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Abstract—Under new EU regulation, as of 2035 all new cars and 

vans registered in the EU are set to be zero-emission. This 

ambitious target will be an important driver for a large-scale 

rollout of e-mobility across European cities. To ensure the 

successful planning of the energy infrastructure and optimized 

operation of the expanding e-mobility systems, smart and robust 

tools will be in high demand for various stakeholders, such as 

industry, city planners, or researchers. As part of the EU-

funded research and innovation project DriVe2X, an interactive 

open-source prediction tool for Vehicle-to-Grid (V2G) 

operation and planning has been conceptualized and is under 

development. The main functions of this tool are the prediction 

of energy balance and flexibility at the public charging station 

level for a day-ahead operation and providing useful customized 

analytics for long-term planning purposes. 

Keywords—Electromobility, Energy Management, Open-

source, Prediction Tool, Vehicle-to-grid 

I. INTRODUCTION 

Under new EU regulation [1], all new cars and vans 
registered in the EU are set to be zero-emission from 2035 
onwards. This ambitious target will be an important driver for 
a large-scale rollout of e-mobility across European cities. To 
ensure the successful planning of the energy infrastructure and 
optimized operation of the expanding e-mobility systems, 
smart and robust tools will be in high demand for various 
stakeholders, such as industry, city planners, or researchers.  

The energy transition signified by the progress in 
digitalization of energy and e-mobility sectors will enable 
automated data flow from a vast number of sensors integrated 
into the e-mobility system, including both the Electric 
Vehicles (EVs) and the charging stations. At the same time, 
advancements in data science will provide the methods to 
handle and make efficient use of big data. This digitalisation 
has the potential to lower energy demand and to enhance grid 
flexibility [2].  

As part of the EU funded research and innovation project 
DriVe2X [3], an interactive open-source prediction tool for e-
mobility operation and planning has been conceptualized and 
is under development. The main functions of this tool are the 

prediction of energy balance and flexibility at the public 
charging station level for a day-ahead operation and providing 
useful customized analytics for the users for long-term 
planning purposes. The E-mobility Prediction Interactive 
Open-Source Tool (EPIOT) achieves this by leveraging 
Machine Learning (ML) techniques, utilizing a combination 
of dynamic open-source data, and synthetically generated data 
derived from the local environment surrounding the stations. 
A selection of charging stations in conjunction with real-world 
charging data from Amsterdam will be used for the piloting of 
EPIOT.  

EPIOT incorporates a range of integrated analytical 
models that enable the calculation of Key Performance 
Indicators (KPIs) tailored to stakeholders' needs. These KPIs 
are instrumental in assessing the efficiency, performance, and 
impact of charging stations. EPIOT goes a step further by 
offering an intuitive, real-time, interactive map visualization 
of its output, allowing users to customize and explore the 
parameters that matter most to them. 

II. STATE-OF-THE-ART 

With the EU wide transition to e-mobility, the integration 
of EVs into the grid system presents numerous challenges and 
opportunities. With the volume of EVs requiring charging 
there will be a significant increase in demand from the grid. 
To manage this substantial new load on the grid, several 
studies have been conducted analysing how best to manage 
EV charging. Over the last few years, research has shown that 
ML is a valuable tool in this area. ML can manage very large 
and complex data sets required for this task, including user 
behaviour data, charger and EV battery specifications, and 
charging status and history.  

These ML algorithms have been used for optimising 
charging scheduling and forecasting of the demand. The 
primary benefits of this are the stabilisation of grid operation 
and increased grid resilience, but the literature also evaluates 
its use for modelling revenue and user behaviour. 

An analysis of the literature shows that numerous 
algorithms have been developed for V2G load optimization 
and EV charging scheduling optimization. Most of these 
algorithms utilize ML techniques, including Random Forest, 



Support Vector Machine, Reinforcement Learning, and Long 
Short-Term Memory networks. The common input 
parameters used in these algorithms include classification of 
the charging station (e.g., working place or shopping center), 
EV battery specifications, charging station specifications 
(maximum power rating and station type), and information 
about arrival and departure times of vehicles or the charging 
duration. A summary of the literature is presented in Table 1. 

TABLE 1 – Literature Review 

Literature 

1 

Reference 

[4]  

M.-J. Jang, T. Kim und E. Oh, „Data-Driven 

Modeling of Vehicle-to-Grid Flexibility in 

Korea,“ Sustainability, Bd. 15, p. 7938, 
2023. 

Objective   Estimation of V2G flexibility with development of a data-

driven method   

Application  Modelling the status of EV charging stations for the 
purpose of estimating their flexibility in V2G 

Model   Queuing theory and mathematical modelling techniques, 

not a traditional ML method 

Literature 

2 

Reference 
[5]  

F. Lo Franco, M. Ricco, V. Cirimele, V. 
Apicella, B. Carambia und G. Grandi, 

„Electric Vehicle Charging Hub Power 

Forecasting: A Statistical and Machine 
Learning Based Approach,“ Energies, Bd. 

16, p. 2076, 2023. 

Objective   Development of a method for forecasting the power 
demand of a charging hub for EVs in different parking 

scenarios 

Application  Helping in planning and sizing of charging infrastructure 

for EVs in different locations and scenarios, such as 
shopping malls, airports, urban car parks, and working 

places 

Model   supervised machine learning model (no further details) 

Literature 

3 

Reference 

[6]  

S. Li, C. Gu, J. Li, H. Wang und Q. Yang, 

„Boosting grid efficiency and resiliency by 
releasing V2G potentiality through a novel 

rolling prediction-decision framework and 

deep-LSTM algorithm,“ IEEE Systems 
Journal, Bd. 15, p. 2562–2570, 2020. 

Objective   Development of a dynamic V2G scheduling method 

based on deep-Long Short-Term Memory (LSTM) 
algorithms and rolling prediction-decision framework 

Application  Prediction and management of the energy capacity of EVs 

connected to the grid, with the goal of improving the 
efficiency and resiliency of the power system by 

implementing dynamic V2G scheduling 

Model   Deep-LSTM algorithm   

Literature 

4 

Reference 

[7]  

A. Ahmadian, V. Ghodrati und R. Gadh, 

„Artificial deep neural network enables one-
size-fits-all electric vehicle user behavior 

prediction framework,“ Applied Energy, 

Bd. 352, p. 121884, 2023. 

Objective   Development of a unified framework for accurately 
predicting EV user behaviour in terms of charging 

duration and energy consumption 

Application  Grid management and diverse applications such as 
consumer behaviour analysis, potential future work of 

revenue modelling, energy system optimization 

Model   Adaptive learning approach via artificial deep neural 

networks 

Literature 

5 

Reference 

[8]  

F. Tuchnitz, N. Ebell, J. Schlund und M. 

Pruckner, „Development and evaluation of a 

smart charging strategy for an electric 
vehicle fleet based on reinforcement 

learning,“ Applied Energy, Bd. 285, p. 

116382, 2021. 

Objective   Demonstration of the effectiveness of reinforcement 

learning (RL)-based charging coordination in reducing 

grid load variability and improvement of EV charging 
efficiency. 

Application  Optimization of EV charging, mitigation of grid stress, 

and contribution to a more sustainable and cost-effective 

integration of EVs into the energy ecosystem with an 

advanced EV charging coordination system for residential 

areas 

Model   Reinforcement Learning (RL) 

Literature 

6 

Reference 
[9]  

P. Rajagopalan, J. Thornby und P. 
Ranganathan, „Short-Term Electric Vehicle 

Demand Forecasts and Vehicle-to-Grid 

(V2G) Idle-Time Estimation Using Machine 
Learning,“ in 2023 IEEE 13th Annual 

Computing and Communication Workshop 

and Conference (CCWC), 2023. 

Objective   Improvement of the accuracy of short-term EV charging 

load forecasts and assess the potential for V2G services 

by modelling and analysing historical charging data from 
EV charging stations. 

Application  Improvement on short-term demand forecasting to 

efficiently allocate resources, and minimization of 
supply-demand imbalances through the effective 

utilization of V2G services for more sustainable and 

resilient energy grids 
 

Model   Short-Term Demand Forecasting: 

• SARIMA (Seasonal Autoregressive Integrated 

Moving Average) 

• Random Forest 

• Neural Network (NN) 
Probability Estimation of V2G Connection: 

• Logistic Regression 

• Linear Support Vector Classification (Linear SVC) 

Literature 

7 

Reference 

[10]  

G. Vishnu, D. Kaliyaperumal, P. B. Pati, A. 

Karthick, N. Subbanna und A. Ghosh, 
„Short-Term Forecasting of Electric Vehicle 

Load Using Time Series, Machine Learning, 

and Deep Learning Techniques,“ World 
Electric Vehicle Journal, Bd. 14, p. 266, 

2023. 

Objective   Development and comparison of short-term EV demand 

forecasting models using real-world EV charging data 

Application  Help to grid operators, charging station managers, and EV 

owners to plan and optimize charging schedules, 

contribution to a more coordinated and efficient use of 
resources in the EV charging infrastructure and the overall 

improvement of reliability and sustainability of EV 

operations. 

Model   Auto-Regressive and Auto-Regressive Exogenous 

models 

Support Vector Regression  
LSTM neural network model 

These algorithms find application in two main areas: 
scheduling of EV charging and forecasting of EV charging 
loads. They optimize the charging schedule of EVs to ensure 
efficient use of the charging infrastructure, minimize peak 
loads, and balance energy demand. Some algorithms also 
predicted future demand for EV charging. These applications 
can enhance the efficiency of EV chargers, grid stability, as 
Ahmadian, Ghodrati and Gadh [7] highlighted; these 
algorithms can be used in the development of revenue models 
in the EV industry. In our approach, a novel method will be 
implemented where the learning is based on dynamic 
acquisition of data from publicly available web Application 
Programming Interfaces (APIs), and we aim at implementing 
a transfer learning approach, where the learning from one city 
can be transferred to another city.  

III. PARAMETRIZATION OF THE ELECTROMOBILITY SYSTEM 

As a fundamental step toward modeling and analyzing the 
interaction between EVs and the electricity grid, a 
parametrization framework is established to obtain an 
overarching understanding of the key technical elements of 
the system and its surrounding static and dynamic parameters. 
One of the objectives of system parametrization is also to 



create a uniform framework and common approach to collect 
the relevant set of input for the predictive model across 
different pilot cities for the project. In this work, we have 
determined six main interacting elements that together make 
up the electromobility system as shown in Table 2.  

TABLE 2 –Electromobility System Main Elements 

Element Short Description 

City The city contains the charging station(s) and the 

surrounding urban infrastructure relevant to energy 

provision and mobility. The city parameters including 
the roads, buildings or concentration of points of 

attraction around the charging stations influence the 

pattern of charging demand and the optimal positioning 
of them within a city from a planning perspective. In this 

study we will examine the correlation of city parameters 

with the charging demand patterns and the optimal 
location of stations in the city. 

Grid The grid provides the source of energy to the charging 

stations and absorbs the feed-in energy in the case of bi-
directional infrastructure. The topology and capacity of 

the grid at the point of connection to charging stations 

will determine the constraints for charging demand and 
optimal infrastructure planning throughout the city. 

EV The EVs move on the roads carrying the stored energy 

from one station to another on various time intervals. At 

the point of connection, they either charge or discharge 
to the grid. The state of charge (SOC) of the EV battery 

will determine the charging profile. In this study the EVs 

batteries will be characterized based on battery size and 
standard charge and discharge profiles. 

User The user behaviour indicates the time, location and 

duration of connection of EV to a particular charging 
station. The user preference for range and charging time 

influence the profile of the load profile at the charging 

stations. We aim at generating representative user 
profiles specific to each demo-site use-case. 

Environment The environment refers to the impact of the EVs on the 

surrounding environment in terms of both equivalent 

CO2 saving and reducing pollution in the city. 

Price The price refers to the cost of energy for charging or 
discharging at the charging station. The price at a 

charging station provides signals to both the user and the 

operator that influence the charging behaviour and 
energy planning respectively. 

Our envisaged ML-based predictive model relies on a 
large set of input data that characterizes the behaviour of the 
system over time. In technical terms, these variable input data 
are referred to as input features. Choosing informative and 
independent features is a critically important part of 
developing an effective ML model. Selecting the right set of 
input features for each element of the system involves an 
iterative process that is referred to as Feature Engineering. In 
this process raw variables are transformed into features ready 
for inclusion in a ML model [11]. Various parameters 
belonging to each element of the system will be identified and 
documented, and the complex interaction between them will 
be explored and analysed. The parametrization of elements 
will be followed by the identification of sources of data that 
will be further collected, processed and utilized for the data 
driven prediction model to be developed in the future tasks.   

A. Use-cases & Demo-sites 

The public charging stations and the parameters 
influencing the EV charging profile at each location are 
considered as the main use-case under investigation. The term 
“public” refers to the attribute of the charging station that are 
located on publicly accessible land and continuously available 
for usage by public EV users (except for certain maintenance 
or down periods) without any constraints. For example, 
charging stations that are in a private office parking lot with a 

gate or attached to an office building with entry codes are not 
considered as public. The tool is designed to addressed to the 
following three main use-cases and will be tested and 
validated in the future for following European cities as 
indicated in Table 3. 

TABLE 3 – Use-cases 

No.  Title Linked demos 

1 V2G integration in public charging 

stations for addressing technical grid 

constraints 

Demo 1 (Isle of Wight, 

UK), Demo 2 (Maia, 

PT), Demo 3 (Terni, IT) 

2 V2G for network stabilization of 
locally managed RES-congested grids 

Demo 3 (Terni, IT) 

3 Peripheral smart renewable energy and 

mobility hubs for V2G uptake in 

highly congested urban grids 

Demo 4 (Amsterdam, 

NL) 

B. Charging station flexibility profile 

The following two research questions emerge by choosing 
the public charging stations as the main use-case for our study. 
These two research questions also address the rationale for 
targeting our prediction output for two different time horizons, 
the day-ahead and monthly temporal resolution. The day-
ahead prediction is intended to meet the demand for day-to-
day operations and the longer monthly prediction interval 
satisfies the requirement for planning the infrastructure. The 
predicted output is eventually tailored for two distinct types of 
stakeholders, the charging point operators (CPO) and city and 
grid planners, accordingly.  

The first research question: how much flexibility is 
available at each existing public charging station in a city over 
a day-ahead timeframe? And how can this influence the 
availability and pricing of energy? (short-term prediction, 
operation).  

Stakeholder: The answer to this question or the output of 
this prediction will mainly benefit the CPOs.  

The second research question: how do public charging 
stations within a city perform with respect to the KPIs? Where 
would be the optimal location(s) in a city for adding more 
charging stations or re-arranging the existing installations? 
(long-term prediction, planning).  

Stakeholder: The answer to this question or the output of 
this prediction will mainly benefit the city and grid planner.  

In this context, flexibility is defined as the EVs available 
battery capacity supplemented to the grid’s capacity at the 
point of coupling while maintaining the grid requirements 
(voltage constraints, overloading). Leveraging this flexibility 
can contribute to increasing the use of renewable electricity 
harnessing unused EV storage capacity, whilst minimizing 
grid reinforcements and energy generation needs.  

To construct the flexibility profile as shown above, three 
quantities need to be determined:  

1. The grid capacity at the point of grid coupling. 

2. The grid base load, including residential, 
commercial, and all other loads, excluding the EVs. 

3. The EV load and the unused capacity (amount of the 
charge in the battery available for the grid to use).  

The following series of graphics (Fig. 1, Legend, A, B, and 
C) aim at illustrating the definition of flexibility in a series of 
successive graphics that build up the flexibility profile of an 
exemplary network. In the legend (Fig. 1 _ Legend), the 



available capacity of the EV is shown in light green, which is 
the amount of charge in the battery that can be offered or to be 
discharged to the gird. The dark green depicts the EV charge 
request from the grid, or the EV load.  

In part A (Fig. 1- A) the available capacity of EVs 
connected to an arbitrary network for an arbitrary moment in 
time is shown on the left and then supplemented to the grid 
capacity based on the definition on the right. In part B (Fig 1. 
B), the available flexibility is expanded for a longer period of 
daily profile (in this example each column represents an 
aggregation of 4 hours).  In part C (Fig. 1 - C) of the graphic, 
the flexibility profile of the network is extracted and shown in 
a separate daily profile. 

 

Fig. 1: Legend 

 

Fig. 1: A 

 

Fig. 1: B (left) and C (right) 

The grid capacity is known to us as this value can be 
obtained from the transformer ratings. The base load will be 
obtained from locally available standard load profiles. The 
third variable, EV loads and the remaining unused (available) 
capacity are unknown; therefore, we are aiming at developing 
a predictive model to quantify that piece of the argument. 

We believe that a day-ahead prediction of the flexibility 
profile at the charging station level can potentially contribute 
to the optimization of smart charging strategies in the short 
term for the flexibility CPOs. The analysis of the aggregated 
profiles and tracking of the personalized KPIs over a longer 
period will allow the planners to assess the impact of 
progressive EV penetration on the grid. 

IV. CONCEPT AND ARCHITECTURE OF THE TOOL 

EPIOT is an open-source interactive load prediction tool 
designed to forecast the load profiles of public urban charging 
stations, both in the short and long term. EPIOT achieves this 
by leveraging ML techniques, utilizing a combination of 
dynamic open-source data and synthetically generated data 
derived from the local environment surrounding the charging 
stations. Beyond load prediction, EPIOT incorporates a range 
of integrated analytical models that, with the ML-generated 
data, enable the calculation of KPIs tailored to various 
stakeholders' needs. These KPIs are instrumental in assessing 
the efficiency, performance, and impact of urban charging 
stations. An early version of EPIOT’s architecture is displayed 
in Fig. 2, where the interaction between various modules is 
highlighted. 

The “UI module” is where all the user-tool interaction 
functionality will take place. In detail, the user will have the 
option to interact with a user interface and select what type of 
information is displayed on the map. This dynamic 
visualization tool enhances the user's ability to analyze data. 

The "Data Acquisition module" retrieves data from a static 
database and web API, processing it into a usable format for 
other modules based on user requests from the UI, predictive 
ML model, or integrated analytical models.  

The "Prediction module" is the core of the ML functionality, 
while the "Integrated Analytical Module" post-process ML 
output for KPI calculation. The "Integrator module" 
comprises sub-modules (load profile generator, KPI 
generator, data aggregator) that combine analytical model and 
ML module outputs to create a user-friendly final output. 
Meanwhile, users can customize parameters like KPI 
computation, details, time resolution, and data aggregation 
type in this process. 

A. Developmenet & Validation 

The main architecture and components of EPIOT will be 
developed by the collaboration of DLR Institute of Networked 
Energy Systems and the Delft University of Technology, 
where both institutes are dedicating their programming 
expertise to delivering a state-of-the-art open-source tool. 
Highlighted as an open-source and modular tool, EPIOT is 
designed as a research software with straight-forward 
interfacing and extension capabilities for easy extension by 
future researchers. Leveraging object-oriented programming 
in Python ensures code readability and reusability. The Python 
backend utilizes Flask, while the frontend incorporates 
powerful JavaScript libraries like Leaflet.js for map 
visualization and Plotly.js for data representation. During 
initialization, EPIOT loads all static data required for a 
session, including properties of charging stations, grid data, 
and more. To efficiently store this data, a no-SQL database 
like MongoDB can be employed. 

Since the core of EPIOT output is based on machine learning 
prediction, for the training of the model, validation, and 
testing of the results, data (both historic and live-data) will be 
collected and used from the demo-sites mentioned in the 
previous section A. Use-cases and Demo-sites. The validation 
and testing will be crucial to ensure the reliability, accuracy, 
and transferability of the model before its deployment. The 
challenges involved in this stage are mainly reliability of the 
dynamic data stream from the demo-site APIs. Methods for 
risk-mitigation will be put in place, such as storing the data 
on-a short-time horizon and updating the database frequently. 



Fig 2. Architecture of EPIOT 

B. The Scope 

Defining a scalable and transferable scope among demo-
site cities is essential. We define the electromobility system as 
the combination of all the public charging stations and the EVs 
operating within the geographical boundary of a city. Within 
this geographical scope, the charging stations act as individual 
nodes of the system that can provide flexibility by means of 
exchanging energy between the EVs and the grid (Fig. 3, a).  
It is further assumed that the geographical scope of each 
demo-site contains all the parameters that influence the energy 
exchange at each public charging station. This assumption 
helps create a common definition among various demo-sites 
and established a framework for data collection.   

We further define another geographical scope on the map 
for data association and collection, and that is the area of a 
circle drawn around a charging station with its center pinned 
to the position of the charging station (Fig. 3, b). The radius of 
this circle is adjustable to make the coverage area larger or 
smaller (Fig. 3, c).  Fig 2 illustrates this concept for a charging 
station in Amsterdam.  

Fig. 3 – City and Charging Station Scope 

The highlighted yellow area represents the city scope and 
the orange circle area with the variable radius centered at the 
charging station node (#4649162824) covers the charging 
station data scope. By this definition, there will be two types 
of geographical scope corresponding to two different areas on 
the map: the city scope and the other, the charging station 
scope. For example, the total number of registered EVs in the 
city is a city parameter (or data), in contrast the traffic density 

of the adjacent road to the charging station (within the circle) 
becomes a charging station parameter. 

C. Data Sources and Selected Parameters 

 It is essential to identify and organize the data sources into 
meaningful sets of information that can be effectively and 
efficiently used as input for the predictive model. Six high 
level categories of data sources are defined according to the 
six elements of the electromobility eco-system, previously 
defined in this paper. These categories are helpful for guiding 
the data collection process across the demo-sites and will be 
also used in the definition of the KPI framework. An important 
feature of our predictive model is the fact that it will be 
connected and using many APIs as the source sof input data.  

 In Table 4, individual selected parameters of the system 
under each element of the system are listed. 

TABLE 4 – Available Data Sources 

Element Parameters 

City Charging Station (Location, Rated power, Connector 

type, Availability) 

Road shapefile & Traffic datapoints   

Point of interest (Location, Schedule, Visitor count)  

Grid System (Generation and Load) 

Transformer and Substation (Location, power, loading) 

RES (rooftop PV Location, installed capacity) 

EV Number of registrations   

Make and model   

Size and category   

Battery size and Charging rate   

Travel range   

Environment Air pollution   

Rain   

Temperature   

Price Day-ahead wholesale electricity price  

EV charging rates   

 



D. Prediction Model 

The dynamic ML method of the EPIOT represents a 

cutting-edge approach that allows for an agile, adaptive 

system that dynamically absorbs and synthesizes real-time 

data obtained through open-source APIs. Its core lies in 

sophisticated algorithms such as recurrent neural networks or 

long short-term memory models, which process streaming 

data, allowing seamless integration of updated datasets into 

the predictive model. This adaptive model continually learns 

from the city, mobility, user, market and grid parameters and 

refines its understanding of the complex parameters 

governing the electromobility landscape.  

By employing advanced feature engineering techniques 

and real-time data ingestion mechanisms, it accurately 

predicts flexibility potentials. This approach's strength lies in 

its ability to incorporate live data, ensuring the system's 

adaptability and efficacy in real-time decision-making. 

E. Analytical Modules and KPIs  

Establishing KPIs and metrics in the EV domain is 
essential for evaluating performance and impact, bridging 
technical data with practical decision-making, and facilitating 
collaboration among stakeholders. Tailoring KPIs to specific 
stakeholder interests, such as grid operators' focus on 
transformer loading levels and environmental committees' 
emphasis on CO2 emissions reduction, enables more effective 
decision-making. High-quality KPIs guide operators and 
planners in addressing challenges and opportunities, 
optimizing resource allocation, and maximizing the benefits 
of EV infrastructure for communities and the environment. 

To address this need, we've designed five integrated 
analytical models that play a key role in facilitating the post-
processing of the ML prediction output and the data sourced 
from static databases or accessible web APIs (Fig. 2) These 
models are necessary in the evaluation of the KPIs at hand. 
The workflow begins with the user, who plays a central role 
in shaping the analysis. The user initiates the process by 
specifying essential parameters, such as the preferred time 
resolution  (day-ahead or month-ahead) and selecting the 
region of interest based on administrative areas, postal codes, 
or neighborhoods, through a visual interface. In the end, the 
outcomes are presented on the user's screen, accompanied by 
the option to generate a downloadable report for later analysis. 
This approach empowers the user to wield control over the 
analytical process, allowing them to tailor the analysis to their 
unique areas of interest and research objectives. 

F. Results & Output 

As previously highlighted, EPIOT features a customizable 

interactive visual user interface, empowering users to tailor 

their analyses by selecting from available KPIs and their 

parameters, as well as defining the geographical scope of 

their analysis. Fig. 4 illustrates a screenshot of the initial 

version of EPIOT. As depicted, users can designate the 

chargers they wish to study within a specified administrative 

area. Moreover, users have the flexibility to choose which 

KPIs to calculate through the wizard located in the left-side 

panel. In this example, we demonstrate the day-ahead 

predicted load profiles for the selected charging stations. It's 

worth noting that this represents the first iteration of EPIOT, 

with ongoing development and enhancements planned. 

 
Fig. 4 – Screenshot of the EPIOT UI. 

CONCLUSION 

In summary, EPIOT is a versatile tool that caters to a wide 
array of electromobility stakeholders, empowering them to 
create custom case studies and evaluate KPIs using real, 
readily available data. Its capability to provide real-time 
insights and predictions makes it an invaluable resource in the 
rapidly evolving field of electromobility. Its functionalities 
and outputs support the aforementioned stakeholders on 
determination, quantification, prediction and optimization of 
V2G flexibility at existing or future charging stations. 
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