
Citation: Farì, S.; Sagliano, M.; Macés

Hernández, J.A.; Schneider, A.;

Heidecker A.; Schlotterer, M.; Woicke,

S. Physical Modeling and Simulation

of Reusable Rockets for GNC

Verification and Validation. Aerospace

2024, 11, 337. https://doi.org/

10.3390/aerospace11050337

Academic Editor: Shuang Li

Received: 24 November 2023

Revised: 18 April 2024

Accepted: 22 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Physical Modeling and Simulation of Reusable Rockets for GNC
Verification and Validation †

Stefano Farì 1,* , Marco Sagliano 1 , José Alfredo Macés Hernández 1 , Anton Schneider 2 , Ansgar Heidecker 1 ,
Markus Schlotterer 1 and Svenja Woicke 1

1 German Aerospace Center (DLR), Department of Navigation and Control Systems, Institute of Space Systems,
Robert-Hooke-Str. 7, 28359 Bremen, Germany; marco.sagliano@dlr.de (M.S.);
jose.maceshernandez@dlr.de (J.A.M.H.); ansgar.heidecker@dlr.de (A.H.); markus.schlotterer@dlr.de (M.S.);
svenja.woicke@dlr.de (S.W.)

2 German Aerospace Center (DLR), Department of Landing and Exploration Technology, Institute of Space
Systems, Robert-Hooke-Str. 7, 28359 Bremen, Germany; anton.schneider@dlr.de

* Correspondence: stefano.fari@dlr.de
† This paper is an extension of “The Vertical Landing Vehicles Library (VLVLib): a Modelica-based approach to

high-fidelity simulation and verification of GNC systems for reusable rockets” presented at the 73rd
International Astronautical Congress (IAC), Paris, France, 18–22 September 2022.

Abstract: Reusable rockets must rely on well-designed Guidance, Navigation and Control (GNC)
algorithms. Because they are tested and verified in closed-loop, high-fidelity simulators, emphasizing
the strategy to achieve such advanced models is of paramount importance. A wide spectrum of
complex dynamic behaviors and their cross-couplings must be captured to achieve sufficiently
representative simulations, hence a better assessment of the GNC performance and robustness.
This paper focuses on of the main aspects related to the physical (acausal) modeling of reusable
rockets, and the integration of these models into a suitable simulation framework oriented towards
GNC Validation and Verification (V&V). Firstly, the modeling challenges and the need for physical
multibody models are explained. Then, the Vertical Landing Vehicles Library (VLVLib), a Modelica-
based library for the physical modeling and simulation of reusable rocket dynamics, is introduced.
The VLVLib is built on specific principles that enable quick adaptations to vehicle changes and the
introduction of new features during the design process, thereby enhancing project efficiency and
reducing costs. Throughout the paper, we explain how these features allow for the rapid development
of complex vehicle simulation models by adjusting the selected dynamic effects or changing their
fidelity levels. Since the GNC algorithms are normally tested in Simulink®, we show how simulation
models with a desired fidelity level can be developed, embedded and simulated within the Simulink®

environment. Secondly, this work details the modeling aspects of four relevant vehicle dynamics:
propellant sloshing, Thrust Vector Control (TVC), landing legs deployment and touchdown. The
CALLISTO reusable rocket is taken as study case: representative simulation results are shown and
analyzed to highlight the impact of the higher-fidelity models in comparison with a rigid-body
model assumption.

Keywords: physical modeling; simulation; reusable rockets; Modelica; sloshing; TVC; landing legs;
touchdown dynamics; GNC; verification and validation

1. Introduction

The beginning of the rocket reusability era, formally marked on 21 December 2015
by SpaceX [1], stimulated efforts all around the world to design and industrialize new
reliable space transportation systems. This effect is not only noticeable among other private
companies like Blue Origin and Rocket Lab [2], but also at research and governmental
levels. In Europe, several technology demonstrators and commercial launchers are being
developed, like CALLISTO [3,4], Themis [5] and Miura 5 [6]; on the other hand, the Ariane

Aerospace 2024, 11, 337. https://doi.org/10.3390/aerospace11050337 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11050337
https://doi.org/10.3390/aerospace11050337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-5595-6905
https://orcid.org/0000-0003-1026-0693
https://orcid.org/0000-0003-4579-6121
https://orcid.org/0000-0003-4542-6251
https://orcid.org/0000-0002-7483-9074
https://orcid.org/0000-0002-6565-3622
https://orcid.org/0000-0002-0864-9977
https://doi.org/10.3390/aerospace11050337
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11050337?type=check_update&version=1

Aerospace 2024, 11, 337 2 of 27

Next reusable launcher development program aims at achieving reusability in a commercial
context [7]. The interest towards reusable rockets goes well beyond the simple use for
terrestrial applications, because they are expected to be one of the cornerstones in the next
phase of human space exploration and exploitation.

This paper tackles the important, though oftentimes underestimated, aspect of the Val-
idation and Verification (V&V) activities of the vehicle’s Guidance, Navigation and Control
(GNC) system, which is crucial to maximize the mission success likelihood by satisfying a
set of strict requirements, while taking into account the coupling between various subsys-
tems and effects such as propulsion, aerodynamics, and structure. For Reusable Launch
Vehicles (RLVs), this is even more relevant due to the presence of several actuation systems
like landing legs, aerodynamic fins and the Reaction Control System (RCS). The synthesis
models used for GNC design are typically built in a simplified manner and neglect some
dynamics, especially when adopting linear synthesis and analysis techniques, with the
implicit assumption that their impact on the performance and the robustness of the overall
system is negligible as well. This assumption cannot be taken for granted and, therefore,
the current models in use cannot be considered representative benchmarks by default. The
objective is to have a more representative assessment of the degradation in performance
and robustness, especially in the early development stages, when experimental tests may
not be possible. However, the setup of such a framework is a time-consuming activity:
since GNC design and V&V are iterative processes (Figure 1), the reusability of models
must be maximized and the simulation model fidelity levels quickly adapted. While early
in the design cycle simplicity and speed are prioritized, as development progresses in-
corporating advanced physical simulation models and hardware test results to enhance
model fidelity becomes crucial in detecting flaws and improving the GNC algorithms [8].
Consequently, frameworks oriented to a more efficient adaptation to new models, new
mission designs, or even new vehicles are needed. Note that ‘physical modeling’ refers
to the use of mathematical equations to simulate the dynamics of cyber-physical systems,
capturing both their physical and computational aspects.

Experiments

Software-
In-the-
Loop

Hardware-
In-the-Loop

Full product
test

Intermediate
partial tests

Simulations

Basic
synthesis

model

Incremental-fidelity
physical simulation

models

Causal
simulation

models

Fidelity level Verification level

Figure 1. Highlights of the role of incremental-fidelity physical simulation models within the GNC
design and V&V iterative process.

The development of simulation models for GNC testing often relies heavily on the
use of Simulink®, since is convenient for rapid prototyping and testing of dynamic models.
Simulink® is a ‘causal’ (or ‘block-oriented’) modeling environment. Causal models define
the relation between different dynamical elements solely by the output of one block being
fed into the input of another block. This architecture operates on a causal modeling
principle, where the output from one block feeds directly into the next. This sequential
data flow is logical, but limited, as it struggles with complex systems where the energy
flow is not strictly one-way. To implement simulation models in Simulink®, users often
have to manually write (or re-work) their dynamic equations to establish an input–output
relationship first. This (re-)formatting detaches the model from its real-world counterpart,
makes component reuse difficult, and necessitates further significant rework if the system
configuration changes. This is particularly problematic for RLV simulations, which may
require various levels of detail or the addition/removal of dynamics, depending on the
current project phase or needs. In Simulink®, it is also overly complex or impossible to

Aerospace 2024, 11, 337 3 of 27

handle models involving algebraic constraints. Furthermore, it is not easy to vary the
fidelity level of the different sub-components, or to model interactions between different
types of physical processes.

On the other hand, acausal modeling, enabled by Simscape® and the Modelica lan-
guage, allow for an energy-oriented approach, more intuitive for representing complex
physical systems. These tools employ specialized connectors that define component inter-
actions using the underlying physical equations without preset directions of computational
causality. This methodology aligns closely with the energy flows and the dynamics inherent
in complex physical systems. In this work, we choose to employ the Modelica modeling lan-
guage; RLV models greatly benefit from their ability to build detailed, energy-conservative
multibody dynamics through these connectors. As such, a more accurate representation of
the mechanical interactions within the rocket is possible, improving the fidelity and utility
of the simulation. The Modelica language is also open-source and object-oriented; this
contributes to the implementation of efficient, scalable and adaptable simulation models,
making it suitable for the complexity of reusable rockets.

An example of Simscape®-based reusable rocket modeling can be found in [9]. On the
other hand, Modelica has already been used in several space-related contexts, like vehicle
re-entry scenarios via a guided parafoil, lunar landing missions, or modeling rocket fuel
slosh dynamics [10–12]. There exist several flight dynamics libraries, such as the DLR Flight
Dynamics Library [13] or the Space Flight Dynamic library [14]. In addition, there were
applications to launch vehicle dynamics, control and trajectory optimization [15], or stage
separation [16]. The language, therefore, fits well with the development of high-fidelity
RLV physical models. However, the available libraries are oftentimes not specifically
tailored to meet the V&V needs from the GNC point of view and state-of-practice. In
fact, they tend to centralize the modeling and simulation processes within the chosen
Modelica-based software, thus forcing the abandonment of pre-existing and already tested
Matlab-Simulink® functions and setups. For these reasons, the Vertical Landing Vehicles
Library (VLVLib) has been specifically developed over the last years to meet these more
specific demands [17].

This work covers several relevant modeling and simulation aspects from the per-
spective described above: Section 2 describes the most relevant dynamics to be captured
when modeling reusable rockets. From here, a more detailed explanation of the benefits of
acausal (physical) modeling is given in Section 3. Since the Modelica language is employed,
we explain how to build up a Simulink®-based simulation framework with co-simulated
Modelica models [18]. In this work, emphasis is placed on propellant slosh dynamics,
Thrust Vector Control (TVC), landing leg deployment and touchdown dynamics, which
are well-known to be potentially hazardous without a robust GNC system. Accordingly,
Sections 4–7 detail their modeling, respectively. CALLISTO RLV demonstrator is taken as
study case: the impact of the high-fidelity models is, in this context, compared with a bench-
mark causal rigid-body vehicle model. We show and analyze representative simulation
results in Section 8. Finally, we draw some conclusions about this work in Section 9.

2. Modeling Challenges and Simulation Framework

The modeling of reusable rockets is one of the most challenging tasks for control
engineers designing the vehicle GNC system. This is due to:

1. The multidisciplinary nature of the involved dynamics;
2. The difference in the vehicle operational regimes during different test flights;
3. The difficulty in quickly incorporating the results obtained from the specific field

experts during their iterations (e.g., propulsion, structure, aerodynamics, etc.).

In the following section, we offer a compendium of the relevant RLV dynamics,
schematically depicted in Figure 2, using the CALLISTO vehicle as a representative example.
Developed by DLR, CNES, and JAXA, it features a single-engine design and is geared for
testing Vertical Take-off, Vertical Landing (VTVL) technologies. It aims at enhancing the
affordability and sustainability of space missions through its reusability.

Aerospace 2024, 11, 337 4 of 27

Structural flexibility

Fin deployment dynamicsFin aerodynamics

Leg deployment dynamics

Leg aerodynamics

Aerodynamics

Propellant sloshing

Engine thrust dynamics

Thrust Vector Control (TVC)

Tail-Wags-Dog

Ground contact dynamics

Engine/nozzle flexibility

Reaction Control System (RCS)

Variable mass
dynamics

Figure 2. Illustration of the relevant dynamics in the CALLISTO reusable rocket’s modeling and
simulation framework for GNC Validation and Verification.

2.1. Reusable Rocket Dynamics

The fidelity of simulation models can be arbitrarily high; however, for GNC purposes,
it is not reasonable to exceed a certain fidelity level whenever the most dominant dynamics
of a specific effect are captured, or when the required computational burden for simulation
becomes excessive. Table 1 clarifies how the dynamics are currently integrated into CAL-
LISTO high-fidelity closed-loop simulator. The multitude and diversity of the described
dynamics must be appropriately handled. Many times, the first approach is to model the
rocket with the equations of motion of a six Degrees-of-Freedom (DoF) rigid body with
time-varying mass, Moment of Inertia (MoI) and Center of Mass (CoM); all the dynamic
effects are then injected as external forces and torques. However, it can be deduced from
the table that some of the dynamics are internal reaction forces, and must be treated as such.
For example, while the engine or RCS thrust can potentially be addressed as external forces
and torques with respect to a frame located at the vehicle’s CoM (referred to as the ‘body
frame’), some others like sloshing, landing legs, TVC or Tail-Wags-Dog (TWD) dynamics
are coupled with remaining bodies, plus the one modeling the dry vehicle (mathematically
through algebraic constraints). Consequently, multibody models must be employed.

In the next section, we describe why acausal modeling techniques are better suited for
dealing with multibody RLV models with so many intertwined dynamics.

Aerospace 2024, 11, 337 5 of 27

Table 1. Brief review of the major modeled dynamics for CALLISTO rocket (alphabetical order).

Dynamic Effect Description

Aerodynamics

The aerodynamics are included by computing the generated forces and torques from ad hoc interpolation
tables with respect to quantities like angle of attack, side-slip angle, Mach number and engine thrust. The
tables normally come from computational fluid dynamics analyses, eventually adjusted by experiments.
They also include dependencies with respect to each aerodynamic fin deflections and each landing leg
opening angle.

Aerodynamic fins

Each fin’s aerodynamics are mainly included in the aforementioned aerodynamic look-up tables. Their
deployment dynamics, however, influence the Mass-Centering-Inertia (MCI) vehicle properties by shifting
the overall Center of Mass (CoM) and changing the overall vehicle Moment of Inertia (MoI). The deployment
generates reaction forces and torques to the vehicle, but due to their relatively low mass, it could be neglected.

Dry vehicle
dynamics

The dry vehicle (no propellant considered) inertial properties are captured as a specific body. Naturally, it has
to be always included in any RLV model.

Engine thrust
dynamics

The engine dynamics depend on environment properties during flight, like the air density. The thrust
characteristics are obtained via interpolation tables after experimental testing and injected in the vehicle
dynamics as an external force at the right application point.

Ground contact *
The landing legs interact with the ground at the moment of touchdown, therefore the vehicle tipping depends
on if and how ground contact is modeled. The impact reaction forces and torques to each leg depend on the
ground stiffness and damping properties, as well as those of the legs themselves.

Landing legs *

The deployment of landing legs has a similar impact on the whole vehicle MCI as for the fins. Furthermore,
their mass is not negligible, and the deployment dynamics depend on several factors, like the pneumatic
system, the release springs, or the aerodynamic resistance. Hence, the resulting impact on the vehicle dynamics
is relevant. Each leg is composed of several bodies connected in a closed kinematic loop; this makes each leg
model, per se, multibody [19].

Propellant
depletion

As the propellant gets depleted, the remaining mass within the tank decreases, thus altering the overall vehicle
MCI. This is due to both the fuel and oxidizer, but also to the RCS propellant.

Propellant slosh
dynamics *

The propellant is subject to lateral sloshing motion, captured via a spherical pendulum mechanical equivalent.
Each pendulum represents a fraction of the liquid mass in a tank, and must approximate the sloshing behavior
at each tank filling level, for which specific parameters are available. The vehicle overall CoM and MoI
properties are influenced by the pendula motion.

Reaction Control
System (RCS)

The thrust direction of the RCS is normally fixed, whereas the thrust level depends on the air density. A simple
model of the thrust profile of each thruster can be used and applied to the vehicle as external force at the right
application point.

Structural
flexibility

The vehicle experiences bending due to all the forces and torques acting on it, mainly aerodynamics, engine
thrust, sloshing and control fins. The rocket flexibility heavily depends on the remaining propellant mass.
Bending modeling can be tackled by adopting a linear combination of independent bending modes to describe
the bending state of the structure. The application point of specific forces, like the main engine thrust or the
aerodynamic forces, are then altered depending on the bent vehicle states.

Tail-Wags-Dog
(TWD)

In rockets, a part of the engine assembly (or its nozzle, if present) is gimbaled to adjust the thrust direction.
The gimbaled load is normally a non-negligible part of the vehicle overall mass. This ratio increases as the
propellant is depleted. The interaction that arises between the engine/nozzle and the vehicle upper part is
called the Tail-Wags-Dog effect. During the vehicle’s physical model development, adding the movable part of
the engine as a separate body is enough to capture this effect [20].

Thrust Vector
Control (TVC) *

The thrust direction pointing is provided by two orthogonal EMAs. They are influenced by vehicle-induced
loads and their efficiency can vary depending on the forces to exert, the resulting friction, the flexibility of
the actuator itself and the structural joint properties. Moreover, the two TVC planes are coupled. The inertial
properties of the movable engine part is accounted for by another body, as said for the TWD.

Variable mass
effects

The propellant outflow causes variations in the liquid mass and MoI, generating additional Coriolis forces and
torques to the vehicle, as well as a jet damping torque. The MoI variation also produces an additional torque
function of the vehicle angular rates. These contributions are often not negligible and must be included [21].

* Analyzed in this paper in more detail.

Aerospace 2024, 11, 337 6 of 27

2.2. Acausal Physical Simulation Modeling for Reusable Rockets

Acausal frameworks are adept at modeling systems like launch vehicles by capturing
the complex, bidirectional energy interactions. In causal (or “imperative”) modeling, the
model equations are explicitly assembled in several computational steps, and the data
flow to achieve simulation outcomes must be defined a priori. This approach, mirroring
traditional procedural programming paradigms, necessitates a pre-step to pose equations
in a form allowing numerical resolution. Contrastingly, the acausal (or “declarative”)
paradigm shifts the emphasis from the sequence of computations to the definition of the
actual model equations only, and lets the solver autonomously determine the computational
strategy to resolve these equations, reflecting a more abstract and high-level approach
suitable for complex system dynamics.

Modelica employs the concept of connectors to create physics-oriented model in-
terfaces transmitting multiple variable types simultaneously. They can be either “effort”
variables (e) or “flow” variables (f): at each connection point, effort variables are meant
to equalize quantities, such as position, velocity or angular velocity, while flow variables
ensure the propagation of quantities like forces and torques. For instance, when connecting
two different components (i.e., instantiated models), the effort variables are equalized
(e1 = e2), while flow variables would create a neutral balance (f1 + f2 = 0). Therefore, by
linking components through these connectors, Modelica ensures that the underlying equa-
tions governing the system reflect the physical laws of conservation and balance through
algebraic constraints. As an example, when simulating the engine thrust, a Modelica con-
nector would transmit not just the force being exerted by the engine, but also account for
the reaction forces acting back on the engine itself. In essence, Modelica connectors bring
the mathematical rigor of physical laws into the computational realm, allowing launch
vehicle dynamics to be modeled with a level of realism that is both sophisticated and
grounded in physics.

The overall vehicle equations of motion are then composed of both ordinary differential
equations and algebraic equations, creating a Differential-Algebraic system of Equations
(DAE) that is simplified at compilation time and then linked with a numerical solver for
simulation. Moreover, because connectors in Modelica are defined by physical quantities
and laws of conservation, they inherently make the models reusable and interoperable. A
thruster model designed for one rocket can be potentially used in another, provided that
the connectors are compatible. This modularity and reusability streamline the process of
modeling and simulating reusable rockets.

The language is also characterized by features like inheritance, enabling the devel-
opment of new models based on existing ones; modifications, which allow parameter
changes to inherited models; redeclaration, for substituting components, including those
of inherited models; and abstraction, which permits the creation of generic models to be
detailed later. Automatic unit checking is another significant feature, ensuring that all
model equations are dimensionally consistent and free from unit-related errors. Ultimately,
a free open-source Modelica Standard Library (MSL) [22], featuring a set of basic models
and tools belonging to different physical domains, is available, making the creation of
multibody models more accessible [23].

2.3. Framework Description

The simulation framework is built by means of the combined use of the Matlab-
Simulink® environment and Modelica to develop the vehicle models. The latter are com-
piled as Functional Mock-up Unit (FMU) and embedded within specific Simulink® ‘variant
subsystems’ [24]. FMUs are standardized components of the Functional Mock-up Interface
(FMI) specification [25], designed for the exchange and co-simulation of dynamic models
across various software environments. Models in Modelica are constructed hierarchically,
resulting in a tree structure that provides a clear and organized representation of the sys-
tem’s composition and interactions via the aforementioned connectors. At the top is the
overall vehicle model configured to embed specific dynamics.

Aerospace 2024, 11, 337 7 of 27

The overarching architecture is depicted in Figure 3: while it is technically possible
just to create a single vehicle model with all the possible dynamics, this may not be always
convenient. In fact, the exchange, inclusion or exclusion of vehicle dynamics requires a
re-translation/re-compilation of the model; in the Modelica Integrated Development Envi-
ronments (IDEs), this is easy and fast, but the process to recompile FMUs and embedding
it in Simulink® can be longer without ad hoc tools. This is why, in our setup, the dynamics
modeled with Modelica are restricted to those building up the vehicle multibody model,
while some actuator dynamic behaviors are kept modeled within Simulink®, as their effect
can be easily introduced as external forces and torques. The result is that there are several
imported FMUs that can be exchanged within Simulink® variant subsystems according
to the required simulation fidelity level. With these choices in mind, the aerodynamic
influence is computed in Simulink® and injected as external forces and torques. The same is
done for the RCS, engine thrust and variable mass dynamics. These computations depend
directly or indirectly on the vehicle states; as such, there might be artificial algebraic loops
that have to be decoupled with the introduction of artificial delays. While normally not
impactful, the modeler has to choose whether this is an acceptable compromise, or if more
dynamics must be enclosed within the Modelica model.

Landing legs
dynamics

Set of Modelica models (FMUs)

SloshingFlexibility

Dry mass Thrust Vector
Control (TVC)

Ground contact
dynamics

Environment model

Aerodynamics

Engine thrust
dynamics

RCS thrust
dynamics

Variable mass
dynamics

gravity vector

Tanks and sloshing
properties

Vehicle
states

force/torque

thrust

thrust

force/torque

Control
commands

Simulink
model

Legs deployment trigger
Va

ria
nt

 s
ub

sy
st

em

Figure 3. Depiction of the framework architecture built in Simulink® with embedded vehicle multi-
body model as FMUs. Some lines are dashed for visual clarity.

Lastly, it is worth underlining that the MCI overall vehicle properties are computed
in the Modelica model itself. However, the tank and sloshing time-varying parameters
can also be computed directly in Simulink® (since the propellant mass flows are available
therein) and inputted in the FMU.

3. The VLVLib: A Modelica Library for the Physical Modeling of Reusable Rockets

In this section, we introduce the VLVLib. To best develop the library, specific re-
quirements have been formulated and reported in Table 2. In Section 3.1, the adopted
approaches to fulfill such requirements are detailed; Section 3.2 covers the procedure to
create vehicle models featuring specific dynamic configurations, while Section 3.3 describes
the library packages.

Aerospace 2024, 11, 337 8 of 27

Table 2. VLVLib development requirements.

Requirement Description

General applicability The library shall be designed to not limit its applicability to only one class of vehicle, thereby
providing a versatile tool.

Minimalism Each model shall be crafted such that any increase in complexity does not compromise efficiency
and understandability.

Interfaces standardization A consistent and standardized approach to interfaces shall be prioritized, facilitating ease of use
and integration with other environments.

Flexibility The capability to adjust and configure models to suit specific design needs and scenarios shall be
given, providing a robust platform for experimentation and development.

Modularity The library shall facilitate the inclusion or removal of various dynamic effects, streamlining the
process of model refinement and enhancement.

Complexity progressivity The library shall allow the user to start with a basic model and incrementally add detail, aligning
model sophistication with the stages of the design, simulation and V&V needs.

Integration with Simulink® The implemented library models shall allow export and integration within Simulink®. Furthermore,
they shall avoid the replication of functions or dynamics already implemented in Simulink®.

Nomenclature: As Modelica is an object-oriented language, almost everything is a
class. However, there exist special types of classes specialized for different contexts and use
cases, named as: model, connector, record, block, function, type, package. As using these words
through the text may cause ambiguity, the italic font will be hereafter applied to the terms
that strictly associate with these specialized classes. Instead, the class names and objects are
written using a teletype font (e.g., Class), while the Modelica keywords are also in blue
(e.g., if, then, else). The italic word component refers to an instance (object) of a model.

3.1. Library Development Approach

The library development rationale is now explained. Dymola IDE has been used [26].
To deepen specific Modelica language concepts, the reader can refer to [27] and to the latest
Modelica language specifications [28].

3.1.1. The Architecture-Driven Approach

The library is designed with modularity and flexibility as key objectives by adopting
an approach hereafter named as “architecture-driven”. Architectures can be defined as
“infrastructural” models where a collection of basic components has been pre-connected.
These components contain only the connectors to form the architecture. An example is
given in Figure 4 where the fundamental elements of a closed-loop control system are
shown. The composition of the system is carried out by selecting specific, compatible
models providing a functional implementation for each basic component. This is possible
in the Modelica language by declaring these basic components as replaceable. When the
architectural model is instantiated elsewhere, the replaceable components can change their
class type (model) into the one chosen by the user via the redeclare command. Naturally,
the old and new types must be compatible: a replaceable model X is said compatible with
a model Y if they share the same interfaces by extending a partial model implementing
only the connectors. Compatibility can be enforced with the construct constrainedby.
Partial models (identifiable by a partial attribute) contain incomplete implementations
and must be extended (via the extends construct) to be simulated. In Figure 5, a partial
model SystemArchitecture builds up the basic system architecture, and contains the
sensor component (of type Sensor, implementing only two connectors, thus also partial).
A complete implementation is given in BaseSystem, where the sensor component type is
exchanged with IdealSensor which contains the desired sensor model implementation.
Other system models with different sensor behaviors can be built with the same logic.

Aerospace 2024, 11, 337 9 of 27

Control

Ideal
Sensor

Basic
Plant

Ideal
Actuator

Reference

Figure 4. Architecture-driven example scheme. Blue connectors are casual, whilst black ones have no
direction, hence acausal. All components can be replaced with other variants provided the old and
new interfaces match.

partial model Sensor
Flange_a shaft; // input connector
RealOutput w; // output connector

end Sensor;

model IdealSensor
extends Sensor;
// <... > Actual implementation of the sensor

end Sensor;

partial model SystemArchitecture
replaceable Sensor sensor constrainedby Sensor;
// <... > Other declarations and dyn. equations

end SystemArchitecture;

model BaseSystem
extends SystemArchitecture(
redeclare IdealSensor sensor);
// <... > Other redeclarations or modifications

end BaseSystem;

Figure 5. Example of the architecture-driven approach and component redeclaration.

3.1.2. Models Minimality

As explained, models built by means of the VLVLib are to be integrated within
Simulink®. It is therefore important to not replicate implementations in both environments.
For example, in the VLVLib, the outputted vehicle states are expressed with respect to a sin-
gle body-fixed frame (state expansion to other frames can be performed within Simulink®).
This simplifies unit testing of each function and helps avoiding implementation errors.

3.1.3. Library Packages Encapsulation

The VLVLib is composed of several nested packages. The root packages of the VLVLib
have the encapsulated property. This is a good practice to avoid each model within a
package mistakenly being instantiated by models in other packages, unless explicitly included
via the import command.

3.1.4. Handling Parameters and Data

Modelica records are special classes meant to group data. The inheritance property can
also be applied to records; it allows for creating a clearer hierarchy to best manage a large
amount of model parameters. Records are specialized classes that can be instantiated within
models; this is relevant when models with different complexity levels are used. Different
record/model inheritance combinations allow setups like the one in Figure 6, and enable a
greater flexibility while insuring that each model accesses only the set of necessary data
needed for its execution.

Aerospace 2024, 11, 337 10 of 27

extends

Model 1

extends

Model 2

Model n

redeclares
base record

extends

Record 1

extends

redeclares
base record

Record 2

redeclares
base record

Record n

instantiated as
replaceableextends

Base record

extends

Base model

Figure 6. Record classes used for data component handling within models (from [20]).

3.1.5. Models Export and Simulink® Integration

The Modelica models can be included in Simulink® as either compiled S-functions
or FMUs. S-functions would inherit Simulink® solver, whereas FMUs can run in either
‘model exchange’ or ‘co-simulation’ mode. The first FMU mode is similar to the S-functions
behavior, hence the solver is inherited, while with the second mode the FMU embeds its
own solver and communicate with the host environment at defined time steps. While
using the latter mode can bring to a (usually little) numerical error accumulation because
of the presence of two solvers, it allows, in turn, the FMU to run independently of the host
environment solver, thus improving integration and portability.

3.1.6. Information Propagation across Components

The final vehicle model is composed of a large number of components spread throughout
several instantiation layers. This may cause the quantities to be logged to multiply in
number, causing cluttering and making any modification to the root vehicle class tedious
and error-prone. For this reason, some user-chosen connector variables can be propagated
into so-called ‘expandable connectors’ (or ‘busses’). A Modelica connector declared with
the expandable attribute has no requirement for information to be carried onto and can
be arbitrarily grown to add new signals or other connectors. This feature is very useful
especially when more interfacing flexibility is required (see Section 5.3).

3.2. How to Derive a Vehicle Model with a Custom Configuration

In the VLVLib, the partial GenericVehicle model is the fundamental element to create
any rocket model. All connectors defined therein are the interfaces with Simulink®. As such,
they must be causal (or busses made of causal connectors), hence including/inheriting Real,
Integer, Boolean or Enumeration types only (in Modelica formal terms, they must not
declare any flow variable).

The GenericVehicle model instantiates the following classes:

1. The World class, needed to operate with the MSL’s Multibody package. It defines the
inertial frame (called ‘World’) for referencing all model states and the gravity field.

2. The DryBody, modeling the dry structural mass and moment of inertia.
3. The TanksAssembly component, to model the propellant distribution and, if activated,

the slosh dynamics.
4. The support classes enabling the input of generic forces and torques suitably expressed

in a vehicle-fixed frame. If they are engine or RCS thrust forces, they are injected at
the correct application point.

Aerospace 2024, 11, 337 11 of 27

5. Two components, globalBending for modeling flexibility and sixDofGround to simu-
late pre-flight phases, which are not further deepened here.

To create a new vehicle model, two steps are needed. Initially, the GenericVehicle
model is extended as shown in Figures 7 and 8. The Callisto model additionally instantiates
the TVC system and the leg assembly models. These two latter components are declared
conditionally, and can be removed by setting two Boolean flags to ‘false’: enableTvc
and enableLegs. This possibility is called “conditional component declaration”, and
allows the inclusion/removal of certain components at compilation time. When the logical
condition is false, the conditionally declared components and all related connections are
removed, though it must be guaranteed that the resulting model after the removal is well-
posed. The second step is to create a new model extending Callisto to obtain to the
final vehicle configuration: therein, the dynamics are included/excluded by modifying
the aforementioned flags, or exchanged via component redeclarations. This last model
extension is to define the specialized vehicle models and precedes their export into FMUs.

model Callisto "CALLISTO vehicle dynamic model"
extends GenericVehicle(

tanksAssembly(
// <... > Tanks assembly model parameters

));
VLVLib.Parts.TvcEngineSystem.Variants.TvcSystem_v1 TvcSystem if enableTvc;
VLVLib.Actuators.Legs.LegsAssembly legsAssembly if enableLegs;
Modelica.Blocks.Interfaces.RealInput Thrust[3](unit="N") if enableTvc;
Modelica.Blocks.Interfaces.BooleanInput deployCmd if enableLegs;
Modelica.Blocks.Interfaces.RealInput beta1(unit="rad") if enableTvc;
Modelica.Blocks.Interfaces.RealInput beta2(unit="rad") if enableTvc;
parameter Boolean enableLegs = true;
parameter Boolean enableTvc = true;

equation
// <... > "connect" statements between components

end Callisto;

Figure 7. Callisto model Modelica code.

Figure 8. Callisto model diagram view. Some connections are specified only in the code without
visual attributes (no connecting lines).

Aerospace 2024, 11, 337 12 of 27

3.3. VLVLib Packages Description

The VLVLib is currently based on seven main packages (Figure 9) described below.
Their functional dependencies are shown in Figure 10.

#1 The Vehicles package contains the base models of specific vehicles (e.g., Callisto)
after extending the GenericVehicle partial model.

#2 Contains fundamental classes that concur in building the GenericVehicle class,
but also specific dynamic effects (like flexibility) or actuator assemblies.

#3–4 Contain respectively the models for simulating the propulsion system and the actua-
tor dynamics like the landing legs and TVC system.

#5 Includes utility classes of any type used across the library.
#6 Contains several unit tests of fundamental library models, including the vehicle

ones.
#7 Contains the specialized vehicle models for the final export. For instance, the dis-

played Callisto_S_NL_NT model includes sloshing, but no TVC nor leg dynamics.

Figure 9. Listing of the current VLVLib packages and their first sub-level content.

Generic vehicle
model

"Interfaces"
classes

Specialized vehicle
model

(specific dynamic
configuration)

"Test" classes

"Parts" package

"Vehicles" package

"Test" package

"Interfaces" package

"Utilities" classes

"Utilities" package

"PropulsionFluidic"
package "Actuators" package

Dry Body
Ground Contact
Tvc+Engine
Assembly

Tanks assembly
Tank model
Sloshing models

Legs model
Thrusters model
TVC model
Engine model

Figure 10. VLVLib packages functional dependencies.

4. Propellant Slosh Dynamics Modeling

Lateral propellant slosh dynamics are a deeply studied phenomenon, and a well-
known factor to consider in the GNC system design since the early days of large liquid-fuel
rockets [29]. If the propellant contained in a tank has a free surface, parasitic interactions

Aerospace 2024, 11, 337 13 of 27

with its structure may arise as a result of the liquid movements. Normally, these adverse
dynamics cannot be neglected, and should be appropriately tackled to avoid critical per-
formance degradation or instability. From the GNC perspective, it has been demonstrated
that a pendulum model can approximate the fluid dynamics of interest, provided that the
sloshing natural frequencies are not excited [30]. When modeling sloshing via the pendu-
lum analogy, the liquid in a tank is treated as a multibody system: one body represents the
non-sloshing liquid mass (which is the largest fraction), whereas the remaining fraction is
assigned to the sloshing mass of each pendulum. Three modes of oscillation are largely
sufficient to characterize the main disturbances produced on the vehicle, since higher
sloshing modes would have a small mass and a small impact on the whole dynamics.

The sloshing modeling within the VLVLib is extensively treated in [12]. The devel-
opment requirements for the sloshing model are listed in Table 3. The first two ensure
the model validity by preserving the liquid static MCI properties within a tank. The third
ensures the model applicability to the multibody domain. The fourth states that the equiva-
lent pendulum model characteristic parameters must vary according to the specific tank
filling level for each mode [31]. The fifth guarantees model scalability, whereas the last
requirement is essential to prevent a chaotic pendula motion when the vehicle experiences
a quasi-zero non-gravitational acceleration (e.g., during no-thrust and no-aerodynamic
drag phases). This is obtained by triggering a fictitious spring-damper system at each
pendulum hinge point (see [12], Section 3.1.2).

Table 3. Sloshing development requirements.

Requirement

1 The overall tank liquid mass shall equal the sum of the masses m0, m1, . . . mi after the liquid
mass splitting.

2 The overall CoM of the liquid within a tank shall remain unaltered after the liquid mass
splitting into sloshing and non-sloshing parts.

3 The pendulum motion shall not be planar (i.e., there is a universal joint at the hinge point).

4 Sloshing parameters shall be time-varying depending on the tank filling level.

5 Up to three sloshing modes shall be supported.

6 The sloshing motion shall be inhibited during simulation under non-accelerated phases to
avoid nonphysical dynamics of the pendula.

Figure 11 depicts the explained model with the relevant parameters, alongside the key
reference frames. The liquid mass is split into single pendulum masses mi and m0 for the
idle liquid. The non-sloshing mass m0, each pendulum mass mi and arm length li, as well
as the hinge heights h0 and hi from the tank bottom, are defined for discrete tank filling
levels, requiring interpolation during simulation. FS denotes the vehicle-structure-fixed
frame, and Ftankk

is at the k-th tank bottom point. The MoI of the whole liquid is considered
in I0. The dry vehicle is represented by a gray body with mass and inertia, respectively,
labeled as mdry and Idry. Noticeably, the overall vehicle CoM position is affected not only
by idle mass positioning, but also by the pendulum dynamics.

Note that the non-sloshing body model also embeds, alongside with the rigid-body
equations, a term accounting for the change in the MoI (İ0(t)) due to the propellant deple-
tion. This term plays a big role in the vehicle dynamics, and cannot be neglected [21]. The
liquid mass change ṁ0(t) does not need to be included here if already accounted for in the
engine thrust dynamics.

The liquid oscillation damping is also included and captured by a rotational damper
at the pendulum hinge point. Its coefficient mainly depends on the vehicle longitudinal
acceleration, the inherent liquid characteristics and the presence of extra damping devices
(e.g., baffles). Its derivation is extensively explained in [31].

Aerospace 2024, 11, 337 14 of 27

free surface

k-th tank

Vehicle
CoM

Figure 11. Planar representation of the employed pendulum equivalent model (from [12]).

5. EMA-Based Thrust Vector Control Modeling

The TVC system needs two EMAs to deflect the engine thrust direction, and is essential
to provide enough control authority to any launch vehicle. Its dynamics are often initially
modeled as a first or second order dynamical system; however, it is a highly complex
system composed of several elements.

An EMA operates thanks to the synergism of three parts: a Mechanical Power Trans-
mission (MPT), to transform in the most efficient way a rotatory motion into a transla-
tional one; an Electric Motor (EM)—in this case a Permanent-Magnet Synchronous Motor
(PMSM)—to produce the mentioned rotational motion; the Power Drive Electronics (PDE)
part, to suitably power the EM using the available on-board electric source; and a control
logic, to achieve the demanded EMA elongation resulting in the required engine thrust
direction. They introduce several nonlinear changes in the overall actuator dynamics. A
physical model of all these components is also beneficial to assess the performance of even-
tual model-based fault detection algorithms monitoring the TVC system [32]. The overall
architecture is depicted in Figure 12. The modeling strategy and Modelica implementation
details are extensively discussed in [20]. The key concepts are briefly recalled below.

Rocket

ENGINE

EM

PDE DC supply

Current sensor

LVDT Sensor

MPT

Resolver

EMA
control
system

Angular velocity
Shaft position

Torque demand

Deflection
command

Roller screw

Figure 12. Simplified planar TVC architecture using an electro-mechanical actuator (from [20]).

5.1. Mechanical Power Transmission Modeling

The considered MPT is of direct-drive roller-screw type. Six models with incremental
fidelity levels are proposed:

Aerospace 2024, 11, 337 15 of 27

• Level 1. It simply considers a perfect conversion of the motor torque and angular
speed into a force and linear velocity, respectively.

• Level 2. It adds a mechanical efficiency factor and an equivalent structural compliance
(spring), capturing the whole transmission elasticity.

• Level 3. It removes the efficiency factor and considers the mechanical degradation
coming from the viscous friction. It includes the EMA screw mass as well.

• Level 4. It adds Coulomb and Stribeck friction model contributions.
• Level 5. It adds a friction component that depends on the loads induced by the engine

dynamic condition.
• Level 6. It adds the mechanical backlash and preload effects.

The MPT is normally the EMA component that influences the TVC closed-loop perfor-
mance the most [20].

5.2. Electric Motor Modeling

The EM physical principles are the combination of effects acting in different physical
domains: electrical, magnetic and mechanical. As such, the EM motor model choice affects
the PDE interconnected model as well. The considered EM technology is an isotropic
PMSM. Three models have been implemented:

• Level 1. This is the simplest model, where the demanded torque is purely applied to
the motor rotor rotational inertia.

• Level 2. Here, the PMSM is physically modeled: the stator three-phase voltage and
current equations can be written in a stationary reference frame. This transforms the
three-phase machine into a two-phase machine, equipped with two windings fixed
with the stator and orthogonal each other, expressed as d (‘direct’) and q (‘quadrature’),
allowing for a more straightforward current closed loop design and analysis [33].

• Level 3. It adds to EM Level 2 several dissipative effects: (i) friction losses; (ii) core
losses (eddy current and hysteresis losses); (iii) permanent magnet losses; (iv) cogging
torque. They are are included using the machine losses MSL’s package.

5.3. Power Drive Electronics Modeling

The PDE is meant to drive the EM model appropriately by producing the required
phase voltages and currents with suitable hardware. Four PDE models are proposed. Note
that, due to the different physical interfaces, two of them, PDE Level 1 and 2, would be
only compatible with EM Level 1 model, whereas PDE models 3 and 4 would fit only EM
Level 2 and 3 models (see [20], Sections 4.2 and 4.3 and Table 7):

• Level 1. An input motor torque demand from the EMA control system is transferred
directly to the EM as output. No dynamic is introduced.

• Level 2. The motor torque outputted to the EM has second-order dynamics depending
on the current loop natural frequency and its damping factor.

• Level 3. This model implements the physical PDE dynamics to be connected with the
motor. In this scenario, two closed loops are present to deal with the motor direct and
quadrature currents. The motor torque demand is transformed into an appropriate
quadrature current, responsible for the motor torque generation. The direct current is
regulated to zero. These currents are transformed into a three-phase representations
via an inverse Park transform. The voltage to produce such currents feeds the motor
via an ideal generator.

• Level 4. Adds to the Level 3 implementation the Pulse-Width Modulation (PWM) and
inverter dynamics to command the required voltage to the EM. Introducing an inverter
model is computationally heavy, so this fidelity level is not considered hereafter.

5.4. The EMA Control System

The EMA control system’s objective is to regulate the screw position to obtain the right
TVC deflection, as per the reference input from the vehicle on-board computer. A classic

Aerospace 2024, 11, 337 16 of 27

scheme is constituted by a motor angular velocity and an outer stroke displacement control
loops. The inner and outer controllers are proportional (P) and proportional–integral (PI)
ones, respectively. The control gains can be tuned by simply imposing a damping ratio and
natural frequency to the dynamical system resulting from the composition of the two loops.
As said above, a third PI controller for the motor current is present. The current dynamics
can be simplified for control synthesis as a first order transfer function with a pole dictated
by the motor electrical resistance and inductance [33].

6. Landing Legs Deployment Model

Landing legs are fundamental for achieving reusability, because they enable a soft
touchdown. A few moments before landing, the legs must be fully deployed; this is
possible thanks to a mechanism able to release them from their folded configuration and
push them outwards, such that gravity can start acting to further extract them and bring
them towards their final latching position. However, gravity itself may not be sufficient
to win the aerodynamic forces that strongly depend on the vehicle angle of attack, its
velocity and the leg assembly orientation with respect to the wind vector. In fact, the more
a leg is influenced by the aerodynamic drag, the longer it takes to open. Therefore, the
deployment must be aided by additional forces to make sure that the legs can actually
reach the fully unfolded configuration and latch in position. It is important to note that the
vehicle longitudinal and lateral accelerations, the aerodynamics, and all the deployment
mechanism forces and torques, are all coupled, strongly affecting, in turn, each individual
leg deployment. This may cause an asymmetry in their unfolding which, consequently,
generates unbalanced internal forces and torques on the vehicle core. This effect must be
accounted for in detail at the GNC design phase to make sure that there is sufficient margin
for the control system to compensate for it before touchdown.

The discussed four-leg model is based on CALLISTO, and is fully explained and
analyzed in [19]. Figure 13 shows the main model quantities. The variable λ defines each
leg opening angle. The primary strut can be seen as a telescopic rod enabling the legs
unfolding and operating thanks to a helium-based pneumatic system that generates an
opening force Fp (net of the occurring friction). The secondary strut, instead, is in charge of
withstanding the heat stress and holding the vehicle in position after touchdown. Note that
the pressure in each leg primary strut depends on the available pressure throughout the
pipes and the source pressure vessel; therefore, the deployment rate of each leg indirectly
affects the others as well. When a leg is completely deployed, a latching mechanism locks
it in position. Lastly, a release spring produces a torque Ts to initiate the leg unfolding.

The Modelica implementation details are discussed in Appendix A.

Secondary

strut

Primary

strut

Vehicle

center of

gravity

Leg center of

gravity

A

B

Figure 13. Simplified view of the legs model. The primary and secondary strut hinge points are
marked as ‘A’ and ‘B’, respectively.

Aerospace 2024, 11, 337 17 of 27

7. Ground Contact Modeling

The problem of modeling body impacts has been already addressed in [34,35]. Having
an accurate representation of the behavior of the vehicle when it touches the ground may
provide useful insights into the vehicle stability and the terminal landing conditions to be
fulfilled to avoid vehicle tipping and its subsequent damage.

Here, the penalty-based approach described in [34] is used, where a high elastic and
damping force is applied to the impacting body on the principles of a spring-damper
mechanism. Despite this implies a high computational cost, the dynamic is short and
triggered only at the end of the mission.

The implementation details are in Appendix B.

8. Simulation Results

In this section, simulation results are shown for the four main considered dynamics
with representative examples carried out onto CALLISTO rocket end-to-end mission,
designed with an ascent, boostback, aerodynamic and landing phases. The goal is to
understand how the four described effects manifest and impact the vehicle dynamics. The
simulations are run with the current Guidance and Control system, and assume perfect
Navigation algorithms [36]. All simulations have unperturbed parameters and no wind
disturbance. The simulations are run with one dynamic effect at a time; for instance, when
analyzing the sloshing, no physical TVC or leg deployment models are included.

8.1. Sloshing Dynamics

CALLISTO has two tanks, one for the oxidizer (liquid oxygen—LOX) and one for the
fuel (liquid hydrogen—LH2). They are full at take off; for both, only one sloshing mode is
accounted for at this stage.

In Figure 14, LOX and LH2 tank pendulum angles with respect to vehicle y- and
z-axes (FS frame in Figure 11) are shown. Each angle profile has been normalized with
respect to the absolute value of its maximum over the entire flight. The validity boundaries
for the sloshing model must not exceed the quasi-linear pendulum dynamic region (i.e.,
angles must be between ±20 deg). Correlation with the real angle magnitudes cannot be
explicitly given; however, the validity boundaries for pendulum models are not exceeded
across the entire flight. At boostback, the vehicle experiences a quasi-zero non-gravitational
acceleration on its longitudinal axis; in this phase, the liquid undergoes a chaotic motion
and spreads in the tank. From a simulation viewpoint, this implies that the equivalent
sloshing model is not valid anymore, and the pendulum motion must be inhibited. In
fact, Figure 14 evidences how, in the highlighted area where suppressSloshing=true, the
pendulum restores its neutral position and stops oscillating.

Figure 15 shows the impact of sloshing during the ascent phase: two simulations were
run, one with simple rigid-body dynamics and one with the rocket multibody dynamics
featuring the described sloshing model. The angular rates (expressed with respect to the
body frame, i.e., a translation of FS into the vehicle CoM) of the latter simulation are
then subtracted to those of the former one in order to highlight the effect of sloshing. We
focus on the rates about y- and z−axes, since rolling motion is only marginally affected:
after normalization with respect to the maximal values of the rigid-body simulation, the
angular rates have grown in magnitude by up to 25%. This also reflects into large position
errors, and shows how sloshing, if not accounted for properly at GNC level, can potentially
determine the failure of a mission.

Aerospace 2024, 11, 337 18 of 27

-1

-0.5

0

0.5

1

L
O

X
p
en

d
u
lu

m
(-
)

about y-axis
about z-axis
suppressSloshing on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pseudo-time (-)

-1

-0.5

0

0.5

1

L
H

2
p
en

d
u
lu

m
(-
)

Figure 14. CALLISTO normalized LOX and LH2 pendulum angles in an end-to-end simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pseudo-time (-)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

N
or

m
al

iz
ed

an
g.

ra
te

s
d
i,

er
en

ce
(-
)

y-axis
z-axis

Figure 15. Sloshing impact on the vehicle angular rates: difference between a multibody vehicle
model with sloshing and a simple rigid-body model without sloshing (ascent phase only).

8.2. TVC System

In order to understand the impact of the higher-fidelity TVC dynamics, two types of
simulations are compared: one with a rigid-body vehicle model, featuring a linear TVC
actuator model implemented as a transfer function (details can be found in [20]). In this
case, the TWD effect is absent, as well as the advanced PDE, EM and MPT dynamics. A
second simulation is performed, instead, with the Modelica multibody vehicle model,
including the TVC dynamics determined by the two EMAs with PDE Level 3, EM Level
3 and MPT Level 6 models. Furthermore, the inertial properties of the movable engine
part is simulated with another rigid body having the right MCI properties, thus the TWD
effect is captured too. Note that, with such models, the TVC angle saturation can be
implemented only by means of hard physical stops, hence as rotational spring-damper
systems simulating a collision with the engine bay. As such, the inclusion of elasticity
within advanced MPT models helps with assessing whether the TVC control system keeps
the movable load sufficiently far from potential structural crashes with the engine bay.

Aerospace 2024, 11, 337 19 of 27

In Figure 16, the TVC, rotations about the y- and z-axes are shown during the ascent
phase. Each angle has been normalized with respect to the time-wise maximum of its
absolute value in the rigid-body simulation case. The chattering effect is due to the me-
chanical backlash and pre-load spring: despite the commanded angles are relatively low
during ascent, it is the phase when the backlash effect highlights the most by significantly
increasing the TVC angle deflection tracking error. Consequently, the vehicle angular rates
(Figure 17) are also influenced, showing a relevant impact on the vehicle performance. The
plots are normalized as for sloshing. It is anyhow worth mentioning that the TVC dynamics
include a closed-loop system, therefore the added dynamics of the higher-fidelity TVC
models are mostly highlighted at high frequency, or in specific phases like the toss-back
maneuver when the higher loads on the EMAs may increase the MPT friction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pseudo-time (-)

-1.5

-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

T
V
C

an
gl

es
(-
)

about y-axis (no multibody)
about z-axis (no multibody)
about y-axis (multibody)
about z-axis (multibody)

Figure 16. TVC angular displacements: simulation with a multibody vehicle model with multi-
physics TVC dynamics vs. a rigid-body vehicle model with linear TVC dynamics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pseudo-time (-)

-1.5

-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

an
gu

la
r
ra

te
s
(-
)

y-axis (no multibody)

z-axis (no multibody)

y-axis (multibody)

z-axis (multibody)

Figure 17. TVC modeling impact on angular rates: difference between multibody vehicle model with
multi-physics TVC dynamics and rigid-body with linear TVC dynamics (ascent only).

8.3. Legs Deployment and Touchdown Dynamics

When the leg deployment command is triggered, the vehicle dynamic state deeply
affects the opening of each leg. During the landing phase, the vehicle may have a non-null

Aerospace 2024, 11, 337 20 of 27

angle of attack and side-slip angle, and the lateral accelerations may not be small. In
Figure 18, the leg opening angle profiles are shown; the asymmetry in the deployment
is the responsible for the generation of forces and torques acting on the vehicle core
body. At the deployment start, the driving opening force is the release spring mechanism,
while afterwards the pneumatic system is the main contributor. The latter force tends to
diminish after a certain λ angle and makes the deployment rate steady. In Figure 19, the
vehicle angular rates are shown as compared to a simulation where the vehicle model is
a rigid body without legs. Normalization is performed similarly to the previous plots.
Because the legs constitute a relevant fraction of the whole vehicle mass at landing, the
extra contribution coming from the four leg forces and torques can severely increase the
magnitude of the vehicle angular rates, ultimately highlighting the relevance of capturing
the legs deployment with appropriate multibody simulation models.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pseudo-time (-)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

le
gs

op
en

in
g

an
gl

e
6

(-
)

Leg 1
Leg 2
Leg 3
Leg 4
Legs deployment command

Figure 18. Normalized leg opening angles during deployment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pseudo-time (-)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

N
or

m
al

iz
ed

an
g.

ra
te

s
d
i,

er
en

ce
(-
)

y-axis
z-axis
Legs deployment command

Figure 19. Legs modeling impact on the vehicle angular rates: difference between a physical
multibody model including the leg dynamics and a simple rigid-body model.

To analyze the touchdown dynamics, an ad hoc simulation was performed. The
simulation is initialized with the rocket having an attitude of 1deg about the y-axis and

Aerospace 2024, 11, 337 21 of 27

5deg about the z-axis (with respect to an inertial frame), while the ground impact velocity
is close to the limit imposed by the related requirement. The initial angular rates are close
to zero. This scenario is meant to cause an asynchronous touchdown between each leg.
Figure 20 depicts the angular rates after the impact, while Figure 21 captures the distance
of each leg from the ground. Due to the imposed initial states, at touchdown, the vehicle is
induced to spin about its x-axis until two of the legs have persistent contact with the ground.
Then, the vehicle starts wobbling intermittently until the motion damps out. Although the
vehicle does not undergo any tipping, the leg rebound gets up to 0.4 m. Consequently, it
becomes clear how the final vehicle stability on the landing pad depends on the touchdown
attitude, but also on the ground-leg stiffness and damping factors. This type of simulation
aids identifying potential flaws in the landing GNC algorithms or requirement definitions.

0 1 2 3 4 5 6 7 8
Time (s)

-25

-20

-15

-10

-5

0

5

10

15

A
n
gu

la
r
ra

te
s
(d

eg
/s

)

x-axis
y-axis
z-axis

Figure 20. Angular rates of the body frame with respect to inertial frame (expressed in body frame)
at touchdown.

0 1 2 3 4 5 6 7
Time (s)

0

0.5

1

1.5

2

2.5

D
is
ta

n
ce

fr
om

gr
ou

n
d

(m
)

Leg 1
Leg 2
Leg 3
Leg 4

Figure 21. Leg tip distances from ground at touchdown.

9. Conclusions

This paper extensively explored many aspects of the advanced physical modeling and
simulation of reusable rockets for GNC V&V. The dynamics required for RLV modeling
were detailed, and a suitable methodology was proposed to develop a scalable, responsive,

Aerospace 2024, 11, 337 22 of 27

and adaptable framework for modeling and simulating these dynamics. This facilitates a
closer alignment with the specific demands of various development phases.

We showed the potential of the VLVLib, a Modelica library that implements several
key dynamics in order to obtain higher-fidelity multibody vehicle models with respect
to more standard approaches relying on rigid-body assumptions. The modeling and
implementation rationale was explained and proved successful for achieving flexibility
when creating models with different fidelity levels, as well as managing the large amount
of models and parameters. In this sense, Modelica language features were explained
and suitably exploited. Four main dynamics affecting the vehicle’s overall behavior were
investigated, and the modeling strategy for each was explained. These dynamics include
propellant sloshing, the TVC system dynamics, the deployment of landing legs, and landing
touchdown dynamics. They were simulated to highlight their detrimental effect on the
vehicle performance with respect to plain rigid-body models, demonstrating the framework
potentiality to discover GNC system flaws during Monte-Carlo campaigns, but also badly
posed requirements. The CALLISTO rocket was used as benchmark. Also, this paper
demonstrates the framework applicability to common RLV development workflows, as
the proposed physical Modelica models were successfully integrated into a pre-established
Simulink®-based framework. This avoided unnecessary replication of well-tested functions
and showed that such existing simulation environment can be successfully extended.

In conclusion, the methodology presented in this paper proved its potential in inte-
grating the GNC modeling, simulation and V&V work logic within any stage of a reusable
launch vehicle development process.

Author Contributions: Conceptualization, investigation and methodology: S.F.; Software: S.F.,
J.A.M.H., M.S. (Marco Sagliano), A.S., A.H. and M.S. (Markus Schlotterer); Validation: S.F., J.A.M.H.
and M.S. (Marco Sagliano); Writing—original draft preparation: S.F. and M.S. (Marco Sagliano);
Writing—review and editing: S.F. and M.S. (Marco Sagliano); Supervision: M.S. (Markus Schlotterer)
and S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors thank Stephan Theil and David Seelbinder (German Aerospace
Center–DLR) for supporting and enabling this work; Pedro Simplicio (European Space Agency–ESA)
for providing invaluable guidance to the TVC modeling part; Riccardo Minnozzi (TU Delft) for his
fundamental help in testing the VLVLib and integrating the whole software.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CALLISTO Cooperative Action Leading to Launcher Innovation in Stage Toss back Operations
CNES Centre National d’Études Spatiales
CoM Center of Mass
DAE Differential-Algebraic system of Equations
DLR Deutsches Zentrum für Luft- und Raumfahrt (English: German Aerospace Center)
DoF Degrees-of-Freedom
EM Electric Motor
EMA Electro-Mechanical Actuator
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
GNC Guidance, Navigation and Control
IDE Integrated Development Environment
JAXA Japan Aerospace Exploration Agency
MCI Mass-Centering-Inertia
MoI Moment of Inertia
MPT Mechanical Power Transmission

Aerospace 2024, 11, 337 23 of 27

MSL Modelica Standard Library
PDE Power Drive Electronics
PMSM Permanent-Magnet Synchronous Motor
PWM Pulse-Width Modulation
RCS Reaction Control System
RLV Reusable Launch Vehicle
TVC Thrust Vector Control
TWD Tail-Wags-Dog
V&V Validation and Verification
VLVLib Vertical Landing Vehicles Library
VTVL Vertical Take-off, Vertical Landing

Appendix A. Landing Legs Deployment Library Implementation

The difficulty for the implementation of a leg unfolding simulation model is that its
mechanical structure is a closed kinematic chain. Normally, with an open chain configu-
ration the compiler is able to solve for the states of the next chain elements based on the
current one. In closed chains, for each body there exists more than one path connecting to a
uniquely defined set of states. Closed chains can be structurally non-singular or singular.
This means that they can generate statically indeterminate systems (more equations than
unknowns), as often happens in planar closed chains. The software symbolic manipula-
tion applicable to a generic DAE system can not distinguish between consistent statically
indeterminate systems (for which would be enough to ignore some equations) and incon-
sistent systems (thus defined by contradictory equations). The structural singularity of the
DAE system is detected and the compilation fails. It is therefore necessary to eliminate
the redundant equations before applying the symbolic manipulation beforehand. As the
nonlinear algebraic constraints arising from most mechanical loops may not be always
automatically solved by the Modelica translator, the MSL includes a set of components
where a predefined set of joints are already considered together, and the resulting equations
of motion pre-solved and implemented. As such, when these joint assemblies take part into
a closed chain, the solver becomes able to solve for it.

The component jointRRP implemented in the class LegCallisto (Figure A1) is one of
those, and was instantiated for that reason. The same figure also shows how the primary
and secondary struts are implemented. The release mechanism acts as a torque at point A,
generated by a torsional spring active only when the deployment command has been
triggered and λ angle is small (i.e., less that 1deg). The Boolean deployment command
input is latched internally by a flip-flop (top-left of the figure), such that the depending
conditional expressions can be consistently used to manage the force and torque acting on
the leg. The leg separation is obtained via separateLeg component which, when the trigger
signal is ‘true’, allows a rotational degree of freedom at point B to let the leg move. Note
that a connector frame_ground is present. This allows the leg model to simulate the ground
contact at the tip of the primary strut. LegsAssembly (Figure A2) model instantiates the
four legs and is included in the main Callisto model.

Aerospace 2024, 11, 337 24 of 27

Figure A1. LegCallisto model diagram view. Some connections are specified only in the code
without visual attributes (no connecting lines).

Aerospace 2024, 11, 337 25 of 27

Figure A2. LegsAssembly model diagram view.

Appendix B. Ground Contact Library Implementation

The VLVLib approach to simulate ground impact requires two models: Ground and
GroundForce. The first contains all the properties for defining where the actual “ground”
is located. This is fundamentally a fixed translation with respect to an Earth-Centered
Earth-Fixed (ECEF) frame. In this way, the “flat” ground resembling the actual landing
pad can be moved throughout the simulation with the Earth rotation, thus avoiding to
start the contact ahead of time. The same class also contains the definition of the “vertical”
axis (“off-ground”) and the “horizontal” axes (“on-ground”) of the local ground frame. A
Ground class defines all the properties of the ground (e.g., position, orientation, dampting
properties, etc.), which should be available throughout the entire model hierarchy. For this
reason, it must be instantiated with the inner attribute, making its states and parameters
available to all models down the hierarchy whenever another Ground component is declared
with the outer attribute.

This is what happens in the GroundForce model (Figure A3), responsible for the
generation of the ground reaction forces and torques: it connects the physical mechanical
connector that must “expose” to the ground contact to the Ground mechanical connector itself,
but it allows for all degrees of freedom in between (three rotational and three translational).
With this construction, we can exert specific forces and torques only when contact is
occurring and not otherwise. Along the “vertical” axis, an ElastoGap model from the
MSL is used to model the vertical rebound: when the ground is reached, a spring-damper
mechanism triggers to avoid the penetration of the impacting body into the ground. The
contact presence is governed by the ElastoGap.contact Boolean variable. Also, when it
is ‘true’, some breaking forces act on the remaining two translational degrees of freedom to
avoid that the impacting body unnaturally “slips” sideways onto the ground surface.

Aerospace 2024, 11, 337 26 of 27

model GroundForce
// <... > All declarations
outer Ground ground;

equation
if elastoGap.contact then

brake_n1.f_normalized = 1;
brake_n2.f_normalized = 1;

else
brake_n1.f_normalized = 0;
brake_n2.f_normalized = 0;

end if;
// <... > Other connection statements

end GroundForce;

Figure A3. Exemplification of the ElastoGap.contact usage within GroundForce model.

References
1. Blackmore, L. Autonomous Precision Landing of Space Rockets. Natl. Acad. Eng. Bridge Front. Eng. 2016, 4, 15–20.
2. Hoffman, L.; Baker, M.; Glynn, S.; Darley, M.; Beck, P. Reusable Electron: Analysis of Progress Toward the World’s First Reusable

Commercial Small Rocket. In Proceedings of the Small Satellite Conference, Logan, UT, USA, 6–11 August 2022.
3. Dumont, E.; Illig, M.; Ishimoto, S.; Chavagnac, C.; Saito, Y.; Krummen, S.; Eichel, S.; Martens, H.; Giagkozoglou, S.; Häseker, J.S.;

et al. CALLISTO: A Prototype Paving the Way for Reusable Launch Vehicles in Europe and Japan. In Proceedings of the 73rd
International Astronautical Congress (IAC), Paris, France, 18–22 September 2022.

4. Dumont, E.; Ecker, T.; Chavagnac, C.; Witte, L.; Windelberg, J.; Klevanski, J.; Giagkozoglou, S. CALLISTO—Reusable VTVL
Launcher First Stage Demonstrator. In Proceedings of the Space Propulsion Conference, Seville, Spain, 14–18 May 2018.

5. Bertorello, C.; Gogdetb, O.; Breteauc, J.; Tincelind, Y.; Cliquet-Moreno, E.; Coletti, E.; Bensalem, S. Themis Demonstration
Programme. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022.

6. Gallego, P. MIURA 5: The European and Reusable Microlauncher for CubeSats and Small Satellites. In Proceedings of the Small
Satellite Conference, Utah State University, Logan, UT, USA, 1–6 August 2020.

7. Patureau de Mirand, A.; Bahu, J.M.; Gogdet, O. Ariane Next, a Vision for the next Generation of Ariane Launchers. Acta Astronaut.
2020, 170, 735–749. [CrossRef]

8. Strauch, H.; Luig, K.; Bennani, S. Model Based Design Environment for Launcher Upper Stage GNC Development. In Proceed-
ings of the Workshop on Simulation on for European Space Programmes (SESP), ESA/ESTEC, Noordwijk, The Netherlands,
24–26 March 2015.

9. Gäßler, B.; Briese, L.E.; Acquatella B., P.; Simplício, P.; Bennani, S.; Casasco, M. Design and Development of R2M2—A Multi-
Physics Modeling Tool for Reusable Launch Vehicles. In Proceedings of the 9th International Conference on Astrodynamics Tools
and Techniques (ICATT), Sopot, Poland, 12–16 June 2023.

10. Farì, S.; Grande, D. Vector Field-based Guidance Development for Launch Vehicle Re-entry via Actuated Parafoil. In Proceedings
of the 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October 2021. Available online:
https://elib.dlr.de/145123 (accessed on 20 April 2024).

11. Gutierrez, J.L.R.; Farì, S.; Winter, M. Control System Design for the ALINA Lunar Lander. In Proceedings of the 72nd International
Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October 2021. Available online: https://elib.dlr.de/145129
(accessed on 20 April 2024).

12. Farì, S.; Seelbinder, D.; Theil, S. Advanced GNC-oriented Modeling and Simulation of Vertical Landing Vehicles with Fuel Slosh
Dynamics. Acta Astronaut. 2022, 204, 294–306. [CrossRef]

13. Looye, G. The New DLR Flight Dynamics Library. In Proceedings of the 6th Modelica Conference, Bielefeld, Germany,
3–4 March 2008.

14. Pulecchi, T.; Casella, F.; Lovera, M. A Modelica Library for Space Flight Dynamics. In Proceedings of the 5th International
Modelica Conference, Vienna, Austria, 4–5 September 2006

15. Briese, L.E.; Schnepper, K.; Acquatella B., P. Advanced Modeling and Trajectory Optimization Framework for Reusable Launch
Vehicles. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018. [CrossRef]

16. Acquatella, P.; Reiner, M.J. Modelica Stage Separation Dynamics Modeling for End-to-End Launch Vehicle Trajectory Simulations.
In Proceedings of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014.

17. Farì, S. The Vertical Landing Vehicles Library (VLVLib): A Modelica-based Approach to High-Fidelity Simulation and Verification
of GNC Systems for Reusable Rockets. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France,
18–22 September 2022. Available online: https://elib.dlr.de/188514 (accessed on 20 April 2024).

18. Martin, C.; Urquia, A.; Sanchez, J.; Dormido, S. Interactive Simulation of Object-Oriented Hybrid Models, by Combined Use of
Ejs, Matlab/Simulink and Modelica/Dymola. In Proceedings of the 18th European Simulation Multiconference, Magdeburg,
Germany, 13–16 June 2004.

19. Schneider, A.; Desmariaux, J.; Klevanski, J.; Schröder, S.; Witte, L. Deployment Dynamics Analysis of CALLISTO’s Approach and
Landing System. CEAS Space J. 2023, 15, 343–356. [CrossRef]

http://doi.org/10.1016/j.actaastro.2020.02.003
https://elib.dlr.de/145123
https://elib.dlr.de/145129
http://dx.doi.org/10.1016/j.actaastro.2022.12.035
http://dx.doi.org/10.1109/AERO.2018.8396704
https://elib.dlr.de/188514
http://dx.doi.org/10.1007/s12567-021-00411-2

Aerospace 2024, 11, 337 27 of 27

20. Farì, S.; Seelbinder, D.; Theil, S.; Simplicio, P.; Bennani, S. Physical Modeling and Simulation of Electro-Mechanical Actuator-Based
TVC Systems for Reusable Launch Vehicles. Acta Astronaut. 2024, 214, 790–808. [CrossRef]

21. Gäßler, B.; Briese, L.E.; Acquatella B., P.; Simplício, P.; Bennani, S.; Casasco, M. Variable-Mass Dynamics Implementation in
Multi-Physics Environment for Reusable Launcher Simulations. In Proceedings of the 9th European Conference for Aeronautics
and Space Sciences (EUCASS-3AF), Lille, France, 27 June–1 July 2022. [CrossRef]

22. Modelica Association. Modelica Standard Library. Available online: https://github.com/modelica/ModelicaStandardLibrary
(accessed on 20 April 2024).

23. Otter, M.; Elmqvist, H.; Mattsson, S.E. The New Modelica MultiBody Library. In Proceedings of the 3rd International Modelica
Conference, Linköping, Sweden, 3–4 November 2003.

24. The MathWorks, Inc. Implement Variations in Separate Hierarchy Using Variant Subsystems. Available online: https://www.
mathworks.com/help/simulink/ug/variant-subsystems.html (accessed on 20 April 2024).

25. Modelica Association. Functional Mock-up Interface. Available online: https://fmi-standard.org (accessed on 20 April 2024).
26. Brück, D.; Elmqvist, H.; Mattsson, S.E.; Olsson, H. Dymola for Multi-Engineering Modeling and Simulation. In Proceedings of

the 2nd International Modelica Conference, Starnberg, Germany, 18–19 March 2002.
27. Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach; John Wiley & Sons:

Hoboken, NJ, USA, 2014.
28. Modelica Association. Modelica Specification. Available online: https://specification.modelica.org (accessed on 20 April 2024).
29. Bayle, O.; L’Hullier, V.; Ganet, M.; Delpy, P.; Francart, J.L.; Paris, D. Influence of the ATV Propellant Sloshing on the GNC

Performance. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, USA,
5–8 August 2002. [CrossRef]

30. Abramson, H.N. Dynamic Behavior of Liquids in Moving Containers with Applications to Space Vehicle Technology; Special Publication
(SP) 19670006555; NASA: Washington, DC, USA, 1966.

31. Dodge, F.T.; Antonio, S. The New “Dynamic Behavior of Liquids in Moving Containers”; Southwest Research Inst.: San Antonio, TX,
USA, 2000.

32. Farì, S.; Seelbinder, D.; Theil, S.; Simplicio, P.; Bennani, S. Sensor Fault Detection and Isolation for Electro-Mechanical Actuators
in a Reusable Launch Vehicle TVC System. In Proceedings of the 10th European Conference For Aeronautics And Space Sciences
(EUCASS), Lausanne, Switzerland, 9–15 July 2023. [CrossRef]

33. Krishnan, R. Permanent Magnet Synchronous and Brushless DC Motor Drives, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017.
34. Hofmann, A.; Mikelsons, L.; Gubsch, I.; Schubert, C. Simulating Collisions within the Modelica MultiBody Library. In Proceedings

of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014, 2014; pp. 949–957. [CrossRef]
35. Oestersötebier, F.; Wang, P.; Trächtler, A. A Modelica Contact Library for Idealized Simulation of Independently Defined

Contact Surfaces. In Proceedings of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014; pp. 929–937.
[CrossRef]

36. Sagliano, M.; Tsukamoto, T.; Maces Hernandez, J.A.; Seelbinder, D.; Ishimoto, S.; Dumont, E. Guidance and Control Strategy for
the CALLISTO Flight Experiment. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS),
Madrid, Spain, 1–4 July 2019. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.actaastro.2023.11.038
http://dx.doi.org/10.13009/EUCASS2022-6124
https://github.com/modelica/ModelicaStandardLibrary
https://www.mathworks.com/help/simulink/ug/variant-subsystems.html
https://www.mathworks.com/help/simulink/ug/variant-subsystems.html
https://fmi-standard.org
https://specification.modelica.org
http://dx.doi.org/10.2514/6.2002-4845
http://dx.doi.org/10.13009/EUCASS2023-504
http://dx.doi.org/10.3384/ecp14096949
http://dx.doi.org/10.3384/ecp14096929
http://dx.doi.org/10.13009/EUCASS2019-284

	Introduction
	Modeling Challenges and Simulation Framework
	Reusable Rocket Dynamics
	Acausal Physical Simulation Modeling for Reusable Rockets
	Framework Description

	The VLVLib: A Modelica Library for the Physical Modeling of Reusable Rockets
	Library Development Approach
	The Architecture-Driven Approach
	Models Minimality
	Library Packages Encapsulation
	Handling Parameters and Data
	Models Export and Simulink® Integration
	Information Propagation across Components

	How to Derive a Vehicle Model with a Custom Configuration
	VLVLib Packages Description

	Propellant Slosh Dynamics Modeling
	EMA-Based Thrust Vector Control Modeling
	Mechanical Power Transmission Modeling
	Electric Motor Modeling
	Power Drive Electronics Modeling
	The EMA Control System

	Landing Legs Deployment Model
	Ground Contact Modeling
	Simulation Results
	Sloshing Dynamics
	TVC System
	Legs Deployment and Touchdown Dynamics

	Conclusions
	Appendix: Landing legs deployment library implementation
	Appendix: Ground contact library implementation
	References

