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ABSTRACT: Dynamical numerical weather prediction has remarkably improved over the last

decades. Yet, postprocessing techniques are needed to calibrate forecasts which are based on

statistical and Machine Learning techniques. With recent advances in the derivation of year-

round, large-scale atmospheric circulations, or weather regimes, the question arises of whether

this information can be valuable within forecast postprocessing methods. This paper investigates

this by proposing a bias correction scheme to integrate the atmospheric circulation state derived

from empirical orthogonal functions, referred to as weather patterns, for deterministic short-term,

near-surface temperature forecasts based on LASSO regression. We propose a computational study

which first evaluates different weather pattern definitions (spatial domain) to improve temperature

forecasts in Europe. As a bias could be associated with the weather pattern at the model initialization

time or at the realization time of the forecast, both variants are tested in this study. We show that

forecasted weather patterns with the identical spatial domain as the forecast show best skill reaching

Mean Squared Error Skill improvements of up to 3% (day-ahead) or 1% respectively (week ahead).

Only considering land surface improvements in Europe, improvements of 4-6% for day-ahead and

1 to 5% for week-ahead forecasts are observable. We believe that this study not only introduces a

simple yet effective tool to reduce bias in temperature forecasts but also contributes to the active

discussion of how valuable weather patterns are and how to use them within forecast calibration

techniques.
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1. Introduction24

Dynamical numerical weather prediction (NWP) models have remarkably improved over the25

last decades with skill improvements of approximately one day per decade in the range of 3-day26

to 10-day forecasts meaning that a 4-days-ahead forecast is today approximately as accurate as a27

3-days-ahead forecast ten years ago (Bauer et al. 2015). However, NWP forecasts have deficiencies28

originating from the difficulty in determining initial conditions, boundary condition errors, and29

model structural errors that increase with longer lead times (Vannitsem et al. 2021; Bauer et al.30

2015). Furthermore, dynamical models suffer from bias and dispersion, which requires statistical31

post-processing techniques for NWP forecasts (Vannitsem et al. 2021). Statistical models have32

been successfully applied to calibrate forecasts, which are initially introduced by the Model Output33

Statistics (MOS) technique from Glahn and Lowry (1972) which combines dynamical and statistical34

models through linear regressions. With the rise of ensemble forecasts, the MOS technique has35

been extended by Gneiting et al. (2005) to the Ensemble Model Output Statistics (EMOS) method,36

which is a non-homogeneous regression applied in a rolling training window fashion (Gneiting37

et al. 2005). Both MOS and EMOS have shown remarkable success in improving the forecast skill38

of different meteorological parameters.39

Recent studies show that including additional atmospheric variables in addition to the variable40

of interest can enhance the performance of post-processing techniques (Messner et al. 2017;41

Rasp and Lerch 2018a; Taillardat et al. 2016). However, choosing the appropriate variables42

is a difficult task, as more variables increase the model complexity and the risk of overfitting.43

Furthermore, with fewer exogenous variables the post-processing model interpretability increases44

and can give useful information about situations in which NWP models are more likely to be45

erroneous and require corrections. Allen et al. (2019) therefore propose to use weather regimes46

as a description of the large-scale atmospheric situation and to integrate this information into47

forecast post-processing techniques. Weather regimes are based on the premise that the chaotic48

nature of weather can be decomposed into a finite set of quasi-stationary, recurrent and persistent49

atmospheric flow patterns (Michelangeli et al. 1995; Grams et al. 2020). They have a long tradition50

in synoptic-scale dynamic meteorology first mentioned by Rex (1950, 1951) who analyze the51

impact of atmospheric blocking events on European precipitation and surface temperatures. Since52

then, weather regimes have succeeded in explaining the frequency and magnitude of temperature53
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and precipitation events (Robertson and Ghil 1999), the probability of extreme events (Robertson54

and Ghil 1999), and the production of renewable energy (Grams et al. 2017; Van Der Wiel55

et al. 2019). Within synoptic-scale forecasting, several authors observe a dependency between56

NWP low-frequency forecast errors and the underlying weather regime (Koch 1985; O’Lenic and57

Livezey 1989; Stoss and Mullen 1995). Ferranti et al. (2015) show skill differences for short-58

and mid-term ensemble forecasts and observe the lowest forecast skill during blocking events59

raised by the lack of the NWP model to predict the transition from and into blocking events,60

including their persistence. The relevance of blocking events for the NWP forecast skill is already61

observed in Tibaldi and Molteni (1990) but is still relevant today, since forecast busts are often62

associated with blocking anticyclones in operational NWP models (Rodwell et al. 2013; Grams63

et al. 2018). The relationship between weather regimes and forecast accuracy is also observed for64

extended winter periods showing significant differences in NWP forecast errors during different65

flow patterns (Ferranti et al. 2015). This motivates Allen et al. (2019) to extend ensemble post-66

processing techniques, namely nonhomogeneous regressions (Gneiting et al. 2005) and Bayesian67

Model Averaging (Raftery et al. 2005), by integrating weather regime information into post-68

processing methods. Allen et al. (2019) show that the integration of weather regime information69

into post-processing techniques leads to skill improvements within a highly idealized environment70

based on the Lorenz 96 model (Lorenz 1996). This work is extended to the operational Global71

Ensemble Forecasting System from the National Centers for Environmental Prediction in Allen72

et al. (2020) where weather regime information within post-processing techniques can help to73

improve skill of wind speed forecasts. The case study from Allen et al. (2020) raises the question74

of how weather regimes should be defined to maximize its potential to improve forecast skill. This75

refers to the definition of the weather pattern, including its spatial domain, the methodological76

description, and whether the weather pattern at model initialization or forecast time should be used77

within the post-processing methods. Furthermore, Allen et al. (2020) only consider one single78

extended winter period, while the recent development of year-round weather regimes, as in Grams79

et al. (2017), allows year-round post-processing techniques, including summer periods.80

This article contributes to the scientific discussion described on how to use weather regimes81

within post-processing techniques to improve NWP forecast skill. We develop a method based on82

LASSO regression using weather patterns derived from empirical orthogonal function analysis to83
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improve short-term near-surface temperature forecasts in Europe. Within a computational study,84

the method is compared to classical Moving Average bias corrections. Furthermore, we compare85

different definitions of weather pattern anomalies with respect to spatial domain (Euro-Atlantic86

domain vs. region of interest) and weather pattern reference time (weather patterns at NWP87

initialization vs. NWP realization time). The organization of the article is as follows: We begin88

with a methodological section (Section 2) that describes how the weather patterns are derived and89

how the proposed LASSO method can integrate this information. To illustrate how and why this90

method works, Section 3 explains the rationale behind the use of weather patterns and illustratively91

describes the method. We then describe the design of the experimental study (Section 4), analyze92

the results (Section 5), and conclude and discuss them (Section 6).93

2. Methodology94

a. Weather pattern definition95

1) Anomaly calculation96

Geopotential height anomalies at 500 hPa are a commonly used meteorological parameter to97

define weather regimes (Grams et al. 2017; Cassou et al. 2005; Cassou 2008). Anomalies refer98

to deviations from climatology and are preferable over the raw data because they describe how99

the weather differs from the typical weather at given time of the year. Most studies using weather100

regimes focus on single periods, such as the extended winter period (Van Der Wiel et al. 2019;101

Cassou 2008; Ferranti et al. 2015, 2018) or the summer period (Cassou et al. 2005). More recently,102

Grams et al. (2017, 2020) proposed a definition of year-round weather regimes by applying data103

standardization to normalize the geopotential height anomalies. Normalizing geopotential height104

anomalies is required to consider smaller geopotential height anomalies with lower variability105

in summer than in winter (Büeler et al. 2021; Wallace et al. 1993). Our geopotential anomaly106

calculation is loosely inspired by the proposals from Büeler et al. (2021) for weather regime107

definitions. Note that this study does not use weather regimes but weather patterns that represent108

the superposition of separate weather signals derived from EOF analysis. The year-round weather109

regime definition from Grams et al. (2017) uses reanalysis data from past analyses while the110

definition is extended to forecast data by Büeler et al. (2021). Therefore, we calculate the normalized111

geopotential height anomalies 𝜙𝑎𝑡 by112
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𝜙𝑎𝑡 =
𝜙𝑡 −𝜙𝑡
𝜎𝑡 (𝜙)

(1)

with 𝜙𝑡 geopotential height, 𝜙𝑡 climatological mean geopotential and the standard deviation 𝜎𝑡113

as normalization factor. The same formula is used for the calculation of present and forecasted114

geopotential anomalies. The geopotential heights 𝜙𝑡 at model initialization time are derived from115

the zero-step deterministic forecasts of the open-access TIGGE dataset (Bougeault et al. 2010)116

based on the average of the semi-daily model runs (0000/1200 UTC). The forecasted geopotential117

heights are calculated by averaging the forecasts at noon and midnight of the desired lead time118

meaning that for day-ahead forecasts the lead times 24, 36 and 48 hours are averaged with the119

purpose to remove high-frequency noise. The calendar day climatologies 𝜙𝑡 are calculated using120

a 91-day running mean of five-day low-pass filtered geopotential heights (2008-2020) using a121

Lanczos filter (Duchon 1979). The normalization factor 𝜎𝑡 (𝜙) is calculated by the 31-day running122

standard deviation of the geopotential anomalies (2008-2020) and is averaged over the horizontal123

grid as also described in Büeler et al. (2021). Note that the climatology and the normalization124

factor are calculated separately for each lead time to account for model drifts (Büeler et al. 2021).125

This approach differs from Grams et al. (2017) and Büeler et al. (2021) in that only forecasts are126

used without using reanalysis data. This has the advantage that no second dataset is needed and no127

additional geopotential forecast calibration is needed.128

2) Empirical orthogonal function analysis129

Empirical orthogonal functions (EOF) analysis is a common tool in atmospheric science origi-130

nally introduced by Lorenz (1956). In other scientific domains, it is more commonly known under131

the term principal component analysis (Wilks 2011) and aims at representing a high-dimensional132

dataset through a smaller set of independent variables, which are linear combinations of the original133

ones. As this results in a smaller set of variables, EOF analysis can be regarded, in more modern134

terms, as a dimensionality reduction technique. When applied to spatio-temporal data, as in this135

study to geopotential height anomalies, EOF analysis can provide interpretable spatial patterns and136

their variation over time (Wilks 2011). In the context of atmospheric science, patterns derived137

from EOF analysis can represent atmospheric oscillations (Wilks 2011) and are therefore regularly138

used to obtain weather patterns (Michelangeli et al. 1995; Cassou 2008; Grams et al. 2017).139
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Mathematically, the EOF analysis aims to represent a mean-normalized (anomaly) data matrix140

X by calculating the covariance matrix R = XTX and solving the eigenvalue problem.141

RC = C𝚲. (2)

𝚲 is a diagonal matrix containing the eigenvalues_𝑖_𝑖_𝑖 and C contains in its columns the eigenvectors142

ci corresponding to the respective eigenvalue _𝑖_𝑖_𝑖. The eigenvectors (EOFs) are usually the core143

interest of geophysical studies, as when plotted on maps they represent standing oscillations and144

therefore can be used to derive known physical phenomena such as the North Atlantic Oscillation.145

The variation of the eigenvectors in time can be calculated by projecting the original data on the146

eigenvectors147

ai = Xci ∀𝑖 ∈ 𝑝 (3)

which we refer to as Principal Component time series (PCs) analogous to Björnsson and Venegas148

(1997). The original data matrix X can be obtained again through149

X =

𝑝∑︁
𝑖=1

ai (4)

with 𝑝 being the number of EOFs. The eigenvalues of the associated EOFs indicate the amount150

of variance explained by the respective EOF. The first EOF explains the most variance while each151

subsequent EOF explains a lower amount of variance and is orthogonal to the EOFs before (Wilks152

2011; Björnsson and Venegas 1997). The rationale of EOF analysis is that not all EOFs are required153

to provide a sufficient representation of the original data matrix X as few EOFs are often sufficient154

to explain the dynamical behavior of the system, while higher-indexed eigenvectors often only155

describe data noise and thus can be ignored. The number of EOFs can be determined based on156

heuristics or statistical tests such as the North’s Test (North et al. 1982). In this study, we restrict157

the number of EOFs to 14 which is larger than the 7 EOFs in Grams et al. (2017) and Büeler et al.158

(2021). These 14 EOFs describe 86% (Euro-Atlantic domain) or 97% (Europe) respectively of the159

data variance. As the subsequent regression method (Section 2b) provides a feature selection, a160

larger number of EOFs is selected.161
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3) Weather patterns versus weather regimes162

We refer to weather patterns as the result of the EOF analysis of the normalized geopotential163

anomalies. For the derivation of weather regimes as in Grams et al. (2017), additional steps are164

needed to derive a discrete set of persistent weather regimes. This comprises the clustering of165

the PCs using for instance k-means clustering, the derivation of weather regime indices (Michel166

and Rivière 2011) and the persistence of the regime over a number of days (Grams et al. 2017).167

Compared to weather regimes, EOFs have the disadvantage of being less interpretable as they are168

not forced to align with physical processes as atmospheric flows do not follow orthogonal patterns or169

are uncorrelated (Dommenget and Latif 2002). Due to the prerequisite that all EOFs are orthogonal,170

later-ranked EOFs are less likely to represent a physical process (Storch and Zwiers 2002). However,171

PCs are highly informative as early-ranked EOFs are still often physically interpretable and can172

be used to derive the prevailing atmospheric flows (Ferranti et al. 2018). Furthermore, EOFs173

provide a highly efficient representation of the data. An EOF is able to represent both states of a174

prevailing atmospheric flow by describing its negative and positive realizations. For example, an175

EOF of the North Atlantic Oscillation (NAO) can represent positive and negative NAO indices,176

while weather regime definitions would require two different classes (Allen et al. 2020). In the177

context of regression, EOFs have the advantage of avoiding the common issue of multicollinearity178

as they are uncorrelated by definition.179

b. Model Output Statistics with lasso principal component regression180

The proposed method uses PCs derived from EOF analysis formulated as a regression problem181

which is better known in meteorological research as the Model Output Statistics method (Glahn and182

Lowry 1972). Therefore, deterministic forecasts are calibrated based on the multiple regression183

formulation184

bs
(𝑡×1)

= X
(𝑡×𝑝′)

× βs

(𝑝′×1)
∀𝑠 (5)

with the data matrix185
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X =

©«
1 𝑎11 . . . 𝑎1𝑝′
...

...
. . .

...

1 𝑎𝑡1 . . . 𝑎𝑡 𝑝′

ª®®®®¬
and 𝛽𝑠 model parameters. The model is formulated and trained for each site 𝑠 separately. In the186

data matrix X, the one entries in the first column represent the intercept of the regression, while187

the other entries a represent the chosen PCs derived from Equation 3 with index 𝑝′ representing188

the total number of chosen PCs and the intercept. The rows indicate the different time steps 𝑡 and189

thus the sample size of the regression problem. The coefficient matrix 𝛽 contains a weight for each190

PC and the intercept. In terms of interpretability, the intercept represents a local bias specific to191

each site, while the weights for the PCs describe the effect of the respective synoptic-scale weather192

pattern on the specific site 𝑠. Note that the matrix 𝑋 does not suffer from any multicollinearity,193

since the column of one entries are constants and thus uncorrelated to time-varying PCs, while the194

PCs are uncorrelated between each other by definition, as earlier described.195

The coefficients of Equation 5 could be derived from solving analytically the ordinary least196

squares problem, as is usually done in Model Output Statistics, but to filter only the relevant PCs,197

we formulate the regression problem using the LASSO formulation proposed by Hastie et al. (2009)198

in which the coefficients 𝛽 are derived from solving the optimization problem199

𝛽 = argmin
𝛽

∑︁
𝑖∈𝑡

(𝑦𝑖 −
∑︁
𝑗∈𝑝′

𝑋𝑖 𝑗 𝛽 𝑗 )2 +_
∑︁
𝑗∈𝑝′

|𝛽 𝑗 | ∀𝑠. (6)

In this formulation, the first summand describes the deviation between observed temperature 𝑦200

and the estimated temperature 𝑋𝛽. The second summand represents the 𝐿1 lasso penalty that leads201

to sparse solutions of 𝛽 and thus selects the most relevant weather patterns within the regression.202

The value of _ controls the amount of regularization with 0 using all weather patterns and ∞203

ignoring all weather patterns. We determine the value of _ as a hyperparameter by iterative fitting204

along a regularization path (Friedman et al. 2010) with a 3-fold cross-validation as implemented205

in the python-based open-source scikit-learn library (Pedregosa et al. 2011). The model is206

trained on 9 years (2010-2020) of data and evaluated on one left-out year for validation. This207

scheme, called leave-one-out cross-validation (Wilks 2011), allows to evaluate the model on an208
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independent year to prevent data leakage. The sample size for each model training consists of 9209

years of daily data and thus around 3000 samples while 14 PCs are considered in the regression210

task for the single weather pattern model and 28 PCs for the hybrid models.211

Note that using PCs with small eigenvalues does not necessarily imply low relevance within the212

principal component regression. Examples in the literature show that principal components with a213

variance explained less than 1% can be highly relevant for the final performance of the regression214

(Jolliffe 1982).215

3. Rationale behind the usage of weather patterns216

a. Why using weather patterns?217

The calibration of NWP temperature forecasts is often based on simple approaches, such as218

moving average methods or Kalman filters (Alerskans and Kaas 2021), or based on using exogenous219

features such as in the Model Output Statistics. Increasingly, Machine Learning techniques (Rasp220

and Lerch 2018a) are applied to calibrate NWP forecasts based on a large set of different variables221

and combine them in complex, non-interpretable models. Despite providing highly sophisticated222

models in terms of complexity, these methods have in common that they focus on site-specific223

corrections or can only integrate the information from close nearby points using convolutional224

neural networks (Veldkamp et al. 2021; Li et al. 2022; Cho et al. 2022; Xiang et al. 2022). The225

information of weather patterns, similar to the usage of weather regimes in Allen et al. (2019,226

2020), provides an elegant way to include flow-dependent information by using a small set of227

scalars that describe the synoptic-scale flow.228

There are different weather patterns that can be informative within a regression context. Figure229

1 illustrates the different possibilities of geopotential anomalies considered in this study that differ230

in terms of spatial domain (large-scale flow versus region of interest) and reference time (model231

initialization versus forecast reference time). Using large-scale Euro-Atlantic weather patterns232

is the most common approach as it allows to identify large-scale atmospheric flows that largely233

influence the weather in the mid-latitudes. These are typically used for the definitions of weather234

regimes (Grams et al. 2017) and have a large-scale spatial domain (30◦N to 90◦N, 80◦W to 40◦E)235

as in Grams et al. (2017) which is also used for the Euro-Atlantic weather pattern definition in236

this study. The second spatial domain considered is the region-of-interest domain in which the237
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Fig. 1. Illustration of how different weather pattern definitions are used in the proposed method. The example

illustrates different geopotential anomalies in terms of spatial domain and reference time for the case of predicting

temperature forecast errors with a lead time of 7 days.
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spatial domain of the weather pattern is identical to the spatial domain of the temperature forecasts238

(33◦N to 72◦N, 12◦W to 35◦E). This approach assumes that the large-scale atmospheric flow is239

less relevant than the actual impact of different atmospheric flows on the region. In addition to the240

spatial domain, we investigate the importance of the reference time of the weather pattern. Weather241

prediction is an initial value problem (Bjerknes et al. 2009) meaning that the future state of the242

atmosphere can be predicted by knowing the initial state of the atmosphere and the application of243

physical laws. NWP models are known to have initial errors and model errors (Rodwell et al. 2018)244

which is why both can potentially be relevant to estimate a weather pattern bias. Using weather245

patterns at model initialization time (EuInit and EuAtInit) can consider systematic forecast errors246

at model initialization time, while using weather patterns at forecast time (EuFC and EuAtFC) can247

consider systematic model errors at different model lead times. The importance of these different248

settings is evaluated in the computational section of this study.249

b. Illustration of the proposed method258

To better understand the proposed method, Figure 2 shows for three consecutive days the geopo-259

tential height anomaly, the output of a bias-corrected temperature forecast (45-day Moving Av-260

erage), and the estimated bias correction of the proposed method. The bias correction aims to261
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Fig. 2. Illustration of the proposed method. The temporal period (rows 3-5) spans three days (26 June 2017 to

28 June 2017). The gray box illustrates the changes induced by the respective EOF (represented in the columns).

The titles of the contour plots in the gray box indicate the PCs for a given time (row) and the EOF pattern

(column). MA represents the temperature forecast error after applying the Moving Average method, MOS-WP

the forecasts after bias correction.
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257

systematically estimate the forecast error after the application of the Moving Average method to262

isolate the induced forecast errors of the weather pattern. The gray box exhibits the PCs, while the263

columns refer to the different EOFs. For each EOF, the EOF pattern (correlation with the geopo-264

tential anomaly), the calculated regression weights, and the individual contributions are shown.265

The total correction can be calculated by the sum of the products between PC and the regression266

weights.267

On 26 June 2017, there is a large positive geopotential anomaly in Eastern Europe and a smaller268

cyclonic pattern over Western Europe. The EOFs decompose this geopotential anomaly into269

different weather patterns, while the first and fourth EOFs are the most relevant to reconstruct the270

geopotential anomaly, as evident in the largest PC values. The first EOF detects the separation271

in Northern and Southern Europe with a large negative PC value (-34.7) indicating a negative272

realization of the first EOF. As the geopotential anomaly is characterized by an additional low-273

pressure anomaly over Iberian Peninsula, a second EOF is needed besides the distinction of274
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pressure anomalies in Southern and Northern Europe (EOF1). The negative realization of EOF4275

addresses this by detecting four distinct pressure centers, each with the same pressure sign, arranged276

diagonally. This weather situation is an example of a weather situation that cannot be assigned277

to a single EOF showing that this is not a highly recurring and stable pattern. In terms of the278

bias correction, the temperature forecasts are overestimated in Central Europe which align with the279

forecasted bias during this situation. The individual contribution at this time step can be derived280

by multiplying the weights by the PCs. The total correction of the method is then derived by281

summing all individual contributions in alignment with Equation 5. In this weather situation, the282

main contribution comes from the fourth EOF indicated by the strong values in the map and the283

similarity of its individual correction and the total correction. By comparing the second and third284

columns, the reduction of the temperature overestimation is noticeable, as indicated by a smaller285

mean square error (7.46 versus 8.3). During the next two days, the weather system changes to286

a more pronounced low-pressure system over the United Kingdom that strongly resembles the287

negative loadings of EOF2. This leads to a negative temperature forecast bias in Western Europe288

and an overestimation in Eastern Europe that the proposed bias correction method is able to correct289

as visible in the lower MSE.290

In addition to illustrating how the method works, this example also shows how quickly the bias291

correction can adapt to changing weather conditions, leading to different bias corrections in a short292

time.293

4. Experimental design294

a. Data295

The short-term temperature forecasts originate from the deterministic high-resolution ECMWF296

Integrated Forecasting System (IFS) initialized daily (1200 UTC) with a lead time of day-ahead297

(+24h) to week-ahead (+168h). The forecasts are remapped to a grid spacing of 0.25° (≈ 31 km)298

to match the ERA5 reanalysis model (Hersbach et al. 2020) used for forecast verification. The299

geopotential heights are derived from the open-access TIGGE dataset (Bougeault et al. 2010) and300

the respective anomalies are calculated as described in Section 2.301
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b. Computational experiments302

The aim of the computational experiments is to determine the value of the different weather303

patterns, to evaluate the improvements in forecast skill, and to determine whether the proposed304

method improves the meteorological understanding that leads to these biases. For this purpose,305

we compare six different weather pattern definitions with differences in their spatial domain and306

temporal definitions. The spatial domains investigated are the European (Eu, 33◦N to 72◦N, 12◦W307

to 35◦E) and the Euro-Atlantic (EuAt, 30◦N to 90◦N, 80◦W to 40◦E) domains, while the forecast308

reference time refers to using weather patterns at model initialization (Init) or forecast (FC) time.309

This leads to four different weather pattern definitions (EuInit, EuFC, EuAtInit and EuAtFC) as also310

described in Section 3. Furthermore, two additional hybrid definitions are proposed consisting311

of the combination of both spatial domains with forecasted weather patterns (EuFC & EuAtFC)312

and one definition based on the combination of the two temporal reference times (EuInit & EuFC)313

for the European domain. Using both spatial domains is motivated by the multi-scale behavior314

of the atmosphere while using weather patters at model initialization and forecast time allows to315

systematically correct biases associated with both model initialization and forecast time. This leads316

in total to six different weather pattern definitions. The methods with individual weather patterns317

contain the 14 leading EOFs, whereas the hybrid methods contain 14 EOFs from the respective318

individual weather pattern, and thus consider 28 EOFs. Despite this gives the hybrid methods an319

advantage due to more information, it allows to measure the value of the hybrid methods.320

The performance of the methods is benchmarked against a Moving Average bias correction with321

a window length of 45 days that is calculated for each lead time separately. Although there has been322

a wide range of more advanced methods, for instance, methods applying Machine Learning with a323

large number of additional variables (Rasp and Lerch 2018a), Moving Averages are still commonly324

used for bias correction as they are simple to implement and perform well against other methods325

such as Kalman filters (Alerskans and Kaas 2021). A window length of 45 days is selected, as326

moving training window lengths between 30 and 45 days have shown good skill in the literature327

for temperature forecast postprocessing (Gneiting et al. 2005). To directly evaluate whether the328

proposed method improves compared to the Moving Average method, we select the Mean Squared329

Error Skill Score (MSESS) which is a metric to evaluate deterministic forecasts in comparison to330
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deterministic reference forecasts. For more information on the MSESS, the reader is referred to331

the appendix.332

To validate the method, the dataset is split in a cross-validation fashion into a training and a test333

data set, while the training period covers the years 2010-2020 excluding one left-out test year to334

evaluate the method. This procedure is repeated until each year between 2013 and 2018 was used335

as a test year. As a separate model is fitted for each year, it also provides information about the336

robustness of the model.337

5. Results338

a. Weather pattern definitions339

First, we compare the different definitions of the weather patterns to identify the most suitable340

weather pattern definition. Figure 3 shows the spatially averaged MSESS for the six different341

weather pattern definitions. All investigated weather patterns show skill improvements at shorter342

lead times with highest MSESS at day-ahead forecasts and a subsequent decline of MSESS to343

a lead time up to four days. The best performing method is the EuFC method that uses weather344

patterns with the same spatial domain as the temperature forecasts and also the same valid time.345

This method strictly outperforms all other methods with single weather pattern definitions for all346

lead times showing that it is the preferred weather pattern to be included in the proposed method.347

In numbers, EuFC provides skill improvements between 1.5 and 3%.348

Using forecasted weather patterns shows superior skill than weather patterns at initialization349

time. This is evident when comparing the performance of the methods using the same spatial350

domain but different reference times (e.g. EuFC and EuInit). The informative value of the weather351

pattern at model initialization time shows no skill improvements after four days lead time while the352

EuFC even shows an inflection point after five days lead time. With respect to the spatial domain,353

weather patterns with the same spatial domain as the forecasts are preferable over weather patterns354

that describe the large-scale atmospheric flow. This is evident in the constantly better skill scores355

for EuFC with around 1% better skill scores than for EuAtFC.356

The only method that can compete for up to two days lead time with EuFC is the hybrid method357

EuInit&EuFC that also contains the forecasted region-of-interest weather pattern. Additionally, the358

other hybrid method EuFC&EuAtFC also contains the EuFC weather pattern and shows inferior359
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superscript refers to the weather pattern reference time.
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364
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366

performance. This indicates that it becomes more challenging for the LASSO algorithm to identify360

the most relevant PCs with an increasing number of PCs. Therefore, we select the EuFC for the361

subsequent analyses.362

b. Performance367

Figure 4 shows the yearly and monthly performance spatially averaged over the spatial domain of368

the temperature forecasts. All yearly and monthly MSESS values are positive, indicating that the369

proposed method is able to provide year-round and monthly performance improvements. Between370

the investigated years, the performance is relatively similar, showing skill improvements of around371

2% to 3% in the day-ahead range. Day-ahead forecasts show the greatest improvement of all lead372

times. With longer lead times, skill improvements deteriorate and then increase again (> 6 days).373

The monthly distribution of skill improvements shows that the spring and autumn months have374

highest skill improvements. More specifically, during spring, skill scores of more than 5% are375

observable between one and three days lead time. Lower skill scores are particularly noticeable376

during the winter months.377
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Fig. 4. Forecast performance for different years and for different months. The monthly averages are calculated

over all test years.

389

390

The spatial distribution of skill improvements (Figure 5) shows which regions benefit most378

using the proposed bias correction. Similarly to monthly and yearly averages, the method shows379

consistent improvements. Skill improvements on the land surface are much greater than on the sea380

surface. This can be explained by the higher thermal inertia of the sea surface that reduces the381

local response rate on weather patterns. At short lead times, a large number of sites greatly benefit382

from the proposed method. On land surfaces, skill improvements exceeding 6% are observable.383

Furthermore, there are differences in local skill scores with respect to the lead time. At shorter lead384

times (d+1 to d+3), most of Europe (excluding Scandinavia) show high skill scores, while at longer385

lead times highest skill scores are observable in Southern Europe. With longer lead times, forecast386

improvements become larger and smoother leading to large-scale forecast skill improvements in387

Eastern Europe at week-ahead temperature forecasts.388

c. Method interpretability393

The proposed method has the advantage that it is highly interpretable due to the interpretability394

of the EOF analysis and the determined regression weights. Therefore, we analyze whether395

this simplicity can help us derive insights into the meteorological significance of the results.396

Figure 6 depicts the mean contribution of the respective EOF which explains how much each397

EOF contributes to the bias correction averaged over all time steps. The explained cumulative398

variance shows how much of the total data variance is explained by the respective EOFs while the399

autocorrelation provides information about the persistence of the weather patterns. Using the first400
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Fig. 5. Spatial distribution of the MSESS for different lead times averaged over all test years. The value range

has been reduced to only showing values up to 0.06 to make the results clearer.

391

392

seven PCs, about 90% of the data variance of the geopotential anomalies can be explained, which401

highlights the importance of these first seven weather patterns. The first three weather patterns402

explain around 68% of the data and contribute the most to the bias correction at short lead times403

as noticeable by their large relative mean contribution. At longer lead times, the bias correction404

relies on a larger number of PCs illustrated by the more uniform contributions of the different PC405

mean contributions. Interestingly, PCs which do not explain much variance can become important406

for the regression visible by the relatively large importance of PCs indexed between 7 and 10 for407

week-ahead bias correction. This may seem counterintuitive, but aligns with the observation in408

Jolliffe (1982) that low explained variance of the EOF analysis does not imply low importance in409

a regression context.410

Early-indexed EOFs are more persistent as visible in larger autocorrelations, whereas later-411

indexed EOFs are a lot less steady and thus indicate a more variable weather situation. To better412

understand what these EOFs represent, Figure 7a depicts the first seven EOFs and Figure 7b413
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417

418

419

the regression weights 𝛽 associated with the respective EOFs at different lead times. The EOFs414

represent the correlation between the PCs and the geopotential anomaly, meaning that positive415

(negative) values of the EOF pattern align with positive (negative) geopotential anomalies.416

The EOF patterns can be aligned with the derived weather regimes in Grams et al. (2017).420

The first derived EOF (31% explained variance) is characterized by a strong positive anomaly in421

Scandinavia and minor negative anomalies in Southern Europe. This pattern resembles blocking422

patterns, such as the known variants of the Scandinavian Blocking and European Blocking (Grams423

et al. 2017). As the centers of these blocking patterns are close to each other, it is likely that424

the first EOF can represent the meteorological signal of both weather regimes while ignoring the425

assumption of weather regime persistence. In its negative realization, this EOF has a large-scale426

low-pressure anomaly over Scandinavia that is similar to the Scandinavian Trough. The second427

EOF is characterized by a strong pressure anomaly located farther south than in the first EOF428

located in Western Europe. In the context of Euro-Atlantic weather regimes, the EOF resembles429
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weather regimes characterized by a ridge in Southern Europe such as during the Zonal regime. In430

its negative realization, the EOF2 pattern resembles the Greenland blocking weather regime. The431

third EOF shows a dipole pattern with locations in the Atlantic Ocean and in Eastern Europe. This432

EOF is similar to the weather regimes Atlantic Ridge and Atlantic trough as derived in Grams433

et al. (2017). Given the high persistence, the large-scale structure of the pressure system, and the434

similarity to known weather regimes, we argue that the first three weather patterns describe to435

a significant amount the information of weather regimes without making assumptions about the436

persistence and signal strength. Later-indexed EOFs are more likely to represent unstable weather437

patterns such as during the transition between more stable pressure systems.438

The regression weights (Figure 7b) can be used to identify the regions most affected by the444

respective EOF. As the bias correction is the product of the static regression weights and the445
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strength of the respective EOF, the stronger the EOF, the larger the bias correction of the proposed446

method (Figure 7b) with the same sign as the respective EOF. A negative (positive) bias sign447

indicates a systematic NWP temperature underestimation (overestimation) and, as the bias is448

subtracted, a bias correction toward higher (lower) temperatures. For the interpretation of Figure449

7b), negative (positive) values lead to larger (smaller) temperatures in the sign of the EOF, while450

the negative realization of the EOF leads to the opposite.451

An interesting meteorological situation for forecasting are blocking events as they are known452

to be prone to forecast errors (Ferranti et al. 2015). Blocking events are well-researched, long-453

lasting weather regimes that prevail the westerly atmospheric flow in Europe and are associated454

with higher temperatures in summer and lower temperatures in winter (Grams et al. 2017). In455

terms of bias correction, when large-scale blocking patterns occur over Scandinavia (EOF1), the456

proposed method systematically corrects overestimated temperatures in selected regions of the457

United Kingdom, Norway, and the Alpine region. In case of a large high-pressure anomaly458

in Western Europe (EOF2), the model systematically corrects underestimated temperatures in459

Central Europe. Interestingly, this aligns with the analysis from Lemburg and Fink (2022) that460

show negative biases during blocking events for daily 2m maximum temperature forecast errors461

at a lead time of 3 days for the ECMWF-IFS ensemble. The derived biases in Lemburg and Fink462

(2022) strongly resemble the derived weights in this study at three days ahead lead time. At longer463

lead times, the underestimation moves towards Eastern Europe, while in the center of the blocking464

pattern in Western Europe temperature overestimations are corrected.465

When comparing the regression weights at week-ahead lead time with the EOF pattern, there is466

a clear similarity in sign and spatial distribution. Higher geopotential heights do not necessarily467

imply higher temperatures at the same site due to changes in atmospheric flows, yet often have a468

similar effect close to the geopotentials. This aligns with the temperature anomalies for different469

weather regimes as analyzed in Grams et al. (2017). When comparing the regression weights of the470

first three EOFS with the respective temperature anomalies of the associated weather regimes in471

Grams et al. (2017), there is a high similarity between both patterns. This validates the assumption472

that a bias-specific temperature anomaly is learned by the method. As the sign of the bias correction473

overlaps with the geopotential anomaly, it also means that at longer lead times the proposed model474

systematically corrects the NWP forecast by typical observable temperatures for the forecasted475
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weather pattern. Therefore, the proposed bias correction model makes the NWP forecast less keen476

at longer lead times. At shorter lead times, the proposed weights are more diverse and often show477

the opposite sign of the EOF pattern. This means that in these situations, the proposed model478

uses the forecasted EOF pattern to make the forecasts bolder. For example, at short lead times479

the bias correction systematically corrects underestimated impacts in the Alpine region during480

blocking events over Scandinavia (EOF1), increases the temperatures during blocking events in481

Central Europe (EOF2) or decreases temperature during large cyclonic patterns in Eastern Europe482

(EOF3).483

A plausible explanation why the model corrects at longer lead times typical temperature anomalies484

of the weather pattern can be explained by the reliability of the geopotential forecast. The proposed485

method only uses a single geopotential forecast meaning that no uncertainty of the geopotential486

forecast is considered. Single geopotential forecasts quickly become less reliable, as noticeable487

in large weather regime ensemble spreads and strong declines of the probabilistic predictability488

of weather regimes after a few days (Büeler et al. 2021). Therefore, a single forecast for the489

weather pattern is not reliable at longer lead times making the learning of associated biases also490

less reliable. At short lead times, the geopotential forecasts are highly reliable, which means491

that the bias correction model uses the property that large-scale atmospheric flows have higher492

predictability than high-frequency variability (Lorenz 1969). This allows to learn specific biases493

associated with the weather pattern. Therefore, a plausible explanation for the highlighted inflection494

points is the point at which the the proposed method does not trust a single realization of the weather495

pattern, and instead attempts to mitigate the specific impact of the forecasted weather pattern on496

the temperature. As the forecasts in this study originate from a single high-resolution NWP model,497

this effect is similar to the common observation that ensemble means have higher skill than single498

forecasts in particular at longer lead times.499

6. Discussion and conclusion500

This study is motivated by recent studies showing the descriptive ability of weather regimes501

to explain meteorological situations associated with higher forecast errors (Ferranti et al. 2015),502

year-round weather regime definitions (Grams et al. 2017; Büeler et al. 2021) and recent advances503

in the integration of weather regime information into forecast calibration methods (Allen et al.504
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2019, 2020). We propose a bias correction method inspired by Model Output Statistics which505

embeds the information of weather patterns inside a LASSO regression to improve NWP forecast506

skill of deterministic short-term temperature forecasts. Instead of using weather regimes, we507

use weather patterns as the output from the EOF analysis that are easier to derive, contain more508

information than weather regimes and can express highly variable weather pattern situations.509

Instead of using weather regimes, we use weather patterns as the output from the EOF analysis510

that are easier to derive, contain more information than weather regimes and can express highly511

variable weather pattern situations. Moreover, preliminary tests (not shown) suggested that regime-512

based post-processing was not able to reach the same level of predictive skill as the pattern-based513

technique described here. We show, for the first time, that temperature forecasts can greatly benefit514

from this information, since spatially averaged skill improvements up to 3% are observable with515

significantly larger values over the land surface. We show that the proposed methodology shows516

the best performance during spring and autumn months, but the method achieves year-round skill517

improvements. This emphasizes the importance of investigating entire years in forecast calibration518

studies in contrast to focusing on single periods such as the well-researched (extended) winter519

period (Ferranti et al. 2015; Allen et al. 2019, 2020; Barnes et al. 2019).520

Subject to the lead time, the performances of the methods show a U-shaped pattern with high skill521

scores at short lead times, decreasing scores afterwards until inflection points of skill scores are522

reached at around lead times of five or six days subject to the respective site. Based on an analysis523

of the EOF patterns and its respective regression weights, we show systematic differences of the524

model weights between short and long lead times. At short lead times, the model is confident in525

making forecasts as illustrated by the model capability to correct systematic negative biases during526

blocking events in Europe. At longer lead times, the model systematically reduces the weather527

pattern induced temperature anomaly making the forecast less bold. We argue that this originates528

from the lower reliability of deterministic geopotential forecasts. Therefore, a promising further529

research avenue is to incorporate the weather pattern uncertainty by using multiple geopotential530

height forecasts from an ensemble forecasting system, for instance based on the works from Büeler531

et al. (2021) to derive weather regime probabilities. As the spread of the ensemble of forecasts532

is related to the prevailing atmospheric flow (Rodwell et al. 2018), there is also further research533

needed to evaluate the value of weather patterns for temperature ensemble forecasts. This is534
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particularly true for studies with a focus on longer lead times than those investigated in this study as535

the uncertainty increases and deterministic geopotential and temperature forecasts are not reliable.536

Furthermore, we compared six different weather pattern definitions in terms of their spatial537

domain and the weather pattern reference time. Higher skill scores are observable in case the EOF538

analysis uses weather patterns with a spatial domain identical to the forecast domain. This supports539

the hypothesis formulated in Allen et al. (2020) that specialized regime definitions can provide540

more value within post-processing techniques than large-scale regime definitions. We approve this541

statement by showing that weather pattern definitions with common large-scale spatial domains, as542

in Grams et al. (2017) and Ferranti et al. (2015), show less skill than the weather patterns with the543

same spatial domain as the forecast despite these contain more information about the large-scale544

atmospheric flow. Further research avenues could investigate whether this statement is also valid545

for other meteorological variables such as wind speed or precipitation. Furthermore, we show546

that using forecasted weather patterns is more skillful than using weather patterns at the model547

initialization time. Using hybrid models did not lead to models that outperform the single EuFC
548

model highlighting the importance of forecasted weather patterns and the region-of-interest spatial549

domains. Note that in the regression of this study, the hybrid models only contain individual550

terms without interaction terms between the weather patterns. Therefore, an interesting research551

direction is the inclusion of interaction terms between initial and forecasted weather patterns, which552

allows one to obtain individual weights for weather pattern trajectories. Note that this dramatically553

increases the number of predictors, which is in the case of 14 EOFs an additional number of 196554

interaction terms (e.g. for EuInit & EuFC: 𝑛𝐸𝑂𝐹 𝐼𝑛𝑖𝑡 ×𝑛𝐸𝑂𝐹𝐹𝐶 ).555

Finally, the EOF analysis used in this study offers a straightforward method to incorporate556

information on the large-scale atmospheric flow into post-processing techniques. Most post-557

processing techniques are applied point-wise, and thus do not allow the integration of information558

about the atmospheric flow situation. This is also the case for recent proposals based on more559

sophisticated Machine Learning methods, such as those described in Rasp and Lerch (2018b).560

Methodologically, it is possible to include spatial information in neural networks through the561

usage of Convolutional Neural Networks. In these architectures, convolutional operations based562

on learnable kernels enable the aggregation of information from neighboring sites. This has shown563

promise for NWP post-processing techniques for wind speeds (Veldkamp et al. 2021), precipitation564
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(Li et al. 2022) and also air temperatures (Cho et al. 2022; Xiang et al. 2022). Although in principle565

this enables the integration of spatial information into neural networks, kernels are limited in their566

receptive field by their kernel size. More concretely, the effective receptive field is proportional to567

O(𝐾
√
𝐿) with K kernel size and L stacked layers (Luo et al. 2016). Typical kernel sizes are small,568

with typical sizes of 3 by 3 pixels. This raises questions about the ability of CNNs to effectively569

capture and integrate synoptic-scale information from atmospheric flows. Consequently, it would570

be worthwhile to explore whether neural networks could gain additional benefits from incorporating571

atmospheric flow information through forecasted weather patterns as derived in this study.572
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APPENDIX585

The forecasts are evaluated based on skill scores which relate the evaluation metrics to a reference586

forecast as commonly applied in forecasting applications. The reference forecast applied in this587

study is a bias correction which is applied in a rolling training window fashion. The bias corrected588

forecasts term 𝑦𝑏𝑐, the forecasts based on the proposed method 𝑦𝑝𝑟𝑒𝑑 and the actual temperature589

measurements 𝑦.590

The Mean Absolute Skill Score (MAESS) formulates591

𝑀𝐴𝐸𝑆𝑆 = 1− 𝑀𝐴𝐸

𝑀𝐴𝐸𝑟𝑒 𝑓
= 1−

𝑇−1∑
𝑡 |𝑦

𝑝𝑟𝑒𝑑
𝑡 − 𝑦𝑡 |

𝑇−1∑
𝑡 |𝑦𝑏𝑐𝑡 − 𝑦𝑡 |

(A1)

which measure the absolute distance. This metric assumes that all deviations from the analysis592

should get the same weight which as a second metric this study uses the, more widely used, Mean593

Squared Skill Score (MSESS)594

𝑀𝑆𝐸𝑆𝑆 = 1− 𝑀𝑆𝐸

𝑀𝑆𝐸𝑟𝑒 𝑓
= 1−

𝑇−1∑
𝑡 (𝑦

𝑝𝑟𝑒𝑑
𝑡 − 𝑦𝑡)2

𝑇−1∑
𝑡 (𝑦𝑏𝑐𝑡 − 𝑦𝑡)2

(A2)

which penalized larger errors disproportionately more. In case of temperature, this metric makes595

sense as larger errors are usually more crucial than smaller ones.596
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