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Introduction A#y
Motivation DLR
What are solar ramp events? .7

« Sudden local changes in solar irradiance due to cloud
passings

What are the effects of ramp events?

* Local fluctuations of generated power
» Negative ramps might cause grid code violations

What are the benefits of nowcasting?

100 km

 Anticipate ramp events, leading to:
* Increased awareness for plant/grid operator
» Minimization of storage requirements

What are the requirements?

* Cloud information in spatially and temporally high
resolutions — ASI
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Introduction
ASI Nowcasting DLR

= All-Sky Imager

» Ground-based camera observing
complete hemisphere using fish-eye
lens

* Image analysis
= Physical approach

= Explicit modelling of clouds, their
motion and transmittance

= Data-driven approach

= Model learns correlation of clouds
and irradiance directly from images

= Hvbrid approach:

= Combine physical and data-driven
approach

Operator
Al

= Result:

= Multi-step intra-hour irradiance
forecast (nowcast)
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State-of-the-Art A#y
Hybrid Solar Nowcasting DLR

Hybrid model [1,2]

Physical model Persistence model

D

Hybrid deterministic Nowcast
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State-of-the-Art . ‘#7
Hybrid Solar Nowcasting GHI Error Metrics DLR

&l T
Advantages

= Combines strenghts of physics- and data-
driven approaches

= Achieves better error metrics and forecast
skills than each individual model 0

— Well-suited for predicting average GHI L R S

3 10 15 20
Disadvantages

lead time
» Decreased model interpretability

= Hybridization leads to smoothing

= Persistence and deep learning model generate
rather flat forecast curves

= Combination based on reducing RMSE causes )
further smoothing 0.05

— Limited capability to predict ramp events s o s o
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State-of-the-Art ‘#7
Shortcomings DLR

= Optimization/Combination based on reducing MSE leads to smoothing

» RMSE and FS most common metrics in solar forecasting but they do not assess ramp
event detection capability

» Forecast curves (of fixed lead times) are similar to persistence (shifted reference curve)

L ead time- vs datetime-specific forecast
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Generative Nowcasting Approach

» Two-stage Method

1. Predict future (synthetic) sky image
» Use sequence of recent sky images to predict next images
» Generative Model: Diffusion model

2. Predict irradiance of future sky image
» Use synthetic images as input to predict corresponding GHI
» Data-driven and physics-based models are applicable

= Advantages
» Cloud motion is modelled implicitly by generative model

» Increased interpretability due to synthetic images compared
to previous data-driven model

= Model uncertainty can be achieved through different
samples of future sky images
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Generative Nowcasting Approach A#y
Video Prediction Architecture: Diffusion Model [3] DLR

D

concatenate

Input of
previous sky
image sequence

2D U-Net

Output samples
of next sky
image sequence

Decoder ‘

Input of
Gaussian
noise
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Generative Nowcasting Approach ‘#7
Examplary Video Prediction Results DLR

Reality Input/Output Samples

real (input)
image

= Red margin:
synthetic
(output) image
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Generative Nowcasting Approach ‘#7
Examplary Video Prediction Results DLR

Reality Input/Output Samples

real (input)
image

synthetic
(output) image
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Generative Nowcasting Approach ‘#7
Examplary Video Prediction Results DLR

Reality Input/Output Samples
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real (input)
image

= Red margin:
synthetic
(output) image
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Generative Nowcasting Approach ‘#7
Irradiance Model (synthetic) sky image (t) DLR

Regression Model

" |nput:

= Single sky image
= Qutput:
» GHI (corresponding to image)

= Architecture:
= CNN (ResNet34)
» Training:
= Using real sky images Irradiance Model
» Resizing to synthetic image size
» Adding gaussian noise to simulate characteristics of
synthetic images
= Validation:
= On real and synthetic images (not used for training) GHI(t)
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Generative Nowcasting Approach ‘#7
Irradiance Model DLR

ASl irradiance prediction at 2019-10-08
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Ramp Event Definition #
DLR

= Ramp (event) definition in solar forecasting strongly depends on use-case
» EXisting definitions often complex and/or too sensitive [4]

Simplified definition:

|AGHI | P
> T = Ramp
At
t: if 3 Ramp in FH = Ramp Event
- Forecast Horizon (FH) R
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Ramp Event Validation A#y
DLR

» Validation against reference (on-site GHI measurements)
= E.g. a predicted ramp event that was observed in the measurement curve is a true positive

» Validation based on 5min forecast horizon
» Validation via confusion matrices (in percentage) and F1-score

Confusion Matrix

Ramp Event True Positives (TP) False Negatives (FN)
No-Ramp Event|  False Positives (FP) True Negatives (TN)
Predicted Ramp Event Predicted Ramp Event
precision X recall TP TP
F1=2X precision = ——— recall =

precision + recall TP + FP TP+ FN
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20

Ramp Event Validation

DLR

Hybrid Model Generative Model

threshold=50 W/m?/min threshold=100 W/m?/min threshold=50 W/m?/min threshold=100 W/m?*/min

ramp — 230 ramp - 6.9 ramp ramp
no-ramp - 04 no-ramp —+ 01 no-ramp —t 25 no-ramp —+ T5

f f f f

pred ramp pred no-ramp pred ramp pred no-ramgp pred ramp pred no-ramp pred ramp pred no-ramp

F1=0.38 F1=0.13 F1=0.44 F1=0.42

= Hybrid model very good in FS but cannot predict strong ramps
» Generative model predicts majority of actual ramp events while maintaining high rate (>75%)

of no-ramp events
= Selection of threshold depends on application/technology
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Improving the Irradiance Model A#y
DLR

400 W/m2 vs 200 W/m?2

= Oversaturation in circumsolar region poses challenge
to estimate irradiance (e.g., large bias)

* Lower exposure times can help to improve accuracy

Exposure Time [us] | RMSE [W/m?] MAE [W/m?] MBE [W/m?]
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Conclusion #
DLR

» Quality of nowcasting models depends on use case
= Data-driven and hybrid models often achieve good error scores but may not be well-
suited for ramp event detection (optimization on RMSE)

* Presentation of novel generative approach for ASl-based solar
nowcasting

» Diffusion model for predicting future synthetic sky images
» Irradiance model for predicting irradiance (GHI)

= Validation of ramp event detection of a hybrid model and novel
generative approach
» Hybrid model misses most ramps due to flattened nowcast curve

= New generative model superior in ramp event prediction
— Predicts majority of true ramp events while having few false negatives
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Outlook ‘#7
Improving Generative Model DLR

Video Prediction Model Irradiance Model

= Train on sky images with different = Reduce error metrics to be compatible
exposure times with hybrid model in terms of forecast
= Reduce training effort to increase image skill 5
resolution and forecast horizon —> Include auxiliary features
* Low resolution of images (64x64) - Test more complex model architectures
= Short forecast horizon (5 min) (e.g. VisionTransformers)

- Use sky image series (with different
exposure times) or HDR

-> Ablate better design (e.qg.
apply diffusion in latent space)
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