
Toward Research Software Categories
Wilhelm Hasselbring, Software Engineering, Kiel University, Kiel, 24098, Germany

Stephan Druskat, German Aerospace Center (DLR), Berlin, 12489, Germany

Jan Bernoth, University of Potsdam, Potsdam, 14476, Germany

Philine Betker, Department for Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany

Michael Felderer, German Aerospace Center (DLR) & University of Cologne, Cologne, 51147 , Germany

Stephan Ferenz, Department of Computer Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg

Anna-Lena Lamprecht, University of Potsdam, Potsdam, 14476, Germany

Jan Linxweiler, TU Braunschweig, Braunschweig, 38106, Germany

Bernhard Rumpe, Software Engineering, RWTH Aachen University, Germany

Abstract—Research software has been categorized in different contexts to serve
different goals. We start with a look at what research software is, before we
discuss the purpose of research software categories. We propose a
multi-dimensional categorization of research software. We present a template for
characterizing such categories. As selected dimensions, we present our proposed
role-based, developer-based, and maturity-based categories. Since our work has
been inspired by various previous efforts to categorize research software, we
discuss them as related works. We characterize all these categories via the
previously introduced template, to enable a systematic comparison.

R esearch software is software that is designed
and developed to support research activi-
ties. Research software is developed by re-

searchers themselves or by software engineers work-
ing closely with researchers. Research software is typ-
ically developed to meet specific research needs, and
often has unique requirements that are different from
standard commercial software [1]. However, research
software is gaining appreciation and endorsement for
research and as a research result itself [2], [3].

Research Software Engineering (RSE) is a special-
ized field that applies software engineering principles
to address the unique challenges posed by developing
software for scientific and academic research, with
the goal of enhancing the efficiency, reproducibility,
and impact of research outcomes. Research software
engineers specialize in developing and maintaining
software for scientific research purposes.

In this paper, we propose a multi-dimensional cate-
gorization of research software, along the dimensions
of roles, developers, and maturity. We start with a look
at what research software is before we discuss the

purpose of research software categories. We present
a template for characterizing such categories. Sub-
sequently, our proposed role-based, developer-based,
and maturity-based categories are presented. Our
work has been inspired by various previous efforts
to categorize research software, which we discuss as
related works. We characterize all these categories via
the previously introduced template, and conclude with
an outlook to future work.

Research Software
For the purposes of this paper, we follow the FAIR
for Research Software (FAIR4RS) Working Group in
their definition of research software, as software that
was created during the research process or for a
research purpose [4] [5]. This prescriptive definition
distinguishes “research software” and “software in
research,” which includes general purpose software.
The software components (e.g., operating systems,
programming languages, libraries, etc.) that are used
for research but were not created during or with a
clear research intent should be considered “software
in research” and not “research software.”

A descriptive definition of research software could

1

ar
X

iv
:2

40
4.

14
36

4v
1 

 [
cs

.S
E

] 
 2

2 
A

pr
 2

02
4



instead include all the software used in research, as for
instance done in [6] for analyzing GitHub repositories.
While such a descriptive definition may be useful in
analyzing research processes, and therefore may be
useful for RSE research [7], the prescriptive definition
defines a clearer focus for the work presented here,
and enables a better disambiguation of properties spe-
cific to research software. The Research Data Alliance
also adopted the prescriptive distinction between re-
search software and software in research [4], as we do.
Figure 1 shows the resulting segmentation of software.

All Software

Research
Software

Software in 
Research

FIGURE 1. Segmentation of all software, research software,
and software in research. In the present paper, we further
categorize the orange box, i.e., research software.

Purpose of Research Software
Categories

We envision the following benefits from using cate-
gories for research software, which may serve

› as a basis of institutional guidelines and checklists
for research software development;

› to better understand the different types of research
software and their specific quality requirements;

› to recommend appropriate software engineering
methods for the individual categories;

› to design appropriate teaching / education pro-
grams for the individual categories;

› to give stakeholders (especially research software
engineers and their management) a better under-
standing of what kind of software they develop;

› for a better assessment of existing software when
deciding to reuse it;

› for research funding agencies, to define appropri-
ate funding schemes;

› to define appropriate metadata labels for FAIR
research software [8], [9];

› in RSE Research [7], to provide a framework for
classifying research software artifacts.

This list is not exhaustive.

Characterization of Research
Software Categories

Categorizations can be described through their scope,
purpose, context, properties, consequences for cre-
ation and use, and their inter-categorial relations. Ta-
ble 1 provides a template for systematically describing
the characteristics of research software categoriza-
tions, which we will use later to characterize some
individual categories in the subsequent sections.

Role-Based Categorization of
Research Software

Research software can be used to collect, process,
analyze, and visualize data, as well as to model com-
plex phenomena and run sophisticated simulations.
Research software is also developed to control and
monitor lab experiments and environmental obser-
vations. In engineering research, research software
meanwhile constitutes a new paradigm of scientific
inquiry next to theory and experiment [10] and acts
as a proof-of-concept to invent and evaluate new tech-
nological artifacts, including algorithms, methods, sys-
tems, tools, and other computer-based technologies.
Research software also provides the infrastructure to
manage, publish, and archive research data and soft-
ware.

Thus, research software may take various roles
in the research process [11]. This is similar to soft-
ware engineering teams, which involve a range of
roles that contribute to the development, maintenance,
and improvement of software systems. Some common
roles in software engineering are software architect,
programmer, and tester. Each role may be taken by
several persons, and one person may take several
roles. These role assignments may also change during
a software project.

We propose a similar role-based categorization of
research software, with an emphasis on varying quality
requirements for the different roles, which software
may take in research. Accordingly, a research software
may take several roles, which may also change during
the life cycle of the software.

Research software mainly falls into one of the fol-
lowing three top-level role categories (and sometimes
combinations):

1) Modeling, Simulation, and Data Analytics of, e.g.,
physical, chemical, social, or biological processes
in spatio-temporal contexts.

2) Proof-of-Concept Software in science and engi-
neering research.

2 Toward Research Software Categories 2024



Criterion Explanation

Scope What is the scope of the categorization?
Purpose What is the purpose of the categorization?
Context In which contexts are specific categories developed and used?
Properties What are specific properties of the different categories?
Consequences for Creation How is and should software of a specific category be developed?
Consequences for Use How and why is software of a specific category used? What are the differences between the

categories in terms of use and reuse, including, e.g., in software publication & citation?
Inter-categorial relations What are the relations between different categories?

TABLE 1. Template for describing criteria of research software categorizations.

3) Research Infrastructure Software, such as re-
search data and software management systems.

The assignment of a research software to categories
may evolve over time. For instance, software specifi-
cally developed for a research question (usually Cate-
gories 1 & 2) can later turn into infrastructure software
(Category 3) [12]. In different contexts, a software
may also be in multiple categories at the same time.
As an example, the Monticore [13] framework for
the development of domain specific languages initially
was a proof-of-concept for researching implementation
methods for developing domain specific languages.
Meanwhile, Monticore is mainly used for developing
specific domain specific languages, thus it turned into
a research infrastructure. Still, some original research
on developing domain specific languages is done in
the Monticore context.

Category 1) software for modeling, simulation, and
data analytics is quite large. We further refine this
category with several subcategories:

1.1) Modeling and simulation (e.g., numerical mod-
eling, agent-based modeling).

1.2) Data analytics, on observation and simulation
data, with statistical analysis and machine learn-
ing as methods.

1.3) Integrative analysis (data assimilation and deci-
sion analysis)

1.4) Scientific visualization

Category 2) for proof-of-concept software is used in
structural sciences (mathematics and computer sci-
ence) and in engineering sciences (software, electrical,
mechanical, and civil engineering). Examples for proof-
of-concept research software are a software for flexible
energy management of vehicle fleets within a harbor
terminal that was developed and evaluated in the
FRESH research project [14], and the Kieker moni-
toring framework that has been employed in various
software engineering research projects [15].

Category 3) for research infrastructure software is
also quite large. We further refine this category with
several subcategories:

3.1) Control and monitoring software for complex
experiments and instruments. This includes em-
bedded control software, as well as native and
web-based monitoring software.

3.2) Data collection (survey software, sensor-based
data collection, etc.).

3.3) Pipelines, Workflows, and frameworks for com-
posing software components.

3.4) Libraries, for instance for high performance
computing.

3.5) Laboratory Notebooks.
3.6) Data Management.
3.7) Software Management.
3.8) Collaboration software.

These categories have varying quality requirements.
For instance, dedicated requirements engineering may
be relevant for Category 3), but not for Category 1). As
another example, safety analysis may be relevant for
Category 3.1), but not for Categories 1) and 2).

Figure 2, left, shows our resulting role-based cate-
gorization.

Table 2 characterizes our multi-dimensional cate-
gorization in terms of the template in Table 1. The
developer-based and maturity-based categorizations
are introduced in the following two sections, before we
discuss some related categorizations.

Developer-Based Categorization of
Research Software

For the developer dimension, we see the following
stages for research software:

1) Individual Researcher, such as PhD student or
PostDoc.

2) Local Research Group
3) Project Group, in which several research groups

may collaborate.
4) Community on a specific research topic.
5) Contractor (professional software company devel-

oping the software on behalf of the researchers).
A community or contractor may develop the soft-
ware open-source, closed-source, or it may provide

2024 Toward Research Software Categories 3



Research Software
Category

Role in Research

Modeling, Simulation and Data Analytics

Modeling and Simulation
Numerical Modeling

Agent-based Modeling

Data Analytics

Data
Observation Data

Simulation Data

Method
Statistical Analysis

Machine Learning

Integrative Analysis
Data Assimilation

Decision Analysis

Scientific Visualization

Proof-of-Concept Software

Mathematics Research

Computer Science Research

Software Engineering Research

Electrical Engineering Research

Mechanical Engineering Research

Civil Engineering Research

Research Infrastructure Software

Control and Monitoring Software

Embedded

Web-Based

Native

Data Collection

Pipelines / Workflows

Libraries

Laboratory Notebooks

Data Management

Software Management

Collaboration Software

Developer

Individual Researcher

Local Research Group

Project Group

Community

Open Source Research Software

Closed Source Research Software

Research Software as a Service

Contractor

Open Source Research Software

Closed Source Research Software

Research Software as a Service

Maturity

Research Data
Processes

Novel Methods
and Models

Accepted Methods
and Models

FIGURE 2. Our multi-dimensional categorization of research software, along the dimensions of roles, developers, and maturity.

4 Toward Research Software Categories 2024



Criterion Explanation

Scope This categorization covers the dimensions of roles, developers, and maturity.
Purpose The categorization aims to enable a better understanding of the different types of research

software and their specific quality requirements.
Context The categorization has been produced in the context of a task force of the special interest

group on Research Software Engineering, within the German Association of Computer
Science (GI e.V.) and the German Society for Research Software (de-RSE e.V.). It is meant
to serve different purposes, in particular RSE research [7].

Properties The categories follow different relevant dimensions, and are defined collaboratively among
software engineering researchers and research software engineers.

Consequences for Creation Depending on its category, software is expected to meet different quality requirements and
follow different development processes.

Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles
and functions.

Inter-categorial relations Individual research software may change its category within one or more dimensions.
TABLE 2. Characteristics of our multi-dimensional categorization for research software.

research software as an online service. An example
for a contractor-developed research software is PIA,
the Prospective Monitoring and Management App,
which has been developed by professional software
companies as open-source software, on behalf of the
Helmholtz Institute for Infection Research to conduct
observational epidemiological studies by facilitating
longitudinal data collection and cohort management
[16].

Figure 2, middle, shows our resulting developer-
based categorization.

Maturity-Based Categorization of
Research Software

Concerning a maturity-based categorization of re-
search software, we adopt the ARDC approach [17]:

1) Research Data Processes captured as software.
The result is analysis code that captures research
processes and methodology: the steps taken for
tasks like data generation, preparation, analysis,
and visualization.

2) Novel Methods and Models captured as software.
The results are prototype tools that demonstrate
a new idea, method, or model for research.

3) Accepted Methods and Models captured as soft-
ware. The result can become research software
infrastructure that captures more broadly accepted
and used ideas, methods, and models for re-
search.

Figure 2, right, shows the resulting maturity-based
categorization.

This categorization system is not yet complete. To
illustrate the gap between existing research categories,
we characterize them in the following section, based on
the characteristics from Table 1. Adding more dimen-

sions and refining the dimensions is subject to future
work.

Related Research Software
Categories

Research software has been categorized in different
contexts to serve different aims. Some of them are
discussed here as related works, as they a) represent
a good starting point for a discussion on research soft-
ware categorization, and b) may be used to compare
and assess our categorization. We characterize these
categories via the previously introduced template in the
appendix (supplement).

Role-Based Categorization
Van Nieuwpoort and Katz [11] present a role-based
categorization. They categorize research software as
an integral component of instruments used in research,
as the instrument itself, for analyzing research data,
for presenting research results, for assembling or in-
tegrating existing components, as infrastructure or an
underlying tool, and for facilitating research-oriented
collaboration. This categorization inspired our work,
but they suggest a different set of categories.

Maturity-Based Categorization
In their National Agenda for Research Software [17],
the Australian Research Data Commons – an Aus-
tralian research data infrastructure facility – argue for
research software to be recognized as a first-class
output of research. They describe a three-level cate-
gorization of research software that we adopted for our
maturity dimension.

Each category faces specific challenges with re-
gard to recognition, from making research practice

2024 Toward Research Software Categories 5



transparent, to creating impact through quality software
and safeguarding longer-term maintenance.

Application classes in institutional software
engineering guidelines
Institutional guidelines typically define so-called appli-
cation classes for research software, which require
appropriate quality properties, and, thus software en-
gineering methods [18][19]:

› For software in Application Class 0, the focus is on
personal use in conjunction with a small scope.

› For software in Application Class 1, it should be
possible, for those not involved in the develop-
ment, to use it to the extent specified and to
continue its development.

› For software in Application Class 2, it is intended
to ensure long-term development and maintain-
ability. It is the basis for a transition to product
status.

› For software in Application Class 3, it is essential
to avoid errors and to reduce risks. This applies in
particular to critical software.

The application classes relate to our maturity domain
and to some extent to our developer-based categoriza-
tion.

EOSC Research Software Lifecycle
The European Open Science Cloud (EOSC) aims to
create a virtual environment for sharing and accessing
research data across borders and scientific disciplines.
The SubGroup 1 “On the Software Lifecycle” of the
EOSC Task Force “Infrastructure for quality research
software” provides a categorization for software in the
research lifecycle [20]:

1) Individual creating research software for own use
(e.g. a PhD student).

2) A research team creating an application or work-
flow for use within the team.

3) A team / community developing (possibly broadly
applicable) open source research software.

4) A team or community creating a research service.

This categorization is covered by our developer-based
categorization.

Computational research in the earth system
sciences
Döll et al. [21] provide recommendations for sustain-
able research software for high-quality computational
research in the Earth System Sciences, and categorize
this research software as follows:

› Simulation of Earth system processes by Earth
system models.

› Design, processing and analysis of Earth obser-
vation and lab experiment data.

› Integrative analysis of simulation models, large
data bases, and stakeholder knowledge.

These categories correspond to our role-based cate-
gories 1.1), 1.2), and 1.3), respectively.

Categorizing the Software Stack
Another dimension is the research software stack,
from non-scientific infrastructure, scientific infrastruc-
ture, discipline-specific software, up to project-specific
software [22]. This dimension could be the basis for an-
other branch in our multi-dimensiomal categorization.

CONCLUSION
We categorize research software along various dimen-
sions, contributing to fostering effective development,
recognition, and utilization of research software within
the research community. One essential use case of
this categorization is its incorporation into forthcom-
ing guidelines for research software development. As
we classify research software, we enable tailoring
guidelines to specific classes, offering developers a
structured framework that aligns with each category’s
unique requirements and challenges.

Moreover, the categorization is intended to be a
valuable tool for stakeholders, especially research soft-
ware engineers and their group, chair, department,
or institute leaders. The categorization may provide
these individuals with a better understanding of the
software they are developing, offering insights into its
nature, purpose, and potential impact. This knowledge
is essential for informed decision-making, adequate
resource allocation, and strategic planning within re-
search institutions.

Recognition for research software engineers is an-
other outcome we anticipate from categorizing re-
search software. By delineating different types of soft-
ware and acknowledging the diverse skill sets required
for their development and maintenance, our catego-
rization aims to contribute to elevating the status of
research software engineers. We hope this recognition
motivates individuals and fosters a culture that values
and appreciates the crucial role played by software in
advancing research efforts.

Categorizations may also help assess external soft-
ware when considering its use. We envision that it
contributes to a standardized framework for evaluating
software’s relevance, applicability, and quality, facilitat-

6 Toward Research Software Categories 2024



ing informed decisions in adopting tools from different
sources.

The categorization may become particularly valu-
able in allocating project-based or permanent funding.
It can help researchers and developers clearly articu-
late their software’s significance in a funding proposal.
We envision this classification providing a framework
that helps researchers and funding agencies.

Additionally, the categorization may help to empha-
size which software is critical, highlighting the impor-
tance of its maintenance and continued development
for its continued functionality. By highlighting this im-
portance, we seek to contribute to an enhanced aware-
ness of the ongoing support and resources required
to ensure the longevity and sustainability of research
software.

In the realm of Research Software Engineering
(RSE) research [7], we hope that the categorization
provides a framework for classifying research objects,
supporting software corpus analyses, and enhancing
our understanding of the different types of research
software and their properties. This structured approach
may aid in organizing and interpreting the vast land-
scape of research software, contributing to advance-
ments in RSE methodologies and practices.

We propose a multi-dimensional categorization of
research software, along the dimensions of roles,
developers, and maturity. The various dimensions of
the categorization are not completely independent of
each other. Looking at the dependency between the
dimension and identifying constraints on combinations
of the dimensions is the subject of future work. Addi-
tional dimensions could be the reuse scenarios (such
as single-use/single-purpose, extensibility, reusability),
the users (such as scientists, humans as research sub-
jects, and citizens), the research software stack [22],
and the criticality (for instance, mission-critical soft-
ware). Such extensions and refinements are subject
to future work.

2024 Toward Research Software Categories 7



Appendix
Characterization of Related Research Software Categories

The related research software categories are characterized in terms of the template in Table 1.
Table 3 characterizes the role-based categorization by van Nieuwpoort and Katz [11].
Table 4 characterizes the ARDC categorization.
Table 5 characterizes the institutional guideline application class categorization.
Table 6 characterizes the EOSC research software lifecycle categorization.
Table 7 characterizes the categories in computational research in the Earth system sciences.
Table 8 characterizes the software stack categorization [22].

Criterion Explanation

Scope Role-based categorization.
Purpose Funding organizations joined forces to explore how they could effectively contribute to making

research software sustainable.
Context International workshop in 2022 on the future of research software, organized by the Research

Software Alliance (ReSA) and the Netherlands eScience Center.
Properties The roles for research software are defined from the point of view of a researcher, with the

goal of making this understandable for funders and policymakers.
Consequences for Creation Depending on its role category, software is expected to meet different quality requirements

and follow different development processes.
Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles

and functions.
Inter-categorial relations Individual research software may change its role or take multiple roles.

TABLE 3. Characteristics of the role-based categorization by van Nieuwpoort and Katz [11].

Criterion Explanation

Scope The categorization in [17] supports a discussion about recognition of software in research,
with the aim to increase this recognition.

Purpose The categorization aims to describe the purpose of the software it categorizes as capturing
applied or widely accepted research ideas, methodology, and models, or demonstrating new
ones.

Context The categorization has been produced in the context of ARDC’s research software policy.
Properties The properties of the categories represent different challenges faced by software that fall in

the respective category.
Consequences for Creation Depending on its category, software is expected to meet different requirements. While analysis

code should be FAIR [4], prototype tools should exhibit a “high quality”, and research software
infrastructure must be created for sustainability, which is realized through safeguarding its long-
term maintenance.

Consequences for Use Software use is featured only implicitly in the categorization. We expect that software under
the different categories are expected to be used differently: Analysis tools are used for specific
research tasks, and are more likely to have a small scope, e.g., are applied only to answer
a specific research question. Prototype tools are used to test the methodological hypotheses
they implement, but may also be used experimentally to answer specific research questions.

Inter-categorial relations The categories are related through evolution and transitive value. One category evolves from
another, e.g., analysis code may evolve into a prototype tool, that in turn evolves into research
software infrastructure.

TABLE 4. Characteristics of ARDC’s research software categorization.

8 Toward Research Software Categories 2024



Criterion Explanation

Scope Guidelines for software engineering at an academic institution.
Purpose Identify suitable quality requirements.
Context Institutional policy and practice.
Properties Criticality, institutional risk, projected use, development timeline, distribution, commercial

exploitation.
Consequences for Creation Increasingly employ established software engineering methods.
Consequences for Use Increased (critical) use by increasingly large community.
Inter-categorial relations Transitive requirements, legal requirements.

TABLE 5. Characteristics of institutional guideline application classes.

Criterion Explanation

Scope Developer- and stakeholder-based categorization.
Purpose Achieve a common understanding of the current processes in research software engineering,

particularly the research software lifecycle.
Context SubGroup 1 “On the Software Lifecycle” of the EOSC Task Force “Infrastructure for quality

research software”.
Properties Different levels of adopting software engineering practice, different publication requirements

and usage scenarios, different stakeholders
Consequences for Creation Depending on its developer category, software is expected to meet different quality require-

ments and follow different development processes.
Consequences for Use Increasing maturity and support for reproducibility
Inter-categorial relations Not specified

TABLE 6. Characteristics of the EOSC research software lifecycle categorization.

Criterion Explanation

Scope Recommendations for universities, funders, and the scientific community.
Purpose Safeguard the quality and efficiency of computational research in Earth System Sciences and

make research results that have been generated by research software reproducible.
Context Ideas of a DFG round table meeting on sustainable research software for high-quality

computational research in the Earth System Sciences.
Properties Research software developed in the Earth System Sciences is characterized by the complexity

of the underlying models, multifaceted dependencies, the multi-modality of the data, and the
size of the data, which can impose specific hardware and software requirements.

Consequences for Creation Depending on its role category, software is expected to meet different quality requirements
and follow different development processes.

Consequences for Use Dependency on the research cycle
Inter-categorial relations Combination, integration

TABLE 7. Characteristics of categories in computational research in the Earth system sciences.

Criterion Explanation

Scope Describing principles of software collapse.
Purpose Identify dependent layers of different (academic) specificity to model threat.
Context Research software sustainability.
Properties Domain specificity.
Consequences for Creation Build on stable lower layers, quickly react to threats, accept agility.
Consequences for Use Decreasing specificity of application domain from top to bottom.
Inter-categorial relations Dependency, transitive threats.

TABLE 8. Characteristics of categorizing the software stack.

2024 Toward Research Software Categories 9



REFERENCES
1. A. Johanson and W. Hasselbring, “Software engineering for computational science: Past, present, future,” Computing

in Science & Engineering, vol. 20, no. 2, pp. 90–109, Mar. 2018. doi: 10.1109/MCSE.2018.021651343
2. C. Jay, R. Haines, and D. S. Katz, “Software Must be Recognised as an Important Output of Scholarly Research,”

International Journal of Digital Curation, vol. 16, no. 1, p. 6, Apr. 2021. doi: 10.2218/ijdc.v16i1.745
3. H. Anzt, F. Bach, S. Druskat, F. Löffler, A. Loewe, B. Y. Renard et al., “An environment for sustainable research software

in Germany and beyond: Current state, open challenges, and call for action,” F1000Research, vol. 9, p. 295, Jan. 2021.
doi: 10.12688/f1000research.23224.2

4. N. P. Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht, C. Martinez, F. E. Psomopoulos et al., “FAIR Principles for
Research Software (FAIR4RS Principles),” Research Data Alliance, May 2022. doi: 10.15497/RDA00068

5. M. Gruenpeter, D. S. Katz, A.-L. Lamprecht, T. Honeyman, D. Garijo, A. Struck et al., “Defining Research Software: A
controversial discussion,” Zenodo, Sep. 2021. doi: 10.5281/zenodo.5504016

6. W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and T. Tiropanis, “Open source research software,” Computer, vol. 53,
no. 8, pp. 84–88, Aug. 2020. doi: 10.1109/mc.2020.2998235

7. M. Felderer, M. Goedicke, L. Grunske, W. Hasselbring, A.-L. Lamprecht, and B. Rumpe, “Toward research software
engineering research,” Zenodo, 2023. doi: 10.5281/ZENODO.8020525

8. A.-L. Lamprecht, L. Garcia, M. Kuzak, C. Martinez, R. Arcila, E. M. D. Pico et al., “Towards FAIR principles
for research software,” Data Science, vol. 3, no. 1, pp. 37–59, Jun. 2020. doi: 10.3233/ds-190026

9. W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and T. Tiropanis, “From FAIR research data toward FAIR and open
research software,” it - Information Technology, vol. 62, no. 1, pp. 39–47, Feb. 2020. doi: 10.1515/itit-2019-0040

10. T. Hey, S. Tansley, K. Tolle, and J. Gray, The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research,
Oct. 2009. ISBN 978-0-9825442-0-4. [Online]. Available: https://www.microsoft.com/en-us/research/publication/fourth-
paradigm-data-intensive-scientific-discovery/

11. R. van Nieuwpoort and D. S. Katz, “Defining the roles of research software,” Upstream, Jun. 2023. doi:
10.54900/9akm9y5-5ject5y

12. D. S. Katz, “Incentives and frictions in community software projects,” Zenodo, Jun. 2022. doi: 10.5281/zenodo.6677821
13. H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for compositional development of domain specific

languages,” International Journal on Software Tools for Technology Transfer, vol. 12, no. 5, 2010. doi: 10.1007/s10009-
010-0142-1

14. S. Holly, A. Nieße, M. Tröschel, L. Hammer, C. Franzius, V. Dmitriyev et al., “Flexibility management and provision
of balancing services with battery-electric automated guided vehicles in the Hamburg container terminal Altenwerder,”
Energy Informatics, vol. 3, no. 1, p. 26, Oct. 2020. doi: 10.1186/s42162-020-00129-1

15. W. Hasselbring and A. van Hoorn, “Kieker: A monitoring framework for software engineering research,” Software Impacts,
vol. 5, p. 100019, Aug. 2020. doi: 10.1016/j.simpa.2020.100019

16. J.-K. Heise, R. Dey, M. Emmerich, Y. Kemmling, S. Sistig, G. Krause, and S. Castell, “Putting digital epidemiology
into practice: PIA – prospective monitoring and management application,” Informatics in Medicine Unlocked, vol. 30, p.
100931, 2022. doi: 10.1016/j.imu.2022.100931

17. Australian Research Data Commons, “A National Agenda for Research Software,” Zenodo, Mar. 2022. doi: 10.5281/zen-
odo.6378082

18. T. Schlauch, M. Meinel, and C. Haupt, “DLR Software Engineering Guidelines,” Zenodo, Aug. 2018. doi: 10.5281/ZEN-
ODO.1344612

19. O. Bertuch, D. Oliveira, U. Schelhaas, and A. Storm, “Guidelines for the development and distribution
of software at Forschungszentrum Jülich,” Forschungszentrum Jülich, Tech. Rep., 2022. [Online]. Available:
http://hdl.handle.net/2128/33259

20. G. Courbebaisse, B. Flemisch, K. Graf, U. Konrad, J. Maassen, and R. Ritz, “Research software lifecycle,” Zenodo,
Sep. 2023. doi: 10.5281/zenodo.8324828

21. P. Döll, M. Sester, U. Feuerhake, H. Frahm, B. Fritzsch, D. C. Hezel et al., “Sustainable research software for high-quality
computational research in the Earth system sciences: Recommendations for universities, funders and the scientific
community in Germany,” FID GEO, Feb. 2023. doi: 10.23689/fidgeo-5805

22. K. Hinsen, “Dealing With Software Collapse,” Computing in Science Engineering, vol. 21, no. 3, pp. 104–108, May 2019.
doi: 10.1109/MCSE.2019.2900945

10 Toward Research Software Categories 2024

https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.2218/ijdc.v16i1.745
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.15497/RDA00068
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.1109/mc.2020.2998235
https://doi.org/10.5281/ZENODO.8020525
https://doi.org/10.3233/ds-190026
https://doi.org/10.1515/itit-2019-0040
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://doi.org/10.54900/9akm9y5-5ject5y
https://doi.org/10.5281/zenodo.6677821
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1186/s42162-020-00129-1
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1016/j.imu.2022.100931
https://doi.org/10.5281/zenodo.6378082
https://doi.org/10.5281/zenodo.6378082
https://doi.org/10.5281/ZENODO.1344612
https://doi.org/10.5281/ZENODO.1344612
http://hdl.handle.net/2128/33259
https://doi.org/10.5281/zenodo.8324828
https://doi.org/10.23689/fidgeo-5805
https://doi.org/10.1109/MCSE.2019.2900945

	Research Software
	Purpose of Research Software Categories
	Characterization of Research Software Categories
	Role-Based Categorization of Research Software
	Developer-Based Categorization of Research Software
	Maturity-Based Categorization of Research Software
	Related Research Software Categories
	Role-Based Categorization
	Maturity-Based Categorization
	Application classes in institutional software engineering guidelines
	EOSC Research Software Lifecycle
	Computational research in the earth system sciences
	Categorizing the Software Stack

	CONCLUSION
	Appendix
	REFERENCES

