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DC4Flood: A deep clustering framework for rapid
flood detection using Sentinel-1 SAR imagery

Kasra Rafiezadeh Shahi, Member, IEEE, Andrés Camero, Jeremy Eudaric, Heidi Kreibich

Abstract—Severe flood losses have been on the rise, and this
trend is expected to become increasingly prevalent in the future
due to climate and socio-economic changes. Swiftly identifying
flooded areas is crucial for mitigating socio-economic losses
and facilitating effective recovery. Synthetic Aperture Radar
(SAR) sensors are operational in all-weather, day-and-night
conditions and offer a rapid, accurate, and cost-effective means
of obtaining information for quick flood mapping. However, the
complex nature of SAR images, such as speckle noise, coupled
with the often absence of training/labeled samples, presents
significant challenges in their processing procedures. To alleviate
such hindrances, we can benefit from unsupervised classification
approaches (also known as clustering). Clustering methods offer
valuable insights into newly acquired datasets without the need
for training or labeled samples. However, traditional clustering
approaches are predominantly linear-based and overlook the
spatial information of neighboring pixels during analysis. Thus,
to attenuate these challenges, we propose a deep learning (DL)-
based clustering approach for flood detection (DC4Flood) using
SAR images. The primary advantage of DC4Flood over existing
DL-based clustering approaches lies in its ability to capture
multi-scale spatial information. This is achieved by utilizing
multiple dilated convolutions with varying dilation rates and
subsequently fusing the extracted multi-scale information to
effectively and efficiently analyze SAR images in an unsupervised
manner. Extensive experiments conducted on SAR images from
six different flood events demonstrate the effectiveness of the
proposed DC4Flood. The code of the work will be available at
https://github.com/Kasra2020/DC4Flood.

Index Terms—Deep Learning; Unsupervised Learning; Clus-
tering; Convolutional Autoencoder; Remote Sensing; Sentinel-1;
Synthetic Aperture Radar; Flood Detection

I. INTRODUCTION

Effective recovery after natural disasters demands accurate
mapping of affected areas [1], [2]. According to [3], natural
hazards globally affected ∼ 4.2 billion people and caused
∼ US$ 2.97 trillion economic losses over the last two
decades. Flood losses are severe, and observed trends in the
past and projected ones for the future indicate a continuous
increase in flood losses caused by climate and socio-economic
changes [4]. Hence, it is of great importance to mitigate
flood losses through effective emergency management and
reconstruction during and shortly after events. For this matter,
remote sensing (RS) sensors can play a pivotal role in ac-
quiring fast and precise information on flooded areas. Among
different RS sensors, the synthetic aperture radar (SAR) sensor
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is a versatile tool for obtaining remote sensing data, offering
the ability to capture information on Earth’s surface dynamics
with unprecedented precision. The advantages of SAR include
all-weather, day-and-night imaging capabilities, making it an
invaluable asset for various Earth monitoring applications such
as flood mapping [5].

Over the past two decades, SAR images have proven
suitable for flood detection. According to [6], we can di-
vide the traditional processing workflows of SAR images to
delineate the inundated areas into four main categories: (1)
visual interpretation and digitization, which strongly rely on
expert knowledge and can be extensively time-consuming;
(2) thresholding of SAR backscatter value, which requires
a thorough investigation to determine an optimal threshold;
nevertheless, the identified threshold might be subjective and
cannot be generic for different regions [7]; (3) image change
detection techniques that aim to compare pre- and post-event
SAR images [8]; (4) supervised and unsupervised machine
learning (ML)-based approaches. Nonetheless, due to the
distinct manner in which radar waves interact with terrestrial
features compared to optical radiation, it is essential to exercise
caution and precision when interpreting radar imagery. In
contrast to optical images, radar images are formulated through
the coherent interaction between transmitted microwaves and
target objects. As a consequence of this coherent interaction,
radar imagery suffers from the effects of speckle noise. Such
characteristics pose challenges when attempting to directly
adapt established optical image analysis approaches to process
SAR images [9].

In recent years, deep learning (DL) has prevailed over
traditional ML techniques in achieving different tasks, in-
cluding image classification and signal processing [10], [11].
The increasing maturity of DL-based approaches has led
to their widespread adoption across various domains, such
as Earth observation [12]. Within this context, SAR image
analysis using DL-based approaches has been an active topic,
particularly for flood detection. While the majority of existing
DL-based approaches for SAR image analysis fall under super-
vised learning [9], necessitating a substantial amount of train-
ing/labeled samples. However, annotating images, particularly
in real-time scenarios, poses considerable challenges [13]. In
this context, unsupervised classifiers, commonly referred to
as clustering methods, offer a valuable avenue to alleviate
such obstacles. Despite their proven success and encouraging
outcomes in various applications, such as hyperspectral image
clustering and LiDAR clustering, there has been relatively
limited exploration of clustering approaches, particularly DL-
based ones, for detecting inundated areas using SAR im-
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agery [7], [8], [14]–[16]. In [7], the authors proposed employ-
ing ground range detected (GRD) SAR images, where such
images are already preprocessed and made available by the
European Space Agency. GRD SAR images, therefore, can be
utilized to derive desired information for a region of interest.
Their proposed processing workflow contains two main steps.
Initially, the workflow starts with making use of classic co-
occurrence texture measures integrated with amplitude infor-
mation within a fuzzy classification framework. This strategy
mitigates the critical effect of thresholding. Consequently, a
change-detection approach is deployed to the full-resolution
GRD SAR image to generate the map of inundated areas.
Authors in [15] introduced a weakly supervised DL-based
soft clustering for flood detection using SAR imagery. Their
proposed approach uses a new assignment strategy named
”soft association”, where it computes the probability of each
pixel belonging to different clusters. Hence, each pixel would
be assigned to a cluster with a higher probability value. Apart
from their successes in flood detection using SAR imagery,
such an approach still relies on training/labeled samples.
In a more recent study [8], HuiHui Dong et al., designed
a multi-scale DL-based network to integrate clustering and
convolutional neural network (CNN) to generate clustering-
friendly features from SAR images. The proposed DL-based
clustering approach makes use of multi-scale extracted features
at different receptive fields. Such an approach ensures incor-
porating spatial information from the neighboring pixel, which
is not located in the closed range. Despite its state-of-the-art
(SOTA) performance, the utilization of standard convolutional
operations at different scales increases the computational de-
mand, particularly for processing large-scale SAR datasets.
This can present limitations in emergency response scenarios
where rapid mapping of flooded areas is crucial.

To address this computational constraint, we propose a
deep clustering framework that deploys multiple dilated (also
known as atrous) convolutions [17] for SAR image analysis
in flood detection. This approach enables us to process large-
scale SAR datasets efficiently and in an unsupervised fashion.
To the best of our knowledge, this is the first attempt to utilize
multiple dilated convolutions to extract multi-scale information
from SAR images in an unsupervised fashion.

Therefore, the main contributions of this paper are as
follows:

• Introducing a deep clustering framework for identifying
flood-affected areas through Sentinel-1 SAR imagery.
The proposed deep learning-based clustering approach
leverages a convolutional autoencoder structure as its
backbone to accurately capture the non-linear relation-
ships present among data points and effectively handle the
inherent noise in SAR images in an unsupervised fashion.

• While similar approaches have been explored primarily
in hyperspectral image clustering, DC4Flood offers a new
way to utilize the advantages of SAR imaging for flood
mapping.
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Fig. 1. Illustration of the proposed DC4Flood framework: (a) The architecture
of DC4Flood; (b) The deployed convolutional layers in the architecture.

II. DEEP CLUSTERING FOR FLOOD DETECTION
(DC4FLOOD)

This section introduces the proposed deep clustering frame-
work for flood detection using SAR images (DC4Flood). In
this study, X ∈ Rh×w×D and X′ ∈ Rh×w×D express a
SAR and its reconstructed image, respectively, where h and
w denote the spatial dimensions (height and width) and D
denotes the number of polarimetric channels. Furthermore,
EF ∈ Rh×w×2 represents the latent features in the bottleneck.

To train a DL-based segmentation model in an unsupervised
fashion, we can utilize autoencoder (AE) architectures. The
general idea behind AEs is to initially extract informative
features from the input data through the encoder phase and
then reconstruct the original input data via the decoder phase.
The extracted features in the bottleneck are the so-called
”latent features”, which contain all the essential information
to rebuild the original input data. To facilitate unsupervised
training, AEs strive to minimize the disparity between the
original and reconstructed data. AEs have been successfully
adapted from the computer vision field to tackle the existing
challenges in geoscience and remote sensing applications [18].
However, the main downfall of standard AEs is that such
approaches are pixel-wise, while in many applications, it is
shown that incorporating spatial information would improve
the classification results [13]. To address this limitation, convo-
lutional AEs (CAEs) are proposed to inject spatial information
into the data processing pipeline [17].

In image processing, CAEs have demonstrated their superior
performance compared to standard AEs, primarily owing to
their incorporation of spatial information [18]. However, ex-
isting CAEs typically investigate the spatial information from
nearby pixels within close proximity. As a result, this approach
overlooks valuable spatial information that may be derived
from more distant pixels. To mitigate this challenge, we can
extract multi-scale features by increasing the kernel sizes;
however, this way can be computationally exhaustive [17].
Alternatively, we can benefit from dilated convolutions (also
known as atrous convolutions) to efficiently incorporate the
spatial information from different respective fields. Apart from
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tremendous endeavors devoted by researchers to tailor the
dilated convolutions for different Earth observation applica-
tions, yet the capability of such a strategy for analyzing SAR
imagery, particularly in the flood detection application has not
been fully explored. Thus, in this work, we introduce a DL-
based clustering approach (DC4Flood), which benefits from
multiple dilated convolutional operations to identify inundated
areas using SAR imagery (Fig. 1 (a)). To elucidate the training
procedure of our proposed approach, we first formulate a
normal convolutional operation as follows:

EF = f(

D∑
s=1

Xs ∗Wi + bi), (1)

where Wi and bi represent weight matrix and bias at the i−th
convolutional layer, respectively. In addition, s = 1, 2, ...,D
indicates the number of channels. In Eq. 1, f(.) denotes the
convolutional operation. However, in Eq. 1, the f(.) merely
implies a single-scale convolutional operation. In order to
derive multi-scale spatial information, we can deploy the
multiple dilated convolutions as:

EFr1 = fr1(

D∑
s=1

Xs ∗Wi + bi)

EFr2 = fr2(

D∑
s=1

Xs ∗Wi + bi),

(2)

Specifically, fr1 corresponds to a standard convolution opera-
tion utilizing 3 × 3 kernels, while fr2 employs 3 × 3 kernels
with a dilation rate of 2. As a result, DC4Flood captures spatial
information from both closely positioned pixels and those
situated at greater distances. Subsequently, we concatenate the
obtained EFr1 and EFr2 feature maps for further analysis.
This method assures the incorporation of spatial information
across various receptive fields, all while minimizing computa-
tional overhead. Therefore, we can express the concatenation
and aggregation of extracted multi-scale features as follows:

EFj = σ(Bn(f j(EFr1 ⊕EFr2))), (3)

where EFj is the extracted features at the j−th convolutional
layer. In Eq. 3, ⊕ expresses the concatenation operation of
multi-scale features, and f j denotes 1×1 convolutional filters
to aggregate the concatenated features in the last step. As
shown in Fig. 1 (b), we apply the batch normalization (Bn)
process as the next step to have computational consistency
across different convolutional layers. Consequently, an activa-
tion function (σ) is deployed to capture the non-linear intrinsic
relation between the data points in SAR imagery (in this study,
we utilized the Leaky Rectified Linear unit (LeakyReLU)).

In this study, we deploy the mean squared error (MSE)
as the loss function to train the network in an unsupervised
fashion. The aim, hence, is to minimize the loss value and
optimize the network parameters (i.e., weights and bias) as
follows:

argmin
W,b

LRec = ||X−X′||2F , (4)

where ||.||F denotes the Frobenius-norm. Once the training
process is complete, meaning the specified number of it-
erations has been reached, we use EF ∈ Rh×w×2 in the
bottleneck for the clustering purpose. As the last step, to
generate the final clustering map, k-means clustering is applied
on EF [13].

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Sen1floods11 SAR data
To validate the performance of DC4Flood, we used SAR

images from six flood events sourced from the Sen1floods11
benchmark dataset. The Sen1flood11 dataset comprises 11
flood events in different ecosystems. Each scene in the dataset
is derived from Sentinel-1 level-1 ground range detected
(GRD) product and contains two polarimetric channels (i.e.,
VV, VH) with the spatial dimension of 512 × 512 pixels.
For our experiments, we chose six flood events (Bolivia,
Ghana, India, Mekong, Spain, and the USA), for which
labeled data was meticulously generated by trained remote
sensing analysts. The selection of these events was deliberate,
aiming to represent diverse flood occurrences, ecosystems, and
continents, thereby ensuring the robustness and reliability of
our analysis.

B. Experimental implementation details
All the models are implemented in Python, version 3.9.6.

The DL-based approaches are implemented using PyTorch
2.0.1 on the high-performance computing (HPC) facility at
GFZ. We used Adam as the model optimizer for DL-based
approaches. As suggested by many studies in this field, the
Adam optimizer is configured with default parameter values,
with β1 = 0.9, β2 = 0.999, ϵ = 10−8, weight decay= 0.
In contrast, the learning rate is determined as 0.01 based on a
trial-and-error process. We configured the number of iterations
to 200 for all DL clustering approaches, ensuring stable perfor-
mance. Additionally, we utilized the default hyperparameters
of the k-means algorithm implemented in Scikit-learn 1.4.1 for
clustering. The implementation of DC4Flood will be available
online at: https://github.com/Kasra2020/DC4Flood.

C. Evaluation metrics
In this work, we utilized the four following evaluation

metrics:
• Overall accuracy (OA): is the widely used supervised

evaluation metric, where OA reports how many pixels
are correctly labeled [18].

• Normalized mutual information (NMI): is an established
unsupervised evaluation metric, which provides the re-
duction in entropy of cluster labels when the cluster labels
are given [19].

• Adjusted rand index (ARI): is another well-known un-
supervised evaluation metric. ARI reports the similarity
between two partitions (i.e., clustering result and ground
truth data) [19].

• Silhouette coefficient (SiC): is a fully unsupervised eval-
uation metric that does not require ground truth data. SiC
indicates how well each pixel is clustered with respect to
its assigned cluster [20].

https://github.com/Kasra2020/DC4Flood
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Fig. 2. The Ghana, India, and USA SAR images, their corresponding ground truth data, and their respective generated clustering maps using k-means, PCA,
AE, VAE, CAE, DC4Flood. Please note that the color scheme, white and black present the flooded and non-flooded regions, respectively.

D. Clustering performance

• Training process of DC4Flood: Table.II displays the
optimization requirements for DC4Flood, varying with
different convolutional operations (standard or dilated).
Increasing the kernel window size leads to a substantial
rise in parameters (53, 260, 020), while utilizing dilated
convolutions significantly reduces them (30, 844, 660),
ensuring effective capture of multi-scale spatial informa-
tion with lower computational load. We explored dilation
rates of 1, 2, and 4, but dilation rate 4 did not improve
results, possibly due to SAR image noise structure. Nev-
ertheless, depending on the applications, additional hy-
perparameter tuning may be required. Furthermore, Fig. 3
shows the convergence of DC4Flood after 200 iterations
across all six test sites. Notably, stable performance is
achieved after 100 iterations, suggesting that reducing the
iteration count from 200 to 100 would not significantly
impact DC4Flood’s performance.

• Comparison to SOTA clustering approaches: We com-
pared our proposed algorithm with five different clus-
tering approaches to detect flooded areas, where two
are classical approaches (i.e., k-means [21] and principal
component analysis (PCA) [22]) and two DL-based ones
(i.e., AE [18], variational AE (VAE) [23], CAE [18]).
In order to have a fair comparison across DL-based ap-
proaches, we set a similar number of extracted features at
each layer as 32, 64, 128, 256, 512, and 1024. Moreover,
for the convolutional-based clustering approaches (i.e.,
CAE and DC4Flood), the kernel size has been set to 3×3.
The quantitative assessment of clustering approaches, as
an average over five independent runs, is in Table I. The
results show that DL-based clustering approaches can
prevail over classical clustering approaches. As reported
in Table I, there are improvements in OA by deploying
DL-based of about 20 − 39 points in Bolivia, Ghana,
Spain, and USA datasets, while the improvement is
only 1 − 30 points for the India and Mekong datasets.
In accordance with the overall result, we can observe

that incorporating spatial information within the training
process leads to higher accuracy in terms of different
evaluation metrics. DC4Flood attains the highest OA
compared to all studied clustering approaches in different
case study areas. Nevertheless, DC4Flood and CAE have
relatively similar performances across different areas.
Such an observation might be due to the nature of SAR
images acquired in these regions.
Fig. 2 illustrates the original SAR polarimetric channels
(i.e., VV and VH) for different case study areas, their cor-
responding ground truth, and generated clustering maps.
At first glance, one can observe that the classical models
(i.e., k-means and PCA) produce the so-called ”noisy”
labels. In other words, such classical approaches tend to
generate heterogeneous patches of clusters. These behav-
iors can be explained by (1) their linear nature, which
prevents them from capturing the non-linear relation
between pixels in a SAR image; (2) they do not explore
the spatial information from the neighboring pixels. As
depicted in Fig. 2, DL-based approaches generate more
homogeneous patches of clusters; nonetheless, detailed
examination reveals that the generated clustering maps by
both AE and VAE still suffer from the ”salt-pepper” issue,
while by incorporating spatial information, we observe
that this issue is significantly mitigated. As stated before,
CAE and DC4Flood have relatively similar results, but
the detailed examination of generated clustering maps
unveils that the results produced by DC4Flood agree
more with the ground truth data in different regions. This
observation indicates that including multi-scale spatial
information within the clustering process can improve the
delineation of inundated areas using SAR images.

IV. CONCLUSION

This article introduces a deep clustering framework, denoted
as DC4Flood, designed for the identification of flooded regions
through SAR imagery. Employing an unsupervised training
approach, DC4Flood leverages a CAE structure to effectively



SUBMITTED TO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. X, NO. X, 2024 5

TABLE I
THE QUANTITATIVE COMPARISON OF STUDIED CLUSTERING APPROACHES
IN TERMS OF OA, NMI, ARI, AND SIC. THE RESULTS ARE REPORTED AS

AN AVERAGE OF 5 INDEPENDENT RUNS.

Country Evaluation metric Classic Deep learning

k-means PCA AE VAE CAE DC4Flood

Bolivia

OA(%) 60.78 ± 0.00 60.96 ± 0.00 81.76 ± 0.16 82.25 ± 0.19 93.75 ± 0.12 96.99 ± 0.03
NMI(%) 0.70 ± 0.00 0.71 ± 0.00 2.41 ± 0.02 1.94 ± 0.02 26.87 ± 0.20 30.22 ± 0.20
ARI(%) 0.28 ± 0.00 0.28 ± 0.00 3.93 ± 0.06 3.84 ±0.04 30.37 ± 0.21 37.95 ± 0.22
SiC(%) 38.53 ± 0.00 38.56 ± 0.00 77.82 ± 0.20 49.92 ± 0.20 89.09 ± 0.16 89.14 ± 0.06

Ghana

OA(%) 60.22 ± 0.00 60.40 ± 0.00 86.74 ± 0.20 82.27 ± 0.24 96.66 ± 0.06 99.86 ± 0.00
NMI(%) 1.14 ± 0.00 1.15 ± 0.00 36.99 ± 0.33 12.44 ± 0.08 46.87 ± 0.33 72.82 ± 0.03
ARI(%) 0.44 ± 0.00 0.45 ± 0.00 44.63 ± 0.41 10.62 ± 0.10 55.68 ± 0.36 82.21 ± 0.03
SiC(%) 35.65 ± 0.00 35.68 ± 0.00 83.56 ± 0.16 63.07 ± 0.29 92.69 ± 0.11 99.34 ± 0.00

India

OA(%) 85.11 ± 0.00 85.10 ± 0.00 86.09 ± 0.18 83.97 ± 0.17 91.74 ± 0.11 97.65 ± 0.01
NMI(%) 20.45 ± 0.00 20.44 ± 0.00 38.48 ± 0.33 20.69 ± 0.06 28.23 ± 0.33 37.86 ± 0.31
ARI(%) 23.34 ± 0.00 23.32 ± 0.00 45.40 ± 0.40 20.35 ± 0.06 34.15 ± 0.40 45.94 ± 0.38
SiC(%) 51.05 ± 0.00 51.05 ± 0.00 86.29 ± 0.12 66.99 ± 0.23 89.01 ± 0.14 98.37 ± 0.01

Mekong

OA(%) 64.31 ± 0.00 64.40 ± 0.00 69.09 ± 0.16 77.61 ± 0.13 70.28 ± 0.15 94.55 ± 0.20
NMI(%) 10.73 ± 0.00 10.76 ± 0.00 22.48 ± 0.01 20.09 ± 0.06 29.26 ± 0.11 33.18 ± 0.10
ARI(%) 2.98 ± 0.04 4.02 ± 0.04 29.78 ± 0.07 22.98 ± 0.02 32.80 ± 0.12 36.57 ± 0.09
SiC(%) 42.42 ± 0.00 42.42 ± 0.00 75.77 ± 0.17 45.19 ± 0.17 76.75 ± 0.16 91.38 ± 0.10

Spain

OA(%) 74.69 ± 0.00 74.86 ± 0.00 93.25 ± 0.05 89.45 ± 0.19 94.97 ± 0.06 98.25 ± 0.01
NMI(%) 10.46 ± 0.00 10.53 ± 0.00 14.83 ± 0.04 27.28 ± 0.22 22.20 ± 0.31 45.80 ± 0.27
ARI(%) 9.14 ± 0.00 9.26 ± 0.00 17.13 ± 0.04 35.44 ± 0.29 30.75 ± 0.31 56.33 ± 0.27
SiC(%) 42.24 ± 0.00 42.31 ± 0.00 89.71 ± 0.08 62.49 ± 0.22 91.40 ± 0.14 96.75 ± 0.05

USA

OA(%) 64.19 ± 0.00 63.98 ± 0.00 81.00 ± 0.24 82.63 ± 0.22 92.11 ± 0.15 98.86 ± 0.00
NMI(%) 4.01 ± 0.00 3.98 ± 0.00 19.25 ± 0.17 20.08 ± 0.05 34.23 ± 0.21 37.72 ± 0.22
ARI(%) 2.21 ± 0.00 2.17 ± 0.00 29.20 ± 0.28 28.92 ± 0.05 43.43 ± 0.28 48.47 ± 0.28
SiC(%) 41.36 ± 0.00 41.32 ± 0.00 85.16 ± 0.12 72.24 ± 0.22 89.82 ± 0.12 97.79 ± 0.01

TABLE II
THE NUMBER OF LEARNABLE PARAMETERS FOR DC4FLOOD USING

DIFFERENT CONVOLUTIONAL OPERATIONS.

Approach No. parameters
DC4Flood (standard conv) 53,260,020
DC4Flood (dilated conv) 30,844,660
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Fig. 3. Illustration of the convergence of DC4Flood across all test sites.

deal with the inherent noise present in SAR images. Further-
more, the model utilizes multiple dilated convolutions with
different dilation rates, enabling it to exploit spatial infor-
mation from adjacent pixels across various receptive fields.
Experimental results underscore the superior performance of
DC4Flood when compared to other studied clustering ap-
proaches. As a result, such an unsupervised framework can
be a valuable tool for decision-makers to promptly respond to
flood situations.
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