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Abstract—Next-generation SAR systems will feature high-
resolution wide-swath acquisitions, resulting in a significant
increase of the onboard data volume to be acquired by the
system. This causes severe constraints in terms of onboard
memory requirements and downlink capacity. In this scenario,
an efficient onboard quantization of the raw data is of utmost
importance, representing a trade-off between achievable product
quality and consequent on-board data volume. In this paper, we
investigate the use of artificial intelligence (AI), and in particular
of deep learning (DL), for flexible and on-board SAR raw data
quantization. The aim is to derive an optimized and adaptive
data rate allocation given a set of desired performance metrics
and requirements in the resulting focused SAR image without
relying on a priori information on the acquired scene. The
obtained bitrate maps (BRMs) can then be dynamically used
as input to a state-of-the-art BAQ quantizer to perform the
on-board raw data digitization. The proposed method aims at
directly linking the characteristics of the SAR raw data to
performance parameters computed in the focused SAR domain,
without the necessity for performing on-board focusing. For
optimizing the proposed DL model architecture, we consider
multiple target performance parameters such as the Signal-to-
Quantization Noise Ratio (SQNR), the InSAR coherence loss or
the interferometric phase error, extending the capabilities of the
architecture and, ideally, providing multiple bitrate estimations
for a single input scene at a time, depending on the specific
application requirement. The proposed method allows for an
efficient joint optimization and reduction of the data rate and
of the resulting performance setting a new paradigm for data
reduction in future SAR systems.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) systems have revolution-
ized remote sensing, providing high-resolution images re-
gardless of weather conditions or daylight illumination [1].
Next generation SAR systems will bring a huge improvement
in performance by means of novel acquisition modes, large
bandwidths and digital beamforming (DBF) techniques [2]–
[6]. These enhanced capabilities will inevitably cause the
generation of larger amounts of onboard data, which, in turn,
poses stringent requirements for onboard memory resources
and downlink capacity.

In this context, an efficient quantization of the SAR raw
data is of primary importance: on the one hand it defines
the amount of onboard memory to be allocated and, on the
other hand, it directly affects the quality of the resulting SAR
products. These two aspects must be thoroughly considered
due to the limited onboard resources and acquisition capacity
of the system and, at the same time, to achieve the specified
product requirements and quality.

For present SAR missions, SAR raw data quantization is
usually carried out by means of the Block-Adaptive Quantiza-
tion (BAQ) [7]. In recent years, the principle of BAQ has been
further developed resulting in novel algorithms, allowing for
better performance and resource optimization. Specifically, one
can recall acquisition-dependent compression schemes such as
the Flexible Dynamic BAQ (FDBAQ) [8], which may even be
combined with the implementation of non-integer data rates
[9]. However, the FDBAQ performs a bitrate optimization
based on the SAR raw data statistics only, while it does not
take into account the actual performance degradation in the
final SAR products.

The Performance-Optimized BAQ (PO-BAQ) [10] extends
the concept of BAQ and represents the first attempt for an
optimization of the resource allocation depending on the final
performance requirement defined for the resulting higher-level
SAR/InSAR product. In the specific, the PO-BAQ allocates at
each portion of the scene the minimum amount of bits which
are satisfying a given performance quality on the final product.
Quantization errors are significantly influenced by the local
distribution of the SAR intensity [11], for this reason, PO-
BAQ exploits the a priori knowledge of the SAR backscatter
statistics of the imaged scene in the form of, e.g., look-up-
tables (LUTs) or backscatter maps [10]. This limitation results
in further complexity and does not allow the method to be
completely adaptive with respect to the acquired raw data,
since the quantization settings are derived from prior consid-
erations and do not account for the local conditions at the
time of the acquisition. In this scenario, Artificial Intelligence
(AI) represents one of the most promising approaches in the
remote sensing community, enabling scalable exploration of
large dataset and bringing new insights on information retrieval
solutions [12]. In particular, convolutional neural networks
(CNN) are quickly becoming one of the most powerful tools
for earth observation image data analysis [13], [14]. However,
such models have never been applied yet in the context of SAR
raw data digitization and compression, mainly due to the lack
of significant correlation and self-similarity typically observed
in the raw data domain, which complicates the task of pattern
recognition.

In this contribution we investigate the potential of an AI-
based methodology for defining a flexible approach for on-
board performance-optimized raw data quantization in future
SAR missions, where a locally variable bitrate is derived
depending on a desired target performance in the focused
SAR/InSAR data domain, without the need of a priori in-
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Fig. 1. Flow chart of the proposed method for a dynamic bitrate allocation
using DL: the raw data matrix is provided to the trained DL model which
predicts the required two-dimensional bitrate map (BRM), needed to achieve
the desired performance. An adaptive quantizer (i.e., BAQ) performs the raw
data encoding exploiting the estimated BRM.

formation on the acquired scene. This challenging task is
accomplished though a deep learning-based method, which
directly links input raw data to corresponding performance
parameters computed in the focused SAR domain.

The paper is structured as follows: the description of the
proposed method, named AI-BAQ, which includes the model
architecture and training strategy, is presented in Section II.
In Section III results are shown including the validation on
the final SAR product. Finally, conclusions and outlook are
provided in Section IV.

II. DEEP LEARNING FOR SAR RAW DATA QUANTIZATION

In this contribution, we have approached the task of onboard
bitrate estimation for SAR raw data as a deep, fully supervised
regression task. In the specific, the number of quantization
bits to be allocated for a given portion of the raw data is
estimated by a DL architecture within a continuous range
of possible values (i.e., between 2 and 6 bits/sample). The
principle of the proposed method is shown in Fig. 1. Here, the
input raw data is fed into the DL architecture which estimates
a two-dimensional bitrate map (BRM), while a standard BAQ
is then considered to compress the raw data by applying
the estimated (variable) BRM. In the specific, azimuth/range-
switched quantization is used to implement non-integer rates
as in [9].

A. DL Architecture Description

The DL architecture that we have defined is presented
in Fig. 2: it consists of a sequence of three convolutional
layers (with 64, 128 and 256 3×3 kernels, respectively) with
rectified linear unit (ReLU) activation function, interleaved
by max pooling layers which halves the dimensions of the
input features at each layer. Afterwards the feature maps are
“flattened” and provided as input to a fully-connected dense
layer with 128 units, followed by a final linear regression
layer which returns a vector of M bitrate values (where M
represents the number of optimization parameters considered
during the training process). Therefore, at inference stage, one
single BAQ bitrate value is derived and applied to blocks of
128×128 pixels within the input raw data. As loss function we
utilized the mean squared error (MSE) between the network
output and the reference bitrate map, estimated from the
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Fig. 2. Block scheme of the proposed DL architecture. The initial feature
extraction blocks consist in a sequence of two-dimensional convolutions
with ReLU activation function and max pooling terminated by a flattening
operation. The fully connected dense layer of 128 elements with ReLU
activation is linked to the output regression element consisting of an M-
elements dense layer with linear activation function, where M represents the
number of target SAR optimization parameters.

corresponding focused SAR data, as presented in Section II-B.
The considered hyperparameters (number of layers, number
of kernels, size of the dense layer and size of the input
patches) have been selected through empirical hyperparameter
tuning, as a trade-off between achievable performance and
onboard computational complexity. In the specific, an input
raw data patch of size 128×128 samples (in range and azimuth
dimensions, respectively) implies the storage in the onboard
memory of 128 contiguous range lines, which is a feasible
size with respect to currently available hardware components
for spaceborne SAR [15]. At the same time, 128 range
samples represent the standard range block size for the BAQ
quantizer in current spaceborne SAR missions. Clearly, the
number and size of the convolutional kernels and of the dense
layers directly impacts the required onboard processing and
computational burden as well.

B. Dataset Generation and Training Phase

For the generation of a descriptive and consistent dataset
to train, validate and test the proposed architecture, we have
exploited TanDEM-X data acquired in bypass configuration,
i.e., raw data are quantized with a uniform 8-bit Analog-to-
Digital Converter (ADC) only. We have selected the acquisi-
tions to feature a variety of land cover types including desert,
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Fig. 3. Approach used to derive the reference BRMs for training the DL
architecture based on thresholding for a given performance requirement. In
this case, the SQNR is selected as performance parameter, but the same
method can be applied to other metrics as well (e.g., phase error, coherence
loss).

ice, forest, urban areas and different topography conditions.
The generation of the reference bitrate maps to be used during
training and testing was based on the principle of PO-BAQ
[10]. In particular, we re-quantized each acquisition on ground
using different BAQ rates (i.e., 2, 3, 4 and 6 bits/sample), and
then performed the complete SAR processing, allowing for
the derivation of SAR and InSAR products for each different
quantization rate. In order to achieve more granularity in
the reference data, even if only integer (BAQ) bitrate values
are available, we performed an interpolation on the obtained
performance, such that we were able to define a fractional
bitrate which satisfies the requirement, as it is presented in
[10]. Afterwards, we derived a binary mask for each re-
quantized raw data, by setting a threshold on the specific
target performance parameter. An overall reference bitrate map
is then derived by selecting the minimum number of bits
which satisfies a certain performance within the focused SAR
data. This concept is depicted in Fig. 3 for the exemplary
case of the signal-to-quantization noise ratio (SQNR) as target
performance metric, which is defined as

SQNR =
σ2
s

σ2
q

, with q = s− sq. (1)

In the above equation s and sq represent the reference (non-
quantized) signal and the quantized one, respectively.

During the training phase, the input to our DL architec-
ture consists of 128×128 samples patches of uncompressed
raw data amplitude. In order to link this information to the
corresponding reference bitrate value, the derived reference
BRM is averaged within a window of the same size of the
corresponding raw data patch (128×128 samples), centered
around the patch center sample. In this way, a single reference
bitrate value is associated to the entire input raw data patch.
The achieved granularity (1 bitrate value per patch) does not
cause a loss of information, as smooth spatial variability is
observed in the original reference BRM [10].

One should be aware that the input data (i.e., raw data) does
not feature any kind of range antenna pattern compensation,
while the output (i.e., bitrate map derived from focused SAR

Fig. 4. Range beam pattern used for the acquisition (blue curve) and raw
data power (averaged along the azimuth dimension) over a uniform scene
(Greenland). The strong agreement between the two curves suggests that a
coarse range pattern compensation is necessary to provide unbiased raw data
input to the proposed DL architecture.

domain) actually includes that. This can lead to inconsistent
bitrate estimations as the raw data intensity strongly varies
along the range direction depending on the position within
the illuminated swath. Fig. 4 illustrate the described effect:
the normalized raw data range power derived over a uniform
scene over Greenland and the respective range beam pattern
considered in the acquisition are depicted. As we are assuming
not to carry out any SAR processing step implemented on-
board, we cannot afford to precisely compensate for the
range pattern in the range-compressed domain, but, as Fig. 4
suggests, a similar compensation in the raw data domain can be
still meaningful in order to remove the effect of the beam and
to avoid introducing biases in the DL model. This is done by
dividing each range line by the considered range beam pattern.
It is worth noting that this coarse compensation is performed
only for the bitrate estimation, hence not impacting the actual
raw data before quantization.

In this contribution we optimize for specific values of
SQNR, but it is worth noting that the SQNR is only one
possible optimization parameter, the same process could also
be performed for deriving the required bitrate maps based on
other performance metrics (e.g., SAR interferometric coher-
ence, Signal-to-noise ratio and phase error).

Overall, we have trained the network using a dataset of
almost 11 million data patches, derived from 17 TanDEM-X
bistatic SAR images, whose 80% (randomly selected) have
been considered as training samples, while the remaining,
independent 20% have been used as validation samples.

III. RESULTS

As inference example, we consider a TanDEM-X acquisi-
tion over Uyuni (Bolivia) and an urban area of Mexico City
(Mexico), whose Log-backscatter maps are depicted in Fig. 5.
They represent a homogeneous and a highly heterogeneous
scene, respectively. In particular, the latter is characterized
by the presence of urban structures, lakes and high-relief
topography. Fig. 6 depicts the reference BRMs (Fig. 6 left
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Fig. 5. Log-backscatter β0 map of the (a) Uyuni (Bolivia) and (b) Mexico
City (Mexico) areas selected for testing the proposed AI-based bitrate alloca-
tion method.

TABLE I
BITRATE ESTIMATION ERROR FOR THE INVESTIGATED CASES (MEAN ±

STANDARD DEVIATION)

Performance Greenland Uyuni Las Vegas Mexico City
SQNR=10 dB 0.13±0.10 0.06±0.14 0.01±0.32 -0.07±0.29
SQNR=15 dB 0.18±0.13 0.06±0.18 0.04±0.35 -0.06±0.31
SQNR=20 dB -0.19±0.19 0.06±0.18 0.02±0.35 -0.09±0.32
SQNR=25 dB -0.11±0.28 -0.01±0.17 -0.15±0.39 -0.16±0.29

column), and the estimated BRMs (Fig. 6 right column) for
the two scenes (Uyuni on the upper two rows and Mexico City
for the lower two). In this example, a target SQNR of 10 dB
(Fig. 6(a)-(b) and Fig. 6(e)-(f)) and 20 dB (Fig. 6(c)-(d) and
Fig. 6(g)-(h)) are considered. As an example, by comparing
the estimation for the 20 dB SQNR case for the two scenes,
it is possible to observe the high degree of adaptivity of the
method: even though the performance requirement is the same
for the two scenes, the architecture is able to assign the target
rate in the correct range of values, which is considerably
different between the two scenarios, due to the different
characteristics and grade of heterogeneity of each scene.

In Table I we report the complete inference results in terms
of average bitrate error and its standard deviation with respect
the reference. One can note that the achieved estimation
errors are almost unbiased (the average error is typically a
small fraction of 1 bit/sample) and the dispersion (standard
deviation) is well confined between ±0.5 bit/sample for all
investigated cases.

In order to properly assess the effectiveness of the proposed
method, we evaluated the performance on the final quantized
SAR product. To do so, we have applied the estimated BRM
for variable quantization of the uncompressed raw data, and
carried out the complete SAR processing for each case. The
results of this analysis are reported in Table II together with
the state-of-the-art BAQ for 2, 3 and 4 bit/sample for compar-
ison. These results highlight the capability of the architecture
to meet the desired performance requirement in terms of
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Fig. 6. Inference results over the area of Uyuni (a)-(d) and Mexico City
(e)-(h) for the target cases of SQNR=10 dB and SQNR=20 dB. Reference
bitrate maps are reported on the left column, while estimated (test) bitrate
map are reported on the right column. Figures (a)-(b) and (e)-(f) refer to the
SQNR=10 dB case, while Figures (c)-(d) and (g)-(h) to the SQNR=20 dB. It
is possible to see that the estimation results are consistent, and able to follow
the range of values of the reference cases.



TABLE II
SAR PERFORMANCE (IN TERMS OF MEAN AND STANDARD DEVIATION OF SQNR) ON THE FINAL SAR PRODUCTS ON THE FOUR TEST ACQUISITIONS.

THE PROPOSED METHOD (AI-BAQ) WITH FOUR DIFFERENT PERFORMANCE TARGETS (AND ITS RESULTING AVERAGE BITRATE) AND THE
STATE-OF-THE-ART BAQ AT 2, 3 AND 4 BPS ARE REPORTED BELOW.

Method Target Greenland Uyuni Las Vegas Mexico City
SQNR=10dB 10.7±0.1@2.2bps 10.2±0.5@2.2bps 9.7±1.3@2.5bps 9.6±0.9@2.7bps
SQNR=15dB 15.6±0.2@3.2bps 15.3±0.6@3.1bps 14.7±1.3@3.5bps 14.5±0.9@3.7bps
SQNR=20dB 18.7±0.6@4.2bps 20.5±0.5@4.4bps 20.0±1.3@5.0bps 19.7±1.0@5.1bpsAI-BAQ

SQNR=25dB 22.6±1.1@5.1bps 25.0±0.6@5.4bps 23.8±1.3@5.8bps 24.0±1.1@5.8bps
BAQ@2bps - 9.3±0.2 9.5±0.2 7.7±1.3 6.6±1.4
BAQ@3bps - 15.1±0.2 15.0±0.4 12.9±1.5 11.6±1.8
BAQ@4bps - 18.7±0.4 19.8±0.7 17.8±1.6 16.5±1.8

SQNR with respect to the considered optimization parameters
(10, 15, 20 and 25 dB respectively). Moreover, in strong
heterogeneous scenes (Las Vegas and Mexico City) BAQ
performance degrades severely, as expected in this challenging
scenarios [11]. In these cases, the resulting number of bits for
the AI-BAQ are higher in order to mitigate the quantization
errors. For heterogeneous scenes, instead, the resulting rate is
much lower as quantization errors are less impacting in the
final SAR performance. This aspect is crucial and shows the
strong adaptivity of the method on the local characteristics of
the imaged scene.

IV. CONCLUSIONS AND OUTLOOK

In this paper we investigate a novel approach for an adap-
tive, performance-optimized bitrate allocation for SAR and
InSAR systems by means of a Deep Learning-based regression
architecture. Important advantages of the proposed method
rely in the fact that no a priori information is required by
the system for its implementation and that different bitrate
allocations can be simultaneously derived depending on the
considered performance parameter and target requirement.

We have presented relevant aspects and details of the
developed DL network as well as the definition of the training,
validation and testing datasets and strategies, together with an
assessment of the estimation performance on independent test
acquisitions. The achieved results are extremely promising and
show that an accurate bitrate estimation can be adaptively gen-
erated by the proposed architecture, which is then consistently
confirmed when the performance parameters are evaluated on
the final SAR product. The comparison with the state-of-the-
art BAQ scheme highlights the flexibility of the method to
meet the desired performance on different scenes. As outlook
to this work, additional optimization of the architecture is
foreseen in order to further improve the performance, as
well as the number of optimization parameters which can be
handled by the architecture. The exploitation of a larger dataset
will allow for the training of a more robust model and in view
of a global-scale assessment of the data rate for future SAR
missions.
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