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INTRODUCTION & STATE-OF-THE-ART
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Introduction
Motivation
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What are solar ramp events?

• Sudden local changes in solar irradiance due to cloud
passings

What are the effects of ramp events?

• Local fluctuations of generated power

• Negative ramps might cause grid code violations

What are the benefits of nowcasting?

• Anticipate ramp events, leading to:

• Increased awareness for plant/grid operator

• Minimization of storage requirements

What are the requirements?

• Cloud information in spatially and temporally high 
resolutions → ASI



Introduction
ASI Nowcasting
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Operator

GHI Nowcast

Nowcasting

Model

▪ All-Sky Imager

▪ Ground-based camera observing
complete hemisphere using fish-eye
lens

▪ Image analysis

▪ Physical approach

▪ Explicit modelling of clouds, their
motion and transmittance

▪ Data-driven approach

▪ Model learns correlation of clouds
and irradiance directly from images

▪ Hybrid approach:

▪ Combine physical and data-driven
approach

▪ Result: 

▪ Multi-step intra-hour irradiance
forecast (nowcast)



Hybrid model [1,2]

State-of-the-Art
Hybrid Solar Nowcasting
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Physical model Persistence model Deep Learning model

Nowcast combination

Global 

Weights

Hybrid deterministic Nowcast
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State-of-the-Art
Hybrid Solar Nowcasting

▪ Combines strenghts of physics- and data-
driven approaches

▪ Achieves better error metrics and forecast
skills than each individual model

→ Well-suited for predicting average GHI
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Advantages

▪ Decreased model interpretability

▪ Hybridization leads to smoothing
▪ Persistence and deep learning model generate

rather flat forecast curves

▪ Combination based on reducing RMSE causes
further smoothing

→ Limited capability to predict ramp events

Disadvantages

Yann Fabel, DLR, IEA Workshop on Minutescale Forecasting

𝐹𝑆 = 1 −
𝑅𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝑟𝑒𝑓

GHI Error Metrics



State-of-the-Art
Shortcomings

▪ Optimization/Combination based on reducing MSE leads to smoothing

▪ RMSE and FS most common metrics in solar forecasting but they do not assess ramp 

event detection capability

▪ Forecast curves (of fixed lead times) are similar to persistence (shifted reference curve)
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Lead time- vs datetime-specific forecast
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GENERATIVE NOWCASTING
APPROACH
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Generative Nowcasting Approach

▪ Two-stage Method

1. Predict future (synthetic) sky image

▪ Use sequence of recent sky images to predict next images

▪ Generative Model: Diffusion model

2. Predict irradiance of future sky image

▪ Use synthetic images as input to predict corresponding GHI

▪ Data-driven and physics-based models are applicable

▪ Advantages

▪ Cloud motion is modelled implicitly by generative model

▪ Increased interpretability due to synthetic images compared

to previous data-driven model

▪ Model uncertainty can be achieved through different 

samples of future sky images
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Generative Nowcasting Approach
Video Prediction Architecture: Diffusion Model [3]
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concatenate

2D U-Net
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Generative Nowcasting Approach
Examplary Video Prediction Results
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Reality Input/Output Samples
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▪ Green margin: 

real (input) 

image

▪ Red margin: 

synthetic

(output) image



Generative Nowcasting Approach
Examplary Video Prediction Results
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Reality Input/Output Samples
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Generative Nowcasting Approach
Examplary Video Prediction Results
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Reality Input/Output Samples
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Generative Nowcasting Approach
Irradiance Model

▪ Input:
▪ Single sky image

▪ Output:
▪ GHI (corresponding to image)

▪ Architecture:
▪ CNN (ResNet34)

▪ Training:
▪ Using real sky images

▪ Resizing to synthetic image size

▪ Adding gaussian noise to simulate characteristics of
synthetic images

▪ Validation:
▪ On real and synthetic images (not used for training)
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Regression Model
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Irradiance Model

(synthetic) sky image (t)

GHI(t)



Generative Nowcasting Approach
Irradiance Model
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Real images

Synthetic images
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RAMP EVENT VALIDATION
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Ramp Event Definition

▪ Ramp (event) definition in solar forecasting strongly depends on use-case

▪ Existing definitions often complex and/or too sensitive [4]
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Ramp Event
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|∆GHI| ≥ ꞇ

|∆GHI| < ꞇ

Forecast Horizon (FH)

ꞇ=100

Simplified definition: 
∆𝐺𝐻𝐼

∆𝑡
> 𝜏 ⟹ 𝑅𝑎𝑚𝑝

𝑡: 𝑖𝑓 ∃ 𝑅𝑎𝑚𝑝 𝑖𝑛 𝐹𝐻 ⟹ 𝑅𝑎𝑚𝑝 𝐸𝑣𝑒𝑛𝑡



Ramp Event Validation

▪ Validation against reference (on-site GHI measurements)

▪ E.g. a predicted ramp event that was observed in the measurement curve is a true positive

▪ Validation based on 5min forecast horizon

▪ Validation via confusion matrices (in percentage) and F1-score
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True Positives (TP) False Negatives (FN)

False Positives (FP) True Negatives (TN)

Ramp Event

Predicted Ramp Event

No-Ramp Event

Predicted Ramp Event

Confusion Matrix

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁



Ramp Event Validation

Hybrid Model Generative Model

▪ Hybrid model very good in FS but cannot predict strong ramps

▪ Generative model predicts majority of actual ramp events while maintaining high rate (>75%) 

of no-ramp events

▪ Selection of threshold depends on application/technology
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F1 = 0.38 F1 = 0.13 F1 = 0.44 F1 = 0.42



Improving the Irradiance Model

▪ Oversaturation in circumsolar region poses challenge

to estimate irradiance (e.g., large bias)

▪ Lower exposure times can help to improve accuracy
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400 W/m² vs 200 W/m²

Exposure Time [μs] RMSE [W/m²] MAE [W/m²] MBE [W/m²]

160 101 70.3 -64

80 60.7 42.2 -1.5

160μs 80μs
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CONCLUSION & OUTLOOK
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Conclusion

▪ Quality of nowcasting models depends on use case

▪ Data-driven and hybrid models often achieve good error scores but may not be well-

suited for ramp event detection (optimization on RMSE)

▪ Presentation of novel generative approach for ASI-based solar 

nowcasting

▪ Diffusion model for predicting future synthetic sky images

▪ Irradiance model for predicting irradiance (GHI)

▪ Validation of ramp event detection of a hybrid model and novel

generative approach

▪ Hybrid model misses most ramps due to flattened nowcast curve

▪ New generative model superior in ramp event prediction

→ Predicts majority of true ramp events while having few false negatives
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Outlook
Improving Generative Model

▪ Train on sky images with different 
exposure times

▪ Reduce training effort to increase image
resolution and forecast horizon
▪ Low resolution of images (64x64)

▪ Short forecast horizon (5 min)
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Video Prediction Model

▪ Reduce error metrics to be compatible
with hybrid model in terms of forecast
skill

→ Include auxiliary features

→ Test more complex model architectures 
(e.g. VisionTransformers)

→ Use sky image series (with different 
exposure times) or HDR

Irradiance Model
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→Ablate better design (e.g. 

apply diffusion in latent space)
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