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Abstract – This paper introduces a versatile 

approach for computing the risk of collision 

specifically tailored for scenarios featuring low 

relative encounter velocities, but with potential  

applicability across a wide range of situations. The 

technique employs Differential Algebra (DA) to 

express the non-linear dynamical flow of the initial  

distribution in the primary-secondary objects  

relative motion through high-order Taylor 

polynomials. The entire initial uncertainty set is 

subdivided into subsets through Automatic Domain 

Splitting (ADS) techniques to control the accuracy of 

the Taylor expansions. The methodology samples the 

initial conditions of the relative state and evaluates  

the polynomial expansions for each sample while 

retaining their temporal dependency. The classical 

numerical integration of the initial statistics over the 

set of conditions for which a collision occurs is thus  

reduced to an evaluation of mono-dimensional time 

polynomials. Specifically, the samples reaching a 

relative distance below a critical value are identified 

together with the time at which this occurs . The 

approach is tested against an in-house Monte Carlo 

simulation for different literature test cases, showing  

accurate results and a consistent gain in 

computational time. 

 

I. INTRODUCTION 

The escalating number of objects within the Earth's  

orbital environment presents a paramount hazard to 

spacecraft operations. The increasingly crowded orbital 

population leads to numerous close conjunctions over 

the course of a satellite's mission. Assessing the 

criticality of these events  relies on evaluating the 

probability of collision (Pc) between two objects. The 

methods for the computation of collision risk have been 

tailored for different conjunction types . Close 

approaches between satellites are in fact typically 

classified as either short-term or long-term encounters. 

Short-term encounters involve objects with significantly  

different orbits, resulting in encounter velocities 

reaching several kilometers per second near the point of 

closest approach. These encounters last only a few 

seconds at most. Throughout the encounter, the relative 

velocity vector remains constant in both intensity and 

direction, leading to a straight-line relative trajectory. 

Moreover, the relative velocity uncertainty is deemed 

negligible in comparison with its pronounced mean. 

Consequently, the position error combined ellipsoid  

remains stable throughout the encounter since the 

positional uncertainties of the objects can be defined by 

two uncorrelated constant covariance matrices . 

Different methods are available in the literature to 

compute the collision probability for the short-term 

case. The problem has been in fact extensively studied 

by Foster [1], Patera [2, 3], Alfriend et al. [4], Afano [5], 

Chan [6], and more recently by Serra et al. [7]. 

Typically, the risk of collision is computed by 

integrating the probability density function (PDF) of the 

combined positional uncertainty over the volume 

defined by the combined hard-body sphere [2]. Since the 

trajectory is rectilinear, the volume swept out can be 

visualized as an infinite cylinder along the direction of 

the relative velocity. Consequently, a 3D integral can be 

simplified to 2D, as the integral along the direction of 

the relative velocity equals unity. 

The other type of encounter arises between two satellites 

traveling along neighboring orbits, such as between two 

GEO satellites at adjacent longitude positions or, more 

generally, during close satellite operations like 

rendezvous, formation, and cluster flights. It's worth 

noting that similar geometries can also occur naturally, 

albeit less frequently. These close approaches are 

characterized by a low relative velocity, typically on the 

order of a few meters per second. In such scenarios, the 

two objects remain in close proximity for an extended 

duration, approximately on the order of the orbital 

period. Unlike short-term encounters, the relative 

velocity vector is not constant but evolves over time, 

resulting in a non-linear relative trajectory. The 

uncertainty of the relative state cannot be assumed to be 

fixed, and the uncertainty associated with the velocity 

cannot be neglected. This leads to an evolving combined  

covariance matrix that depends on time. 

The collision risk for long-term encounters has not been 

as thoroughly investigated as it has been for short-term 

encounters. A first category of methods, as in [8, 9] and 

[10], tries to solve the bending tendency of the collision  

tube. The key concept is to discretize the collision tube 

into small subsections and to consider that for each 

segment the assumptions of a short-term encounter still 

hold A better characterization of the collision volume is 

outlined in the works of Chan [11, 12], where the swept-
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volume of the hard-body is described as an envelope of 

ellipsoids. However, it's important to note that these 

methods do not consider velocity uncertainties in the 

formulation of the problem. Reference [13], on the other 

hand, presents a comprehensive mathematical 

framework that, for the first time, incorporates velocity 

uncertainties into the formulation. This marks one of the 

most thorough efforts to fully address the collision  

probability problem in a general way. In this case, the 

intricate integration volume is continually mapped over 

time through the dynamic evolution of the initial 

conditions on the 3D surface of the hard-body sphere. 

However, the assumptions made do not accommodate 

for multiple encounters within the analysis timeframe, 

making the method not suitable for complex 

intersections of the integration volume.  

As highlighted in [14], there is a notable absence in the 

literature of a general method capable of simultaneously 

characterizing the swept volume, especially when its 

shape is intricate, and computing the subsequent integral 

of the full state vector gaussian PDF over such a volume. 

In their work, it is  suggested to approximate the swept 

volume using a Polynomial Superlevel Set (PSS) 

followed by a Monte Carlo integration to calculate the 

Pc. Similarly, we propose to characterize the entire 

dynamical flow of the initial conditions with Differential 

Algebra (DA) [15] and Automatic Domain Splitting  

(ADS) [16]. To elaborate further, the initial conditions' 

dynamical evolution is computed as a patched 7D 

continuum, where to each patch corresponds a high 

order Taylor expansion, function of time and of the 

initial conditions. Subsequently, the initial PDF is then 

sampled and each patch is evaluated in a specific state-

vector realization to definitively determine the time 

evolution of a given sample. Instead of employing  

classical numerical integration for the collision volume, 

the process involves identifying the real roots of the DA 

approximation of the miss distance. The Pc is then 

computed as the frequency of threshold violations 

relative to the total number of samples. 

 

II. PROBLEM DESCRIPTION 

Building upon the derivation in [13], we can define the 

statistical event for which a collision occurs as follows : 

given the initial dis tribution of the state for two space 

resident objects at time 𝑡0, the hard-body radius 𝐻𝐵𝑅, 

and a maximum period of interest 𝑇,  a collision between 

two objects is deemed to occur if there exists a time 𝑡, 

within the interval 𝐼 = [𝑡0, 𝑡0 + 𝑇], such that the norm 

of the relative distance vector 𝒅(𝑡), is less than or equal 

to 𝐻𝐵𝑅. To assess the likelihood of this event occurring, 

and consequently characterize the Pc in a 

comprehensive and general manner, we introduce the 

relative state vector of the two objects engaged in the 

encounter, 𝒙(𝑡), which is a function of the time. This 

vector is defined as  

𝒙(𝑡) = (
𝒅(𝑡)

𝒗𝒓𝒆𝒍(𝑡)
) , 

(1) 

 

in which 𝒗𝒓𝒆𝒍 is the relative velocity of the secondary 

object with respect to the primary. At time 𝑡0 =  0, this 

is 𝒙(𝑡0
) = 𝒙𝟎.  

Defining the PDF of the relative state vector at time 𝑡0 

as 𝝆𝟎 (𝒙𝟎, 𝑡0), we can, without loss of generality, define  

the Pc as: 

 

Pc =  Pr( 𝒙𝟎 ∈ 𝑽) =  ∫ 𝝆𝟎
(𝒙𝟎, 𝑡0

)
𝑽 𝑑𝒙𝟎  (2) 

 

where 𝑽 ⊆ ℝ6 represents the initial set for which a 

collision occurs at some future time 𝑡. For long-term 

encounters, the time evolution of the set 𝑽 represents 

exactly the complex integration volume explored in [11,  

12, 14]. At time 𝑡0, the set 𝑽 can be interpreted as sub-

region of the multi-dimensional space ℝ6 wherein every 

realization of the random vector 𝒙𝟎 inevitably leads to 

the violation of the condition ‖𝒅(𝑡)‖  ≤ 𝐻𝐵𝑅 at a future 

time 𝑡. In mathematics: 

 

𝑽 = {𝒙𝟎 ∈ ℝ6: ∃ 𝑡 ∈ 𝐼: ‖𝒅(𝑡) ‖ − 𝐻𝐵𝑅 ≤ 0}  (3) 

 

By definition of PDF, the 6D integral of the initial 

statistic over the set 𝑽 gives in fact the likelihood that 

𝒙𝟎 ∈  𝑽. Since the uncertainty distribution of 𝒙𝟎 usually 

depends on the outcome of the orbit determination  

problem, the integrand of (2) is most of the time 

assumed Gaussian: 

 

𝝆𝟎
(𝒙𝟎, 𝑡0

) =  
𝑒

(−
1
2

(𝒙𝟎−𝝁𝟎)
𝑇

𝑷𝟎
−1(𝒙𝟎−𝝁𝟎))

√(2𝜋)6√‖𝑷𝟎‖
  

(4) 

 

where 𝝁𝟎  and 𝑷𝟎 represent respectively the mean and 

the covariance matrix of the relative state at 𝑡0.One way 

of computing (2) is via a Monte Carlo-based method. In 

fact, in such cases, the initial conditions 𝒙𝟎 are sampled 

and trajectories over the time interval [𝑡0, 𝑡0 + 𝑇] are 

computed according to some dynamical model that 

propagates the relative state from time  𝑡0 to 𝑡. The 

dynamics are usually expressed as an Ordinary  

Differential Equation (ODE) of the form: 

 

{
𝒙̇(𝑡) = 𝑓(𝒙(𝑡0

), 𝒙(𝑡), 𝒖(𝑡), 𝑡)

𝒙(𝑡0
) =  𝒙𝟎

 , 
(5) 

 

where the vector 𝒖(𝑡) represents an eventually modelled  

manoeuvre in the relative dynamics . Each sample 

trajectory is analysed to verify if, at some future time, a 

collision occurs. If one hit is recorded for a specific 

sample, it means that it was originally belonging to the 

set 𝑽. The probability is then computed evaluating the 

ratio between number of samples that produced a hit 

over the total number of samples.  
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III. METHODOLOGY 

A. DA to express the dynamical evolution of 𝒙𝟎 

As outlined in the preceding section, our methodology 

employs DA techniques to express the dynamical 

evolution of the initial relative conditions. DA provides 

a computational framework enabling the treatment of 

functions as n-th order Taylor polynomial expansions 

within a computer environment, rather than handling 

them solely as floating-point values. This framework 

holds considerable potency as it allows to extract more 

information on a function rather than its mere raw values 

[15]. Within this context, the time 𝑡 can be expressed as 

DA variable and scaled with respect to the maximu m 

time of interest 𝑇, such that 𝜏 ∈ [−1,1]: 

 

𝜏 =  
2(𝑡−𝑡0) 

𝑇
− 1 . (6) 

 

Consistently, we introduce a vector of DA variables , 

𝛿𝒙𝟎, that corresponds to the variation of the initial 

relative state vector from its mean at 𝑡0. Each component 

is normalized by the maximum expected variation, ∆𝒙𝟎, 

such that it is defined within the interval [−1,1]. This is 

 

 𝛿𝒙𝟎 =  
𝒙𝟎−𝝁𝟎 

∆𝒙𝟎
 . (7) 

 

Within the context of this work the integration of (5) is 

performed employing Clohessy-Wiltshire relative 

dynamics [17] and thus under the assumption of almost-

circular orbit for the primary object. The relative state at 

𝑡, can be expressed in the DA framework as:  

 

 

That is a vector of high order polynomials that are 

functions of the deviations of the scaled time 𝜏 and the 

initial normalized relative statistics, 𝛿𝒙𝟎 . The Taylor 

map 𝒯𝒙 establishes a relationship between the perturbed 

initial state vector and the corresponding state vector at 

a specified time within 𝑇, utilizing the dynamical model 

defined in (5). This mapping from the initial set to the 

final one bears conceptual similarity to the mathematical 

notion of a manifold.  

Utilizing DA in this context offers several advantages. 

Firstly, it enables the representation of an infinite set 

solely through the coefficients of the Taylor expansion. 

This preserves a specific analytical structure in contrast 

to a mere point-wise sets representation. Secondly, and 

perhaps most significantly, it allows the propagation of 

entire sets through a function using straightforward DA 

arithmetic operations. Unlike a Monte Carlo simulation , 

where the ODE flow of equation (5) must be integrated 

for each sample, in this scenario, only a single 

integration is required. The resulting DA expansion 

represents the outcome of propagating all points from 

the initial domain through the ODE in (5). 

 

B. ADS to control integration accuracy 

The challenging part of this approach arises from the 

highly non-linear dynamics involved usually in long-

term encounters. When the Taylor map needs to 

approximate a strongly non-linear function, the 

convergence of the ODE expansion across the domain  

becomes cumbersome. Consequently, the DA map, 

which is a local representation of the function, poorly 

represents the actual evolution of the whole domain, 

even though the description is accurate in the vicinity of 

the centre of the expansion. 

To address this issue, we employ the technique 

implemented in [16]. The ADS algorithm identifies  

instances where the ODE flow expansion over the initial 

conditions no longer accurately describes the dynamics.  

𝒙 =  𝒯𝒙(𝜏, 𝛿𝒙𝟎) . (8) 

 

 
(a) (b) 

Fig. 1– ADS algorithm illustration. (a) Taylor expansion of  𝒇(𝒙𝟏, 𝒙𝟐) around initial domain’s midpoint. (b)  Taylor 

expansions of  𝒇(𝒙𝟏, 𝒙𝟐) recalculated around the new domain centers.  
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Once such a scenario is detected, the domain of the 

original polynomial expansion is divided along one of 

the expansion variables into two domains, each half the 

size of the original. By re-expanding the polynomials  

around the new centre points, two separate polynomial 

expansions are generated. Since the re-expansion of the 

polynomials preserves their order, each new polynomial 

remains identical to the original on its respective domain  

[16]. This process is visually depicted in Fig. 1 (a) and 

(b). In the visualization, a 2D function 𝑓(𝑥1,𝑥2) is 

depicted alongside the defined domain of the variables  

(𝑥1 ,𝑥2). Additionally, Taylor expansion centered 

around the domain's midpoint is displayed to 

approximate 𝑓(𝑥1,𝑥2). The accuracy of the 

approximation is high near the center but diminishes  

towards the domain edges. To ensure accuracy, the 

algorithm iteratively splits the initial domain into two 

segments whenever the Taylor series representation 

diverges from the actual function by a user-defined 

margin ε. Subsequently, the expansions are recalculated  

around the new centers, and this process continues until 

all expansions accurately represent the function within  

the specified threshold ε.  

 In a similar fashion, in our case the initial 7D domain , 

defined by the variables 𝜏 and 𝛿𝒙𝟎 is split in different  

sub-domains. The dynamical evolution of the initial 

condition assumes the shape of a patched 7D continuum, 

mathematically defined as a manifold object. Fig 2 

attempts to give a visual representation of this last 

considering only the position components of the relative 

state vector and the time. To each patch at a given time 

corresponds a Taylor expansion, function of 𝜏 and of 

 𝛿𝒙𝟎, that approximates locally the dynamical flow.  

Once a single integration has been performed and the 

evolution of the initial condition is approximated by 

patched polynomials, our methodology proceeds to  

calculate the function 𝑓𝑑  within the DA framework: 

 

𝑓𝑑
(𝜏, 𝛿𝒙𝟎

) = 𝒅2 (𝜏, 𝛿𝒙𝟎
) − 𝐻𝐵𝑅 2, (9) 

 

𝑓𝑑  is a high order polynomial representation of the 

relative distance expressed as function of time and the 

variations 𝛿𝒙𝟎. It is again piece-wise defined, and its 

definition interval depends on the ADS accuracy control 

algorithm.  

Subsequently, the initial set 𝒙𝟎 is sampled via Cholesky 

decomposition of the covariance matrix 𝑷𝟎. Each  

realization 𝑿𝟎𝒊  of the random vector is linked to its  

 
Fig. 2- Dynamical flow evolution of the initial conditions 𝒙𝟎 

 
Fig. 3- Roots-finding algorithm to individualise the zeros of high order mono-dimensional time polynomials 
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respective initial patch and evaluated only in space and 

velocity. This evaluation reduces the dimensions of the 

𝑓𝑑  polynomials, resulting in a set of one-dimensional 

Taylor expansions dependent solely on time: 

 

𝑓𝑑
(𝜏, 𝛿𝒙𝟎 = 𝑿𝟎𝒊

) =  𝒯𝒅(𝜏), (10) 

 

 This parameter holds significant importance as it is 

analysed by the algorithm to determine if a collision  

occurs for a specific sample. In fact, the conventional 

numerical integration, is  therefore simplified to the task 

of locating the roots of the function outlined in equation 

(10) within the defined bounds of the Taylor expansion.  

The process is illustrated in Fig. 2, where a sample is 

evaluated within the split initial set, resulting in a subset 

of one-dimensional polynomials that approximate the 

time evolution of the trajectory. For representation 

purposes, only spatial coordinates are shown. 

 

C. Finding the roots of high order mono-dimensional 

time polynomials 

The problem of finding roots for high-order mono-

dimensional polynomials has been extensively  

researched, and various techniques exist that are 

considerably faster than numerical trajectory 

propagation. The root-finding algorithm is illustrated in. 

Fig. 3. After evaluating the sample and computing the 

DA expression in equation (9), we iterate through all the 

polynomials that define a sample trajectory. For each 

Taylor expansion and its corresponding definition  

interval, we initially verify if its centre falls into the 

negative range to rule out the possibility of finding no 

roots due to the segment trajectory already being below 

the collision threshold. Subsequently, we determine the 

number of sign changes  of the polynomial coefficients 

using the Budan-Fourier theorem [18]. This theorem 

considers the number of roots by examining the 

sequence of coefficient sign variations in the 

polynomial. Specifically, if the number of sign changes 

is odd, it indicates the presence of at least one real root  

within the polynomial's interval. In such cases, the 

algorithm registers a hit and proceeds to analyse the next 

sample. If there are no sign changes (i.e., the count is 

zero), we conclude that the polynomial has no real root 

in the interval, and thus, the algorithm moves on to 

analyse the adjacent Taylor expansion as time  

 

 

(a) (b) 

Fig. 4 –High-level algorithm description for (a) DA polynomial evaluation technique and (b) standard Monte  Carlo tool to compute 

Pc 

 

 

(a) (b) 

Fig. 5 – (a) PDF of the initial positional uncertainty for test case #1. (b) Time evolution of the initial condition mean 

expressed in term of 𝒇𝒅 
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progresses along the trajectory. 

The situation differs when the number of sign changes 

is even. In such instances, the theorem does not provide 

conclusive results because the number of roots can be a 

multiple of an even number, potentially including zero. 

Therefore, the workflow further investigates using the 

Sturm algorithm [19]. This algorithm is a robust root 

isolation method that precisely determines the number 

of roots of a high-order polynomial within an interval by  

recursively performing Euclidean divisions to construct 

a sequence of polynomials. The sign variations in this 

sequence are analysed to ascertain the number of roots. 

As before, if there are no roots, the algorithm proceeds 

to analyse the neighbouring polynomials. However, if at 

least one root is found, a hit is recorded, and the 

polynomial approximation of the subsequent trajectory 

is studied. 

 

D. Monte Carlo tool for validation 

To verify our methodology and measure the efficiency  

of our approach, we compare the results obtained with  

those generated by a standard, in-house Monte Carlo 

simulation. To this aim, each sample is propagated from 

𝑡0 to 𝑇, symmetrically bracketing the TCA, using the 

state transition matrix once again. A grid of equally 

time-spaced points in miss distance is created, followed  

by interpolation where the real roots of a localized cubic 

polynomial are extracted. To elaborate, curve fitting is 

executed using a technique called parabolic blending 

[21], where a set of four equally spaced points is utilized  

to construct a third-order polynomial by merging two 

quadratic polynomials generated from the initial three 

points and the last three points. The minimum of the 

fitted curve is then determined by extracting the roots of 

the polynomial's first derivative. The Monte Carlo  

process then assesses whether a collision occurs for a  

given sample by checking if the relative distance at any 

point within the timeframe is equal to or less than the 

HBR. Figure 4 outlines the primary distinctions between 

our DA approach and a conventional Monte Carlo-based 

method for computing the Pc. Essentially, our technique 

requires only a single integration to generate the 7D 

manifold and a series of polynomial evaluation for each 

sample. Instead, in a standard Monte Carlo method, one 

  

(a) (b) 
Fig. 6 –Subdomains time evolution of relative state (a) first- component and (b) fifth - component. In orange all the subdomains 

associated to a given sample trajectory. 

  
(a) (b) 

Fig 7 – (a) Taylor expansions of 𝒇𝒅 evaluated at the centre of each time sub-domain for two “hit” samples and one “no-hit” 

sample. (b) TCA distribution for test case #1. 
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must initially perform numerical propagation of each 

sample and then interpolate the grid of discrete points in 

relative distance. 

 

IV. TESTING 

We examine the Pc values obtained by our approach 

using a set of artificial test cases from [20]. These test 

cases are widely used in the literature as a benchmark  

 for Pc computation methodologies, offering diverse 

scenarios suitable for both short-term and long-term 

analyses. Each test case provides the primary and 

secondary distributions at TCA in an inertial reference 

frame assuming a Gaussian distribution for the 

uncertainties in position and velocities. Given our 

methodology's reliance on relative dynamics , we 

compute the relative state and its related combined  

covariance at TCA and employ the inverse of the State 

Transition Matrix (STM), which integrates eq. (5) 

according to [17], to backpropagate to the initial time, 

𝑡0. Once the initial conditions have been derived 

consistently from those at TCA, random samples for the 

initial state can be generated. The standard deviations 

from the covariance matrix 𝑷𝟎 are utilized to introduce 

random perturbations via Cholesky decomposition. To 

determine the minimum number of samples required for 

statistical significance, we adopt the same statistical 

bounding criteria as presented in [20].  

The first test case considered involves two satellites in 

GEO with non-linear relative motion. Fig. 5-(a) 

illustrates the combined positional covariance sampled  

at the initial time. The red points represent a subset of 

samples, denoted as 𝑽 in the preceding section, for 

which a collision occurs within the timeframe of 

analysis. As depicted in Fig. 5-(b), the test case was 

deliberately designed so that even the mean of the initial 

distribution results in a collision, leading to a notably 

high final Pc reference value of 0.21747. This elevated 

Pc level necessitates fewer than 16,000 Monte Carlo  

runs for the results to attain statistical significance. 

As described before, the initial uncertainties are 

represented as a vector of DA variables  and integrated 

over 25,926 seconds to position the TCA precisely at the 

midpoint of the time span. The evolution of the initial 

condition generates a 7D manifold, with the initial sub-

domains established by the ADS routine. Fig 6 

illustrates how the domain in the first and fifth  

components of the initial relative state and the time is 

split. Each subdomain defines the range in these 

variables for which a single Taylor expansion is able to 

represent the relative state vector with the required 

accuracy. The red line represents a particular 

determination of the initial relative state component, 

based on which all the associated sub-domains are 

selected. The evaluation of all these polynomials for a 

given sample of the initial relative state allows  

computing a DA expansion outlined in (10), which is a  

function only of the time. This is illustrated in Figure 7-

(a), where the Taylor expansions of 𝑓𝑑  are evaluated at 

the centre of each time sub-domain for three different  

samples. Two samples do not result in a collision (cyan 

and green curves), and one does lead to a collision  

(blue). 

The cumulative collision probability determined  

through the DA polynomial evaluation method, 

stabilizes at 0.219172, mirroring the result obtained 

from our in-house Monte Carlo simulation. In 

comparison to the value cited in [20], our finding  

represents a minor overestimation of 0.78%. This 

discrepancy could be attributed to disparities in the 

dynamic models employed between [20] and our 

research. Over the analysis period, the initial conditions 

evolve in a manner that, on average, leads to an 

accumulation of Pc at two distinct times. The case 

illustrates the method's ability to address multiple 

conjunctions and, consequently, multiple TCAs within  

the analysis timeframe. Figure 7-(b) depicts the TCA 

distribution in the form of a histogram, clearly indicating  

that among the samples resulting in a collision, a subset 

hits around 2000 seconds after the start of the 

simulation. Successively, the Pc levels off about 2000 

seconds after, and then increases again approximately  

9500 seconds later. The computational time is compared  

to that of the in-house Monte Carlo simulation with an 

integration time-step of 5 second. As shown in Table 1, 

approximately 16,000 iterations are processed in  

roughly 7 second on an Intel(R) Core (TM) i7-8665U 

CPU @ 1.90GHz, resulting in a 50%-time reduction.  

Additional test cases were examined to evaluate the 

method's performance when more than one million  

simulations were required to ensure statistically 

significant results. Case #2 features the same collision  

geometry as Case #1 but with a smaller HBR. In this 

instance, the resulting Pc is within 0.006% of the 

reference value and surpasses the in-house Monte Carlo 

method in terms of computational efficiency. The 

findings remain consistent for Case #4, which also 

entails non-linear relative motion in GEO. In this 

scenario, the computational time savings exceed 70%, 

and the computed Pc closely aligns with the Monte 

Carlo simulation. Overall, the Pc error remains within a 

2% margin relative to the literature reference. On 

average, the reduction in computational time compared  

to our in-house Monte Carlo method is contingent upon 

Case n° Samples DA Polynomials Monte Carlo Pc err [%] Reference [20] 
Pc CPU time 

[s] 
𝜟𝒕 [s] Pc CPU time 

[s] 

Pc Pc err 

[%] 

# 1 1.57E+04 0.219172 7 5 0.219172 13 0 0.217467140 0.78 

# 2 6.52E+06 0.016040 1721 5 0.016039 6685 0.006 0.015736620 1.90 

# 4 1.24E+06 0.073810 385 5 0.073810 1331 4.06 E -04 0.073089530 0.99 

Tab. 1 Comparison with Monte Carlo results and literature reference. 
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the number of samples utilized. For instance, with a 

relatively low sample count (Case #1), we observe 

approximately a 50% decrease. Conversely, when the 

sample count exceeds one million, the efficiency of 

performing a single DA integration becomes evident, 

resulting in a 70% improvement. 

 

V. OUTLOOK AND FUTURE WORK 

In this work, we introduced a general technique that 

computes the probability of collision between two space 

objects. We employ DA to characterize the non-linear 

evolution of the multivariate Gaussian initial relative 

state vector. The ADS algorithm regulates the accuracy 

of the dynamical integration, which is carried out under 

the assumption of linearized relative dynamics . The 

initial conditions' dynamical evolution takes the form of 

a patched 7D continuum, where each patch corresponds 

to a high order Taylor expansion, which is a function of 

the time and of the initial conditions. The initial PDF is 

then sampled and each patch is evaluated in a specific 

state-vector realization to definitively determine the 

time evolution of a given sample. The identification of 

collisions is reduced to finding the real roots of the DA 

approximation of the miss distance. Under the 

assumption of Gaussian initial uncertainty and 

Chloessy-Wiltshire relative-dynamics propagation, the 

technique can handle velocity uncertainties and intricate 

conjunction scenarios in which multiple conjunctions 

are allowed in the screening interval, releasing the 

assumption of [13]. It is worth mentioning that the 

methodology is , in principle, also able to handle any 

arbitrary initial statistic and dynamics.  

The technique is tested against benchmark literature test 

cases. The error in the Pc estimation is always below 

0.006% with respect to the in-house Monte Carlo, and 

below 2% with respect to the values reported in the 

literature. The methodology is very similar to a Monte 

Carlo based technique for computing the Pc, with the 

exception that only a single integration is necessary 

rather than propagating in time each sample. This 

resulted in a promising reduction of the computational 

time with respect to the classical Monte Carlo method. 

It's worth noting that the Monte Carlo method is already 

notably fast, given its analytical propagation of the 

dynamics [17] through the STM. The gain is up to 70% 

in the case of millions of samples .  

In future work, the authors plan to increase the fidelity  

of the dynamics. Additionally, the technique needs to be 

further tested in a real-world scenario to determine how 

it performs with low Pc levels, particularly in terms of 

processing time. Even though the test cases are broadly 

used, they are completely artificial, resulting in  

unrealistically high Pc values  typically not encountered 

in spacecraft operations. 
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