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Abstract— A self-contained calibration procedure that can be
performed automatically without additional external sensors or
tools is a significant advantage, especially for complex robotic
systems. Here, we show that the kinematics of a multi-fingered
robotic hand can be precisely calibrated only by moving the tips
of the fingers pairwise into contact. The only prerequisite for
this is sensitive contact detection, e.g., by torque-sensing in the
joints (as in our DLR-Hand II) or tactile skin. The measurement
function for a given joint configuration is the distance between
the modeled fingertip geometries, but the actual measurement
is always zero. In an in-depth analysis, we prove that this
contact-based calibration determines all quantities needed for
manipulating objects with the hand, i.e., the difference vectors
of the fingertips, and that it is as sensitive as a calibration using
an external visual tracking system and markers. We describe
the complete calibration scheme, including the selection of
optimal sample joint configurations and search motions for the
contacts despite the initial kinematic uncertainties. In a real-
world calibration experiment for the torque-controlled four-
fingered DLR-Hand II, the maximal error of 17.7mm can be
reduced to only 3.7mm.
Web: https://dlr-alr.github.io/2023-humanoids-contact/

I. INTRODUCTION

Autonomous robots that robustly perform dextrous ma-
nipulation tasks in the real world generally require precise
models of the system’s kinematics. Regarding multi-fingered
robotic hands, one crucial class is planning algorithms for
finding an optimal grasp for a given 3D model of an
object [1, 2]. This task depends on the precise placement of
the fingers on the object’s surface. Another class is methods
for dextrous in-hand manipulation. Here, only recent modern
deep reinforcement learning algorithms trained in simulation
have enabled dexterity close to human performance. Primar-
ily when performed in a purely tactile setting [3, 4, 5],
i.e., without cameras, where only joint angles (and tactile
measurements, e.g., via torque-sensing) are used, robust zero-
shot sim2real transfer requires a precise kinematics model
with a maximal error of a few millimeters.

It is desirable to have a quick calibration procedure that
runs entirely automatically and is self-contained, i.e., it does
not need any additional external sensors or tools to obtain a
precise kinematic model.

A. Related Work

A classical and often-used approach for calibrating kine-
matic chains and trees is visual tracking of the end-
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Fig. 1. DLR-Hand II [6] with thumb and index finger in contact for different
poses. The kinematic tree of the whole hand is indicated in orange, and the
three active joints plus the fourth passive joint are drawn together with the
dimensions of the fingers. The other two fingers are far extended to allow
for a large shared workspace of the current pair. For the whole calibration,
all six finger pairs are measured and calibrated jointly.

effector(s). For a robotic hand, this visual approach with an
external tracking system was demonstrated by Lee et al. [7].
However, adding visual markers to the many end-effectors is
pretty cumbersome, especially as more than one marker is
usually required per fingertip due to the mutual occlusions of
the many fingers in the small workspace of a hand. Using an
electromagnetic tracking system to measure the position and
orientation of the fingertips [8] is less prone to occlusions.
However, the requirement for additional hardware hinders
the ease of use of such an approach.

Another calibration procedure that avoids the need for a
tracking system uses geometric constraints on the kinematic
chain. An early work constrained the motion of an end-
effector on a plane to calibrate a robotic arm [9]. Since then,
there have been examples of using mechanical fixtures [10],
relative calibration techniques [11], and precise reference
plates [12] to calibrate a robotic arm without a vision
system. Bennett and Hollerbach [13] applied these ideas to a
robotic hand and calibrated the multi-finger Utah-MIT hand
by rigidly connecting two fingertips with a plate, resulting
in a closed-loop kinematic chain. A downside of all those
approaches is that the mounting procedure can damage the
fingers and takes time, especially if it needs to be repeated
for each finger pair.

A particular case of the relative geometric calibration
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techniques does not require mechanical fixtures to enforce
the constraints but relies on self-contact. The humanoid
robot iCub was intensely used for such studies. First in
simulation [14] and then on the actual hardware together with
other sensing modes [15]. Roncone et al. [16] calibrated the
full DH parameters of the iCub robot using self-touch with a
tactile skin with 4200 sensing points. Besides identifying the
parameters of a given kinematic chain, self-contact can also
be used to incrementally update the kinematic scheme [17]
or identify the layout of an artificial tactile skin [18].

B. Contributions

In prior work, an external camera system was first used to
calibrate an elastic kinematic model of the humanoid Agile
Justin [19]. Then, this approach became more accessible by
using the robot’s internal RGB camera to calibrate the com-
plete kinematic tree [20]. This paper extends the calibration
to the DLR-Hand II [6, 21] (see Fig. 1) of the robot and
introduces a contact-based approach that does not rely on
anything other than the kinematic tree structure itself. The
main contributions of this work are:

• We show, to our knowledge for the first time, that the
kinematics of a multi-fingered hand can be calibrated
using only contact measurements of (all) finger pairs,
i.e., without any external tools like cameras or markers.

• An in-depth theoretical analysis of the calibration prob-
lem with redundant parameters, including proof that
the quantities relevant for manipulation tasks, i.e., the
difference vectors between the fingertips, are entirely
determined by our contact measurement scheme.

• A comparison of calibration by contact measurements
with calibration using a visual tracking system (theoret-
ical analysis and simulation experiments).

• A complete scheme for executing a contact-based cal-
ibration for a general multi-fingered hand, including
optimal selection of finger configurations and planning
of search motions to deal with the initial uncertainties
in the kinematics.

• Real-world experiments with the contact calibration of
the DLR-Hand II resulting in a reduction of the maximal
error from 17.7mm for the nominal kinematic to only
3.7mm for the full DH parameters calibration.

II. ROBOT MODEL

The forward kinematics of a robot maps from the con-
figuration space of generalized joint angles to the robots’
physical pose in the cartesian workspace. Both for robotic
arms and hands, an accurate model of the robot’s kinematics
is essential for precise and collision-free motions. A well-
fitted model is also required to perform challenging grasping
and manipulation tasks.

DH parameters are widely used to describe this kine-
matic model of the robot. In this formulation, four values
ρi = [di, ri, αi, θi] describe the connection between two
consecutive frames of the robot:

i−1Ti = Rotx(αi) · Transx(ri) · Rotz(θi) · Transz(di) (1)

Fig. 2. The scheme shows the actual contact measurement on the hardware
(black) and the same joint configuration applied to the robot model (gray).
The fingers are in penetration for the current set of calibration parameters.
This error (red) should be minimized over the calibration process.

The joints qi are treated as offsets to θi or di in (1) depending
on the type of joint. This minimal representation with two
translational and two rotational parameters is enough to
describe an arbitrary robot.

The frame of the end-effector (i = E) relative to the
robot’s base (i = 0) is calculated by applying the trans-
formations in series:

0TE = 0T1 · 1T2 · . . . · E−1TE (2)

For robots with a kinematic tree structure with multiple
end-effectors Ek, k = 1 . . . NE, equation (2) holds for each
branch. The forward kinematics maps from joint configura-
tions q ∈ Q to all the NF frames of the robot

f(q, ρ) = F = [0T1,
0T2, . . . ,

0TNF
]. (3)

Each frame Fi describes a full 6D pose (Fi,x, Fi,r) ∈ R3 ×
SO(3).

III. CALIBRATION FOR IN-HAND MANIPULATION

A. Identification

The goal of the calibration is to identify this kinematic
model. In our case, the central parameters of the forward
model are the DH parameters ρ. Nevertheless, in general,
there can be additional parameters that have to be estimated
jointly with the kinematic parameters. Examples are camera
intrinsics or additional frames to close the measurement loop.
We denote the combination of all calibration parameters
Θ. These parameters of the measurement function h can
be identified using a dataset D = {(q(n), y(n))}n=1...N of
corresponding pairs between the robot’s configuration q(n)

and the measurement y(n). We formulate the identification
as a single combined least-squares problem based on all
measurements and all body parts to minimize the error ϵ =
y − h(q,Θ) between measurements and model predictions.
To find the optimal parameters Θ∗, we use the maximum a
posteriori (MAP) approach:

min
Θ

[
N∑
n

1

σ2
m

∥∥∥y(n) − h(q(n),Θ)
∥∥∥2 +∆ΘTΛ−1

p ∆Θ

]
with ∆Θ = Θ−Θp

This approach employs a Gaussian distribution beforehand,
characterized by a mean Θp and a diagonal covariance
matrix Λp = diag σ2

p. The uncertainty of the calibration
parameters is modeled via σp. Furthermore, we assume
the usual Gaussian distribution with a mean of zero and
a standard deviation of σm for the measurement noise. By



Fig. 3. The scheme shows the three measurement functions discussed in
Section III. Top (Section III-B): The task measurement function ht measures
the relative positions of the end-effectors. Middle (Section III-D): The
contact measurement function hc measures the scalar distance between two
end-effectors. Bottom (Section III-C): The cartesian measurement function
hv uses an external tracking system to measure the absolute position of the
end-effectors.

incorporating the prior, this method is regularized, ensuring
a minimum exists, even if there are redundancies in the
measurement or kinematic model.

B. Task Measurement Function

We aim to calibrate this kinematic model of the hand
for dextrous in-hand manipulation. To move the fingers in
a controlled manner, as demonstrated by Pitz et al. [4] with
the cube, an accurate model for the relative positions of the
fingertips to each other is necessary. To relate closely to this
task, we chose our desired measurement function to measure
the relative positions directly. The calibration process should
then minimize the error of this function.

For NE fingers, NE − 1 distance vectors define the whole
set. One can choose one fingertip E1 as the basis and
compute the positions relative to it for the remaining fingers

yk = hk
t (q, ρ) = f(q, ρ)Ek,x − f(q, ρ)E1,x (4)

One can then concatenate the measurements for
the pairs to get the combined measurements
ht = [h2

t , . . . , h
NE
t ], hk

t ∈ R3. This results in 3 · (NE − 1)
data points per robot pose for the three spatial directions
and NE end-effectors.

Note that (4) is our theoretically desired measurement
function, which measures all the information we care about
for precise in-hand manipulation. For example, we can
not detect a translational offset of all end-effectors like a
cartesian tracking system could. However, such a shift does
not change the fingers’ relative behavior and is irrelevant to
our task.

Task Test Set: Besides the task measurement function, the
test set is central to evaluating the calibration quality. We
want a high accuracy across the whole cartesian workspace.
Therefore, the test set for evaluating all our experiments
should be uniformly distributed in the cartesian workspace.
We sample random joint configurations for each finger and
map them to the end-effector positions via the forward
kinematics f . In the cartesian workspace, we create a fine

Fig. 4. The graphic shows the contact calibration approach for a four-
fingered hand. For pairwise contact, two fingers always need to move out of
the shared workspace of the current finger pair to ensure that self-collisions
are avoided and the available configuration space for contact detection is
well used.

grid and draw one of the grid cells uniformly, and in the
second step, we draw one joint configuration that lies in
this grid cell. This sampling strategy ensures a uniform
distribution over the workspace, which does not hold for
configurations sampled randomly in the configuration space.

After defining a suitable measurement function and test
set for our task, we discuss the actual measurement methods
that can be applied to the hardware. First, an external
camera system that tracks the cartesian position of visual
markers followed by our pairwise contact measurements.
Note that there are also additional considerations, especially
the independence of particular infrastructure and the low
complexity of the measurement setup, speaking in favor of
contact-based measurements.

C. Cartesian Measurement Function

One option to perform the actual measurements is to
mount visual markers on the kinematic tree and use an
external tracking system to collect cartesian measurements
of these markers. Assuming that the markers are fixed
at position mEk

relative to end-effector Ek, the cartesian
measurement function

yk = hv(q,Θ)k = cT0 · f(q,Θ)Ek
·mEk

(5)

describes how a marker moves dependent on the joint
configuration q and the calibration parameters Θ. Suppose
one wants to calibrate the forward kinematics jointly for
multiple end-effectors. In that case, one can combine the
measurements for each of the NE markers to a combined
measurement function hv = [h1

v, . . . , h
NE
v ], hk

v ∈ R3. While,
in general, the measurements with an external camera can be
made without constraining the robot directly, one still needs
to account for self-collision and a clear view of the markers.
These additional constraints reduce the possible space in
which measurements can be collected.

D. Contact Measurement Function

Another option to perform the actual measurement is
to use contact information. We describe this procedure in
more detail in Section V. In general, the corresponding



Fig. 5. This figure shows the ordered eigenvalues for different measurement
setups to analyze the sensitivity. The evaluation was done with the nominal
kinematic of the DLR-Hand II; for a more generic hand, see the right plot.
The task measurement function ht is blue, and our contact measurement
function hc is red. Furthermore, we show three modes. For the one where all
the pairs are calibrated simultaneously (⬢), the kernels of both measurement
functions have the same size. The same is true for the calibration with three
fingers (▲) However, the kernel sizes differ when just a single pair (•) is
considered. The light gray vertical lines indicate the maximal number of
parameters for each mode.

measurement function measures the distance between parts
of the robot. One needs the exact geometry of the two
bodies to compute the distance du between a pair of bodies
u = (Ek, El) on the kinematic tree. The distance is only
dependent on the relative position and orientation of the
bodies

du = du(EkTEl
) = du(f(q, ρ)−1

Ek
· f(q, ρ)El

) = du(q, ρ).
(6)

This relative frame EkTEl
is directly computable from the

forward kinematics f(q, ρ).
If the bodies at Ek and El have simple geometric forms,

one can directly compute the distance dm. In the case of
the DLR-Hand II, the fingertips are perfect capsules in the
contact area and, therefore, straightforward to compute. The
more general case is that the geometries are given as arbitrary
meshes. In this case, one has to use, for example, algorithms
like GJK to compute the distance.

The contact measurement function for the pair u can now
be written as

yu = hc(q,Θ)u = du(f(q, ρ)). (7)

This function can only measure the scalar distance between
two body pairs. With NE end-effectors on the kinematic tree,
there are in total NU =

(
NE

2

)
pairs. The combined measure-

ment function is in this case hc = [h1
c , . . . , h

NU
c ], hk

c ∈ R
The contact measurement adds hard constraints to the

data collection (see Section V-A). As only configurations in
contact can be measured, the available configuration space is
drastically reduced. Therefore, the remaining subspace can
be quite different from the cartesian task test set described
in Section III-B. The following section discusses how those
different measurement functions relate and how many param-
eters they can identify. Furthermore, we discuss the influence
of the different calibration and test sets on the sensitivity.

Fig. 6. The plot is structured equivalently to Fig. 5 but for a more generic
hand kinematic without parallel axes or mounting frames. Here, in theory,
all 64 parameters for the entire hand (⬢) can be identified. However, when
only two fingers are considered (•), the contact measurement function hc

is still less sensitive than the task measurement function ht. This speaks in
favor of a holistic calibration of the whole kinematic tree.

IV. PROBLEM ANALYSIS

A. Sensitivity Analysis

A single contact measurement (7) measures less infor-
mation than a cartesian tracking system (5). The tracking
system can measure the absolute position of the markers in
the workspace. The contact can only measure the relative
distance between two parts of the kinematic chain. In other
words, the contact can measure the joint angles where the
distance between the two bodies is zero.

The question is whether this reduced information in the
measurement function leads to non-identifiable parameters.
We can answer this question directly by looking at the
jacobians of the different measurement functions

Js =
∂h(qs,Θ)

∂Θ

∣∣∣
Θ0

. (8)

Assuming that each measurement is d-dimensional, con-
catenating those matrices for each measurement leads to
the combined jacobian J = [J1, . . . , JND ] with dimensions
(ND · d) × NΘ. We can investigate which parameters are
identifiable by the measurement function h by looking at
the nullspace of JTJ. The size of the nullspace marks how
many of the model parameters Θ can not be identified.
Furthermore, from the eigenvectors corresponding to the
eigenvalues close to zero, one can identify the parameters
(or sets of parameters) which can not be measured.

When one deals with two distinct measurement functions,
as we described with the desired task ht and our actual
contact measurement function hc, the necessary condition
is that

kernel(JT
c Jc) ⊆ kernel(JT

t Jt). (9)

If this condition is satisfied, one can identify all the relevant
parameters to the task, defined by ht. Note that this is less
strict than demanding that both kernels are zero and applies
in general to distinct measurement functions for calibration
and evaluation. We allow for unidentifiable parameters if they
do not influence our desired measurement function.

B. Optimal Experimental Design

Following Carrillo et al. [22], we use task D-optimality to
select appropriate samples for measuring. However, we have



two key differences in our setup. First, we have a theoretical
desired task measurement function ht and an actual measure-
ment function hc we can apply on the hardware. Ultimately,
we want a good fit for the desired measurement function.
Second, the contact measurement reduces the configuration
space quite drastically. Still, we want a good fit and high
accuracy across the whole workspace. Therefore we also
have two sets here. The desired test set is uniformly sampled
across the whole cartesian test set and one actual test set,
which can be measured via contact detection. We generalize
the optimality framework to account for those mismatches
between measurement functions and distributions. Carrillo
et al. [22] showed that the central equation decouples and
the task D-optimality can efficiently be computed with

OD =
1

l
det

(
cov(Θ)

ND̄∑
s=1

Js
t
TJs

t

)
. (10)

The mean over JT
i Ji is constant for a given test set of

size ND̄ and a desired task measurement function ht. The
covariance over the calibration measurements can be esti-
mated using the actual chosen measurement function and
the specific calibration set. Let S = {si}ND

i=1 be a subset
of a larger calibration set and Jc = [Js1

c , . . . , J
sND
c ] the

combined jacobians corresponding to those measurements.
Then the covariance is given by

cov(Θ) = JT
c diag(σ2

m)Jc + diag(σ2
p) (11)

and transforms the uncertainty in the measurements σm and
the priors σp into an uncertainty in the parameters.

(10) lets us compute how well different calibration sets
are suited to minimize the error of the desired measurement
function over a desired test set. This criterion can be used to
choose a good set of suitable poses for measuring. Besides
reducing the overall size of the necessary calibration set,
this selection criterion also counteracts the mismatch in the
measurement functions and the calibration and test sets. We
report the results of the sensitivity analysis and the optimal
selection criterion in Section VI-B

V. CONTACT MEASUREMENT PROCEDURE

A. Sample Generation

Our approach is to collect pairwise contact measurements
for the tree structure of the hand. A key difference for
contact-based calibration is that one does not know the exact
joint configuration, which will be measured beforehand.
Generally, the measurement process collects pairs (q, y) to
calibrate a function g(q, θ) = y. For vision-based measure-
ments, one collects the cartesian position yi for selected
joints qi. On the other hand, for contact-based measurements,
the yi is known a priori; the contact is, by definition, yi = 0.
The contact measurement delivers the exact configuration qi,
which leads to contact.

Therefore, contact measurement must also include a search
to find the exact configuration in which the contact happens.
We tackle this problem by generating for each measurement
point a trajectory along which contact will probably happen.

Fig. 7. Red: L2 norm of ∆τ . ∆τ denotes the difference between the
torque signal measured by the passive finger before the approach started,
τ0, and the currently measured torque. Blue: L2 norm of ∆q. ∆q denotes
the difference between the position signal measured by the passive finger
before the approach started and the currently measured position. The contact
is detected when the torque threshold τt = 0.1Nm is exceeded. Note how
the passive finger’s joint angles can change after the active finger starts to
drive causing vibrations in the system. The torque sensors only measure
noise until the contact occurs.

We define this path by its endpoints. The start configuration
is far from contact with the nominal robot model, and the
end configuration is deep in penetration. Between those
endpoints, we then detect contact for the specific finger pair.

Our approach to generating these search trajectories for
the contact measurements consists of multiple steps. The
first step is to find the volume in the workspace which both
end-effectors can reach. We save a large (n=100000) set of
configurations that fall in this intersection for both fingers.
The next step is to randomly choose one configuration for
finger A and check for which configurations of finger B the
tips collide. The threshold for collision one chooses here
strongly depends on the robot model’s initial uncertainty.
Continuing from this pair of configurations, we choose which
finger should be static and which should move into contact.
For the moving finger, we then sample an additional random
configuration as the start point of the measurement drive.

We repeat this procedure for all six finger pairs. For each
pair, the rest of the kinematic structure should move as far
away as possible from the combined workspace of the current
end-effector pair (see Fig. 4). The goal is to obstruct the
measurements as little as possible and allow for diverse joint
configurations in this constrained setting.

One additional problem is the small form factor of a
robotic hand, especially compared to the errors of the un-
calibrated system. For a robotic arm with a total reach of
one meter, an error of a few centimeters does not change the
measurement setup. However, in our case, the DLR-Hand II
with its four fingers, the ratio between error in the forward
kinematics and the robot’s actual size is much larger. We
measured uncalibrated errors up to 17.7mm. That equals
roughly 10% of the workspace and is also about the fingertip
size. The consequence is that even if, in simulation for the
nominal kinematic, the two fingers touch close to the center,
it is still possible that the measurement fails on the hardware.
Therefore one needs to account for this high uncertainty
while generating samples and safe trajectories to collect those
samples. Furthermore, robust contact detection is crucial for
reliable measurements on the actual hardware.



Fig. 8. Convergence of mean and maximal cartesian error ϵv on the uniform
cartesian test set for different calibration sets for the contact measurement
function hc. Randomly chosen sets (red) converge slower than the sets
designed according to task D-optimality (10). The greedy strategy is green,
and the detmax[23] strategy is blue. The distribution mismatch between
calibration and test set can explain why the gap between random and
selected samples remains significant even for larger calibration sets.

B. Contact Detection

It is essential to detect the precise joint angles in which the
contact force between the fingertips is as small as possible.
The DLR-Hand II is equipped with an output side torque
sensor for each of the twelve active degrees of freedom.
Before the passive finger gets approached, the offset, τ0, is
set to the measured torque, τm(t). When the active finger
moves and the change in torque is larger than the threshold
τt, a contact is detected (see Fig. 7).

VI. EXPERIMENTS

As the model of the forward kinematics for the
DLR-Hand II, we include all four DH parameters per joint,
resulting in NΘ = NDoF × 4 calibration parameters. The
hand has four fingers. Each finger has three active and one
passive joint. This results in 16(= 4 × 4) DH parameters
per finger and 64(= 4× 16) parameters for the whole hand.
Furthermore, each finger has three parallel joints, and the ring
and middle finger are mounted with the same orientation.

A. Sensitivity Analysis

To answer the question of whether our contact measure-
ment function hc can identify all the parameters relevant
for the task measurement function ht, we compute the
nullspace of JTJ as described in Section IV-A. We evaluate
the respective Jacobians Jc and Jt for the nominal robot
kinematic. For the actual measurement function hc, we
use 100 configurations per pair, which were generated as
described in Section V-A. For the task measurement function
ht, we use 100 configurations per finger drawn from the
cartesian test set.

Fig. 5 shows the results of this analysis for the
DLR-Hand II. The task measurement function ht is drawn
in blue, and our contact measurement function hc is in red.
All the pairs are calibrated simultaneously for the rightmost
mode (⬢). Both measurement functions have 56 eigenvalues
larger than 1 · 10−6. Analyzing the eigenvectors confirms
that the kernel of our contact measurement function hc is
wholly included in the task measurement function ht kernel.
Therefore, we can identify all parameters relevant to the task.
The parallel axis of the fingers can explain the 8(= 2 × 4)

Fig. 9. The plot is designed equivalently to Fig. 8, but for the cartesian
measurement function hv. The overall convergence of the error ϵv is quicker
because the absolute cartesian position yields more information per sample.
Furthermore, the difference between the random approach and the dedicated
selection criteria is smaller in this setting. One reason is that the calibration
set for the external tracking system is closer to the task test set.

unidentifiable parameters. Each finger has 3 parallel axes
along which a shift can be adjusted without influencing the
end-effector, resulting in an increased size of nullspace by 2
per finger and 14 identifiable parameters per finger.

The leftmost mode (•) shows the calibration of just a
single pair. Considering the calibration of one pair, from the
32(= 2×16) total parameters, 28(= 2×14) should be identi-
fiable. However, the critical insight is that measuring between
two chains yields less information than measuring between
three or more chains. This holds for the actual scalar distance
measurement (red / hc), where 26 parameters are identifiable,
and the task measurement of the relative positions (blue / ht),
where one can identify 27 parameters. However, one can
measure even less with the scalar distance function when
restricting the measurements to a single pair. An intuition
is that two end-effectors can move on a sphere around each
other without changing the scalar distance between them.
Therefore, in this case, one can not identify all the parameters
relevant to the task by pure contact measurements.

This invariance generally resolves when adding a third
chain (▲) to the picture, favoring a holistic calibration of the
full kinematic tree. Fig. 5 shows the same analysis but for a
generic four-fingered hand without parallel axes or mounting
frames. In theory, all parameters can be identified for the
entire hand. However, in praxis, eigenvalues below 10−6 still
indicate poor sensitivity.

B. Optimal Experimental Design

We conducted an extensive simulation study to verify
our analysis in Section IV. We use the DH formalism to
parametrize the forward kinematics as described in Section II
and apply noise on the nominal DH parameters to obtain new
robot models. For the rotational DH parameters α and θ we
applied sampled uniformly ± 5◦ and for the translational
parameters DH d and r we used uniform noise ± 5mm.

In this fashion, we created 100 different kinematics to
ensure a broad distribution of models. Next, we simulated
the data collection step and collected measurements for the
actual contact measurement function hc, the actual cartesian
measurement function hv, and the task measurement function
ht. On average, the models deviated 21mm from the nominal
kinematic on the uniform cartesian test set.



TABLE I
CALIBRATION RESULTS IN MM

Actual Meas. Fun. Task Meas. Fun.
mean std max mean

nominal 6.07 3.90 17.70 8.01
calibrated

joint offsets 1.04 0.82 5.13 1.36

calibrated
full DH 0.72 0.58 3.69 0.89

Fig. 10. Comparison of contact error ϵc distribution for the different
calibration models. The calibration with all DH parameters can reduce the
maximal error to 3.7mm(see also Table I).

Fig. 8 show the results of the optimal sample selection
introduced in Section IV-B. The error on the cartesian test set
is drawn over the calibration set size for different selection
strategies. Randomly chosen sets (red) converge slower than
the sets designed according to task D-optimality (10). We
compare a greedy strategy (green), which at each step adds
the sample si, which improves the task D-optimality most
against the DETMAX algorithm [23] (blue). This procedure
tries to swap samples in an existing calibration set to improve
the task D-optimality. Both selection strategies outperform
the random approach, significantly reducing the mean error
to 0.1mm with a set of 300 measurements.

The distribution of configurations for the contact measure-
ments differs from the uniform distribution in the cartesian
workspace on which we evaluate the calibrations. This dis-
tribution mismatch can explain why the gap between random
and selected samples remains significant even for larger
calibration sets. Our approach using the task D-optimality
as a selection criterion does account for this shift directly
and improves the contact calibration with its strict constraint
for data generation significantly.

Fig. 9 shows the same analysis but for the cartesian
measurement function hv with an external tracking system.
The overall convergence is quicker because the absolute
cartesian position yields more information per sample. Fur-
thermore, the difference between the random approach and
the dedicated selection criteria is smaller in this setting. One
reason is that the calibration set for the external tracking
system is closer to the task test set. While proving overall
that the selection over task D-optimality is suited to select
good calibration sets, those results show that this approach
is particularly viable when there is a substantial mismatch
between the task measurement function and its test set
versus the actual measurement function and its corresponding
calibration set.

Fig. 11. This plot analyses the contact errors ϵc of the individual fingers and
pairs before and after the calibration. Each finger has an individual marker
defined by a color and an orientation. A measurement of a specific pair is
then an overlay of those two finger markers. The x-axis shows the signed
distance error before and the y-axis after the calibration, giving detailed
insight into the error distribution of the hand.

C. Calibration of the real DLR-Hand II

Following our methodology described in Section IV and
Section V-A, we calibrated the DLR-Hand II via pairwise
contact measurements. Overall, we collected 300 samples
to ensure we have a large enough set for calibration and
evaluation. The training-test split was 80/20, and we used
cross-validation to get the distribution over the whole dataset.
Our findings revealed that 150 samples are sufficient for an
accurate calibration. Collecting that data takes 9 minutes,
making this automatic calibration procedure easy and quick
to use.

The uncalibrated nominal forwards kinematic has a mean
error of 6mm over all 300 samples and a maximal error
of up to 17.7mm for the scalar distance measurement.
The full error distribution over the signed distance function
is shown in red in Fig. 10. Light blue is the calibrated
model using only the joint offsets as calibration parameters,
reducing the maximal error to 5.1mm. The entire calibration
model, including all DH parameters, is dark blue. This model
reduces the maximal error further to 3.7mm.

Fig. 11 analyses the errors of the individual fingers before
and after the calibration. Each finger has an individual
marker, and a measurement of a specific pair overlaps those
two finger markers. The x-axis shows the signed distance
error before and the y-axis after the calibration. Besides the
significant overall error reduction, one can see that different
finger pairs have other error distributions before and after the
calibration. For example, the pair fore-ring is often slightly
apart for the nominal model, while the thumb-ring pair is
often in deep penetration.

Table I shows the detailed results of the different models.
Additionally, the errors in the task space are given. After
calibration, one can use (11) to transform the resulting
calibration errors of the contact measurement function hc

into the errors of the task measurement function ht. Starting
from the calibration errors σm one can first apply Jc to map
to the uncertainties of the calibration parameters covΘ and



Fig. 12. The DLR-Hand II in a finger contact pose from the testset a)
with the measured joint angles q mirrored to a nominal b) and a calibrated
c) model. The model’s error is visibly reduced from a distance of 8.3mm
to a penetration of 1mm, allowing dextrous in-hand manipulation.

then apply in a second step Jt to map to the task space. This
results in a reduction of the mean error in the task space form
8mm for the uncalibrated model to 0.9mm after calibration.

Finally, Fig. 12 shows the improvement through our cali-
bration procedure on the real DLR-Hand II. When mirroring
a joint configuration q, which is in contact, onto the nominal
and the calibrated robot model, one can see the sizeable
uncalibrated error and the good fit after the calibration,
enabling dextrous grasping and in-hand manipulation.

VII. CONCLUSIONS AND FUTURE WORK

Using a pairwise contact measurement approach, we cal-
ibrated the complex robotic DLR-Hand II with 12 active
and 4 passive joints. This calibration approach has minimal
requirements on the robotic hardware and needs no additional
tools, making it easy to apply in different setups. One only
needs a method to contact contacts (e.g., torque sensors in
our case) and a mathematical model to describe the distance
between the body pairs.

From an uncalibrated distance error of up to 17.7mm
(roughly equivalent to 10% of the overall size of the
workspace), we could reduce maximal error to 3.7mm and
the average error to 0.7mm. Looking at the desired task
measurement function relevant to dextrous in-hand manip-
ulation, we made a sensitivity analysis to confirm that the
scalar distance information between individual finger pairs is
enough to identify all relevant DH parameters. Furthermore,
we showed that performing a joint calibration of multiple
finger pairs yields more information than looking at just
a single pair. We used task D-optimality to counteract the
mismatch between our desired task measurement function
and its corresponding cartesian test set versus the less infor-
mative, more constrained contact measurement approach. An
exhaustive simulation study verifies this selection approach’s
effectiveness in balancing the calibration and the desired
task.

In future work, we want to extend the calibration approach
to the robot structure’s elasticities, especially in the drivetrain
and the fingertips. For this, forces are applied via the torque-
controlled joints while in contact.
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learning for robust purely tactile in-hand manipulation,” in Proc. IEEE-RAS
International Conference on Humanoid Robots, 2023.

[6] J. Butterfaß, M. Grebenstein, H. Liu, and G. Hirzinger, “DLR-Hand II: Next
generation of a dextrous robot hand,” in International Conference on Robotics
and Automation, 2001.

[7] S.-M. Lee, K.-D. Lee, S.-H. Jung, and T.-S. Noh, “Kinematic Calibration
System of Robot Hands Using Vision Cameras,” in International Conference
on Ubiquitous Robots and Ambient Intelligence, 2013.

[8] N. Tan, X. Gu, and H. Ren, “Simultaneous Robot-World, Sensor-Tip, and
Kinematics Calibration of an Underactuated Robotic Hand With Soft Fingers,”
IEEE Access, 2018.

[9] M. Ikits and J. Hollerbach, “Kinematic calibration using a plane constraint,” in
International Conference on Robotics and Automation, 1997.

[10] M. Meggiolaro, G. Scriffignano, and S. Dubowsky, “Manipulator Calibration
Using A Single Endpoint Contact Constraint,” in ASME International Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, 2000.

[11] Y. Sun, D. J. Giblin, and K. Kazerounian, “Accurate Robotic Belt Grinding of
Workpieces with Complex Geometries using Relative Calibration Techniques,”
Robotics and Computer-Integrated Manufacturing, 2009.

[12] A. Joubair and I. A. Bonev, “Kinematic Calibration of a Six-Axis Serial Robot
Using Distance and Sphere Constraints,” The International Journal of Advanced
Manufacturing Technology, 2015.

[13] D. J. Bennett and J. M. Hollerbach, “Closed-loop Kinematic Calibration of the
Utah-MIT Hand,” Experimental Robotics I, 1990.

[14] K. Stepanova, T. Pajdla, and M. Hoffmann, “Robot Self-Calibration Using
Multiple Kinematic Chains—A Simulation Study on the iCub Humanoid Robot,”
IEEE Robotics and Automation Letters, 2019.

[15] K. Stepanova et al., “Automatic Self-Contained Calibration of an Industrial Dual-
Arm Robot with Cameras Using Self-Contact, Planar Constraints, and Self-
Observation,” Robotics and Computer-Integrated Manufacturing, 2022.

[16] A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Automatic Kinematic
Chain Calibration Using Artificial Skin: Self-touch in the iCub Humanoid Robot,”
in International Conference on Robotics and Automation, 2014.

[17] R. Zenha, P. Vicente, L. Jamone, and A. Bernardino, “Incremental Adaptation
of a Robot Body Schema Based on Touch Events,” in International Conference
on Development and Learning and Epigenetic Robotics, 2018.

[18] L. Rustler et al., “Spatial Calibration of Whole-Body Artificial Skin on a
Humanoid Robot: Comparing Self-Contact, 3D Reconstruction, and CAD-Based
Calibration,” in International Conference on Humanoid Robots, 2021.
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