LEVERAGING GENERATIVE MODELS FOR ENHANCED SOLAR IRRADIANCE RAMP DETECTION

Yann Fabel, Dominik Schnaus, Bijan Nouri, Stefan Wilbert, Niklas Blum, Luis F. Zarzalejo, Robert Pitz-Paal IEA Workshop on Minutescale Forecasting for the Weather-Driven Energy System 11th of April 2024, Roskilde, Denmark

Agenda

- Introduction & State-of-the-art
- Generative Nowcasting Approach
- Ramp Event Validation
- Conclusion & Outlook

INTRODUCTION & STATE-OF-THE-ART

the for the second

ahh Fabel, DLR, IEA Workshop on Minutescale Forecasting

Introduction Motivation

What are solar ramp events?

 Sudden local changes in solar irradiance due to cloud passings

What are the effects of ramp events?

- Local fluctuations of generated power
 - Negative ramps might cause grid code violations

What are the benefits of nowcasting?

- Anticipate ramp events, leading to:
 - Increased awareness for plant/grid operator
 - Minimization of storage requirements

What are the requirements?

- Cloud information in spatially and temporally high resolutions \rightarrow ASI

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

Introduction **ASI Nowcasting**

All-Sky Imager

 Ground-based camera observing complete hemisphere using fish-eye lens

Image analysis

- Physical approach
 - Explicit modelling of clouds, their motion and transmittance
- Data-driven approach
 - Model learns correlation of clouds and irradiance directly from images
- Hybrid approach:
 - Combine physical and data-driven approach
- Result:
 - Multi-step intra-hour irradiance forecast (nowcast)

HTT

Nowcasting

Model

Operator

State-of-the-Art Hybrid Solar Nowcasting

State-of-the-Art Hybrid Solar Nowcasting

Advantages

- Combines strenghts of physics- and datadriven approaches
- Achieves better error metrics and forecast skills than each individual model
- \rightarrow Well-suited for predicting average GHI

Disadvantages

- Decreased model interpretability
- Hybridization leads to smoothing
 - Persistence and deep learning model generate rather flat forecast curves
 - Combination based on reducing RMSE causes further smoothing
 - \rightarrow Limited capability to predict ramp events

State-of-the-Art Shortcomings

Optimization/Combination based on reducing MSE leads to smoothing

- RMSE and FS most common metrics in solar forecasting but they do not assess ramp event detection capability
- Forecast curves (of fixed lead times) are similar to persistence (shifted reference curve)

Lead time- vs datetime-specific forecast

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

GENERATIVE NOWCASTING APPROACH

64

Yahn Fabel, DLR, IEA Workshop on Minutescale Forecasting

Generative Nowcasting Approach

Two-stage Method

- I. Predict future (synthetic) sky image
 - Use sequence of recent sky images to predict next images
 - Generative Model: Diffusion model
- 2. Predict irradiance of future sky image
 - Use synthetic images as input to predict corresponding GHI
 - Data-driven and physics-based models are applicable

Advantages

- Cloud motion is modelled implicitly by generative model
- Increased interpretability due to synthetic images compared to previous data-driven model
- Model uncertainty can be achieved through different samples of future sky images

Generative Nowcasting Approach Video Prediction Architecture: Diffusion Model [3]

11

Generative Nowcasting Approach Examplary Video Prediction Results

Reality

Input/Output Samples

Green margin: real (input) image

 Red margin: synthetic (output) image

Generative Nowcasting Approach Examplary Video Prediction Results

Red margin: synthetic (output) image

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

Generative Nowcasting Approach Examplary Video Prediction Results

Green margin: real (input) image

Red margin: synthetic (output) image

Generative Nowcasting Approach Irradiance Model

Regression Model

- Input:
 - Single sky image
- Output:
 - GHI (corresponding to image)
- Architecture:
 - CNN (ResNet34)
- Training:
 - Using real sky images
 - Resizing to synthetic image size
 - Adding gaussian noise to simulate characteristics of synthetic images

Validation:

On real and synthetic images (not used for training)

Generative Nowcasting Approach Irradiance Model

RAMP EVENT VALIDATION

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

Ramp Event Definition

- Ramp (event) definition in solar forecasting strongly depends on use-case
- Existing definitions often complex and/or too sensitive [4]

Simplified definition:

Ramp Event Validation

- Validation against reference (on-site GHI measurements)
 - E.g. a predicted ramp event that was observed in the measurement curve is a true positive
- Validation based on 5min forecast horizon
- Validation via confusion matrices (in percentage) and F1-score

Ramp Event	True Positives (TP)		False Negatives (FN)			
No-Ramp Event	False Positives (FP)		True Negatives (TN)			
	Predicted Ramp	Event	Predicted Ramp	e Event		
$F1 = 2 \times \frac{pro}{pr}$	ecision × recall ecision + recall	precis	$ion = \frac{TP}{TP + FP}$	recall	$= \frac{TP}{TP + FN}$	

Confusion Matrix

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

Ramp Event Validation

Generative Model

Hybrid Model

- Hybrid model very good in FS but cannot predict strong ramps
- Generative model predicts majority of actual ramp events while maintaining high rate (>75%) of no-ramp events
- Selection of threshold depends on application/technology

Improving the Irradiance Model

400 W/m² vs 200 W/m²

- Oversaturation in circumsolar region poses challenge to estimate irradiance (e.g., large bias)
- Lower exposure times can help to improve accuracy

Exposure Time [µs]	RMSE [W/m²]	MAE [W/m²]	MBE [W/m²]
160	101	70.3	-64
80	60.7	42.2	-1.5

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

CONCLUSION & OUTLOOK

Yahh Fabel, DLR, IEA Workshop on Minutescale Forecasting

Conclusion

Quality of nowcasting models depends on use case

 Data-driven and hybrid models often achieve good error scores but may not be wellsuited for ramp event detection (optimization on RMSE)

Presentation of novel generative approach for ASI-based solar nowcasting

- Diffusion model for predicting future synthetic sky images
- Irradiance model for predicting irradiance (GHI)
- Validation of ramp event detection of a hybrid model and novel generative approach
 - Hybrid model misses most ramps due to flattened nowcast curve
 - New generative model superior in ramp event prediction
 - \rightarrow Predicts majority of true ramp events while having few false negatives

Outlook Improving Generative Model

Video Prediction Model

- Train on sky images with different exposure times
- Reduce training effort to increase image resolution and forecast horizon
 - Low resolution of images (64x64)
 - Short forecast horizon (5 min)

→ Ablate better design (e.g. apply diffusion in latent space)

24

Irradiance Model

- Reduce error metrics to be compatible with hybrid model in terms of forecast skill
- \rightarrow Include auxiliary features
- → Test more complex model architectures (e.g. VisionTransformers)
- → Use sky image series (with different exposure times) or HDR

- Nouri, B. / Blum, N. / Wilbert, S. / Zarzalejo, L. F. (2022)
 A Hybrid Solar Irradiance Nowcasting Approach: Combining All Sky Imager Systems and Persistence Irradiance Models for Increased Accuracy
- Fabel, Yann / Nouri, Bijan / Wilbert, Stefan / Blum, Niklas / Schnaus, Dominik / Triebel, Rudolph / Zarzalejo, Luis F. / Ugedo, Enrique / Kowalski, Julia / Pitz-Paal, Robert, 2023, (Under review)
 Combining deep learning and physical models: a benchmark study on allsky imagerbased solar nowcasting systems
- 3. Ho, Jonathan / Jain, Ajay / Abbeel, Pieter (2020) Denoising diffusion probabilistic models
- Logothetis, S. A., Salamalikis, V., Nouri, B., Remund, J., Zarzalejo, L. F., Xie, Y., ...
 & Kazantzidis, A. (2022)
 Solar Irradiance Ramp Forecasting Based on All-Sky Imagers

THANK YOU FOR YOUR ATTENTION QUESTIONS? YANN.FABEL@DLR.DE

anh Fabel, DLR, IEA Workshop on Minutescale Forecasting