different operators and trials (there are a total of 13 × 25 such
traces). The segmentations are obtained automatically given the

Seq

♢ (reach_wp
1
)

∧ □(¬obstacle)
. . . ♢ (reach_wp

6
)

∧ □(¬obstacle) ♢ (terminus)

Figure 6: Temporal behavior tree that was used to specify
the task for each participant in the drone flying task. The
task consists of reaching a sequence of 6 waypoints while
avoiding two obstacles in turn and ending up at a terminus.

Tr
ia
l #

1
(3
D
vi
ew

)

Tr
ia
l #

2
(3
D
vi
ew

)

Trial #1 (top view)

Trial #2 (top view)

Figure 7: Segmented trajectories of two different simulator
flights. Each segment is drawn in a different color and num-
bers are shown at the ending point of each segment. The
3D plots are shown to the left and the top view is shown to
the right. Waypoints are shown as circles and obstacles are
shaded in gray.

traces and the specification. They split the entire trajectory into

seven parts, ascribing each to a subtree which in this case corre-

sponds to reaching a waypoint. Note from Figure 7 that it is often

hard to perform this segmentation manually especially when the

specifications are violated (they are violated in both cases due to

missed waypoints and collision with the obstacle in Trial #2). The

segmentation allows us to analyze how the subjects are learning

or failing to learn the performance of the overall task over each

trial. For each trial, we collect the robustness of each segment with

respect to its corresponding node in the tree. The plots in Figure 8

reveal consistent trends that were observed across all the subjects:

(a) Most subjects could carry out the first phase successfully and the

overall spread of robustness is relatively small. (b) The second phase

ends up being the most challenging. Very few subjects over few

trials could navigate this successfully. We suspect that the presence

of the obstacle right next to the waypoint for this phase plays a

role in this. (c) Subjects are able to navigate phases 3-6 successfully

on average but their performance varies across trials. (d) Subjects

are consistently unable to navigate the terminal phase. Our prelim-

inary analysis clearly demonstrates the usefulness of a systematic

approach to segmentation. The full analysis of how humans learn

to teleoperate successfully over the course of multiple trials will be

described in an extended version.

Temporal Behavior Trees HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Figure 8: Box plots showing the spread of robustness values
corresponding to each of the seven task segments for four
different subjects.

4.2 Autonomous Ship Deck Landing
Landing on a ship deck is well-known to be a challenging task,

wherein various landing aids and maneuvers need to be carefully

selected [36, 37]. The TBT presented in Figure 10 formally specifies

four different landing maneuvers: Straight-in, Lateral, 45-Degree,
and Oblique. At the top of the TBT, there is a sequence node that

executes its children from left to right. The first child is a fallback

node and the second is a leaf node that represents the descent to the

touchdown point. Each maneuver is structured as a sequence with

different atomic propositions. The maneuvers differ in their starting

position and their heading. Whereas, the 45-Degree and the Oblique

landing maneuvers specify that the UAV must be diagonally behind

the ship, they differ in the relative heading of the UAV to the ship,

i.e., aligned with versus oblique to the ship heading, respectively.

We use our TBT on simulation data provided by the authors of

[36, 37] for landing with a UAV on a ship deck under wind condi-

tions from the side (WS) and from the front (WF). All experiments

were run on a single 16-core machine with a 2.50 GHz 11
𝑡ℎ

Gen

Intel(R) Core(TM) i7-11850H processor with 32 GB RAM. The algo-

rithms are implemented as a single-threaded program using Rust

3
. Experimental results are given in Table 1. The first column in-

dicates the expected behavior for a landing. Each of the logfiles

have mission times between 115 and 127 seconds and contain be-

tween 22,046 and 25,313 entries. The second column reports the

stride length 𝛿 . Next, Time represents the execution time required

to find a segmentation where 𝜌𝛿 refers to the presented subsam-

pling and 𝜌𝛿 ◦ 𝜌𝑙𝑎𝑧𝑦 refers to first subsampling and then running a

lazy evaluation (Def. 10). Finally, we report on the Chosen Maneuver
and the Worst Segment given the computed segmentation. For the

case where only subsampling was used, at least 2,000,000 and up

to 500,000,000 evaluations could be resolved by the memo table.

The results show that subsampling is very efficient and helps to

find segmentations within seconds. Yet, the dependence on the

3
https://github.com/DLR-FT/TBT-Segmentation

Figure 9: Segmentation of an oblique maneuver where the
UAS deviates from the expected behavior. Ideally, the “Stay
in position” segment should align with the “Maneuver: at
position” line.

length of the trace becomes clear when we compare the required

time required for 𝛿 = 25 and 𝛿 = 200. Our segmentations show

that oblique maneuvers potentially failed. This also caused the lazy

evaluation to take as long as 𝜌𝛿 because early returns of min𝑙𝑎𝑧𝑦

and max𝑙𝑎𝑧𝑦 are not possible in this case. Further, we can see that

the most challenging part of the maneuver is Descend, which makes

sense given the disturbances due to wind and waves when land-

ing on the ship. In fact, segmentation of the Straight-in-WF logfile

potentially failed due to its descend. Note that the best robustness

for a Descend is one since we allow a tolerable deviation from the

target position by one meter, see Figure 10. Results indicate that

wind did not play a major role during the maneuvers.

We now examine the potential failing segmentations for oblique

maneuvers. Note that by Theorem 6, given a failing segmentation,

we cannot draw conclusions about the segmentation of the original

trace. We also see that the segmentation for such a maneuver is

always a 45-Degree maneuver, depicted in Figure 2. In Figure 9, we

show an alternative segmentation that is worse but uses an oblique

landing approach. We received this alternative by using 𝜏𝑡 that was

set greater than |𝜎 |. Choosing such a 𝜏𝑡 ensures that the alternative

segmentation uses different nodes for its segments. Fig. 9 shows

that the stay in position is poorly assigned. We further examined the

robustness values and concluded that the oblique heading relative to

the ship expected by the TBT was not sufficiently implemented by

the controller. Hence, it behaves “closer” to a 45-degree maneuver

than an oblique maneuver. The results of both use-cases show that

segmentation provides key insights into complex behaviors. Further,

our experiments show that our current segmentation techniques

can be used for large traces through a combination of subsampling

the trace and approximation through lazy evaluation.

5 CONCLUSION
Wehave introduced temporal behavior trees (TBT) as a specification

formalism, defined robustness semantics, and used it to segment a

trace into subtraces that are associated with portions of the TBT

specification using a dynamic programming algorithm that has

https://github.com/DLR-FT/TBT-Segmentation

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

Seq

Fback

Seq
Straight-In

1 4 8

Seq
Lateral

2 5 8

Seq
45-Degree

3 6 8

Seq
Oblique

3 7 9

10

Leaf Description Temporal Formula

1 Behind ship ♢ 𝑏𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑠)
2 Next to ship ♢ 𝑛𝑒𝑥𝑡𝑇𝑜 (𝑝𝑠 , 𝑝𝑢𝑎𝑠)
3 Diagonal behind ship ♢ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐵𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑠)

4 Stay in behind □[0,1000] (𝑏𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑠) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑎𝑙𝑖𝑔𝑛𝑒𝑑, ℎ𝑠 , ℎ𝑢𝑎𝑠) ∧ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑣𝑠 , 𝑣𝑢𝑎𝑠))
5 Stay next to □[0,1000] (𝑛𝑒𝑥𝑡𝑇𝑜 (𝑝𝑠 , 𝑝𝑢𝑎𝑠) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑎𝑙𝑖𝑔𝑛𝑒𝑑, ℎ𝑠 , ℎ𝑢𝑎𝑠) ∧ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑣𝑠 , 𝑣𝑢𝑎𝑠))
6 Stay diagonal behind □[0,1000] (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐵𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑠) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑎𝑙𝑖𝑔𝑛𝑒𝑑, ℎ𝑠 , ℎ𝑢𝑎𝑠) ∧ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑣𝑠 , 𝑣𝑢𝑎𝑠))
7 Stay diagonal behind □[0,1000] (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐵𝑒ℎ𝑖𝑛𝑑 (𝑝𝑠 , 𝑝𝑢𝑎𝑠) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑜𝑏𝑙𝑖𝑞𝑢𝑒, ℎ𝑠 , ℎ𝑢𝑎𝑠) ∧ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑣𝑠 , 𝑣𝑢𝑎𝑠))

8 Move to touchdown ♢ (𝑚𝑜𝑣𝑒_𝑡𝑜_𝑡𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛(𝑎𝑏𝑜𝑣𝑒, 𝑝𝑠 , 𝑝𝑢𝑎𝑠) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑎𝑙𝑖𝑔𝑛𝑒𝑑, ℎ𝑠 , ℎ𝑢𝑎𝑠))
9 Move to touchdown ♢ (𝑚𝑜𝑣𝑒_𝑡𝑜_𝑡𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛(𝑎𝑏𝑜𝑣𝑒, 𝑝𝑠 , 𝑝𝑢𝑎𝑠) ∧ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑜𝑏𝑙𝑖𝑞𝑢𝑒, ℎ𝑠 , ℎ𝑢𝑎𝑠))

10 Descending ♢ (𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑑 (𝑝𝑡𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛, 𝑝𝑢𝑎𝑠))

Figure 10: Temporal behavior tree specifying landing maneuvers on a ship deck: straight-in, lateral, 45-degree, and oblique.
They differ in their starting position and their heading relative to the ship. Computations of atomic propositions are omitted.

Logfile 𝛿 Time (𝜌𝛿 , 𝜌𝛿 ◦ 𝜌𝑙𝑎𝑧𝑦) [s] Chosen Maneuver (𝜌𝛿 , 𝜌𝛿 ◦ 𝜌𝑙𝑎𝑧𝑦) Worst Segment (𝜌𝛿 , 𝜌𝛿 ◦ 𝜌𝑙𝑎𝑧𝑦)
45-Degree-WF 50 (4, < 0) (45-Degree, 45-Degree) (Descend 0.49, Descend 0.05)

45-Degree-WS 200 (< 0, < 0) (45-Degree, 45-Degree) (Descend 0.45, Descend 0.20)

Lateral-WF 100 (< 0, < 0) (Lateral, Lateral) (Descend 0.39, Descend 0.06)

Lateral-WS 100 (< 0, < 0) (Lateral, Lateral) (Descend 0.30, Descend 0.01)

Oblique-WF 25 (29, 29) (45-Degree, 45-Degree) (Move-to-pos -0.58, -∞)
Oblique-WS 25 (28, 28) (45-Degree, 45-Degree) (Move-to-pos -0.34, -∞)

Straight-in-WF 200 (< 0, < 0) (Straight-in, Straight-in) (Descend -0.60, -∞)
Straight-in-WS 200 (< 0, < 0) (Straight-in, Straight-in) (Descend 0.22, Descend 0.22)

Table 1: Results of segmentation using the TBT in Fig. 10. The segmenation uses subsampling (Def. 8) alone and in combination
with lazy evaluation (Def. 10). All logfiles represent realistic missions that took approximately two minutes (> 20, 000 entries).
The results show that segmentations can be computed within seconds for practical use-cases.

been approximated through subsampling and lazy evaluation. We

show on two use-cases that segmentation is a powerful tool when

analyzing or debugging complex behaviors. We analyzed the per-

formance of 25 human-operators flying a UAV waypoint mission.

The second use-case reports on an autonomous landing of a UAV on

a ship deck. We show that our algorithms can efficiently compute

segmentations that help to better understand what parts of the

mission succeeded or failed.

Temporal Behavior Trees HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

ACKNOWLEDGMENTS
This work was supported by the German federal aviation research

program (LuFo ID: 20D2111C and ID: 20Q1963B), and the US Na-

tional Science Foundation (NSF) under award number 1836900. S.

Schirmer carried out this work as a member of the Saarbrücken

Graduate School of Computer Science.We thankAlexander Donkels

(DLR) for providing the data for the autonomous ship deck landing.

REFERENCES
[1] Rahib H. Abiyev, Nurullah Akkaya, and Ersin Aytac. 2013. Control of soccer

robots using behaviour trees. In 9th Asian Control Conference, ASCC 2013, Istanbul,
Turkey, June 23-26, 2013. IEEE, 1–6. https://doi.org/10.1109/ASCC.2013.6606326

[2] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded

Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-based

monitoring of cyber-physical systems: a survey on theory, tools and applications.

Lectures on Runtime Verification: Introductory and Advanced Topics (2018), 135–
175.

[3] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2007. The good, the

bad, and the ugly, but how ugly is ugly?. In International Workshop on Runtime
Verification. Springer, 126–138.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime ver-

ification for LTL and TLTL. ACM Transactions on Software Engineering and
Methodology (TOSEM) 20, 4 (2011), 1–64.

[5] Johan Van Benthem. 2010. Modal Logic for Open Minds (Lecture Notes). CSLI
Publications (Stanford University).

[6] Sooyung Byeon, Joonwon Choi, Yutong Zhang, and Inseok Hwang. 2023.

Stochastic-Skill-Level-Based Shared Control for Human Training in Urban Air

Mobility Scenario. J. Hum.-Robot Interact. (jun 2023). https://doi.org/10.1145/

3603194 Just Accepted.

[7] Antonio Cau, Ben Moszkowski, and Hussein Zedan. 2006. Interval temporal logic.

URL: http://www. cms. dmu. ac. uk/˜ cau/itlhomepage/itlhomepage. html (2006).
[8] Yuxiao Chen, James Anderson, Karanjit Kalsi, Aaron D. Ames, and Steven H. Low.

2021. Safety-Critical Control Synthesis for Network SystemsWith Control Barrier

Functions and Assume-Guarantee Contracts. IEEE Transactions on Control of
Network Systems 8, 1 (2021), 487–499. https://doi.org/10.1109/TCNS.2020.3029183

[9] Michele Colledanchise and Petter Ögren. 2018. Behavior trees in robotics and AI:
An introduction. CRC Press.

[10] Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and

Linear Dynamic Logic on Finite Traces. In Proceedings of the Twenty-Third In-
ternational Joint Conference on Artificial Intelligence (Beijing, China) (IJCAI ’13).
AAAI Press, 854–860.

[11] Jyotirmoy VDeshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit

Juniwal, and Sanjit A Seshia. 2017. Robust online monitoring of signal temporal

logic. Formal Methods in System Design 51 (2017), 5–30.

[12] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic

over real-valued signals. In International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 92–106.

[13] Georgios E Fainekos and George J Pappas. 2006. Robustness of temporal logic

specifications. In International Workshop on Formal Approaches to Software Testing.
Springer, 178–192.

[14] Bernd Finkbeiner andHenny Sipma. 2004. Checking finite traces using alternating

automata. Formal Methods in System Design 24 (2004), 101–127.

[15] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and An-

drzejWąsowski. 2020. Behavior Trees in Action: A Study of Robotics Applications.

In Proceedings of the 13th ACM SIGPLAN International Conference on Software
Language Engineering (Virtual, USA) (SLE 2020). Association for Computing Ma-

chinery, New York, NY, USA, 196–209. https://doi.org/10.1145/3426425.3426942

[16] Joseph Halpern, Zohar Manna, and BenMoszkowski. 1983. A hardware semantics

based on temporal intervals. In Automata, Languages and Programming, Josep
Diaz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–291.

[17] D. Harel and D. Peleg. 1985. Process logic with regular formulas. Theoretical
Computer Science 38 (1985). https://doi.org/10.1016/0304-3975(85)90225-7

[18] Jie He, Ezio Bartocci, Dejan Ničković, Haris Isakovic, and Radu Grosu. 2022.

DeepSTL: From English Requirements to Signal Temporal Logic. In Proceedings
of the 44th International Conference on Software Engineering (Pittsburgh, Pennsyl-

vania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,

610–622. https://doi.org/10.1145/3510003.3510171

[19] Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. 2015.

Towards manipulation planning with temporal logic specifications. In IEEE In-
ternational Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA,
26-30 May, 2015. IEEE, 346–352. https://doi.org/10.1109/ICRA.2015.7139022

[20] Zhuochao He, Xuyang Zhang, Simon Jones, Sabine Hauert, Dandan Zhang, and

Nathan F. Lepora. 2023. TacMMs: Tactile Mobile Manipulators for Warehouse

Automation. IEEE Robotics and Automation Letters 8, 8 (2023), 4729–4736. https:

//doi.org/10.1109/LRA.2023.3287363

[21] Danying Hu, Yuanzheng Gong, Blake Hannaford, and Eric J Seibel. 2015. Semi-

autonomous simulated brain tumor ablation with Raven II surgical robot using

behavior trees. In 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 3868–3875.

[22] Hao Hu, Xiaoliang Jia, Kuo Liu, and Bingyang Sun. 2021. Self-Adaptive Traffic

Control Model With Behavior Trees and Reinforcement Learning for AGV in

Industry 4.0. IEEE Transactions on Industrial Informatics 17, 12 (2021), 7968–7979.
https://doi.org/10.1109/TII.2021.3059676

[23] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and Christian

Smith. 2022. A survey of behavior trees in robotics and ai. Robotics and Au-
tonomous Systems 154 (2022), 104096.

[24] Anja Johansson and Pierangelo Dell’Acqua. 2012. Emotional behavior trees.

In 2012 IEEE Conference on Computational Intelligence and Games (CIG). IEEE,
355–362.

[25] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. 2009. Temporal-

Logic-Based Reactive Mission andMotion Planning. IEEE Transactions on Robotics
25, 6 (2009), 1370–1381. https://doi.org/10.1109/TRO.2009.2030225

[26] Orna Kupferman, Giuseppe Perelli, and Moshe Y Vardi. 2016. Synthesis with

rational environments. Annals of Mathematics and Artificial Intelligence 78, 1
(2016), 3–20.

[27] Martin Leucker and César Sánchez. 2007. Regular linear temporal logic. In

International colloquium on theoretical aspects of computing. Springer, 291–305.
[28] Christopher D Marlin. 1979. Coroutines: A Programming Methodology, a Lan-

guage Design, and an Implementation. Ph. D. Dissertation. University of Adelaide,

Department of Computing Science.

[29] M. Mateas and A. Stern. 2002. A behavior language for story-based believable

agents. IEEE Intelligent Systems 17, 4 (2002), 39–47. https://doi.org/10.1109/MIS.

2002.1024751

[30] B. C. Moszkowski. 1998. Compositional Reasoning using Interval Temporal

Logic and Tempura. In Compositionality: The Significant Difference, Willem-Paul

de Roever, Hans Langmaack, and Amir Pnueli (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 439–464.

[31] Ana Lúcia De Moura and Roberto Ierusalimschy. 2009. Revisiting Coroutines.

ACM Trans. Program. Lang. Syst. 31, 2, Article 6 (feb 2009), 31 pages. https:

//doi.org/10.1145/1462166.1462167

[32] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray, and San-

jit A. Seshia. 2015. Reactive Synthesis from Signal Temporal Logic Specifications.

In Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control (Seattle, Washington) (HSCC ’15). Association for Computing Ma-

chinery, New York, NY, USA, 239–248. https://doi.org/10.1145/2728606.2728628

[33] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. 2008. On a

Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications

to Systems Biology. In Computational Methods in Systems Biology. Springer Berlin
Heidelberg, 251–268.

[34] Roni Rosner and Amir Pnueli. 1986. A Choppy Logic. In Proceedings of the First
Annual IEEE Symposium on Logic in Computer Science (LICS 1986) (Cambridge,

MA, USA). IEEE Computer Society Press, 306–313.

[35] Kirk Y. W. Scheper, Sjoerd Tijmons, Cornelis C. de Visser, and Guido C.

H. E. de Croon. 2016. Behavior Trees for Evolutionary Robotics†. Ar-
tificial Life 22, 1 (02 2016), 23–48. https://doi.org/10.1162/ARTL_a_00192

arXiv:https://direct.mit.edu/artl/article-pdf/22/1/23/1665258/artl_a_00192.pdf

[36] T. Schmelz and R. Lantzsch. 2018. Abschlussbericht: F&T Studie - Pilotenassistenz

für Schiffsdecklandungen (PiloDeck)[Final report: F&T Study - Pilot assitance

for ship deck landing (PiloDeck)],. Technical Note AHD-TN-ESPE-302-18 (2018).
[37] Bianca Isabella Schuchardt, Thomas Dautermann, Alexander Donkels, Stefan

Krause, Niklas Peinecke, and Gunnar Schwoch. 2020. Maritime operation of an

unmanned rotorcraft with tethered ship deck landing system. CEAS Aeronautical
Journal 12, 1 (9 2020), 1–9. https://elib.dlr.de/140951/

[38] Aleksandr Sidorenko, Jesko Hermann, and Martin Ruskowski. 2022. Using Be-

havior Trees for Coordination of Skills in Modular Reconfigurable CPPMs. In

2022 IEEE 27th International Conference on Emerging Technologies and Factory
Automation (ETFA). 1–8. https://doi.org/10.1109/ETFA52439.2022.9921558

[39] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. 2014. Timed

Pattern Matching. In Formal Modeling and Analysis of Timed Systems, Axel Legay
and Marius Bozga (Eds.). Springer International Publishing, Cham, 222–236.

[40] A. v. Perger, P. Gamper, and R. Witzmann. 2022. Behavior Trees for Smart Grid

Control. IFAC-PapersOnLine 55, 9 (2022), 122–127. https://doi.org/10.1016/j.ifacol.

2022.07.022 11th IFAC Symposium on Control of Power and Energy Systems

CPES 2022.

[41] Pierre Wolper. 1983. Temporal logic can be more expressive. Information and
control 56, 1-2 (1983), 72–99.

https://doi.org/10.1109/ASCC.2013.6606326
https://doi.org/10.1145/3603194
https://doi.org/10.1145/3603194
https://doi.org/10.1109/TCNS.2020.3029183
https://doi.org/10.1145/3426425.3426942
https://doi.org/10.1016/0304-3975(85)90225-7
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1109/ICRA.2015.7139022
https://doi.org/10.1109/LRA.2023.3287363
https://doi.org/10.1109/LRA.2023.3287363
https://doi.org/10.1109/TII.2021.3059676
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/MIS.2002.1024751
https://doi.org/10.1109/MIS.2002.1024751
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/2728606.2728628
https://doi.org/10.1162/ARTL_a_00192
https://arxiv.org/abs/https://direct.mit.edu/artl/article-pdf/22/1/23/1665258/artl_a_00192.pdf
https://elib.dlr.de/140951/
https://doi.org/10.1109/ETFA52439.2022.9921558
https://doi.org/10.1016/j.ifacol.2022.07.022
https://doi.org/10.1016/j.ifacol.2022.07.022

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

A PROOF OF THEOREM 1
We prove the Theorem 1 by structural induction on𝜑 . We show that

“For any trace 𝜎 and STL formula 𝜑 , we have 𝜎 |= 𝜑 iff 𝜌 (𝜑, 𝜎) ≥ 0”.

Proof.

Base Cases:
Case 𝜑 : 𝑝𝑖 where 𝑝𝑖 ∈ 𝐴𝑃 and |𝜎 | > 0,

𝜎 |= 𝜑

⇐⇒ 𝑓𝑖 (𝜎 (1)) ≥ 0

Def. 2⇐⇒ 𝜌 (𝑝𝑖 , 𝜎) ≥ 0

Case 𝜑 : 𝑝𝑖 where 𝑝𝑖 ∈ 𝐴𝑃 and |𝜎 | = 0,

𝜎 ̸ |= 𝜑

⇐⇒ 𝑓𝑖 (𝜎 (1)) < 0

Def. 2⇐⇒ 𝜌 (𝑝𝑖 , 𝜎) < 0

Induction Step:
Case 𝜑 : ¬𝜑1,

𝜎 |= ¬𝜑1
⇐⇒ 𝜎 ̸ |= 𝜑1
IH⇐⇒ 𝜌 (𝜑1, 𝜎) < 0

Def. 2⇐⇒ 𝜌 (¬𝜑1, 𝜎) > 0

Case 𝜑 : 𝜑1 ∧ 𝜑2,

𝜎 |= 𝜑1 ∧ 𝜑2
⇐⇒ 𝜎 |= 𝜑1 ∧ 𝜎 |= 𝜑2
IH⇐⇒ 𝜌 (𝜑1, 𝜎) ≥ 0 ∧ 𝜌 (𝜑2, 𝜎) ≥ 0

⇐⇒ min(𝜌 (𝜑1, 𝜎), 𝜌 (𝜑2, 𝜎)) ≥ 0

Def. 2⇐⇒ 𝜌 (𝜑1 ∧ 𝜑2, 𝜎) ≥ 0

Case 𝜑 : 𝜑1 ∨ 𝜑2,

𝜎 |= 𝜑1 ∨ 𝜑2
⇐⇒ 𝜎 |= 𝜑1 ∨ 𝜎 |= 𝜑2
IH⇐⇒ 𝜌 (𝜑1, 𝜎) ≥ 0 ∨ 𝜌 (𝜑2, 𝜎) ≥ 0

⇐⇒ max(𝜌 (𝜑1, 𝜎), 𝜌 (𝜑2, 𝜎)) ≥ 0

Def. 2⇐⇒ 𝜌 (𝜑1 ∨ 𝜑2, 𝜎) ≥ 0

Case 𝜑 : ♢[𝑙,𝑢] (𝜑1),

𝜎 |= ♢[𝑙,𝑢] (𝜑1)
⇐⇒ ∃𝑖 ∈ [𝑙, 𝑢], 𝜎 [𝑖 :] |= 𝜑1
IH⇐⇒ ∃𝑖 ∈ [𝑙, 𝑢], 𝜌 (𝜑1, 𝜎 [𝑖 :]) ≥ 0

⇐⇒ max

𝑖∈[𝑙,𝑢]
(𝜌 (𝜑1, 𝜎 [𝑖 :])) ≥ 0

Def. 2⇐⇒ 𝜌 (♢[𝑙,𝑢] (𝜑1), 𝜎) ≥ 0

Case 𝜑 : □[𝑙,𝑢] (𝜑1),

𝜎 |= □[𝑙,𝑢] (𝜑1)
⇐⇒ ∀𝑖 ∈ [𝑙, 𝑢], 𝜎 [𝑖 :] |= 𝜑1
IH⇐⇒ ∀𝑖 ∈ [𝑙, 𝑢], 𝜌 (𝜑1, 𝜎 [𝑖 :]) ≥ 0

⇐⇒ min

𝑖∈[𝑙,𝑢]
(𝜌 (𝜑1, 𝜎 [𝑖 :])) ≥ 0

Def. 2⇐⇒ 𝜌 (□[𝑙,𝑢] (𝜑1), 𝜎) ≥ 0

Case 𝜑 : 𝜑1 U[𝑙,𝑢] 𝜑2,

𝜎 |= 𝜑1 U[𝑙,𝑢] 𝜑2
⇐⇒ ∃𝑖 ∈ [𝑙, 𝑢], (∀𝑗 ∈ [0, 𝑖 − 1], 𝜎 [𝑗 :] |= 𝜑1) ∧ 𝜎 [𝑖 :] |= 𝜑2
IH⇐⇒ ∃𝑖 ∈ [𝑙, 𝑢], (∀𝑗 ∈ [0, 𝑖 − 1], 𝜌 (𝜑1, 𝜎 [𝑗 :]) ≥ 0)

∧𝜌 (𝜑2, 𝜎 [𝑖 :]) ≥ 0

⇐⇒ max

𝑖∈[𝑙,𝑢]
min(𝜌 (𝜑2, 𝜎 [𝑖 :]), min

𝑗∈[0,𝑖−1]
𝜌 (𝜑1, 𝜎 [𝑗 :])) ≥ 0

Def. 2⇐⇒ 𝜌 (𝜑1 U[𝑙,𝑢] 𝜑2, 𝜎) ≥ 0

□

B PROOF OF THEOREM 2
We prove the theorem by structural induction on T . We show that

“For any trace 𝜎 and TBT T , 𝜎 |= T iff 𝜌 (T , 𝜎) ≥ 0”.

Proof.

Base Case T : Leaf (𝜑)

𝜎 |= Leaf (𝜑)
⇐⇒ 𝜎 |= 𝜑
Thm. 1⇐⇒ 𝜌 (𝜑, 𝜎) ≥ 0

Induction Step:
Case T : Fback([T1, . . . ,T𝑘]),

𝜎 |= Fback([T1, . . . ,T𝑘])
⇐⇒ ∃ 𝑗 ∈ {1, . . . , 𝑘}, ∃𝑖 ∈ [0, |𝜎 | − 1], 𝜎 [𝑖 :] |= T𝑗
IH⇐⇒ ∃ 𝑗 ∈ {1, . . . , 𝑘}, ∃𝑖 ∈ [0, |𝜎 | − 1], 𝜌 (T𝑗 , 𝜎 [𝑖 :]) ≥ 0

⇐⇒ (max

𝑗∈[1,𝑘]
max

𝑖∈[0, |𝜎 |−1]
𝜌 (T𝑗 , 𝜎 [𝑖 :])) ≥ 0

Def. 4⇐⇒ 𝜌 (Fback([𝑇1, . . . ,𝑇𝑘]), 𝜎) ≥ 0

Case T : Par𝑀 ([T1, . . . ,T𝑘]),

𝜎 |= Par𝑀 ([T1, . . . ,T𝑘])
⇐⇒ ∃𝑖1, . . . , 𝑖𝑀 ∈ {1, . . . , 𝑘}, 𝜎 |= T𝑖1 , . . . , 𝜎 |= T𝑖𝑀
IH⇐⇒ ∃𝑖1, . . . , 𝑖𝑀 ∈ {1, . . . , 𝑘}, 𝜌 (T𝑖1 , 𝜎) ≥ 0, . . . , 𝜌 (T𝑖𝑀 , 𝜎) ≥ 0

⇐⇒ 𝑚𝑎𝑥𝑀 (𝜌 (T1, 𝜎), . . . , 𝜌 (T𝑘 , 𝜎)) ≥ 0

Def. 4⇐⇒ 𝜌 (Par𝑀 ([T1, . . . ,T𝑘]), 𝜎) ≥ 0

Case T : Seq([T1,T2]),

𝜎 |= Seq([T1,T2])
⇐⇒ ∃𝑖 ∈ [0, |𝜎 | − 1], 𝜎 [: 𝑖] |= T1 ∧ 𝜎 [𝑖 + 1 :] |= T2
IH⇐⇒ ∃𝑖 ∈ [0, |𝜎 | − 1], 𝜌 (T1, 𝜎 [: 𝑖]) ≥ 0 ∧ 𝜌 (T2, 𝜎 [𝑖 + 1 :]) ≥ 0

⇐⇒ max𝑖∈[0, |𝜎 |−1] min(𝜌 (T1, 𝜎 [: 𝑖]), 𝜌 (T2, 𝜎 [𝑖 + 1 :])) ≥ 0

Def. 4⇐⇒ 𝜌 (Seq([T1,T2]), 𝜎) ≥ 0

Case T : Tout𝑡 (T1)

𝜎 |= Tout𝑡 (T1)
⇐⇒ 𝜎 [: min(|𝜎 | − 1, 𝑡 − 1)] |= T1
IH⇐⇒ 𝜌 (T1, 𝜎 [: min(|𝜎 | − 1, 𝑡 − 1)]) ≥ 0

Def. 4⇐⇒ 𝜌 (Tout𝑡 (T1), 𝜎) ≥ 0

Temporal Behavior Trees HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Case T :⋆𝑛 (T1),
𝜎 |=⋆𝑛 (T1)

⇐⇒ ∃𝑖 ∈ [0, |𝜎 | − 1] .𝜎 [: 𝑖] |= T1 ∧ 𝜎 [𝑖 + 1 :] |=⋆𝑛−1 (T1)
IH⇐⇒ ∃𝑖 ∈ [0, |𝜎 | − 1] .𝜌 (T1, 𝜎 [: 𝑖]) ≥ 0∧

𝜌 (⋆𝑛−1 (T1), 𝜎 [𝑖 + 1 :]) ≥ 0

⇐⇒ max𝑖∈[0, |𝜎 |−1] min(𝜌 (T1, 𝜎 [: 𝑖]),
𝜌 (⋆𝑛−1 (T1), 𝜎 [𝑖 + 1 :])) ≥ 0

Def. 4⇐⇒ 𝜌 (Seq([T1,⋆𝑛−1 (T1)]), 𝜎) ≥ 0

Def. 4⇐⇒ 𝜌 (⋆𝑛 (T1), 𝜎) ≥ 0

□

C PROOF OF THEOREM 6
Let 𝜎 be a 𝛿-stuttering trace for a given 𝛿 ≥ 1. Let T be a 𝛿 preserv-

ing TBT. Recall that (a) every occurrence of U[𝑙,𝑢] has 𝑙 = 0 and

𝑢 divisible by 𝛿 ; (b) every occurrence of ♢[𝑙,𝑢] and □[𝑙,𝑢] has 𝑙, 𝑢
divisible by 𝛿 and (c) every occurrence of Tout𝑡 has 𝑡 divisible by 𝛿 .

Let T ′ be the TBT with each occurrence of ⊲⊳[𝑙,𝑢] replaced with

⊲⊳[𝑙/𝛿,𝑢/𝛿] for ⊲⊳∈ {U, ♢,□} and every occurrence of Tout𝑡 replaced
by Tout𝑡/𝛿 .

Let 𝜎′ be the subsampled trace where 𝜎′ (𝑖 + 1) = 𝜎 (𝑖𝛿 + 1) for
𝑖 ∈ {0, . . . , |𝜎 |

𝛿
− 1}.

We say that a set of consecutive trace positions in 𝜎 forms a

block 𝐵𝑖 : {𝑖𝛿 + 1, . . . , (𝑖 + 1)𝛿}. Thus, we can partition the indices

of trace 𝜎 into𝑚 =
|𝜎 |
𝛿

contiguous blocks 𝐵0, . . . , 𝐵𝑚−1.
First, we will prove for every TBT T that is 𝛿-preserving and of

the form Leaf (𝜑) that if 𝜑 holds at the first position of the block

then it holds everywhere in the block (and vice-versa).

Lemma 3. For a 𝛿 preserving TBT T of the form Leaf (𝜑), a 𝛿-
stuttering trace 𝜎 and index 𝑖 ≥ 0 such that 𝑖𝛿 + 1 ≤ |𝜎 |,

𝜎 [𝑖𝛿 :] |= 𝜑 iff 𝜎 [𝑖𝛿 + 𝑘 :] |= 𝜑 ,

for all 𝑘 ∈ {0, . . . , 𝛿 − 1}.

Note that the converse direction holds trivially since we can set

𝑘 = 0.

Proof. Proof is by induction on the structure of the formula 𝜑 .

Assume 0 ≤ 𝑖 < 𝑚 and 0 ≤ 𝑘 ≤ 𝛿 − 1.
Case𝜑 is an atomic proposition 𝑝 : True by definition of a𝛿-stuttering

trace (Def. 8).

Case 𝜑 : 𝜑1 ◦ 𝜑2 where ◦ ∈ {∧,∨}. Since we assume the result

by induction on the subformulas 𝜑1, 𝜑2, the proof follows directly

from that.

Case 𝜑 : ¬𝜑1. By induction, we have

𝜎 [𝑖𝛿 :] |= 𝜑1 iff 𝜎 [𝑖𝛿 + 𝑘 :] |= 𝜑1 ,

Therefore,

𝜎 [𝑖𝛿 :] ̸|= 𝜑1 iff 𝜎 [𝑖𝛿 + 𝑘 :] ̸|= 𝜑1 ,

It follows that

𝜎 [𝑖𝛿 :] |= ¬𝜑1 iff 𝜎 [𝑖𝛿 + 𝑘 :] |= ¬𝜑1 ,
Case 𝜑 : ♢[𝑙,𝑢]𝜑1.

𝜎 [𝑖𝛿 :] |= ♢[𝑙,𝑢]𝜑1 iff ∃ 𝑗 ∈ [𝑖𝛿 + 𝑙, 𝑖𝛿 + 𝑢] 𝜎 [𝑗 :] |= 𝜑1

Assume 𝜎 [𝑖𝛿 :] |= ♢[𝑙,𝑢]𝜑1. Let 𝑗 + 1 ∈ 𝐵𝑟 for some block 𝐵𝑟 :

{𝑟𝛿 + 1, . . . , (𝑟 + 1)𝛿}. The reason we consider 𝑗 + 1 is that 𝜎 [𝑗 :]

by convention begins at state 𝜎 (𝑗 + 1). Therefore, 𝑗 = 𝑟𝛿 + 𝑟 for
𝑟 ∈ {0, . . . , 𝛿 − 1}

By induction hypothesis: 𝜎 [𝑟𝛿 + 𝑘 :] |= 𝜑1 for 𝑘 ∈ {0, . . . , 𝛿 − 1}.
and 𝑗 − 𝑖𝛿 ∈ [𝑙, 𝑢]. Therefore, 𝑟 + 𝑟𝛿 − 𝑖𝛿 ∈ [𝑙, 𝑢]. However, since 𝑙
and 𝑢 are divisible by 𝛿 and 𝑟 < 𝛿 , we obtain

𝑟

𝛿
+ 𝑟 − 𝑖 ∈ [𝑙

𝛿
,
𝑢

𝛿
] or, equivalently, 𝑟 − 𝑖 ∈ [𝑙

𝛿
,
𝑢

𝛿
] .

Therefore, 𝑟𝛿 ∈ 𝑖𝛿 + [𝑙, 𝑢]. 𝜎 [𝑖𝛿 + 𝑘 :] |= ♢[𝑙,𝑢]𝜑1 for all 𝑘 since

𝜎 [𝑟𝛿 + 𝑘 :] |= 𝜑1 and (𝑟𝛿 + 𝑘) − (𝑖𝛿 + 𝑘) ∈ [𝑙, 𝑢].
Conversely, if 𝜎 [𝑖𝛿 +𝑘 :] |= ♢[𝑙,𝑢]𝜑1 for all 𝑘 , then so does 𝜎 [𝑖𝛿 :].

Case 𝜑 : □[𝑙,𝑢]𝜑1. Proof is similar to the ♢[𝑙,𝑢] case.
Let 𝜎 [𝑖𝛿 :] |= □[𝑙,𝑢]𝜑 . Therefore, for all 𝑗 ∈ 𝑖𝛿 + [𝑙, 𝑢] we have

𝜎 [𝑗 :] |= 𝜑1 .

Consider block 𝐵𝑖 : {𝑖𝛿 + 1, . . . , (𝑖 + 1)𝛿}. Let 𝑙 = 𝑙 ′𝛿 and 𝑢 = 𝑢′𝛿 .
Then, we note by induction that all indices in the blocks:

𝐵𝑖+𝑙 ′ , . . . , 𝐵𝑖+𝑢′

satisfy 𝜑1.

Therefore, for all 𝑘 ∈ {0, . . . , 𝛿 − 1} for all 𝑗 ∈ {(𝑖 + 𝑙 ′)𝛿 + 1 +
𝑘, . . . , (𝑖 + 𝑢′)𝛿 + 1 + 𝑘}, we have

𝜎 [𝑗 :] |= 𝜑1 .

Therefore, 𝜎 [𝑖𝛿 + 𝑘 :] |= □[𝑙,𝑢]𝜑1.
The converse holds trivially.

Case 𝜑 : 𝜑1U[0,𝑢]𝜑2.
If 𝑢 = 0 then 𝜑 is logically equivalent to 𝜑2 and the result imme-

diately holds. Assume 𝑢 > 0.

Let 𝜎 [𝑖𝛿 :] |= 𝜑 . There exists 𝑗 ∈ [𝑖𝛿, 𝑖𝛿 + 𝑢] such that

𝜎 [𝑗 :] |= 𝜑2

and for all 𝑗 ′ ∈ [𝑖𝛿, 𝑗 − 1]
𝜎 [𝑗 ′ :] |= 𝜑1

Once again let 𝐵𝑟 : {𝑟𝛿 + 1, . . . , (𝑟 + 1)𝛿} be the block containing
𝑗 + 1. Once again by induction, we have all indices in 𝐵𝑟 satisfy 𝜑2.

Also, all indices in the range 𝑗 ′ ∈ [𝑖𝛿, 𝑟𝛿) satisfy 𝜎 [𝑗 ′ :] |= 𝜑1.

If 𝐵𝑟 is the same block as 𝐵𝑖 then we note that

𝜎 [𝑖𝛿 + 𝑘 :] |= 𝜑2 and thus 𝜎 [𝑖𝛿 + 𝑘 :] |= 𝜑1U[0,𝑢]𝜑2 .
Otherwise, we have 𝑟 > 𝑖 . Since 𝑗 −𝑖𝛿 ≤ 𝑢 we have 𝑗 = 𝑟𝛿 +𝑟 and

𝑟𝛿 − 𝑖𝛿 + 𝑟 ≤ 𝑢′𝛿 . Dividing by 𝛿 , we get 𝑟 − 𝑖 + 𝑟
𝛿
≤ 𝑢′ or 𝑟 − 𝑖 ≤ 𝑢′.

Therefore, (𝑟𝛿 − 𝑖𝛿) ≤ 𝑢. Therefore, for all 𝑘 ∈ {0, . . . , 𝛿 − 1}, we
have

𝑟𝛿 − (𝑖𝛿 + 𝑘) ≤ 𝑢 − 𝑘 ≤ 𝑢 .

Therefore, we conclude that

𝜎 [𝑖𝛿 + 𝑘 :] |= 𝜑1U[𝑙,𝑢]𝜑2
since 𝜎 [𝑟𝛿] |= 𝜑2, 𝜎 [𝑗 ′ :] |= 𝜑1 for all 𝑗 ′ ∈ [𝑖𝛿, 𝑟𝛿) and 𝑟𝛿 ∈
𝑖𝛿 + 𝑘 + [0, 𝑢].

□

To establish the main Theorem 6, we will need to establish the

following lemma. Let 𝜑 be an STL formula that is 𝛿 preserving and

𝜑 ′ be obtained by transforming every interval [𝑙, 𝑢] associated with
♢,□,U into [𝑙

𝛿
, 𝑢
𝛿
].

Lemma 4. For all 𝑖 such that 𝑖𝛿 < |𝜎 |, if 𝜎′ [𝑖 :] |= 𝜑 ′ then 𝜎 [𝑖𝛿 :

] |= 𝜑 .

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Schirmer et al.

Proof. Proof is once again by induction on the structure of the

formula 𝜑 .

Case 𝜑 is an atomic proposition 𝑝: we have 𝜑 ′ = 𝜑 . The rest

holds by definition of subsampling.

Case 𝜑 ∈ {¬𝜑1, 𝜑1 ∨ 𝜑2, 𝜑1 ∧ 𝜑2}: holds by induction on the sub-

formulas.

Case 𝜑 : ♢[𝑙𝛿,𝑢𝛿]𝜑1: We have 𝜑 ′ : ♢[𝑙,𝑢]𝜑
′
1
. Therefore, 𝜎′ [𝑖 :] |= 𝜑 ′

iff ∃ 𝑗 ∈ [𝑖 + 𝑙, 𝑖 + 𝑢] 𝜎′ [𝑗 :] |= 𝜑 ′
1
. By Ind. Hyp., 𝜎 [𝑗𝛿 :] |= 𝜑1. Also,

𝑗𝛿 ∈ 𝑖𝛿 + [𝑙𝛿,𝑢𝛿]. Therefore, 𝜎 [𝑖𝛿 :] |= ♢[𝑖𝛿,𝑗𝛿]𝜑1.
Case 𝜑 : □[𝑙𝛿,𝑢𝛿]𝜑1: We have 𝜑 ′ : □[𝑙,𝑢]𝜑

′
1
. Therefore, 𝜎′ [𝑖 :] |= 𝜑 ′

iff ∀𝑗 ∈ [𝑖 + 𝑙, 𝑖 + 𝑢] 𝜎′ [𝑗 :] |= 𝜑 ′
1
. By Ind. Hyp., 𝜎 [𝑗𝛿 :] |= 𝜑1 for all

𝑗 ∈ 𝑖 + [𝑙, 𝑢]. Using Lemma 3, we conclude that 𝜎 [𝑗𝛿 +𝑘 :] |= 𝜑1 for

all 𝑗 ∈ 𝑖 + [𝑙, 𝑢] and for all 𝑘 ∈ [0, 𝛿 − 1]. Therefore, we conclude
that 𝜎 [𝑖𝛿 :] |= □[𝑙𝛿,𝑢𝛿]𝜑1.
Case 𝜑 : 𝜑1U[0,𝑢𝛿]𝜑2: We have 𝜑 ′ : 𝜑 ′

1
U[0,𝑢]𝜑 ′2. Therefore, 𝜎

′ [𝑖 :
] |= 𝜑 ′ iff ∃ 𝑗 ∈ [𝑖, 𝑖 + 𝑢] 𝜎′ [𝑗 :] |= 𝜑 ′

2
and 𝜎′ [𝑗 ′ :] |= 𝜑 ′

1
for

𝑗 ′ ∈ [𝑖, 𝑗). By Ind. Hyp., 𝜎 [𝑗𝛿 :] |= 𝜑2 and 𝜎 [𝑗 ′𝛿 :] |= 𝜑1. Lemma 3,

we conclude that 𝜎 [𝑗 ′𝛿 + 𝑘 :] |= 𝜑1 for all 𝑗
′ ∈ 𝑖 + [0, 𝑗) and for all

𝑘 ∈ [0, 𝛿 − 1]. Therefore, we conclude that 𝜎 [𝑖𝛿 :] |= 𝜑1U[𝑙𝛿,𝑢𝛿]𝜑2.
□

Proof of Theorem 6: Now we will prove a stronger version from

which the required result follows directly.

Lemma 5. If 𝜎′ [𝑖 : 𝑗] |= T ′ then 𝜎 [𝑖𝛿 : 𝑗𝛿 + 𝛿 − 1] |= T

Proof. Let 𝜎′ [𝑖 : 𝑗] |= T ′. If 𝜎′ [𝑖 : 𝑗] is empty then so is

𝜎 [𝑖𝛿 : 𝑗𝛿 + 𝛿 − 1] and the statement holds trivially.

Proof is on the structure of the T .
Case T = Leaf (𝜑): Follows directly from Lemma 4 applied to the

sub-trace 𝜎 [𝑖𝛿 : 𝑗𝛿 + 𝛿 − 1] which is also a delta-stuttering trace.

Case T : Seq([T1,T2]).
𝜎′ [𝑖 :] |= Seq([T ′

1
,T ′

2
])
⇒ ∃ 𝑢 ≥ 𝑖, 𝜎 [𝑖 : 𝑢] |= T ′

1
, 𝜎 [𝑢 + 1 :] |= T ′

2

Note that 𝜎 [𝑖𝛿 : 𝑢𝛿 + 𝛿 − 1] and 𝜎 [(𝑢 + 1)𝛿 :] are 𝛿 stuttering traces

and by induction hypothesis, we have

𝜎 [𝑖𝛿 : 𝑢𝛿 + 𝛿 − 1] |= T1 and 𝜎 [(𝑢 + 1)𝛿 :] |= T2 .
Therefore, 𝜎 |= Seq(T1,T2).
Case T : Fback([T1, . . . ,T𝑘]).

𝜎′ [𝑖 : 𝑗] |= Fback([T ′
1
, . . . ,T ′

𝑘
]). It follows that there exists

𝑟 ≥ 𝑖 and 𝑙 ∈ [1, 𝑘] such that

𝜎′ [𝑟 : 𝑗] |= T ′
𝑙
.

By induction, 𝜎 [𝑟𝛿 : 𝑗𝛿 +𝛿 −1] |= T𝑙 . Therefore, 𝜎 [𝑖𝛿 : 𝑗𝛿 +𝛿 −1] |=
Fback([T1, . . . ,T𝑘]).
Case T : Par𝑀 ([T1, . . . ,T𝑘]).

We have 𝜎′ [𝑖 : 𝑗] |= Par𝑀 ([T ′1 , . . . ,T
′
𝑘
]) iff there are𝑀 subtrees

T ′
𝑖1
, . . . ,T ′

𝑖𝑀
such that

𝜎′ [𝑖 : 𝑗] |= T ′𝑖 𝑗 .

By induction 𝜎 [𝑖𝛿 : 𝑗𝛿 + 𝛿 − 1] |= T𝑖 𝑗 and thus

𝜎 [𝑖𝛿 : 𝑗𝛿 + 𝛿 − 1] |= Par𝑀 ([T1, . . . ,T𝑘]) .
Case T : Tout𝑡 (T1).

We have 𝜎′ [𝑖 : 𝑗] |= Tout𝑡T ′
1
. Assume that 𝑗 − 𝑖 + 1 ≥ 𝑡 .

𝜎′ [𝑖 : 𝑖+𝑡−1] |= T ′
1
. By induction, 𝜎 [𝑖𝛿 : 𝑖𝛿+(𝑡−1)𝛿+𝛿−1] |= T1.

Therefore, 𝜎 [𝑖𝛿 : 𝑡𝛿 − 1] |= Tout𝑡𝛿 (T1).

Case T :⋆𝑛 (T1).
Let 𝜎′ [𝑖 : 𝑗] |=⋆𝑛 (T1). There exists indices −1 = 𝑖1, . . . , 𝑖𝑘 = 𝑗

for 𝑘 ≤ 𝑛 + 1 such that 𝜎′ [𝑖1 + 1 : 𝑖2] |= T ′
1
, 𝜎 [𝑖2 + 1 : 𝑖3] |= T ′

1
,

· · · , 𝜎 [𝑖𝑘−1 + 1 : 𝑖𝑘] |= T ′1 . Therefore, for each 𝑙 , 𝜎 [(𝑖 − 𝑙 + 1)𝛿 :

𝑖𝑙+1𝛿 + 𝛿 − 1] |= T1. Therefore, 𝜎 [𝑖𝛿 : 𝑗𝛿 + 𝛿 − 1] |=⋆𝑛 (T1).
□

Theorem 6 follows directly.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Temporal Behavior Trees
	2.1 Syntax and Semantics
	2.2 Computing Robustness

	3 Segmenting Traces
	4 Empirical Evaluation and Case-Studies
	4.1 Analysis of Human Behavior
	4.2 Autonomous Ship Deck Landing

	5 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 6

