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Efficient Size and Heading Angle Estimation of
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Abstract—For maritime security applications it is advanta-
geous or even required, that additionally to the geographical
positions and moving directions the dimensions of the detected
ships are available for subsequent classification and recognition
purposes. In this paper a fast and robust method for size and
heading angle estimation of ships in synthetic aperture radar
(SAR) and inverse SAR (ISAR) images is proposed. The novel
method leverages the eigenvalue decomposition of the detected
ship pixel positions for determining the just mentioned parame-
ters. The effectiveness of the proposed method is assessed against
several state-of-the-art methods by using real X-band SAR
images acquired with the German TerraSAR-X radar satellite in
stripmap mode. The achieved accuracies of the proposed method
are better than the ones obtained with the considered state-of-
the-art methods and, as a further benefit, the computation time
is also significantly shorter.

Index Terms—ships, spaceborne, synthetic aperture radar
(SAR), maritime security.

I. INTRODUCTION

SHIP detection and monitoring of ship traffic are imperative
for ensuring maritime safety and security, combating

various maritime threats including piracy, illegal fishing and
unauthorized immigration. Air- and spaceborne radar sensors
with their weather-independent and day-night data acquisition
capabilities are well-suited for these tasks [1]. Furthermore,
beyond mere detection, the proliferation of these sensors with
enhanced resolution and the advancement in image process-
ing technology facilitates the estimation of additional ship
attributes such as its dimensions and heading angle. These
parameters can not only aid in ship classification [2], but also
provide valuable information on the movement direction.

In the open literature there exist several ship size and
heading angle estimation methods. One of the most prominent
ones is based on the Radon transform [3], [4]. It is an image-
based approach where a 2D image containing the object of
interest is utilized as input to compute both the size and
orientation of the object. Another widely used state-of-the-art
method is based on fitting an ellipse to the detected boundary
pixels of the ship [5], [6]. However, noisy and sparse border
pixels, which may arise due to falsely detected pixels, often
lead to an overestimation of the dimension. Morphological
operations, e.g., a dilation and an erosion may be neces-
sary for removing these distortions. However, this additional
processing effort may not always guarantee reliable results.
Furthermore, there exist also deep learning-based approaches
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Fig. 1. Framework for performance assessment and comparison of the
proposed estimation method (blue color) with state-of-the-art methods (gray).

which can accurately estimate the ship dimensions, but at
the cost of high computation power and the need for a large
volume of ship images and ground truth data for training the
network [7].

In this paper a novel computationally fast and accurate ship
size and heading angle estimation method is presented. It is
suitable for both air- and spaceborne synthetic aperture radar
(SAR) and inverse SAR (ISAR) images. Similar to the ellipse-
based fitting method discussed previously the proposed method
also fits an ellipse to the ship. However, instead of taking
just the potentially distorted boundary pixels, it takes into
account all the detected pixel positions belonging to the ship
for determining its length, beam (= width) and heading angle.

For assessing the performance of the novel method SAR
images of ships acquired with TerraSAR-X satellite are used
as input and AIS (automatic identification system) [8] data as
ground truth. Furthermore, the results are also compared with
different state-of-the-art ship size and heading angle estimation
methods. The performance assessment framework is shown
in Fig. 1. Together with the state-of-the-art methods it is
discussed in more detail in the next Section.

II. STATE-OF-THE-ART ESTIMATION METHODS

For accurately estimating sizes and angles of objects in
digital image data of any kind it is essential, that the input
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images have equal pixel size in both dimensions. For SAR
images it is also mandatory that they are available in ground
range/cross-range geometry. This is ensured by the block
Ground Projection + Resampling to Equal Pixel Size in Fig. 1.

For the proposed method (cf. block in blue color in Fig. 1) as
well as for most of the considered state-of-the-art methods (cf.
block in gray color) a binary detection map is needed as input.
For ship detection and Detection Map Generation generally a
constant false alarm rate (CFAR) detection algorithm is applied
on the on ground projected1 input images [9], [10].

For the Radon-Based method either a binary detection map
or optionally a rescaled intensity/amplitude image can be used
as input. This will be explained later in Section IV.

In the following the considered state-of-the-art methods are
discussed.

A. Rectangular Fitting
In this method a rectangle with edges parallel to the image

x- and y-axes is fitted to the set of ground range and azimuth
pixel positions of the ship in the detection map. The maximum
and minimum positions in both dimensions are used for
estimating the length and beam of the ship, respectively. This
approach unfortunately is not capable to estimate the heading
angle. For the ship length an underestimation and for the beam
an overestimation is generally expected. We have it included
anyhow, since it is widely used [5].

B. Greatest Distance
In this method the Euclidean distance between the two

farthest pixel positions in the detection map is considered as
ship length [11]. The beam of the ship is computed from
the greatest distance of the pixels at an angle orthogonal
to the line defining the ship length. The Python [12] func-
tion scipy.spatial.distance.cdist and some functions from the
NumPy library are used for the implementation of the method.

C. OpenCV-Based Elliptical Fitting
This method fits an ellipse to a set of two-dimensional

(2D) points using a least-square approach. The boundary pixel
positions of the ship are first extracted either by computing the
convex hull or the contour of the ship. In general the convex
hull gives less boundary points than the contour. Thus, the
contour can lead to more accurate size estimates, especially
when the object has concavities or irregularities. For com-
puting the convex hull and the contour the Python functions
sciPy.spatial.ConvexHull and skimage.measure.find contours,
respectively, are used. For fitting an ellipse to the points
obtained with these two functions, the function cv2.fitEillipse
from the OpenCV library [13] is used. As output the center,
major and minor axes of the fitted ellipse and its orientation is
obtained. The major and minor ellipse axes directly correspond
to the ship’s length and beam, respectively.

1Please note that also already available detection maps in slant range
geometry can be projected to ground and resampled to equal pixel size. Thus,
the CFAR detector not necessarily needs to be applied on SAR images in
ground range geometry but also can be applied on SAR images in slant range
geometry if subsequently the projection of the detection map to ground and
resampling is carried out.

D. Radon-Based Method

This method utilizes the Radon transform [14]. For estimat-
ing the heading angle of the ship, which is assumed to be an
elongated object, the position of the intensity maximum in the
sinogram is considered. The beam and length of the ship are
obtained from the thresholded sinogram intensity projections
corresponding to the heading angle and the angle orthogonal
to the heading angle, respectively [4]. For the practical im-
plementation the Python function skimage.transform.radon is
used.

III. PROPOSED EIGEN-BASED METHOD

This method is motivated by the concept of confidence
ellipses used for describing uncertainties in multivariate nor-
mal distributions [15]. Recently in [16] the concept has been
used for tracking multiple extended targets using ground-
based marine radar. To the best of the authors’ knowledge the
potential of this method has never been demonstrated for size
and heading angle estimation of ships in air- and spaceborne
SAR data.

As a first step the covariance matrix is computed using the
ship pixel positions obtained from the detection map. Then the
eigenvalues and eigenvectors are estimated after performing
the eigenvalue decomposition (EVD) of the covariance matrix.

The EVD of the covariance matrix Ĉship is given as [17]

Ĉship = VλV−1, (1)

where V and λ are the eigenvectors and eigenvalues, re-
spectively. The largest and smallest eigenvalues correspond
to the semi-major and semi-minor axes of the ellipse, re-
spectively, and the eigenvector corresponding to the largest
eigenvalue gives the orientation of the ellipse. The Python
function numpy.cov is used for computing the covariance
matrix and numpy.linalg.eig for computing the eigenvalues and
eigenvectors of the estimated covariance matrix.

After determining the largest and smallest eigenvalues the
length l̂ship, beam b̂ship and the orientation θ̂ship of the fitted
ellipse w.r.t. the horizontal image axis can be calculated as

l̂ship = 2
√

k1λ1, (2)

b̂ship = 2
√
k2λ2, (3)

θ̂ship = arctan

(
V1,v

V1,h

)
, (4)

where k1 and k2 are scale factors, V1,v and V1,h are the
vertical and the horizontal components of the eigenvector V1,
which corresponds to the largest eigenvalue λ1.

The scale factors k1 and k2 determine the confidence
interval for taking into account the 2D distribution of the
ship pixel positions. Empirically it was found that for the
investigated TerraSAR-X dataset a 75% confidence interval,
i.e., k1 = k2 = 2.77, lead to the most accurate results.

Note that many of the image based orientation angle estima-
tion methods deliver angles only in the range from 0◦ to 180◦.
Thus, there is a 180◦ ambiguity when it comes to true heading
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Fig. 2. Actual lengths (top) and beams (bottom) of the 34 investigated ships
obtained from AIS data.

angle and moving direction estimation. The estimation meth-
ods discussed in the paper cannot discriminate between the
front and back of ships. For resolving this ambiguity additional
information is required, e.g., the tracked ship positions over
time [18] or the line-of-sight velocity obtained via along-track
interferometry [19] or space-time adaptive processing [20]. For
the performance assessment we have manually eliminated such
180◦ ambiguities.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For assessing the performance of the proposed method
and for comparing it with the state-of-the art methods the
framework shown in Fig. 1 is used. The estimation errors are
computed as

Error = EstimatedValue− TrueValue, (5)

so that an over- and underestimation leads to positive
and negative error values, respectively. In this equation the
TrueValue is the value obtained from the AIS ground truth
data.

For evaluating the performance of the methods in to-
tal 34 fully focused ship image patches acquired with the
TerraSAR-X satellite are used. All image patches have a size
of 176 x 176 pixels, are projected to ground range and are
resampled to 3 m pixel spacing in ground range and azimuth
direction. Each image patch contains a ship of a certain size
and heading angle for which also AIS ground truth data is
available. The actual length and beam values for these ships
obtained from the AIS data are shown in Fig. 2. The ship
lengths vary between 100 m and 332 m and the beams between
17 m and 58 m, respectively.

All methods, except the Radon-Based method, are applied
only to the pixel-based detection map of the ship as shown in
Fig. 1. For the Radon-Based method instead of the detection
map also an intensity image can be used as input. However,
the intensity of such an image has to be properly normalized
or rescaled before applying the Radon transform. The reason
for this is the high dynamic range of SAR data, which can
be larger than 100 dB. Very bright single scatterers may hide
the actual shape of the ship and lead to unreliable size and
heading angle estimation results as shown in Fig. 3.

TABLE I
ROOT MEAN SQUARE ERROR (RMSE) FOR THE RADON-BASED METHOD
FOR THE CASES (A), (B) AND (C) DISCUSSED IN FIG. 3. FOR THE RMSE

COMPUTATION ALL 34 SHIP IMAGE PATCHES WERE USED.

Case (a) Case (b) Case (c)
RMSE 0 to -100 dB -40 to -100 dB Detection Map
Length [m] 123.66 38.22 15.64
Beam [m] 12.69 12.28 7.42
Heading [◦] 29.41 3.87 3.42

It can be seen in Fig. 3 that an input image normalized
and scaled in different ways may yield to completely different
estimation results. The root mean square error (RMSE) for
these cases using all 34 ship image patches are summarized
in Table I. From the bold values in the table it is clearly
recognizable that the best results for the Radon-Based method
are obtained when the binary detection maps are used as
input rather than the intensity images itself. Thus, for the later
comparison of all estimation methods only the detection map
is considered as single input source.

In Fig. 4 the estimation results for three different ship
image patches are shown exemplary. It can immediately be
seen that the Rectangular Fitting method simply creates a
bounding box based on the minimum and maximum ship pixel
positions and lacks heading angle information. Furthermore,
compared to the method based on OpenCV Contour, the
OpenCV Convex method tends to overestimate especially the
beam. This is because the former method uses more boundary
pixels compared to the latter. Altogether, the OpenCV Contour,
the Radon-Based and the proposed Eigen-Based methods seem
to fit very well with the ship shapes and orientations for the
detection maps shown in Fig. 4.

In Fig. 5 the estimation error results for all 34 available ship
images patches are shown. It is evident that the length and
beam estimates for all methods tend to either underestimate
or overestimate, as expected. This disparity can be attributed
to several underlying factors, including the side-looking SAR
acquisition geometry, multi-path reflections from the ships to
the ocean surface and vice versa, fluctuation of the radar cross
section (RCS) and, thus, not accurate representation of the ship
shape, and defocusing or smearing effects in the SAR image
caused by ship motion. The shown heading angle estimates are
very close to the ground truth data with an estimation error
better than ±10◦ (cf. Fig. 5 bottom).

Finally the RMSE and, hence, the estimation accuracy
for all investigated methods was also computed. The results
are listed in Table II. In comparison to the state-of-the-art
methods, the proposed Eigen-Based method gives the best
results with the lowest RMSE values of 12.22 m, 8.64 m and
2.79◦ for ship length, beam and heading angle, respectively.
The second best results are obtained with the Radon-Based
method and the third best with the OpenCV Contour method.
Note that for the computation of the Radon transform a step
size of 1◦ and a range from 0◦ to 180◦ was used.

Furthermore, a processing time evaluation was also carried
out. For each ship image patch of size 176 x 176 in pixels
each estimation method was executed hundred times and the
average processing times were calculated. The computations
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a b c

Fig. 3. Radon-based fitting results for image patch no. 10 scaled in different ways before applying the estimation method. The white and black rectangles
visualize the estimation results. (a): Image normalized to its maximum value and afterwards rescaled to maximum value of 0 dB and to a minimum of -100
dB; (b): Normalized to maximum and then rescaled to the range of -40 dB to -100 dB; (c): Binary detection map used as input image.

Patch no. 4 Patch no. 10 Patch no. 17

Pixel-Based Detections

Rectangular Fitting

OpenCV Contour

OpenCV Convex

Radon-Based

Greatest Distance

Eigen-Based

Fig. 4. Some examplary ship size and angle estimation results obtained from the discussed methods superimposed on their respective binary detection maps,
which are used as input for the estimation methods. The patch numbers in the figure are shown in Fig. 2. All image patches originally have a dimension of
176 x 176 in pixels but have been truncated for the visualization purposes.

Fig. 5. Length (top left), beam (top right) and heading angle (bottom) estimation errors for all 34 ship image patches. The results from the Rectangular
Fitting method are not included owing to its large estimation errors and its inability for heading angle estimation.
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TABLE II
RMSE AND AVERAGE PROCESSING TIME OF THE ESTIMATION METHODS.

THE NUMBERS IN BOLD SHOW THE BEST ACHIEVED ACCURACIES.

Estimation Methods RMSE (= Achieved Accuracies)
Length

[m]
Beam
[m]

Heading
[◦]

Processing
Time [µs]

Rectangular Fitting 22.62 77.74 n/a 207
Greatest Distance 17.12 26.31 5.37 11000
OpenCV Contour 19.85 17.18 3.07 1061
OpenCV Convex 26.38 35.53 3.94 1012

Radon-Based 15.64 7.42 3.42 400000
Eigen-Based 12.22 8.64 2.79 112

were carried out on a conventional personal computer with
an Intel(R) Xeon(R) processor E3-1270 v5 running at 3.60
GHz. The processing time results are listed in the most right
column of Table II. The proposed Eigen-Based method is the
fastest among all methods with an average processing time of
only ≈ 112 µs. More important than the absolute processing
time is the fact that proposed Eigen-Based method is almost
twice as fast as the inaccurate Rectangular Fitting method,
which is on second position in terms of processing time. The
Radon-Based method is approx. 3600 times and the OpenCV
Contour method approx. 10 times slower than the proposed
Eigen-Based method.

In short both in terms of processing time and estimation
accuracy the proposed Eigen-Based method surpasses the
other investigated state-of-the-art methods, making it an at-
tractive choice for real-time ship monitoring and classification
applications.

V. CONCLUSION

In this paper a novel eigenvalue decomposition-based ship
size and heading angle estimation method was proposed. For
performance assessment TerraSAR-X SAR image patches of
ships and AIS ground truth data were used. Comparative
analyses against several state-of-the-art estimation methods
revealed that the parameters estimated with the novel proposed
Eigen-Based method have the highest accuracy. Furthermore,
in terms of computation time the proposed method is also the
fastest, outperforming, for instance, the state-of-the-art Radon-
Based method by a factor of 3600 and the OpenCV Contour
method by a factor of 10. Due to low computational load the
method is suitable for real-time ship size and heading angle
estimation. We want to point out that the proposed method can
also be applied one to one on focused ISAR intensity images
of ships, although no ISAR results are shown in the paper.

We intend to integrate the proposed method into our own
maritime moving target indication processing framework [21],
which will be installed on the onboard computer of the
compact multi-channel S-band HAPSAR sensor [22]. This
sensor will be integrated as payload in the DLR High-Altitude
Platform (HAP) [23].
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