Combining physical modelling and AI for removing sun glint from atmospherically corrected imagery

Peter Gege^{*1}, Milad Niroumand-Jadidi²

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 Wessling, Germany ²Interdepartmental Research Centre for Environmental Sciences, University of Bologna, Via Sant'Alberto 163, Ravenna, Italy *peter.gege@dlr.de

Physical model

The irradiance model of Gregg and Carder (1990) is adopted to decompose the sky radiance reflected at the water surface (L_{sky}) into a direct component from the sun (E_{dd} ; sun glint) and two diffuse components caused by Rayleigh (E_{dsr}) and aerosol (E_{dsa}) scattering (sky glint):

A

Around 800 pixels are inverted with the physical model, then the spectra together with the fit parameter g_{dd} are used to train a neural network (NN). This image specific NN is applied to all water pixels to get R_{rs} .

including the waves from ships.

 $L_{sky}(\lambda) =$ $g_{dd} E_{dd}(\lambda) + g_{dsr} E_{dsr}(\lambda) + g_{dsa} E_{dsa}(\lambda).$

The E's are computed using analytic equations. The g's are the relative contributions of the E's to the illumination of a pixel. $g_{dsr} = 1/\pi$ and $g_{dsa} = 1/\pi$ is set, approximating isotropic sky radiance, while g_{dd} is determined for each pixel by inverse modelling.

Typical spectra of sky glint and sun glint.

The water surface reflects a fraction ρ_L of L_{sky} . Normalizing with the downwelling irradiance (E_d) yields the glint in reflectance units sr^{-1} :

Implementation in WASI

The method is implemented in version 7 of the software WASI. Download:

https://ioccg.org/resources/software/

Examples

DESIS image from Tam Giang Lagoon, Vietnam, 2023-05-03. High sun glint. Subtracting the bright glint image makes sensor artifacts (stripes) in the dark ocean visible.

g_dd

 $R_{rs}^{BOA}(\lambda) = R_{rs}(\lambda) + R_{rs}^{surf}(\lambda).$

by subtracting R_{rs}^{surf} from R_{rs}^{BOA} .

Atmospheric correction of satellite imagery over water provides the sum of R_{rs}^{surf} and remote sensing reflectance (R_{rs}) at bottom of atmosphere (BOA):

Hence, the corrected image in units of R_{rs} is obtained

g_dd $R^2 = 0.974; RMSE = 0.005$ 0.015 0.16 0.18 → R_{rs}^{BOA} 0.16 ⊸ R_{rs}^{surf} 0.14 -- 0.10 <mark>199</mark> - 0.08 -R_{rs} [sr ₹0.08 0.005 0.06 -0.04 -0.02 -0.00 -0.08 0.12 WASI 0.16 Wavelength [nm]

Landsat-9 image from Lake Constance, Germany/Austria /Switzerland, 2022-08-02. Little sun glint. The spectra R_{rs}^{BOA}, R_{rs}^{surf}, R_{rs} are averages from the area marked in the glint image.

EnMAP image from Western Australia, 2024-01-27. Extreme sun glint. The grayish appearence of the recorded image is caused by the very bright, slightly reddish glint overlaying dark blue water.

