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Active gust load alleviation is a promising technique to reduce the structural weight of
flexible transport aircraft wings with high aspect ratio, ensuring lower fuel consumption and
environmental impact. The challenge is to develop a controller that is not only performant, but
also robust, since the aircraft’s environment cannot fully be captured within a computational
model. Robust control is well suited to address this challenge by including uncertainties within
the controller design. This paper describes using `-synthesis to develop a gust load alleviation
controller for a flexible wing, to be tested in a wind tunnel experiment. The wing features both
sweep and high aspect ratio. Five trailing edge control surfaces are installed for active load
alleviation. Distributed acceleration sensors provide measurements for feedback control. The
paper details the entire controller development, starting with the creation of an aeroservoelastic
plant, using the Loewner framework as a novel addition to model the gust disturbance. After
controller synthesis, the designed controller is validated in a nonlinear simulation, constituting
a virtual representation of the wind tunnel experiment.

I. Introduction

Next generation transport aircraft will likely see wings with a high aspect ratio, as this allows to reduce induced
drag and thereby increase efficiency [1]. If optimized for weight, these wings will exhibit a high flexibility, the

aero-structural interaction will be more emphasized and the susceptibility to loads from maneuvers and gusts will be
increased. To reduce these loads, active control technologies are promising. It has been shown that weight savings
of up to 30% resulting in fuel savings of up to 10% can be achieved by implementing combined maneuver load
alleviation (MLA) and gust load alleviation (GLA) functionalities [2, 3].

Load alleviation functions have already been successfully implemented on aircraft, as outlined in Ref. [4, 5]. These
techniques however are primarily passive, not making full use of the possibilities opened up by advancements in
automatic control technology. Applying such secondary flight control functions to high aspect ratio wings is a novelty
and expected to yield larger effects compared to the application on conventional wings. To mature active MLA and
GLA for high aspect ratio wings, experiments are indispensable. Wind tunnel and flight tests are part of the ongoing
research activities [6, 7]. Different synthesis methods for load alleviation control are currently investigated. In Ref.
[8], incremental nonlinear dynamic inversion is used, while robust control is applied for example in Ref. [9]. Another
approach is to use an 𝐻2-optimal blending, as detailed in [10]. When feedforward information is available, model
predictive control presents another promising approach [11].

In this paper robust control is used to develop a feedback GLA controller to be tested in a wind tunnel experiment.
Robust control has the advantage that uncertainties inevitably occurring in the model used for controller design can be
accounted for in the synthesis itself. It allows to balance performance and stability requirements in the process. Since
the developed controller will be tested in a wind tunnel experiment, this is of special importance.

The wind tunnel test campaign is conducted within the optimally load-adaptive aircraft (oLAF) project¶ of the
German Aerospace Center (DLR). The wind tunnel test continues the research conducted in previous projects at DLR,
see Ref. [6]. A flexible wing model with high aspect ratio and sweep is developed [12], representing the wing of

∗Research Associate, Institute of System Dynamics & Control, felix.stalla@dlr.de
†Research Associate, Institute of System Dynamics & Control, thiemo.kier@dlr.de, AIAA Member.
‡Department Head, Institute of System Dynamics & Control, gertjan.looye@dlr.de, AIAA Member.
§Professor, Department of Mechanical, Automotive and Aeronautical Engineering, manuel.pusch@hm.edu
¶See acknowledgments for further details on the DLR oLAF project.

1

mailto: felix.stalla@dlr.de.
mailto: thiemo.kier@dlr.de
mailto: gertjan.looye@dlr.de
mailto: manuel.pusch@hm.edu


a long-range transport aircraft. Five trailing edge control surfaces are installed for load alleviation, while spanwise
distributed acceleration sensors capture the flexible motion due to atmospheric disturbances. A CAD representation of
the oLAF wind tunnel model is shown in Fig. 1. A gust generator introduces disturbances into the air flow, exciting
the flexible wing. By applying feedback control, the structural loads due to these disturbances shall be reduced. The
experiment will be conducted at subsonic speeds, the freestream velocity being 50 m/s.
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Fig. 1 CAD model� of the oLAF wind tunnel model

This paper presents the model-based design of the GLA controller for the experimental flexible wing. As stated, the
main challenge in designing a controller to be used in an experiment is to ensure sufficient robustness to unmodeled
dynamics, changing operating conditions and neglected dynamics. Additionally, the high number of sensors and control
surfaces is demanding, and best solved by an optimal control strategy. Thus, the GLA controller is designed using
`-synthesis (𝐷-𝐾-iteration), an extension to 𝐻∞ robust optimal control [13]. Performance requirements are defined to
reduce the integral loads at the wing-root (wing-root bending and torsion moment) induced by a gust. Robustness will
be ensured by integrating structured multiplicative uncertainties at the plants input and output. `-synthesis has already
been applied for GLA in Ref. [9], but within the present work the method is applied to a wind tunnel model using a
wing with a high number of control surfaces and acceleration sensors.

The following not only details the controller design itself (Sections V and VI), but provides an overview of the steps
necessary to obtain the GLA controller (Sections II through IV). The first step in model-based controller design is to
derive a mathematical representation of the aeroservoelastic plant. The modeling process following Ref. [14] uses
the VarLoads environment [15, 16]. The modeling involves structural dynamics, aerodynamic forces, aero-structural
coupling, actuator dynamics and sensors. Next, the gust disturbance is added. Here, a novel aspect is the application of
the Loewner framework [17], which allows to obtain a very precise gust model with a low number of states. The model
components are assembled and two types of models are created: a nonlinear MATLAB-Simulink simulation, and a linear
state-space model which is order reduced, to be suitable for `-synthesis. After the controller synthesis, a validation of
the controller is performed within the nonlinear MATLAB-Simulink simulation, where both actuator saturation and
delay are considered. The load-reduction potential and the robustness is examined in detail. The controller whose
design is described here will be validated in the oLAF wind tunnel experiment in 2024.

II. Aeroservoelastic Modeling of the Flexible Wing
The first necessary step to be able to perform model-based controller design is to derive a comprehensive

aeroservoelastic model of the experimental flexible wing including gust disturbance. This model is developed throughout
Sections II to IV. For those primarily interested in controller design, skip directly to Section V.

The theory of the modeling process is outlined in Ref. [14]. Baseline of the mathematical representation of the
aeroservoelastic plant are the (nonlinear) equations of motion (EOM) based on mean axes [14, 18]:[

𝑚𝑏 · ( ¤V𝑏 +𝛀𝑏 × V𝑏 − T𝑏𝐸 · g𝐸)
J𝑏 · ¤𝛀𝑏 +𝛀𝑏 × (J𝑏 ·𝛀𝑏)

]
= 𝚽𝑇

𝑔𝑏 · P𝑒𝑥𝑡
𝑔 ,

M 𝑓 𝑓 · ¥u 𝑓 + B 𝑓 𝑓 · ¤u 𝑓 + K 𝑓 𝑓 · u 𝑓 = 𝚽𝑇
𝑔 𝑓 · P𝑒𝑥𝑡

𝑔 .

(1)

�CAD model supplied by DLR-AE-LAE. Point of contact: Johannes Dillinger, research associate, johannes.dillinger@dlr.de
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The EOM are denoted in the modal domain, the notation is in accordance with the set definition (subscripts) in the
Nastran Aeroelastic Analysis User’s Guide [19]. The first equation expresses the rigid body motion (𝑏-set), while the
second expresses the flexible motion ( 𝑓 -set). The rigid body motion is described by six equations, using the linear
velocity V𝑏 and the rotational velocity 𝛀𝑏. The flexible motion is captured by the modal deflection u 𝑓 , the number of
equations depends on modal truncation. The structural properties are captured within the wing’s mass 𝑚𝑏, its inertia
tensor J𝑏 and its modal matrices of mass M 𝑓 𝑓 , damping B 𝑓 𝑓 and stiffness K 𝑓 𝑓 . Gravity is taken into account by g𝐸 .

The excitation of rigid and flexible dynamics by external forces P𝑒𝑥𝑡
𝑔 is given on the right hand side of the equation

(𝑔-set, structural set). These forces are created from aerodynamics and the gust disturbance. The eigenvector matrices
𝚽𝑔𝑏 and 𝚽𝑔 𝑓 transfer the forces to the modal domain, these forces are commonly called generalized forces [18].

The aim of active GLA is to reduce the loads acting on the aircraft or wing in response to a gust disturbance. Thus it
is important to recover the loads to quantify the effectiveness of the load alleviation measures. Here, the force summation
method (FSM) [20] will be used (the loads from damping are generally small and can be neglected):

P𝐹𝑆𝑀
𝑔 = P𝑒𝑥𝑡

𝑔 − P𝑖𝑛𝑒𝑟𝑡𝑖𝑎
𝑔

= P𝑒𝑥𝑡
𝑔 − M𝑔𝑔 · (𝚽𝑔𝑏 · ¥u𝑏 +𝚽𝑔 𝑓 · ¥u 𝑓 ).

(2)

In the following subsections, the different domains of modeling are presented, before the overall model is assembled
in Section IV. Aim is to obtain a low order model with sufficient accuracy, as the order of the controller scales with the
model order. The wind tunnel test is conduced at subsonic conditions with a Mach number of 0.15. The freestream
velocity is 50 m/s, while sea level values from the standard atmosphere are used for pressure, density and temperature.

A. Structural Modeling
The structural model is represented by the matrices on the left side of the flexible EOM in Eq. 1. The mass, damping

and stiffness matrix are extracted from a finite element (FE) model∗∗. To further simplify the structural model, a Guyan
reduction (static condensation) [21] to a beam representation along the loads reference axis is performed. A modal
truncation [22] reduces the order of the model further. 15 flexible modes were found to sufficiently represent the
dynamic response. To reduce the loads induced by atmospheric disturbances like gusts, the primary target is to damp
the lowest frequency flexible mode (first mode). In the undamped system without aerodynamic contribution this mode
occurs at about 50 rad/s. Figure 2 displays the mode shape of the first four flexible mode shapes of lowest frequency.

Fig. 2 First four normal modes of the oLAF wind tunnel model

A special feature of the modeling for a wind tunnel model is the rigid body motion (RBM). The model is not a
free-flying aircraft. Instead, a pre-defined RBM is enforced. Here, only a motion in pitch will be considered. Using
Eq. 1, the imposed rotation, velocity, and acceleration creates a load P𝑒𝑥𝑡

𝑔 acting on the flexible EOM.

B. Aerodynamic Modeling
The external forces on the right hand side of Eq. 1 stem from aerodynamics, as there are no propulsive forces acting

on the wind tunnel model. Steady and unsteady generalized aerodynamic forces are calculated using the doublet lattice
method (DLM) [23, 24]. This method is based on potential flow theory, using the unsteady Prandtl-Glauert equation
[25]. For subsonic conditions at Mach 0.15, this method yields sufficiently accurate results. For the DLM, the wing is
discretized into panels, as shown in Fig. 3a. Applying the DLM yields aerodynamic-influence-cofficient (AIC) matrices
Q 𝑗 𝑗 in the frequency domain, linking the downwash w 𝑗 to the pressure coefficient 𝚫c𝑝, 𝑗 of each panel 𝑗 . The AIC

∗∗FE model supplied by DLR AE-LAE. Contact: Johannes Dillinger, research associate, johannes.dillinger@dlr.de.
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matrices are calculated for multiple reduced frequencies 𝑘 [26] in the range of 0 to 4.5. Defining a pressure-to-load
matrix S𝑘 𝑗 and multiplying with the dynamic pressure 𝑞∞, the following forces result at the reference point (𝑘-set) of
each panel (careful not to confuse the reference point set, 𝑘 as an index, with the reduced frequency, 𝑘):

P𝑎𝑒𝑟𝑜
𝑘 (𝑘) = 𝑞∞ · S𝑘 𝑗 · Q 𝑗 𝑗 (𝑘) · w 𝑗 , 𝑘 =

𝜔 · 𝑐𝑟𝑒 𝑓
2 ·𝑈∞

. (3)

The downwash w 𝑗 is induced by the flexible motion of the wing, the rigid body motion, or the control surface deflection.
This leads to a coupling between structural and aerodynamic model as described in the next section.

C. Aero-Structural Coupling
From Eq. 1 and 3 it becomes clear that structural and aerodynamic model are interconnected, since displacements

and forces in each model depend on the other model. To obtain the coupling, two methods are employed, to best capture
the structural behavior of the wing: rigid body splines [27] and infinite-plate-spline-type radial basis functions [28].
Thereby it is ensured that the rigidity of the spars running in chordwise direction is correctly modeled. The two steps
combined yields the splining matrix T𝑘𝑔, mapping displacements from structural grid points (𝑔-set) to aerodynamic
reference points (𝑘-set). This matrix thus allows to calculate the orientation of the aerodynamic panels once the wing is
deformed, while its transpose allows to obtain structural forces derived from aerodynamics.

Additionally, a mapping between control surface deflection (𝑥-set) and orientation of the aerodynamic panels (𝑘-set)
is required. This mapping is purely geometric and is represented by the matrix T𝑘𝑥 . The aerodynamic contribution to
the external forces can now be stated by combining the splining matrix with Eq. 3, yielding:

P𝑎𝑒𝑟𝑜
𝑔 (𝑘) = 𝑞∞ · T𝑇

𝑘𝑔 · S𝑘 𝑗 · Q 𝑗 𝑗 (𝑘) · w 𝑗 . (4)

This equation is still defined in the frequency domain for a discrete reduced frequency 𝑘 . The contribution to the
downwash stems from the flexible motion ( 𝑓 -set), the rigid body motion (𝑏-set) and the control surfaces (𝑥-set):

w 𝑗 =

(
D1

𝑗𝑘 + 𝑖 · 𝑘 · D2
𝑗𝑘

)
· T𝑘𝑔 ·𝚽𝑔 𝑓 · u 𝑓

+
(
𝑖 · 𝑘 · D2

𝑗𝑘

)
· T𝑘𝑔 ·𝚽𝑔𝑏 · u𝑏

+
(
D1

𝑗𝑘 + 𝑖 · 𝑘 · D2
𝑗𝑘

)
· T𝑘𝑥 · u𝑥 .

(5)

The only missing contribution in the external forces on the right hand side of Eq. 1 is the gust, which will be introduced
in Section III, since the aerodynamic modeling will differ. Figure 3 presents the aeroservoelastic model with control
surfaces (blue - wing, yellow - control surfaces). Aerodynamic panels for the DLM computation as well as the structural
nodes (red) of the condensed model are shown in Fig. 3a.

(a) Aerodynamic discretization and structural nodes
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(b) Location and ID of control surfaces and sensors

Fig. 3 Aeroservoelastic model of the oLAF wind tunnel model
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D. Rational Function Approximation
So far, the external forces due to aerodynamics (coupled with the structural motion) are only available in the

frequency domain, at multiple reduced frequencies k. To conduct a time simulation or construct a state-space model
for controller synthesis, the aerodynamic data needs to be available in the time domain. However, for the terms in
Eq. 4 and 5 no suitable Laplace or Fourier transform is available. To convert the AIC matrices, an rational function
approximation (RFA) is applied, to obtain terms which can be handled by a Laplace transform. Here, Roger’s RFA
[29, 30] is employed. As introduced in Ref. [14], a so-called physical RFA on the AIC matrix Q𝑔 𝑗 = T𝑇

𝑘𝑔
· S𝑘 𝑗 · Q 𝑗 𝑗 is

used, to allow for separating steady and unsteady aerodynamic force. One obtains (note this is only one of multiple
possible realizations of the RFA):

Q𝑔 𝑗 (𝑖𝑘) ≈ Q0
𝑔 𝑗 + Q1

𝑔 𝑗 · 𝑖𝑘 + D ·
(
𝑖𝑘 · I𝑛𝑝 ·𝑛𝑞 − R

)−1
· E · 𝑖𝑘, (6)

D =

[
Q3
𝑔 𝑗 Q4

𝑔 𝑗 · · · Q𝑛𝑝+2
𝑔 𝑗

]
, R = diag

( [
−𝑝1I𝑛 𝑗

· · · −𝑝𝑛𝑝
I𝑛 𝑗

] )
, E =

[
I𝑛 𝑗

· · · I𝑛 𝑗

]𝑇
. (7)

The AIC matrix is split into multiple terms, the coefficients are determined by a least-squares fit [29]. The AIC matrix
with subscript 0 captures the quasi-steady aerodynamic contribution, while the matrix with subscript 1 represents the
added mass term. An acceleration matrix is not present when applying the physical RFA [14]. The last term including D,
E and R is used to capture so-called aerodynamic lag states, resulting from unsteady aerodynamics [22]. The poles 𝑝𝑖
used in this term must be specified. Here, a number of 𝑛𝑝 = 8 poles are used. Laplace transforming the elements of the
performed RFA in Eq. 7 and combining with Eq. 4 yields the time domain equivalent of the generalized aerodynamic
forces, i.e. Eq. 4 transferred to the time domain [14]:

P𝑎𝑒𝑟𝑜
𝑔 (𝑡) = 𝑞∞ ·

(
Q0

𝑔 𝑗 · w 𝑗

)
+ 𝑞∞

(
Q1

𝑔 𝑗 ·
(
𝑐𝑟𝑒 𝑓 /2
𝑈∞

)
· ¤w 𝑗 + D · x𝐿 ( ¤w 𝑗 )

)
,

¤x𝐿 = R ·
(
𝑈∞

𝑐𝑟𝑒 𝑓 /2

)
· x𝐿 + E · ¤w 𝑗 .

(8)

In above’s equation the vector x𝐿 denotes the aerodynamic lag states [22]. The downwash w 𝑗 and its derivative supplied
to the equation need to be calculated as presented in Eq. 5. In the time domain, the term 𝑖𝑘 is equivalent to a (scaled)
derivative of the respective motion. The scaling terms including the velocity 𝑈∞ and the reference chord 𝑐𝑟𝑒 𝑓 stem
from the use of the reduced frequency 𝑘 , see Eq. 3.

This concludes the modeling of the external forces stemming from a motion of the wing or its control surfaces. The
last contribution to the right hand side of the EOM is the force from a gust, which will be detailed in Section III. The
aero-structural model composed of Eq. 1 and 4 can be simulated.

E. Actuator and Sensor Modeling
The control surface motion generates a downwash as described in Eq. 5. The control surfaces are moved by

actuators. Due to physical limitations, a commanded deflection is not instantly achieved. These constraints are captured
within an actuator model that will provide the current deflection, rate and acceleration of the control surface based on a
commanded deflection. The actuator model is added to the aeroservoelastic plant. The electromechanical actuators of
the oLAF wind tunnel model can be described by a first order linear time-invariant system. The model is based on
characteristics of the actuators which were used in a previous experiment of DLR [31]. Besides the governing transfer
function of the system, non-linearities have to be considered, as given for example in Ref. [32]. In accordance with Ref.
[31], the roll-off of the actuators occurs at 90 rad/s, the limit on deflection is 10°, the rate limit 1129°/s, the acceleration
limit 79540°/s2 and the dead time 4.3 ms. All five control surfaces feature the same type of actuator.

Ten vertical acceleration sensors are distributed across the span of the wing to capture the motion and deliver signals
for feedback control. Two sensors each are located at the same spanwise location, in order to capture torsion. A matrix
mapping the modal acceleration to the location of the sensors is constructed by a rigid body splining [27], and is denoted
T𝑚 𝑓 (with 𝑚 for measurement). The dynamics of the sensors are negligibly fast. Only the dead time introduced by
the sensors is modeled. Combined with the delay of the controller, the introduced dead time is estimated to be 4 ms,
yielding a total of 8 ms in the feedback loop [10]. Figure 3b depicts the location of the sensors.
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III. Gust Modeling using the Loewner Framework
Once the model of the flexible wing itself is derived, this model must be enhanced by a representation of the gust

disturbance, to design the GLA controller and validate its performance. A separate section is dedicated to the gust model
to be able to discuss the novel approach of the Loewner framework in detail, although the gust is only another external
aerodynamic force in Eq. 1. From the DLM, frequency domain data is available. However, the RFA as presented
in Section II.D is unsuited for application on the gust AIC column [33]. The reason for this unsuitability is the time
delay in gust aerodynamics as described by the Sears function [22], creating a spiral pattern when plotting real over
imaginary part. The Loewner framework is one option to address the frequency to time domain transformation of gust
aerodynamics, as it can identify a state-space system from given frequency domain data.

A. Gust Definition and Gust Model in the Frequency Domain
In the certification documents (EASA CS-25, [20]) a discrete gust design criterion is given. The so-called vertical

1-cos gust, to be used to quantify gust loads, is defined as:

𝑤𝐺 (𝑡) =
{

𝑈𝑑𝑠

2·𝑈∞
·
(
1 − cos

(
2𝜋 ·𝑈∞ ·𝑡

2·𝐻

))
𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒,

0 otherwise,
(9)

with𝑈𝑑𝑠 being the design gust velocity, 𝐻 the gust gradient (half gust length), 𝑡𝑠 the start time, and 𝑡𝑒 the end time of
the gust encounter. In the certification documents the relevant gust gradients are given as 9 – 107 m. For the wind
tunnel test the gust gradients need to be scaled according to the geometric scale of the model, yielding 0.45 – 5.35 m.
The amplitude of the gust𝑈𝑑𝑠 depends on characteristics of the respective aircraft, see Ref. [20]. Figure 4 presents the
range of gusts that will be relevant for the oLAF wind tunnel experiment, with the according gust amplitudes.
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Fig. 4 Gust profiles used in the oLAF experiment

Now that the gust profile is defined by Eq. 9, the interaction of the gust with the aircraft needs to be modeled. The
aim is to compute a gust load vector P𝐺

𝑔 that acts as an external force on the right hand side of the flexible EOM, Eq. 1.
A gust-AIC column from the downwash at each panel w𝐺

𝑗
to the structural loads P𝐺

𝑔 is derived in the frequency domain
using the DLM, where 𝑘𝐺 is the reduced gust frequency [14]:

P𝐺
𝑔 (𝑘𝐺) = 𝑞∞ · Q𝐺

𝑔 (𝑘𝐺) = 𝑞∞ · Q𝑔 𝑗 (𝑘𝐺) · w𝐺
𝑗 (𝑘𝐺) = 𝑞∞ · T𝑇

𝑘𝑔 · S𝑘 𝑗 · Q 𝑗 𝑗 (𝑘𝐺) · w𝐺
𝑗 (𝑘𝐺),

w𝐺
𝑗 (𝜔𝐺) = a𝐺 (𝜔𝐺) · 𝑒

(
−𝑖𝜔𝐺 ·

x 𝑗
𝑈∞

)
· n 𝑗 .

(10)

In this equation x 𝑗 is the location of the three-charter-chord points ( 𝑗-set) of each aerodynamic panel, n 𝑗 are the panel
normal vectors, and a𝐺 (𝜔𝐺) is the gust spectrum. This spectrum shall be unit, meaning that there is a sinusoidal motion
with unit amplitude present at any gust encounter frequency, and an arbitrary gust signal may be composed in the time
domain by superposition. The exponential term in Eq. 10 is nothing else than a time delay or phase shift 𝑒−𝑠𝑡 with the
time variable replaced using the geometric location x 𝑗 .

B. Loewner Framework for State-Space Representation of the Gust
For gust aerodynamics RFAs yield inadequate results, as they are not well-suited for time delays [33], hence the

Roger’s RFA is unsuited to transfer the gust loads to the time domain. The Loewner framework turned out to be a
well-working alternative. The resulting gust model is of low order, which is beneficial for controller design with
`-synthesis, as the order of the controller is equal to the one of the plant. The theory of the framework is derived in
Ref. [17, 34, 35]. It has already been applied for example in Ref. [9, 33].
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The Loewner algorithm is fed with frequency domain data from Eq. 10, provided as a pair of frequencies and
matrices {𝑠𝑖 ,Q𝐺

𝑔,𝑖
(𝑠𝑖)}, 𝑖 = 1 ... 𝑛. To produce a good-matching system approximation with the Loewner framework the

number of data pairs shall be high, 𝑛 ≈ 1000 has shown to be sufficient. The frequency domain data is supplied to the
Loewner algorithm, which approximates the system by a descriptor state-space system. The tangential directions are
chosen to be Gaussian randomly distributed numbers, as Ref. [36] proposed, which yielded good results. To ensure
reproducibility when applying the Loewner framework the random numbers are generated using a certain seed. The
order of the system is controlled by the number of singular values taken into account. From inspection an order of 25
proved sufficient. The resulting state-space system in descriptor form can be re-written in the standard state-space form
by inverting the E-matrix (which must be non-singular and hence invertible):

¤x𝐺 = E−1
𝑔𝑢𝑠𝑡 · A𝑔𝑢𝑠𝑡 · x𝐺 + E−1

𝑔𝑢𝑠𝑡 · B𝑔𝑢𝑠𝑡 · 𝑤𝐺 (𝑡),
P𝐺
𝑔 (𝑡) = 𝑞∞ · C𝑔𝑢𝑠𝑡 · x𝐺 .

(11)

Equation 11 can be supplied with the gust input 𝑤𝐺 (𝑡) and provides the gust loads P𝐺
𝑔 that enter the flexible EOM. The

matrices of the resulting system are real, which is guaranteed by a transformation in the Loewner framework [17].

C. Stabilization of the Identified System
It might occur that the descriptor system resulting from the Loewner algorithm is not stable. This needs adjustment

as otherwise the response of the state-space system to a certain input would become unbounded. In Ref. [37] Koehler
develops a 𝐻2 or 𝐻∞ optimal stabilization. Applying this technique shows that omitting the unstable poles completely
yields the optimal solution with respect to the 𝐻2 or 𝐻∞ norm. However, the dynamics are changed quite significantly
depending on the location of the unstable poles. Another technique of Ionita [36] proposes to negate the real part of the
unstable poles. This ensures the dynamics of the system are kept as far as possible, but an error is introduced due to the
change of the real part. For this paper, Ionita’s technique is favored. To obtain only real matrices, the transformation
procedure described in Ref. [17] can be used once again.

During the stabilization the real parts of the unstable poles are negated. This changes the dynamics of the system.
Especially the steady-state response might be off, where the real part is the dominating factor for aerodynamic forces.
Since an exact steady-state solution is generally required, this needs to be corrected. The D-matrix can be used for this
purpose. By adding the steady-state difference between the originally identified system from Eq. 11 and the stabilized
system to the D-matrix, the steady-state error returns to zero. Finally, the stabilized state-space system reads:

¤x𝐺𝑠𝑡𝑎𝑏 = E−1
𝑔𝑢𝑠𝑡,𝑠𝑡𝑎𝑏 · A𝑔𝑢𝑠𝑡,𝑠𝑡𝑎𝑏 · x𝐺𝑠𝑡𝑎𝑏 + E−1

𝑔𝑢𝑠𝑡,𝑠𝑡𝑎𝑏 · B𝑔𝑢𝑠𝑡,𝑠𝑡𝑎𝑏 · 𝑤𝐺 (𝑡),
P𝐺
𝑔 (𝑡) = 𝑞∞ · C𝑔𝑢𝑠𝑡,𝑠𝑡𝑎𝑏 · x𝐺𝑠𝑡𝑎𝑏 .

(12)

D. Exemplary Results of the Loewner Gust Approximation
The Loewner framework provides very satisfactory results to identify a state-space model for gust aerodynamics and

loads. This can be seen by comparing the exact nonlinear computation from Eq. 4 with Eq. 5 to the resulting loads
from the Loewner identified and stabilized system from Eq. 12. This comparison is shown in Figure 5. Additionally, the
results of the approximation obtained by Roger’s RFA are shown.
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Fig. 5 Comparison of exact gust with Loewner approximation and Roger’s RFA

7



Figure 5a shows the time response of the first entry 𝑃 𝑓 ,1 of the generalized forces, resulting by pre-multiplying the
structural force with the eigenvector matrix 𝚽𝑇

𝑔 𝑓
. There is virtually no difference visible between exact and approximated

loads, confirming the excellent approximation achieved with the Loewner framework and only 25 states. The RFA
yields unsuitable results, as anticipated.

The comparison can also be conducted in the frequency domain, which is shown in Fig. 5b, again for the first
entry of the generalized forces. Plotting real over imaginary part reveals the spiraling behavior of the underlying Sears
function [22], and again the Loewner approximation yields an excellent approximation. The same observation is made
for the other entries of the generalized forces, which are omitted here for practical reasons.

Compared to other methods like an approach using Padé elements to approximate the time delay of the gust
aerodynamics [38], the Loewner framework produces a more exact approximation at a lower number of states. The
stabilization ensures a useful resulting state-space system. The Loewner framework proved to be a beneficial addition to
aeroservoelastic modeling.

IV. Nonlinear Model, Linear Model, and Order Reduction
The above derived ingredients of the model are finally combined to yield the overall aeroservoelastic model. Two types
of models of the oLAF experimental wing are being established (the differences are described below):

1) a nonlinear model for time domain simulations and controller validation,
2) a linear state-space model for controller synthesis.

A. Nonlinear Model for Validation
The nonlinear simulation model is implemented within MATLAB-Simulink. This model creates a virtual

representation of the wind tunnel experiment, freestream velocity and gust conditions are adjustable. The aeroservoelastic
model developed in Section II is the core of the simulation, the gust disturbance modeled by the Loewner Framework
(Section III) is added. The forces and moments at the wing root are calculated using the force summation method, as
detailed at the beginning of Section II.

Actuator limits in deflection, rate, and acceleration are applied. The dead time in the feedback loop due to sensors,
actuators, and the controller, is considered. Noise may be added to the sensor measurements. Additionally, a rigid body
motion in pitch can be enforced. Gravity acting on the flexible wing is taken into account. In this model the controller is
validated after the synthesis (Section VI), to assess the performance in realistic conditions. The nonlinearities in form of
limits, dead time, noise and enforced motion are adjustable, to study the effect on controller performance.

B. Linear Model For Controller Synthesis
The linear state-space model for controller design is derived from the nonlinear model. The linearization is performed

around a typical cruise pitch angle of 3° at a freestream velocity of 50 m/s. Nonlinearities are obviously not present,
meaning actuator limits, dead time, rigid body motion and gravity is not taken into account in controller synthesis.
The inputs of the state-space model are the gust disturbance as well as the control surface commands, the outputs are
the cut-loads at the wing root as well as the acceleration measurements. The cut-loads are calculated using the force
summation method, see Eq. 2.

C. Model Order Reduction of the Linear Model
For controller synthesis the linear state-space model should be reduced to obtain a model that achieves the necessary

accuracy with as few states as possible. The synthesis algorithms generally work better for lower order plants.
Furthermore, for the synthesis method used in this paper (𝐻∞-control) the size of the controller depends on the size of
the plant. Thus it is useful to minimize the number of states by a model order reduction (MOR) technique. Balanced
truncation [39, 40] is chosen as MOR technique. The linear model is composed such that the input-output relations are
as small as possible, only the inputs and outputs necessary for controller design are kept. This improves the MOR. The
system is reduced from 235 to 75 states. A lower order model is possible but would jeopardizes the accuracy of the
model. If the hardware in the wind tunnel experiment cannot handle the order of the designed controller, the reduced
order model can be re-adjusted and the controller re-synthesized.

8



V. Robust Control Synthesis
The aeroservoelastic plant is now used for model-based controller design. The method chosen is `-synthesis,

also called 𝐷-𝐾-iteration, a multiple input multiple output (MIMO) robust control technique. This method allows to
include model uncertainties within the synthesis, and thereby ensure robustness requirements necessary in controller
development. An optimal solution is found for the combination of multiple sensors and control surfaces available to the
controller. In `-synthesis, an iteration between optimal controller design using 𝐻∞-synthesis (𝐾-step) and `-analysis
with scaling of the plant (𝐷-step) is conducted. Thus one obtains a controller with desired performance characteristics
while being robust to plant uncertainties, i.e. achieving robust performance. As the name of the synthesis method
indicates the structured singular value ` for robust performance is minimized. [41]

In robust control, the control framework is formulated in a standard form [13, 41], in which a generalized plant P
with certain exogenous inputs w and exogenous outputs z is interconnected with a controller K by feedback variables v
and control variables u. Uncertainties are captured within a 𝚫-matrix, which is added as another loop to the generalized
plant, using the uncertainty inputs uΔ and outputs yΔ [13]. This structure and two adaptations - in which the closed loop
system is abbreviated as N, and the performance loop closed over 𝚫𝑝 - are shown in Fig. 6.
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Fig. 6 General robust control framework in three formulations, adapted from [13]

A robust control technique like `-synthesis is well suited for GLA, it allows to shape the closed loop system
to provide stability and robustness margins. The model of the flexible aircraft contains errors due to assumptions,
unmodeled effects, neglected dynamics, changing operating conditions and disturbances occurring in flight. Ensuring
robustness is consequently a key requirement for the GLA functions.

The controller synthesis will be performed using the reduced order model, to obtain a controller with a low number
of states. For validation, the controller will be integrated into the nonlinear simulation using the full order model.

A. Control targets
The generalized plant for gust load alleviation with the respective exogenous inputs and outputs as well as uncertainties

needs to be composed such that the desired control targets can be reached. The GLA control should:
1) reduce integral loads at the wing root: wing-root bending moment (WRBM) and wing-root torsion moment

(WRTM), the reduction of the WRBM is prioritized,
2) ensure stability of the closed loop system,
3) ensure robustness against uncertainties in the modeling, changing operating conditions and output disturbances

due to sensor measurements,
4) work for the entire range of gust gradients defined as well as other atmospheric disturbances,
5) minimize control activity and limit bandwidth of the controller.

Obviously, these control targets are not congruent and pose a trade-off problem. The first target is performance oriented.
The integral loads at the wing root shall be reduced, as these loads are typically the driver for the structural weight. A
criterion on local loads is not added to the synthesis setup, but checked a posteriori. Stability of the closed loop system
is mandatory, and additionally the controller itself shall be stable. In 𝐻∞-synthesis this is not automatically guaranteed,
but it is necessary so that the controller works in the full order system. Here, the definition of uncertainties and a design
for robustness within `-synthesis helps compared to pure 𝐻∞-synthesis.

The fourth target demands that the controller works for the range of gust gradients from 0.5 to 5.5 m - scaled to
match the wind tunnel model size. Although tailored to the vertical 1-cos-gust defined in the certification specifications,
the aim is that the controller copes with any form of atmospheric disturbance, also continuous turbulence.

The fifth target ensures the practical applicability of the designed controller, avoiding the interaction with primary
flight control and the excitation of higher order flexible modes.
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B. Generalized Plant
The generalized plant is set up in a way to fulfill the control targets specified previously. At the core of the generalized

plant is the (reduced order) aeroelastic model G developed in Sections II through IV. Uncertainties at the input and
output of the plant are taken into account, representing actuator and sensor uncertainties. The exogenous input w of the
generalized plant will be the gust, i.e. w = 𝑤𝐺 . The exogenous outputs z will be:

1) z1: performance output, from the gust to the wing-root loads Pperf = [𝑃WRBM, 𝑃WRTM]𝑇 ,
2) z2: control output, minimization of control energy.

The performance output uses the integral loads, it will govern the controller design in a central frequency range, in
which the controller shall reduce the loads due to a gust disturbance. The control output ensures that the controller does
not excessively command control surface deflection. The included uncertainties ensure robustness of the controller.
Figure 7 presents the composition of the generalized plant, with H indicating selection matrices, w denoting weighting
filters, and 𝚫 denoting uncertainties.
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Fig. 7 Generalized plant for gust load alleviation control

The generalized plant with uncertainties as displayed in Fig. 7 can be formulated as the classic Δ-𝑃-𝐾-structure
presented in Fig. 6. The uncertainties at the plant’s input and output are defined as structured multiplicative
uncertainties [13], separate for each channel. While a lumped (unstructured) uncertainty would reduce computation
effort during the `-synthesis, it would also introduce nonphysical couplings between the individual actuators and sensors,
leading to a conservative robustness requirement [13]. Complex uncertainties are employed, facilitating the solution
of the optimization problem as only 𝐷-scaling, no 𝐷- and 𝐺-scaling is required [42, 43]. A posteriori, a `-analysis
with real uncertainties is conducted. The resulting 𝚫-matrix is of size 15 and contains complex uncertainties along its
diagonal, with the 𝐻∞-norm of the matrix being no larger than one.

The main task now is to select the weighting filters to fulfill the control targets. The filter adaption is an iterative
process. After a conducted synthesis the result is evaluated and - if needed - the filters are adapted. For example, if more
robustness is needed, the uncertainty weights can be increased and the performance weight decreased. This process
is repeated until the result is satisfactory. Described here is the final outcome of the iterative selection process. The
weighting filters are presented in figure 8.

Starting with the uncertainty weights w𝐼 at the input (actuators) and w𝑜 at the output (sensors). The actuator
uncertainty can be modeled physically [44], based on expectations of the actuator behavior. Here it is chosen to
incorporate 5% uncertainty in actuator deflection in the lower frequency regime and 10% at higher frequencies, the
increase in uncertainty at 45 rad/s - which is half the actuator bandwidth, based on Ref. [44]. The sensor dynamics
feature are modeled with a similar uncertainty weight, however the values are chosen to be 2.5% at low and 5% at high
frequencies, the increase located at 90 rad/s.

The performance weight w𝑝 is chosen to minimize the loads resulting from a gust in the central frequency domain,
from 2 · 101 to 102 rad/s. The WRBM shall be reduced more than the WRTM. A roll-off to low and high frequencies is
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Fig. 8 Weighting filters used in the generalized plant

introduced, to avoid the controller trying to minimize the loads in the steady-state region, and in the high frequency
region where higher order modes have only little impact on the loads.

The control activity weight w𝑢 is chosen to be somewhat inverse to the performance weight. Low frequencies are
penalized to avoid the controller being active in the low frequency domain where it could command steady deflections
of the control surfaces. The actuators feature a roll-off at 90 rad/s, loosing their effectiveness, thus high frequencies are
penalized as well.

C. Performance and Robustness Using the Structured Singular Value `
The aim of robust controller design using `-synthesis is to achieve robust performance. The structured singular

value (SSV) is applied in `-analysis [45] to assess stability and performance of the closed loop system. Linear fractional
transform (LFT) are a useful tool for these analyses.

Starting with the left representation of the system in Fig. 6, a lower LFT is used to obtain the closed loop uncertain
system N = F𝑙 (P,K), in which the exogenous inputs w and outputs z are free, see central depiction in Fig. 6. This
configuration allows to test for robust stability by performing a `-analysis, i.e. `Δ (N11), with N11 being the transfer
function from uΔ to yΔ. Also, nominal performance can be assessed by the singular values of N22, connecting w and z.
The requirements are fulfilled if ` < 1. Nominal stability is always guaranteed by the synthesis. [13]

For robust performance analysis an upper LFT can then be applied on the closed loop system, closing the free
exogenous inputs and outputs with a performance uncertainty Δ𝑃 , as seen on the right in Fig. 6. If one defines the
appended uncertainty as �̄� = diag(𝚫,𝚫𝑝), it holds: F𝑢 (�̄�,N). Robust performance is achieved once `�̄� (N) < 1 [13].
It shall be noted that for a meaningful nominal and robust performance analysis an adequate scaling of the plant is
required. The performance output has to be scaled such that a performance level of one means the requirements are
fulfilled. If this level is achieved with uncertainties, the performance requirement is robustly achieved.

D. Controller Synthesis
The `-synthesis (𝐷-𝐾-iteration) algorithm as presented in Ref. [13, 41] allows to find an optimal controller that

minimizes the SSV ` for robust performance, i.e. `�̄� (N(P,K)). If this value is smaller than one, this means that desired
(specified) performance targets of the closed loop system are met, even with the highest possible uncertainty in the
system. Since the SSV cannot be computed exactly, it is approximated by upper (and lower) bounds [46] in the form of
`(N(K)) < min �̄�(DN(K)D−1). The synthesis problem is hence to find a stabilizing controller K that minimizes the
norm ∥DN(K)D−1∥∞ of the closed loop system [41]. A two step process as applied, iterating between controller design
(𝐾-step) and `-analysis with 𝐷-scaling of the plant N (𝐷-step) [41].

To obtain the controller, 𝐻∞-synthesis [47] is used. To take care of the uncertainties, the 𝐻∞-norm supplied is not
only the one taken from exogenous inputs w to outputs z, but instead between [uΔ,w]𝑇 and [yΔ, z]𝑇 of the scaled plant
DND−1. The controller is thereby forced to also include the effect of uncertainties on the control commands. The
controller avoids commands that lead to a high 𝐻∞-norm, also when caused by the uncertainty channels. During the
𝐾-step the 𝐷-scales on the plant are held constant.

After each control synthesis, the frequency-dependent 𝐷-scales of the plant are adapted by the outcome of a
`-analysis for robust performance (𝐷-step), i.e. for the plant DND−1 closed with �̄� = diag(𝚫,𝚫𝑝). This is the essence of
`-synthesis. By scaling the plant, the way the uncertainties interact with the plant is adapted and hence the controller is
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informed how to minimize the effect of uncertainties. To keep the order of the resulting system low [47], the 𝐷-matrices
are approximated by low order transfer functions [13]. It shall be noted that the synthesis is not jointly convex, but only
the individual steps (𝐷- and 𝐾-step) [41]. The process of 𝐷-𝐾-iteration is repeated until a satisfactory result is obtained.
This could be a SSV ` < 1 or a no longer decreasing 𝐻∞-norm, indicated by the value 𝛾𝑚𝑖𝑛.

Applied to the GLA problem at hand, the `-synthesis yields the results depicted in Fig. 9, after six 𝐷-𝐾 iterations.
Shown is the frequency response of the maximum singular value �̄� of the closed loop N and open loop P, i.e. from
exogenous input w to output z. Figure 9a includes no weighting functions w𝑢 and w𝑝 , while these are taken into account
in Fig. 9b. The minimum achievable 𝐻∞-norm is indicated by the level 𝛾𝑚𝑖𝑛.

(a) Unscaled plant, w to z
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Fig. 9 Max. singular value �̄� of open and closed loop from w to z

The norm is successfully reduced in the frequency range from 20 to 70 rad/s. The first eigenmode at about 55 rad/s
is reduced in magnitude. Figure 9b furthermore shows the trade-off in frequency regimes: to reduce the norm in
the relevant frequency range it is necessary to increase it in other frequency regimes. The roll-off to low and high
frequencies in the performance weight is permitting this increase. The analysis of Fig. 9b does not reveal robustness
properties, for which the norm with uncertainties would need to be examined, see Section VI.C.

To show that the controller shapes the closed loop system not only bound by the performance requirements but
also following control activity requirements, Fig. 9c and 9d present the open and closed loop transfer function split
into its channels z1 for performance and z2 for control activity. Figure 9c shows the shaping of the closed loop by the
performance weight w𝑝 , and Fig. 9d the shaping due to the control activity weight w𝑢. The controller design includes
both weights appropriately.

VI. Evaluation of the Designed Controller
The designed controller is evaluated in the nonlinear simulation using the full order model. A time delay of

8 ms is present in the feedback loop, originating from the controller, the sensors and the actuators. The actuators are
limited in deflection at 10°, in rate at 1129°/s and in acceleration at 75000°/s2 [31]. These constraints are taken into
consideration when designing the controller, for example robustness is induced to cope with the time delay. To evaluate
the performance of the controller, time domain simulations are conducted. The simulated wing is in cruise condition, at
which a steady-state load already exists due to a 3° angle of attack. The freestream velocity is set to 50 m/s.
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A. Performance Evaluation
Figure 10 presents the (integral) bending and torsion moment at the wing root. A gust with a gradient H of 3 m

is perturbing the wing. Other gust lengths are tested further below. The figure shows a successful reduction of the
maximum load, when comparing the system with and without gust load alleviation control. The peak in WRBM can
be reduced by 20% when referring to the overall load level. When taking the steady-state load level of 166 Nm as a
starting point, the reduction is 32%. The WRBM is lower in the controlled system for the entire time, also during the
oscillations following the primary deflection. The WRTM is also reduced, by 12% (25%) for the peak in the torsion
moment. The structural behavior of the swept wing is favorable for the torsion moment with GLA, as the negative
moment present in the open loop alleviates the moment induced by the control surface deflection upwards.
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Fig. 10 Time response of WRBM and WRTM for a gust with H = 3 m

Besides the integral loads shown in Fig. 10, it is also checked that the commanded control surface deflections do not
induce local loads that are higher than in the case without GLA. This is not the case. The wing is quite rigid as it is a
wind tunnel model. For a full scale wing that is more flexible, local loads need to be thoroughly examined.

The load alleviation is achieved by deflecting the control surfaces, as shown in Fig. 11. An upwards deflection of
the control surfaces reduces lift by adding negative camber, thereby reducing the bending moment at the wing root. The
commanded deflection of the five available control surfaces is quite similar.
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Fig. 11 Commanded control surface deflections for a gust disturbance with H = 3 m

The maximum deflection of the control surfaces does not exceed 10°, which was set as the maximum. Saturation
does not pose a problem in deflection, rate, and acceleration. In a setup with less control surfaces available for GLA,
for example only the outer ailerons, this might change. It can be seen that control surface three (located mid wing) is
deflected the most, followed by control surfaces two and four. The individual deflection depends on the position, i.e.
lever arm, and size of the surfaces. It shall be noted that by an individually adapted weighting function w𝑢 the usage of
the different control surfaces can be altered if desired.

The controller fulfills the target of working for a range of gust gradients. The relevant gust gradients were determined
to lie between 0.45 and 5.35 m. Table 1 presents the reduction in peak WRBM for four gust gradients within the range
of interest. The controlled system shows a similar reduction in maximum WRBM of about 20% for all gust lengths
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(about 30% when the steady-state load is taken as the reference), compared to the uncontrolled system. A gust gradient
smaller than 1 m induces a load pattern that differs from the 1-cos for the first peak. The controller still works, but a test
with such small gust gradients does not seem useful for GLA evaluation.

Table 1 Influence of the gust length on bending load reduction

Gust gradient max. WRBM, Nm absolute change relative change max. control
deflection, °H, m without GLA with GLA Δ, Nm 𝛿, 1

2.0 381 309 -72 -19% (-34%) 8.7
3.0 451 359 -92 -20% (-32%) 8.9
4.0 480 384 -96 -20% (-31%) 8.1
5.0 487 384 -87 -18% (-27%) 7.6

The fact that the controller works well for a range of gust gradients can also be observed when analyzing the
frequency response in WRBM due to a gust input. This frequency response is computed using the linear state-space
model of full order, and is presented in Fig. 12. In the relevant range from 20 to 70 rad/s the GLA control achieves a
significant reduction in magnitude. The magnitude of the frequency response around the frequency of the first bending
mode at about 55 rad/s is particularly decreased. This underlines the importance of damping the first bending mode for
gust load alleviation. The higher order modes contribute significantly less to the integral load.
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Fig. 12 Magnitude frequency response from a gust input to the WRBM

Besides the frequency response of the WRBM, especially the frequency response from a gust to the control
commands allows insight into the workings of the controller. This transfer function is presented in Fig. 13. This is the
controller transfer function superimposed with the transfer function from gust to sensors. It becomes clear that the
controller is most active around the peak at 55 rad/s, the first bending mode. Magnitude drops towards low and high
frequencies, obeying the increasing control activity weight as well as decreasing performance weight.
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Fig. 13 Frequency response from gust input to control commands

The roll-off below 20 rad/s is important to avoid slow moving control surfaces, i.e. slow poles. This was an undesired
behavior observed in previous iterations of the controller design. As uncertainties increase towards higher frequencies
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(see 𝑤𝐼 in Fig. 8), the roll-off in the controller transfer function towards higher frequencies ensures robustness. By
inspection one can see that the controller transfer function is shaped similarly to the performance weight, and inversely
to the control activity weight, something that has already been discussed in Section V.D, with Fig. 9c and 9d.

B. Effect of the Time Delay and Noise
The controller shall also work under non-ideal conditions, like included time delay and noise. A time delay of 8 ms

is present in the feedback loop, and the controller works well for this delay, as presented in the previous section. The
robustness incorporated in the synthesis ensures that a certain time delay does not cause the controller to perform poorly.
Due to input and output uncertainties, a certain phase margin is guaranteed. However, when the time delay is too large,
the closed loop system can be rendered unstable. At 8 ms, the performance is almost identical to the one without any
time delay. However, at Tdel > 15 ms, the performance begins to degrade, and the damping of the modes is reduced.
This is shown in Fig. 14a. Hence, the delay in the system shall be kept as small as possible. This would allow to reduce
robustness requirements and increase performance.

When moderate noise is introduced into the system - in the sensor measurements - the controller still performs well.
This is presented in Fig. 14b, where the WRBM time response for a system with noise is shown. The variance of the
noise is 𝜎 = 0.1, typical for an acceleration sensor. The load reduction potential is not visibly reduced by this noise.
Thus, it can be expected that the controller will work also in a real hardware setup.
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Fig. 14 Effect of time delay and noise on the GLA functionality

C. Robustness Evaluation using Disk Margins
The robustness can be evaluated using `-analysis. The theoretic background is given in Section V.C, as well as

in Ref. [13, 45]. Figure 15 shows the evaluation of robust stability, nominal performance and robust performance.
Nominal stability is mandated as an outcome of the `-/𝐻∞-synthesis [47]. Robust stability is analyzed for the specified
uncertainties at the actuator and the senors. Robust stability is investigated using a real `-synthesis, replacing the
complex uncertainties (introduced for easier computation) with real uncertainties, which are physically interpretable.

Robust stability reaches a maximum of ` = 0.1 at about 74 rad/s, located slightly higher than the highest controller
activity at the 55 rad/s peak. As the specified uncertainties are not larger than 10% for the actuator and 5% for the
senors, the maximum value of ` is quite small. The value of ` < 0.1 means that uncertainties even ten times as large as
the ones specified will not lead to an unstable system [13]. This can be checked by evaluating the entries of the worst
case Δ-matrix, i.e. the matrix that would render the system unstable. The entries are of similar magnitude and in the
order of ten, the inverse of the maximum SSV [45]. Stability is ensured with a large margin, presuming the specified
uncertainties are sufficiently large, which needs to be investigated when data from actuator tests is available.

Nominal performance is achieved if the maximum singular value is below one. The permanence target has to be
defined a priori, and the performance weight w𝑝 chosen such that the 𝐻∞-norm drops below one if the target is fulfilled.
Here, the performance target is chosen to be a reduction of 20% in peak WRBM in the frequency domain, i.e. at 55 rad/s,
which is fulfilled, see Fig. 9b. Robust performance is also fulfilled, since the curve lies below one, i.e. `�̄� (N) < 1
(see Section V.C). This means that the performance target is not only obtained for the nominal plant, but also for the
uncertain plant with all possible variations. This result is very satisfactory.
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To additionally evaluate the robustness of the system, disk-based stability margins [48] are used. Both multiloop as
well as loop-at-a-time margins are analyzed. Table 2 summarizes the disk-based gain and phase margins computed for
input and output open loop, in absolute units for gain and in degrees for phase. The displayed loop-at-a-time margins
are for the worst case among all the loops.

Table 2 Disk-based stability margins of the open loop transfer function

Type Cut
point

Disk-based
gain margin

Disk-based
phase margin Frequency Worst loop

multiloop input 0.20 | 5.00 −67.5◦ | 67.5◦ 87 𝑟𝑎𝑑/𝑠 -
multiloop output 0.54 | 1.85 −33.1◦ | 33.1◦ 184 𝑟𝑎𝑑/𝑠 -

loop-at-a-time input 0.05 | 20.0 −84.5◦ | 84.5◦ 101 𝑟𝑎𝑑/𝑠 𝑢𝑥,𝑐𝑚𝑑,5
loop-at-a-time output 0.39 | 2.59 −47.7◦ | 47.7◦ 187 𝑟𝑎𝑑/𝑠 ¥𝑢𝑚,1

It is noticed that the multiloop margins are always lower than the loop-at-a-time margins, they are more conservative.
The worst case loop-at-a-time margin occurs for the fifth actuator regarding the inputs and the first acceleration sensor
regarding the outputs. The output margins are more constraining than the input margins. Despite the output multiloop
phase margin being rather small, examining the loop-at-a-time margin reveals that most likely enough phase delay is
digestible before the system becomes unstable. The robustness analysis shows that the controller has sufficient margins
and can safely be deployed in the oLAF wind tunnel experiment.

VII. Conclusion and Outlook
A gust load alleviation controller for a flexible wing to be used in a wind tunnel experiment is designed. `-synthesis

as a robust control method is employed. The modeling process is described, a novel feature is the application of the
Loewner framework for modeling gust loads. The Loewner framework yields very satisfactory results, it is well-suited
to identify a state-space system from frequency domain gust aerodynamics. It is a promising technique to be applied
not only to the gust model, but for the entire frequency to time domain transformation of aerodynamic data, possibly
replacing the RFA methods.

The controller is developed using `-synthesis, with pre-defined uncertainties in actuators and sensors. The resulting
controller is capable to reduce the wing-root bending moment by up to 30% compared to the load level in steady-state
flight. The load reduction is achieved by deflecting five trailing edge control surfaces not more than 10°. Robustness of
the controller is analyzed by `-analysis and disk-based stability margins, revealing sufficiently large margins in gain and
phase, such that the controller is safe to be tested in the wind tunnel environment.

The great advantage of robust control strategies is the incorporation of robustness requirements in the synthesis
process, compared to other methods where it can only be evaluated afterwards. 𝐻∞-control allows to shape the frequency
response of the controller as desired, which is especially useful for flight control, with the different frequency domains
that need to be avoided due to conflict with other flight control functions.

A downside of this methodology is that for MIMO systems everything is fused into a single norm, making the
synthesis very sensitive to small changes in the weights. It might occur that a change in weights has only little effect on
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the 𝐻∞-norm, but a quite large impact on the outcome of the synthesis. Thus, the weights need to be selected carefully.
Additionally, the issue of slow moving control surfaces was quite persistent, and a sharp increase in control activity
weight towards low frequencies - imitating integrative behavior - was necessary to avoid it. Time domain based methods
would presumably pose less challenges in that regard, but hold other disadvantages.

The next steps include a discretization of the controller and test on actual hardware, before it will be introduced
in the wind tunnel experiment in 2024. As soon as measurement data from the wind tunnel model is available, the
aeroservoelastic model shall be validated and updated, to potentially adapt the GLA controller design. The addition of
feed-forward control is beneficial to increase the load reduction potential, this is currently investigated. The insights
gained within the oLAF project will help mature gust load alleviation functionalities for future transport aircraft.
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