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Abstract

In the Fourth Industrial Revolution, wherein artificial intelligence and the
automation of machines occupy a central role, the deployment of robots is
indispensable. However, the manufacturing process using robots, especially
in collaboration with humans, is highly intricate. In particular, modeling the
friction torque in robotic joints is a longstanding problem due to the lack of
a good mathematical description. This motivates the usage of data-driven
methods in recent works. However, model-based and data-driven models
often exhibit limitations in their ability to generalize beyond the specific dy-
namics they were trained on, as we demonstrate in this paper. To address this
challenge, we introduce a novel approach based on residual learning, which
aims to adapt an existing friction model to new dynamics using as little data
as possible. We validate our approach by training a base neural network on a
symmetric friction data set to learn an accurate relation between the velocity
and the friction torque. Subsequently, to adapt to more complex asymmetric
settings, we train a second network on a small dataset, focusing on predict-
ing the residual of the initial network’s output. By combining the output
of both networks in a suitable manner, our proposed estimator outperforms
the conventional model-based approach, an extended LuGre model, and the
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base neural network significantly. Furthermore, we evaluate our method on
trajectories involving external loads and still observe a substantial improve-
ment, approximately 60-70%, over the conventional approach. Our method
does not rely on data with external load during training, eliminating the
need for external torque sensors. This demonstrates the generalization ca-
pability of our approach, even with a small amount of data—less than a
minute—enabling adaptation to diverse scenarios based on prior knowledge
about friction in different settings.

Keywords:
robotics, friction, data-driven modeling, neural networks, transfer learning,
external torque estimation

1. Introduction

In the context of advancing human-robot collaboration in manufacturing
[1, 2, 3, 4], where physical interaction between humans and robots is becom-
ing increasingly important, the accurate estimation of interaction forces is
critical for ensuring safety [5, 6, 7]. Achieving this often involves the precise
estimation of external forces, which can be accomplished by mounting force-
torque sensors on the robot’s end-effector. Unfortunately, many industrial
robots do not have these sensors due to their high cost [8]. This situation
emphasizes the need for a reliable, cost-effective, and sensorless method for
estimating external torque, which, in turn, necessitates the development of
an accurate friction model.

A precise model of friction [9] has the potential to enhance the func-
tionality of robotic systems in multiple aspects. It plays a crucial role in
achieving energy-efficient computations, enhancing the precision of dynamic
simulations, improving control performance at the joint level [10, 11, 12, 13],
or detecting slip [14]. To mitigate the undesirable effects of friction, a model-
based friction compensation approach is commonly integrated into the con-
trol system. This approach finds widespread applications across multiple
domains, including joint-level control [15, 16], safe human-robot interaction
[17, 18, 19, 20], and the enhancement of external torque estimation precision
during interactions with the environment. Furthermore, friction is an impor-
tant factor in the degradation curves of the components of a robot, thus, a
precise friction estimation also improves the predictive maintenance [21, 22].
However, modeling the friction is highly complicated since it depends on
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Table 1: Overview of data-driven approaches to model the friction and their application.

Approach Application goal Method

Selmic and Lewis [33] Friction estimation
Fully connected NN with

discontinuous activation functions

Ciliz and Tomizuka [34, 35] Motion control
Hybrid of a parametric

model and NN

Huang and Tan [36] Motion control
Combination of

two NNs

Guo et al. [37] Motion control
Fully connected NN with

discontinuous activation functions

Hirose and Tajima [38] Friction estimation
Long Short-Term Memory

(LSTM) network

Tu et al. [39] Friction estimation
NN initialized using

Genetic Programming (GP)

Liu et al. [40]
External torque

estimation
NN with sigmoid activation

a multitude of factors limiting the applicability of model-based approaches
[23, 24, 25, 26, 27, 28].

1.1. Related work

The success of neural networks (NN) in the last decade [29, 30, 31, 32] in-
spired engineers to explore their application in modeling complex dynamics,
including friction. An overview of data-driven approaches for friction model-
ing is given in Table 1. Selmic and Lewis [33], for example, developed neural
network models for friction that utilized specialized architectures with dis-
continuous activation functions. This design aimed to enhance the fitting of
the observed friction data, ultimately reducing the number of required neu-
rons, training time, and data. Another common approach is to use a hybrid
method consisting of a simple parametric model and a complicated neural
network. Ciliz and Tomizuka [34, 35] showed that this approach improves
over both, a single parametric model and a single neural network, since it
combines the flexibility of a neural network with the known dynamics cap-
tured by the simple parametric model, thus, introducing an inductive bias in
the architecture.

Recent research has aimed to leverage the structure of dynamics and
learn multiple models to complement each other. Huang and Tan [36], for
instance, trained two neural networks specifically for modeling friction. Guo
et al. [37] took this a step further by learning additional, individual neural
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networks for the inertia matrix, the Coriolis torque, and the gravitational
torque, which were subsequently combined into a single neural network. They
also adapted discontinuous activation functions for friction torque. Most of
the work, however, does not capture the hysteresis effect of friction, as they
lack a dependence on the history. To model this, Hirose and Tajima [38]
applied a Long Short-Term Memory (LSTM) network, a type of recurrent
neural network (RNN) that can naturally process sequences by maintaining
a hidden state. Another approach was taken by Tu et al. [39], who used
genetic algorithms (GA) to compute suitable initializations for the neural
network weights. For human-robot interaction, it is crucial to be able to
estimate the external torque of robot joints, which was the goal of Liu et al.
[40] by approximating the friction using neural networks.

1.2. Our contributions

The application of data-driven approaches to model friction in robotic
joints is not a novel concept. However, previous approaches have exhibited
limitations in their generality due to the absence of important components
within the data. Specifically, these approaches lack the incorporation of dif-
ferent velocities, the reversal of directions, simultaneous movement of joints,
and continuously varying loads. These conditions significantly influence the
performance of data-driven approaches, as evidenced in Section 4.1. The
results demonstrate that a network, that may outperform traditional model-
based approaches on a dataset lacking some of these effects, ultimately fails
when subjected to more complex data. Furthermore, dynamics also change
due to wear, varying temperature and humidity, and other external factors.

To address these challenges, we propose a novel strategy to adopt existing
methods to unknown dynamics while requiring as little data as possible—only
one movement in our case. To achieve this we train a neural network on the
residual of a base estimator on new dynamics for which the base estimator
fails, to be able to use the knowledge learned by the base estimator while
improving its performance for the new dynamics. The key contributions of
this paper are as follows:

1. Adaption of a base model to new friction dynamics: To tackle
the challenge of adapting existing friction models to new dynamics
with as little data as possible, we propose to learn the residuals using
a neural network.

4



2. Comprehensive evaluation: We evaluate our approach using a data-
driven base model of friction and compare it against a conventional
model-based approach, an extended LuGre model. We show that our
approach then only requires data from a single point-to-point movement
that includes a velocity reversal to be able to adapt the prediction of the
friction torque and outperform the conventional approach and the base
network for different velocities, while reversing the directions, moving
the joints simultaneously, and continuously varying the external loads.

3. Integration into torque estimation framework: To demonstrate
the practical applicability of our adapted friction model, we integrate
it into a torque estimation framework. By estimating the external
torque applied to an object more precisely than the base network and
the traditional approach, our approach enhances the overall precision
and efficiency of robotic systems. We validate the accuracy of our
torque estimation using external torque sensors, thereby ensuring the
reliability of our proposed methodology.

The successful adaption of existing friction models and their integration
into the torque estimation framework holds promise for numerous applica-
tions in the field of robotics. This approach can potentially advance dynamic
simulations, friction compensation techniques, and external torque estima-
tion methodologies, enabling the development of more capable and adaptable
robotic systems across various domains. By being able to adapt existing mod-
els to new dynamics, this approach leverages the wealth of existing knowledge
and models, making it a powerful tool for addressing complex and dynamic
scenarios in robotics.

2. Methods

The goal of this paper is to introduce a novel approach to adapt existing
methods to new dynamics using as little data as possible. This is desirable
for several reasons, including time and cost savings, prioritizing data quality
over quantity, resource limitations, and reduced complexity. In Section 2.1,
we start with the introduction of the conventional model-based approach we
use as a baseline for comparison throughout our experiments. Afterward, in
Section 2.2, we describe the neural network-based approach we will use as
our base model. In Section 2.3, we introduce our novel technique to adapt
the neural network-based approach to unknown friction dynamics.
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In the following, we describe the robot dynamics and our assumptions
during the training of the different approaches to isolate the friction effect.
Consider the robot dynamics of the form

M(q)q̈ + C(q, q̇)q̇ + τg(q) = τm + τf + τext, (1)

where q is the joint position vector, q̇ and q̈ are the joint velocity and accel-
eration vectors, respectively, and M(q) is the positive definite inertia matrix.
The Coriolis and centrifugal matrix is denoted by C(q, q̇), the gravitational
torque by τg(q), and the friction torque by τf . Furthermore, the terms τm and
τext describe the motor joint torque and external joint torque, respectively.

To predict the external torque using the estimation of the friction torque,
we rewrite the dynamics equation as

τext = M(q)q̈ + C(q, q̇)q̇ + τg(q)− τf − τm. (2)

We assume full knowledge of the robot dynamic terms (M(q), C(q, q̇), τg(q)),
whereas τf is unknown. The motor torque in this case is directly measured
as τm. If no load is applied (τext = 0), the motor torque follows from the
robot dynamics (assumed to be known) and the friction torque as

τm = M(q)q̈ + C(q, q̇)q̇ + τg(q)− τf . (3)

In the special case where we assume constant, single-joint velocities or
constant, low velocities (q̈ = 0, C(q, q̇)q̇ ≈ 0), the quadratic terms of indi-
vidual joints can be ignored, while it is assured that the coupling terms are
zero. As a result, the equation simplifies to

τm = τg(q)− τf . (4)

All the assumptions above will only be made during training to relate the
motor torque to the friction effect as shown in Equation 4.

2.1. Model-based approach

The friction torque τf can be mathematically described by incorporating
several fundamental characteristics that define friction in the sliding regime,
including static friction, Coulomb friction, viscous friction, and the Stribeck
effect [41]. In the pure sliding regime, the static friction behavior τf,s can be
represented by arbitrary functions, but a common model takes the form:

τf,s(q̇) = g(q̇) + s(q̇)

g(q̇) = sign(q̇)
(
Fc + (Fs − Fc)e

−|q̇/vs|δs
)
.

(5)
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The term s(q̇) expresses the velocity-strengthening function that is well
known as viscous friction. Typically, it is linearly proportional to the joint
velocity q̇ as s(q̇) = Fv q̇, with the constant coefficient Fv. The velocity-
strengthening friction effect could in the general case include a nonlinear
form as shown in [42]. The function g(q̇) describes the velocity-weakening
behavior of the static friction. Also, g(q̇) is alternatively called the Stribeck
curve, because it captures the Stribeck effect, where Fc is Coulomb friction,
Fs is static or stiction friction, vs is Stribeck velocity, and δs is the exponent
parameter of the Stribeck-nonlinearity. The friction of the Harmonic-Drive
(HD) gear-based robotic joint is known to be highly dependent on the tem-
perature, which can be incorporated in the static and dynamic friction models
[43, 42]. Generally, the joint torque varies during the robot operation as it
is configuration-dependent. This variation is reflected as a load effect in the
joint friction torque, which can be included in Equation (5) and results in

τf,s(q̇, τl) = g(q̇, τl) + s(q̇, τl) , (6)

where τf,s(q̇, τl) denotes the static friction torque as a function of velocity
q̇ and load τl, which is mainly gravitational torque in our case, for more
details refer to [42]. As the friction phenomenon by nature is nonlinear and
continuous at zero velocity crossing, it is unpractical to use the static friction
model which is discontinuous at velocity reversal. Therefore, the dynamic
friction effect can be expressed as

τf,d(q̇, τl) = f(z, q̇, τl) , (7)

where τf,d is the dynamic friction torque and z is the internal friction state
with its dynamics

dz

dt
= q̇ − σ0

|q̇|
g(q̇, τl)

z. (8)

Equation (8) can be rewritten as

τf,d = σ0z + σ1ż + s(q̇, τl) . (9)

The pre-sliding parameters are the bristle stiffness σ0 and the micro-damping
coefficient σ1, for more details see [44, 45].

Equation (9) represents a smooth and continuous expression that can
describe the friction dynamically and extends the LuGre model [44] to incor-
porate load dependency, which is considered in this work as the conventional
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model-based approach. While the bristles-based dynamic friction models
show high accuracy in capturing the physical friction effects of the robotic
joints, the difficulty of estimating and adapting their parameters remains.
This limits the usage of such models in many scenarios and proves a strong
motivation for data-driven approaches.

2.2. Neural network based approach

As our base model, we propose a data-driven model utilizing a neural
network to learn the friction torque as a function of the gravity torque and
its velocity. In our methodology, the focus lies on learning an unknown
target function f : X → Y through the observation of input-output pairs
{(xi, yi)}ni=1 ⊂ X×Y with f(xi) ≈ yi, whereX denotes the input space and Y
represents the output space. It is assumed, with some simplification, that the
data points xi are sampled from a sequence of independently and identically
distributed (iid) random variables, governed by a common probability density
function µ, which is supported on X, i.e. xi ∼ µ for all i = 1, . . . , n and
µ(X) = 1. Furthermore, it is acknowledged that the observed output yi may
potentially be corrupted by noise, thus introducing a degree of uncertainty.

Our task now is to find a parameterized mapping fθ : X × Θ → Y
(in our case, a neural network) that approximates the desired function f ,
where Θ represents a finite-dimensional parameter space. This is achieved
by identifying a suitable cost function C : X ×X → R, which quantifies the
discrepancy between the predicted outputs of fθ and the true outputs, and
minimizing the generalization error or risk, i.e.,

EX∼µ[C(f, fθ)]

over all θ ∈ Θ. The generalization error E reflects the expected value of this
cost function over the entire input space X, capturing the network’s ability
to generalize well to unseen data. By minimizing the generalization error,
we strive to find the optimal set of parameters θ ∈ Θ that minimizes the
discrepancy between fθ and the true function f , with the hope that f ≈ fθ.

However, since, in general, we do not have access to the underlying prob-
ability measure µ and solely have a finite number of observations of input-
output pairs {(xi, yi)}ni=1 ⊂ X × Y , we instead minimize the empirical risk
or training error given by

L(θ) =
n∑

i=1

C(yi, fθ(xi))
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Input
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Output

Figure 1: The architecture of the base neural network: Fully connected neural network
with 2 hidden layers, each consisting of 30 neurons (for space reasons, we only show five
neurons here).

over all θ ∈ Θ. An introduction to statistical learning theory can be found
in [46].

In the framework of learning the torque friction, we choose a neural net-
work as our parametric map denoted by NN(·, θ), and the cost function is
the squared difference of its inputs, i.e., the loss L is the mean squared error.
A neural network is a function

NN = f1 ◦ f2 ◦ · · · ◦ fl
given by a composition of functions fi (the layers)

fi(x; θi) = σ(Wix+ bi) (10)

where θi = (Wi, bi) are the parameters, σ : R → R is the so-called activation
function, and l ∈ N is the number of layers of the neural network. Figure
1 shows the architecture of a two-hidden layer neural network which will be
used for learning the torque friction.

The idea in this paper is to train a neural network to model the friction
torque by following (4). For this, we set fθ = NNbase(·; θ) : X → Y with
X = R2 and Y = R, thereby allowing the neural network to depend on the
gravitational torque τg(q(ti)) and the velocity q̇(ti) at a given time step ti.

As mentioned before, we then train the neural network by minimizing the
mean squared error, i.e., the loss function is given by

Lbase(θ) =
n∑

i=0

(NNbase(τg(q(ti)), q̇(ti); θ)− (τm(ti)− τg(q(ti))))
2 . (11)
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NNbase is a neural network with 2 hidden layers, each consisting of 30 neu-
rons, as shown in Figure 1, which we will refer to as the base model in the
following. As the activation function, we use the following exponential linear
unit (ELU) function, given by,

f(x) =

{
x, x > 0

ex − 1, x ≤ 0
(12)

which is a smoothed version of the rectified linear unit (ReLU) function.

2.3. Adaption to new dynamics

Since most models of friction are best for the dynamics they are built
and trained for, it is helpful if existing models can be easily extended to new
situations without the need for big data sets to retrain the models completely.
For that reason, we propose to build upon the existing models to not waste
the previously acquired knowledge and train an additional neural network
NNadd on the residuals of the old model on the new data. Therefore, we
minimize the following loss:

Ladd(ϕ) =
n∑

i=0

(
NNadd(τ

add
g (q(ti)), sign(q̇

add(ti));ϕ) + τfbase(τ
add
g (q(ti)), q̇

add(ti))

−(τaddm (ti)− τaddg (q(ti)))
)2

.

(13)

We allow the network NNadd to depend on the gravity torque and the sign
of the velocity; ϕ denotes the parameters of NNadd we want to optimize and
τfbase is the base model. In general, any base model works for τfbase , however,
in this study, we utilize NNbase as our base model, i.e., we set τfbase = NNbase.

It is important to note that we only use the sign of the velocity as input for
NNadd, rather than the full velocity. This choice is motivated by our objective
to minimize the amount of data required for training. In our case, we will only
use data from one movement with one velocity in both directions, which is
insufficient to fully capture the complete velocity dependence. Nevertheless,
this is not a problem because the base model, NNbase, already accounts for
the velocity dependence. Note further that using the sign of the velocity fits
to the discontinuity of the friction at zero velocity.
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Figure 2: The experimental setup: the robot is equipped with physical torque sensors in
each joint output for the reference signals, while the measured motor current is used in
the proposed method.

The new predictor for the small friction data set with varying load and
directions is then

τfpred(q, q̇) = τfbase(q, q̇; θ
∗) +NNadd(q, sign(q̇);ϕ

∗), (14)

where ϕ∗ denotes the parameters of the additional model, found when mini-
mizing Ladd(ϕ).

3. Data sets

Since the goal of this work is to adapt an existing approach to a set with
different dynamics, we utilize two different data sets. Both data sets are
collected to best capture the physical behavior of the friction torque. The
experimental measurements are acquired from each robot joint separately at
different constant velocities. In this study, the torque-controlled DLR-KUKA
LWR-IV+ robot is used as a reference platform. The full experimental setup
is illustrated in Figure 2.

This work aims to model the friction effects mainly resulting from the
gear (HD), however, the used robot is also equipped with link-side torque
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(a) Velocity (b) Motor torque

Figure 3: Velocity and motor torque of the collected friction dataset for Joint 2.

sensors, which are used for validation only. The data is collected in two main
subsets to best describe the friction effect and eliminate other unmodeled
dynamics.

For each data set we collect the position and velocity of the joints and
the gravitational torque and applied motor current. The motor current Im
is used to compute the motor torque τm = KtIm, where Kt is the motor
torque constant taken from the manufacturer’s data sheet. The gravitational
torques in the robot joints are obtained through a model-based approach
using recursive Newton-Euler formulation which relies on the robot’s me-
chanical design information, e.g., the mass and center of mass of each link,
for which we rely on an accurate CAD model.

Notably, the load variation effect also appears in the no-load data as a
result of gravitational torque in the robot joints. This can be seen from the
measured data in Figure 6b and 6c in Section 3.2 as the friction torque varies
even when the velocities are constant. The temperature effect is minimized
by applying warm-up phases before each data collection routine. In this way,
the temperature is assumed to be constant during operation.

3.1. Base data set

The base data set aims to capture the static friction behavior; therefore,
the robot joints were excited to follow single-joint constant velocities. Thus,
(4) holds and can be used to compute the friction. We will refer to this data
set as the collected friction data set. Intensive experimental measurements
have been carried out to cover the entire operational velocity and position
ranges of the individual joints; the velocity and motor torque of Joint 2 can
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(a) Joint 2 (b) Joint 4

Figure 4: The measured friction torque-velocity behavior for Joint 2 and Joint 4 of the
DLR-KUKA LWR-IV+ robot for the base data set.

(a) Velocity (b) Motor torque

Figure 5: Velocity and motor torque of the small dataset with varying directions and
without external load for Joint 2.

be seen in Figure 3. In this way, the static friction is characterized in a fine
resolution and separated from other effects as shown in Figure 4.

3.2. Extended data set

The extended data set is collected dynamically by applying different ve-
locities sequentially while different external loads are attached to the robot
end-effector and the joints are moved simultaneously. We refer to this data
set as the small data set with varying loads and directions. The velocity
and motor torque for this dataset without external torque are displayed in
Figure 5. By keeping the velocity low and constant we ensure that (4) can
be used to compute the friction torque.
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(a) Four quadrants of friction force

(b) Collected friction data set. (c) Simultaneous motion data set.

Figure 6: Four quadrants of friction force: The different grey tones show the different
quadrants the friction is going through. The friction stays in each quadrant for the exact
same time in the collected friction data set, but the times vary strongly for the simultaneous
motion data set.

The behavior of friction torque in robotic joints varies across the four
quadrants, as defined in Figure 6a, due to changes in the interaction between
velocity and gravitational torque [47]: In the first and third quadrants, they
have the same sign, while they have different signs in the second and fourth.
The difference between the two datasets investigated in this paper can be vi-
sualized by examining the quadrants during one movement from each dataset,
as shown in Figure 6. It is evident that the base dataset features entirely
symmetric quadrants, whereas the additional dataset demonstrates a highly
asymmetric trajectory across the quadrants.

4. Experimental results

In this section, we present the results of the numerical experiments. In
Subsection 4.1, we show the results of NNbase on both the symmetric and
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(a) Joint 2 (b) Joint 4

Figure 7: The training and validation loss Lbase for Joint 2 and Joint 4 for NNbase.

asymmetric datasets and compare the performance to the conventional ap-
proach. These experiments reveal that the neural network-based approach
performs similarly to the conventional approach and both struggle with the
asymmetric data set. Consequently, in Subsection 4.2, we demonstrate the
improvements achieved by adapting NNbase using NNadd.

4.1. Prediction of the base model

The base network NNbase is trained on a subset of the collected friction
data set using the Adam optimizer [48] with a learning rate of 0.01 for 50,000
training steps. Since for each velocity, the joint moves exactly once in both
directions, the data contains more measurements in the low-velocity regime
than in the high-velocity regime. As a consequence, the loss function tends to
prioritize the low-velocity region, resulting in high precision for low velocities
and low precision for high velocities. To address this, we downsample the
data, ensuring an equal number of data points for each velocity, as depicted
in Figure 3. Besides balancing the precision across velocity ranges, this
downsampling also significantly improves runtime, particularly in the low-
velocity regime where many data points are very similar.

Figure 7 displays the behavior of the loss function Lbase on both the
training and validation data during the training of NNbase for Joint 2 and 4,
illustrating that the model effectively converges robustly to a local minimum
and can be expected to generalize well, since the validation loss is close to the
training loss. To assess the performance of the base neural network NNbase

trained on the collected friction data set, Figure 8 presents the comparison
between its prediction and the measurements. The network demonstrates
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(a) Friction Joint 2 (b) Friction Joint 4

(c) Velocity Joint 2 (d) Velocity Joint 4

Figure 8: Figures (a) and (b) show the true friction torque of the collected friction data
for Joints 2 and 4, respectively, which was withheld during the training and validation
phase, and the estimate of the neural network. The mean absolute error was 0.79Nm and
0.60Nm, respectively. Figures (c) and (d) show the velocity for Joints 2 and 4, respectively.

its capability to accurately approximate the friction torque, showcasing its
effectiveness. In the next step, we explore whether the data-driven model
NNbase learned a meaningful relationship between velocity and friction. To
investigate this, we evaluate the model on a grid spanning from −0.7 to
0.7 rad/s for the velocity and from −43 to 43 Nm for the gravitational torque
for Joint 2 (−13 to 13 Nm for Joint 4). Figure 9 visualizes this evaluation
as both a heatmap and a 3D plot, while Figure 10 presents the averaged
results over the gravitational torque. These plots clearly demonstrate that
the base neural network has learned a physically meaningful friction model,
suggesting strong potential for generalization, as further supported by the
results in Figure 8.

As the neural network effectively captured the dynamics of friction for
the base data set, the next step is to assess its performance on the extended
data set. Figures 11 and 12 reveal that the base network NNbase outper-
forms the conventional method, but it performs significantly worse than it
did for the collected friction data set. In Figures 11 (e) and (f), as well as
Figures 12 (e) and (f), the friction estimates are utilized to predict the ex-
ternal torque, illustrating the prediction error introduced through the error
in friction modeling.
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(a) Heatmap Joint 2 (b) Heatmap Joint 4

(c) 3-dimensional plot Joint 2 (d) 3-dimensional plot Joint 4

Figure 9: Dependence of the friction on the velocity and the position as captured by the
base model NNbase for Joint 2 and 4.

4.2. Prediction of the adapted model

To improve the prediction of NNbase on the extended data set, we train
the additive network NNadd as described in Section 2.3 by minimizing Ladd in
Equation (13). Specifically, we provide only one velocity from the small data
set without external load as training data. This does not lead to overfitting,
since NNadd depends solely on the gravitational torque and the sign of the
velocity. The benefit of using only data without external load during training
is that this does not require any external torque sensor. The architecture of
the additional model NNadd mirrors that of the base model, however, it only
uses one hidden layer. The training process is also the same, but NNadd is
trained for only 200 epochs. Figure 13 displays the training and validation
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(a) Joint 2 (b) Joint 4

Figure 10: Dependence of the friction on the velocity as modeled by the base model
NNbase.

loss during training, showcasing robust minimization across epochs, but a
slight difference in training and validation loss.

Figure 14 demonstrates the accuracy of the friction modeling achieved by
the adapted approach, as described in Section 2.3, in comparison to NNbase

and the conventional approach, even though only one velocity was observed
during the additional training period (43s). Furthermore, Figures 15 and 16
reveal that this extension of the original neural network has a minimal impact
on the velocity dependence, particularly preserving the underlying relation-
ship that would be lost through the retraining of any network components.

The combined approach not only exhibits a significant improvement for
the small data set with varying directions when no external load is applied but
also when asymmetric and symmetric external loads are present, as demon-
strated in Figure 17 (a) and (b) and Figure 18 (a) and (b), respectively.
By leveraging the accurate prediction of the adapted method for the friction
torque we can estimate the external torque via the robot dynamics. Contrary
to the prediction using only NNbase in Figure 11 (e) and (f) and Figure 12
(e) and (f), this estimate strongly outperforms the conventional approach,
see Figure 17 (e) and (f) and Figure 18 (e) and (f) for the asymmetric and
symmetric load cases, respectively.
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(a) Friction Joint 2 (b) Friction Joint 4

(c) Velocity Joint 2 (d) Velocity Joint 4

(e) External torque Joint 2 (f) External torque Joint 4

Figure 11: Performance of the neural network versus the model-based approach on the
small data set with asymmetric load. In (a) and (b) the friction is estimated for Joint 2
and 4. On Joint 2, the neural network achieved an average error of 2.40Nm, while the
conventional approach had an average error of 2.68Nm. On Joint 4, the neural network
achieved an average error of 1.91Nm, while the conventional approach had an average
error of 2.45Nm. (c) and (d) show the velocities of the respective joints. In (e) and (f) the
friction estimates are used to estimate the external torque, which is shown after denoising.
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(a) Friction Joint 2 (b) Friction Joint 4

(c) Velocity Joint 2 (d) Velocity Joint 4

(e) External torque Joint 2 (f) External torque Joint 4

Figure 12: Performance of the base model NNbase versus the model-based approach on the
small data set with symmetric load. In (a) and (b) the friction is estimated for Joint 2 and
4. On Joint 2, the base model achieved an average error of 2.51Nm, while the conventional
approach had an average error of 2.89Nm. On Joint 4 the base model achieved an average
error of 2.48Nm, while the conventional approach had an average error of 3.1Nm. (c) and
(d) show the velocities of the respective joints. In (e) and (f) the friction estimates are
used to estimate the external torque, which is shown after denoising.

(a) Joint 2 (b) Joint 4

Figure 13: The training and validation loss Ladd for Joints 2 and 4 for NNadd.
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(a) Friction Joint 2 (b) Friction Joint 4

(c) Velocity Joint 2 (d) Velocity Joint 4

Figure 14: Performance of the combined network NNbase + NNadd versus the model-
based approach on the small data set without external load. In (a) and (b) the friction is
estimated for Joint 2 and 4. On Joint 2, the combined neural network achieved an average
error (on the test data) of 0.48Nm, while the conventional approach had an average error
of 2.62Nm. On Joint 4, the neural network achieved an average error of 0.66Nm, while
the conventional approach had an average error of 2.33Nm. (c) and (d) show the velocities
of the respective joints.

(a) Joint 2 (b) Joint 4

Figure 15: Dependence of the friction on the velocity as modelled by the combined neural
network NNbase +NNadd versus as modelled by the base neural network.
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(a) Heatmap Joint 2 (b) Heatmap Joint 4

(c) 3 dimensional plot Joint 2 (d) 3 dimensional plot Joint 4

Figure 16: Dependence of the friction on the velocity and the position as captured by the
combined neural network NNbase +NNadd for Joint 2 and 4.
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(a) Friction Joint 2 (b) Friction Joint 4

(c) Velocity Joint 2 (d) Velocity Joint 4

(e) External torque Joint 2 (f) External torque Joint 4

Figure 17: Performance of the combined neural networkNNbase+NNadd versus the model-
based approach on the asymmetric load data. In (a) and (b) the friction is estimated for
Joint 2 and 4. On Joint 2, the combined neural network achieved an average error of
0.87Nm, while the conventional approach had an average error of 2.66Nm. On Joint 4,
the neural network achieved an average error of 0.70Nm, while the conventional approach
had an average error of 2.45Nm. (c) and (d) show the velocities of the respective joints.
In (e) and (f) the friction estimates are used to estimate the external torque, which is
shown after denoising.
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(a) Friction Joint 2 (b) Friction Joint 4

(c) Velocity Joint 2 (d) Velocity Joint 4

(e) External torque Joint 2 (f) External torque Joint 4

Figure 18: Performance of the combined neural networkNNbase+NNadd versus the model-
based approach on the symmetric load data. In (a) and (b) the friction is estimated for
Joint 2 and 4. On Joint 2, the combined neural network achieved an average error of
0.80Nm, while the conventional approach had an average error of 2.88Nm. On Joint 4,
the neural network achieved an average error of 0.86Nm, while the conventional approach
had an average error of 3.09Nm. (c) and (d) show the velocities of the respective joints.
In (e) and (f) the friction estimates are used to estimate the external torque, which is
shown after denoising.
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4.3. Comparisons with other data-driven methods

To the best of our knowledge, this is the first work focusing on the adapta-
tion of existing friction estimation models. Therefore, we primarily compared
the base method with the adapted method, which is method-agnostic and can
be applied to other methods presented in the literature. To ensure clarity,
we concentrated in Sections 4.1 and 4.2 on classical methods (vanilla neural
network and LuGre model), highlighting the benefits of residual learning.

However, a comparative analysis with other data-driven approaches, as
outlined in the literature review in Section 1.1, is of significant interest. To
accomplish this, we re-implemented the methods proposed by Selmic and
Lewis [33] and by Ciliz and Tomizuka [34, 35].

Selmic and Lewis [33] introduced a fully connected neural network with
discontinuous activation functions to model the discontinuity of friction at
zero velocity. For this purpose they applied the standard Sigmoid functions
σ(x) = 1

1+e−x and additionally the Sigmoid jump approximation functions

ϕk(x) =

{
0, for x < 0,

(1− e−x)k, for x ≥ 0.
(15)

An extensive hyperparameter search, similar to the one performed forNNbase,
showed that the network works best with 1 hidden layer comprising 30 neu-
rons. Among these neurons, 20 used the standard Sigmoid as the activation
function, while the remaining neurons applied the Sigmoid jump approxi-
mation function, with k varying from 1 to 10 for each neuron, as proposed
by Selmic and Lewis [33]. The network was optimized using ADAM with a
learning rate of 0.01 over 50,000 steps.

Ciliz and Tomizuka [34, 35] combine a neural network with a paramet-
ric approach to incorporate the flexibility of data-driven approaches with
common knowledge about friction by modelling the friction torque τf as

τ̂f (q̇, τq) = NN(q̇, τq) + β10.5(1 + sign(q̇) + β20.5(1− sign(q̇) (16)

named neural network with adaptive coulomb friction (NNACM). Here, β1

and β2 denote learnable parameters.We extended the original NNACMmodel
to allow the neural network to depend on the gravitational torque, as shown
in (16), to ensure a fair comparison with the other approaches presented in
this work. Through an extensive hyperparameter search, we determined that
using one hidden layer with 50 neurons yielded optimal results. The network
was optimized using ADAM with a learning rate of 0.01 over 50,000 steps.
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The results of both methods on the extended data set with asymmetric
and symmetric loads can be observed in Table 2. It is evident from the
table that both approaches perform slightly better than the extended LuGre
model and the base neural network. However, the combined neural network
proposed to learn the new dynamics still outperformed them by a margin,
suggesting that these approaches also struggled with the new dynamics.

Table 2: Comparisons between the base methods from Section 2.1 and 2.2 and the adapted
approach from Section 2.3 with the approaches from Selmic and Lewis [33] and Ciliz and
Tomizuka [34, 35] on joint 2.

Method
Error with the
asymmetric load

Error with the
symmetric load

Conventional model
(ext. LuGre)

2.68Nm 2.89Nm

NNbase 2.40Nm 2.51Nm
Selmic and
Lewis [33]

2.17Nm 2.37Nm

Ciliz and
Tomizuka [34, 35]

2.33Nm 2.42Nm

NNbase +NNadd 0.87Nm 0.80Nm

5. Summary and Conclusion

Due to the lack of a precise mathematical description of friction torque
in robotic joints, model-based approaches struggle to capture its behavior
accurately. This, in turn, hinders robot control in various situations, espe-
cially when dealing with new movements or environments. To address this
challenge, we proposed an approach that adapts existing friction models to
new dynamics using a minimal amount of data, which enhances efficiency,
prioritizes data quality over quantity, and addresses resource limitations.

Our method leverages neural networks to learn the residuals of a base
model on new dynamics, significantly improving model accuracy with only a
short trajectory following the new dynamics. Importantly, our approach does
not require specific domain knowledge and eliminates the need for external
torque sensors, reducing the overall cost of robotic systems. Although this
paper primarily demonstrates the use of a neural network as the base model,
Equation (13) permits the adaptation of any base model, thus enabling the
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incorporation of specialized data-driven or model-based techniques. Our
method has been thoroughly tested with highly detailed data encompass-
ing diverse velocities, loads, and movement directions, and its predictions
have been validated using torque sensors.

However, neural networks’ black-box nature and occasional difficulties in
generalizing to out-of-distribution data remain challenges. Addressing these
issues while retaining the advantages of data-driven friction torque learning
will be important areas for future research. Besides this, we consider the
incorporation of the adaption approach proposed in this work into an online
learning procedure as a valuable future direction.
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