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Abstract
In the ongoing development of DLR’s Versatile Aeromechanics Simulation Tool, an elastic-
beam model is integrated into the multibody system based on the floating frame-of-reference
formulation. Although the application of this formulation for one-dimensional beam models
has already been addressed in the literature, the challenge remains to properly model the
torsion dynamics of rotor blades – especially under high centrifugal loads. To this aim, this
work suggests the consideration of rotational shape functions in the inertia shape integrals
and in the application of gravitational, inertial, and external loads. This modified approach
is validated based on the structural analysis of a rotor blade with complex geometrical prop-
erties.

Keywords Torsion dynamics · Inertia shape integrals · Centrifugal loads · Rotational shape
functions · Propeller moment
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BAM Beam Advanced Model
DLR German Aerospace Center
FE Finite Element
FFR Floating Frame-of-Reference
Fi ith blade flap mode, i = 1,2,3, . . .

Li ith blade lead-lag mode, i = 1,2,3, . . .

MBS Multibody System
ODE Ordinary Differential Equations
Ti ith blade torsion mode, i = 1,2,3, . . .

VAST Versatile Aeromechanics Simulation Tool
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A (m2) area
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a (m/s2) translatory acceleration of the FFR
a, c (m) side lengths
Dff (Nms) damping matrix of FE system
E (N/m2) Young’s modulus
F (N) force vector
g (m/s2) gravitational acceleration
Iij (div.) cross-sectional mass moment of order ij = 00,10,01,20,02,11
J̄θf (kgm2) coupling matrix: rigid rotational – flexible
J̄θθ (kgm2) rigid rotational inertia tensor
Kff (Nm) stiffness matrix of FE system
k (Nm/rad) torsional stiffness
M (Nm) moment vector
Mff (kgm2) mass matrix of FE system
m (kg) mass
mRR (kg) rigid translatory mass matrix
Q (div.) right-hand side load terms
R (m) radius
rI (−) flexible position states
rII (1/s) flexible velocity states, rII = ṙI

S (m) complemented shape function matrix S = Stra − ũA Srot

Srot (rad) rotational shape function matrix
Stra (m) translatory shape function matrix
S̄ (kgm) coupling matrix: rigid translatory – flexible
˜̄St (kgm) coupling matrix: rigid translatory – rigid rotational
T (−) rotation matrix: FFR to local cross-sectional frame
ū (m) position vector relative to the FFR
uA (m) position vector within the cross-section
ūm (m) cross-sectional reference location relative to the FFR
u, v, w (m) translatory flexible deflections in directions ζ , ξ , η

V (m3) volume
v (m/s) translatory velocity vector
x, y, z (m) coordinates in the FFR
ζ (m) coordinate along the reference axis
η (m) vertical coordinate orthogonal to the reference axis
ϑ (◦) inclination
ξ (m) lateral coordinate orthogonal to the reference axis
ρ (kg/m3) mass density
�, �ξ , �η (rad) rotational flexible deflections around ζ , ξ , η

	 (rad/s) rotor speed
ω (rad/s) angular velocity vector

Indices, accentuations, and operators
()c centrifugal
()e external
()f flexible motion
()flex due to deformation
()g gravitational
()loc in local cross-sectional frame
()p related to the propeller moment



FFR beam modeling for torsion dynamics of helicopter rotor blades

()pre undeformed (e.g., pretwist)
()R rigid translatory motion
()v inertial
()θ rigid rotational motion
Ẋ time derivative of X
X′ spatial derivative of X
X̄ vector X is given relative to the FFR
XT transpose of X
X̃ cross product operator for vector X

1 Introduction

Helicopter rotor blades are usually slender structures with a rotor radius much larger than
the chord length and thickness. This geometrical property encourages modeling the blade as
a one-dimensional (1D) beam, which saves computational costs compared to a 3D structural
model. For this reason, multiphysics tools for helicopter (rotor) simulations – so-called com-
prehensive codes – commonly employ beam models to simulate the blades. This approach
is also taken in the Versatile Aeromechanics Simulation Tool (VAST) [3].

VAST’s structural kernel is a multibody system (MBS) that includes both rigid and flexi-
ble bodies. The MBS formalism is based on a set of minimal states that are comprised of the
joint states and the states representing flexible-body deformation. This method yields ordi-
nary differential equations (ODE) of motion, which is a requirement for each of the various
VAST models (MBS, airloads, inflow, control, etc.) that are coupled to each other by the
VAST solver.1 The ODE formalism requires the Jacobians of the bodies’ linear and angular
velocities v and ω as well as the flexible velocities rII with respect to the minimal states of
the whole MBS. These Jacobians are calculated using automatic differentiation [6]. This not
only improves the maintainability of the code, but also substantially simplifies the inclusion
of flexible body models.

The use cases of VAST include flexible structures (e.g., rotor blades, fuselage, tail boom)
that undergo large reference displacements, but only small deformations. Under these con-
ditions, the floating frame-of-reference (FFR) formulation [8, 9] is applicable with good
accuracy. At the same time, this method allows various types of flexible-body models to
be included, such as finite-element (FE) models or modal descriptions of deformation. For
these reasons, the FFR formulation is used instead of other approaches, e.g., the absolute
nodal coordinate formulation or the geometrically exact beam formulation (both compared
in [1]), although these are superior to the FFR formulation if geometric nonlinearities play
a role, i.e., in large deformation analyses.

For flexible bodies in VAST, the nodal position states rI and velocity states rII of the FE
model describe the body deformation with respect to the FFR, which moves (“floats”) rela-
tive to the inertial frame by v and ω. The vectors v and ω are expressed in the coordinates of
the FFR.2 These vectors represent the rigid-body portion of motion with the corresponding

mass matrix mRR, inertia tensor J̄θθ , and coupling matrix ˜̄ST
t , see the upper part of equa-

1In particular, differential algebraic equations (DAE) are not allowed for an individual VAST model.
2The time derivative of the FFR’s position in the inertial frame reads ẋ = R v, while the rotation R from the
FFR to the inertial coordinate system is internally handled by a quaternion. The quaternion’s time derivative
is based on the rotated angular velocity Rω.
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tion (1):

⎡
⎣ mRR

˜̄ST
t S̄

J̄θθ J̄θf

sym. Mff

⎤
⎦

⎡
⎣

v̇
ω̇

ṙII

⎤
⎦ =

⎡
⎣

0
0

−Kff rI − Dff rII

⎤
⎦ +

⎡
⎣

QR
g

Qθ
g

Qf
g

⎤
⎦ +

⎡
⎣

QR
v

Qθ
v

Qf
v

⎤
⎦ +

⎡
⎣

QR
e

Qθ
e

Qf
e

⎤
⎦ . (1)

The second-order differential equation of the FE system has been converted to a first-order
form; the trivial kinematic equation ṙI = rII is solved separately. In the lower part of equa-
tion (1), the FE system’s mass Mff, stiffness Kff, and damping Dff matrices are found. Kff

is composed of both the structural and geometric stiffnesses. Dff depends on the structural
damping model. In this paper, no structural damping is applied, i.e., Dff = 0. The right-
most entries S̄ and J̄θf in the upper part of the overall mass matrix constitute coupling terms
between the rigid-body motion and the flexible motion. The right-hand side includes gravita-
tional loads Qg, inertial loads Qv, and external loads Qe acting on the rigid translatory, rigid
rotational, and flexible motion (superscripts R, θ , and f, respectively). In the MBS, equa-
tion (1) is evaluated for the whole FE system, i.e., for the assembly of all finite elements.
Accordingly, in equation (1), rI and rII represent the states of all nodes. For the remainder of
the paper, in contrast, rI and rII represent the states of one element only (featuring 2 nodes).
All matrices and vectors given below refer to this one element.

The set of nodal states (rI, rII), the assembly of Kff, as well as a predominant portion of
the shape functions that are referenced in the following are based on the Beam Advanced
Model (BAM)3 [10–12]. BAM is specialized to address the needs of helicopter-blade mod-
eling. Through the introduction of differential degrees-of-freedom,4 it enables the efficient
computation of discontinuous physical characteristics, without the need for a refined dis-
cretization. BAM accounts for geometric stiffening by integrating the stress distribution in
the deformed configuration over the element, as described in [12, equation 22] and [11, equa-
tions 30 and 34]. This means that Kff = Kff(rI). Prior to the work at hand, BAM had been
integrated into the comprehensive code HOST in a prototypical fashion based on decoupled
dynamic equations for the rigid- and flexible-body motions [13]. In contrast, to address the
couplings between these kinds of motion as well as interactions with other bodies, BAM is
integrated into the MBS of VAST via the FFR approach.

In [12, equations 32 – 35], shape functions based on third-order Hermite polynomials are
defined for the translatory deflections u(ζ ), v(ζ ), w(ζ), and the torsional deflection �(ζ)

of a BAM element. ζ is the coordinate along the reference axis. That work also derives
expressions [12, equations 8 and 9] for the bending angles �ξ(ζ ), �η(ζ ) about the lateral
axis ξ and the vertical axis η, respectively, using Timoshenko beam theory to link these to the
translatory bending. Based on these relationships, the element’s translatory and rotational
shape function matrices Stra and Srot are defined as

⎡
⎣

u(ζ )

v(ζ )

w(ζ )

⎤
⎦ = Stra(ζ ) rI and

⎡
⎣

�(ζ)

�ξ (ζ )

�η(ζ )

⎤
⎦ = Srot(ζ ) rI, (2)

with rI representing the degrees-of-freedom of the BAM element. The indices 1 and 2 denote
the respective node of the element, while l and r indicate the left and right side of the node,

3Since the underlying Ph.D. thesis of BAM [10] is still under embargo at the time of publication of the paper
at hand, the publicly available references [11, 12] are provided additionally.
4Included are the derivatives with respect to the beam’s length axis of the axial elongation (u′) and torsion
about this axis (�′), at locations immediately to each side of the node.
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Fig. 1 Particle in a cross-section A moving due to torsional deformation of a 1D beam

respectively:

rI = (
u1, v1,w1,�1,�ξ,1,�η,1, u

′
1,l , u

′
1,r ,�

′
1,l ,�

′
1,r ,

u2, v2,w2,�2,�ξ,2,�η,2, u
′
2,l , u

′
2,r ,�

′
2,l ,�

′
2,r

)T
. (3)

Translatory shape function matrices are also applied in the FFR formulation [7, 9], where
deformations read Stra rI and deformation velocities read Stra rII. The sole use of Stra for
these kinematic evaluations works fine as long as Stra resolves all spatial dimensions, i.e.,
Stra = Stra(x, y, z), with x, y, z being the coordinates with respect to the FFR. However,
this is not the case for a 1D beam model, where Stra = Stra(ζ ) depends only on the beam-
axis coordinate ζ . For such beam models, the consideration of the rotational shape function
matrix Srot may be necessary to evaluate the translatory kinematics of a particle in the body,
as shown in the following.

Figure 1 illustrates a deformed finite beam element. The reference point of the cross-
section A is located at ūm. The bar indicates that the quantity is given relative to the FFR.
The particle under consideration is located at a distance uA from the reference axis, so that
the particle’s location with respect to the FFR reads

ū = ūm + uA. (4)

Its velocity is

˙̄u = ˙̄um + u̇A = Stra(ζ ) rII + ω̃flexuA, (5)

with ωflex = Srot(ζ ) rII and the tilde symbol denoting the cross product operator according to

a × b =
⎡
⎣

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎤
⎦ = ãb =

⎡
⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦

⎡
⎣

b1

b2

b3

⎤
⎦ . (6)

Equation (5) becomes

˙̄u = Stra(ζ ) rII − ũA Srot(ζ ) rII = [
Stra(ζ ) − ũA Srot(ζ )

]
︸ ︷︷ ︸

S

rII, (7)
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where the change from + to − is explained by ãb = −b̃a. The term

S(ζ, ξ, η) = Stra(ζ ) − ũA(ξ, η)Srot(ζ ) (8)

is called the complemented shape function matrix in this work. Due to uA = uA(ξ, η), it
depends not only on ζ , but also on the cross-sectional coordinates ξ and η.

In addition to its kinematic impact, Srot is also important for the dynamics of the flexible-
beam model. According to the FFR theory [7, 9], several submatrices and vectors of equa-
tion (1) include volume integrals with both the mass density ρ(x, y, z) and the translatory
shape function matrix Stra(x, y, z) as integrands – the so-called inertia shape integrals. As
in the kinematic example above, however, the sole consideration of Stra may be insufficient
for capturing dynamic effects related to torsional deformation. The first results of addition-
ally considering Srot in the inertial loads Qf

v were presented in [14]. In the present work, the
complemented shape function matrix S is consistently used instead of Stra in all inertia shape
integrals and all right-hand side load terms of equation (1). In Sect. 2, the individual terms
are given based on S according to equation (8). The benefit of the modified implementation
(S instead of Stra) in the analysis of rotating beams, especially helicopter rotor blades, is
presented in Sect. 3.

2 Theory

The terms of equation (1) are taken from the literature [7, 9] in their general 3D formulation.
This section presents two modifications of the terms:

• The 3D volume integrals are transformed to 1D integrals along the beam’s length. The
preevaluated cross-sectional integrals, which are included in the beam model’s configura-
tion data, appear as integrands. This transformation improves performance and facilitates
the configuration of beam models.

• The complemented shape function matrix S = Stra − ũA Srot is consistently applied.

2.1 Cross-sectional mass moments in the local frame

First, the following cross-sectional integrals are defined. In the local cross-sectional frame,
the offset uloc

A of a particle from the cross-sectional reference (beam-axis intersection point)
reads uloc

A = (0, ξ, η)T. Table 1 lists the cross-sectional mass moments in the local frame.
These are included in the beam model’s configuration data and do not depend on deforma-
tion, so they can be evaluated in advance.

Table 1 Cross-sectional mass moments, integrated in the local cross-sectional frame

0th order I00 = ∫
A ρ dA

1st order I10 = ∫
A ρ ξ dA I01 = ∫

A ρ η dA

2nd order I20 = ∫
A ρ ξ2 dA I02 = ∫

A ρ η2 dA I11 = ∫
A ρ ξ η dA
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2.2 Cross-sectional mass moments in the FFR

The transformation matrix T rotates vectors and matrices from the FFR to the local cross-
sectional frame. Thus, the application of TTv for vectors v and TTMT for matrices M rotates
from the local frame to the FFR. The FFR-transformed vectors and matrices are:

∫
A

ρ dA = I00 (9)

∫
A

ρuA dA = TT

⎡
⎣

0
I10

I01

⎤
⎦ or

∫
A

ρũA dA = TT

⎡
⎣

0 −I01 I10

I01 0 0
−I10 0 0

⎤
⎦T (10)

∫
A

ρũT
A ũA dA = TT

⎡
⎣

I20 + I02 0 0
0 I02 −I11

0 −I11 I20

⎤
⎦T (11)

∫
A

ρuA uT
A dA = TT

⎡
⎣

0 0 0
0 I20 I11

0 I11 I02

⎤
⎦T. (12)

T includes two rotations:

1. The orientation of the local frame with respect to the FFR in the undeformed configura-
tion. This contribution can be large, e.g., when the beam axis is bent, as is the case for
some modern helicopter rotor blades like the one investigated in Sect. 3.3.

2. The flexible rotation due to deformation of the beam. This part is usually small but can
be important – especially for the torsional dynamics, as presented in Sect. 3.2.

Consequently, the deformation states rI affect the rotation matrix T in equations (10)–(12),
so that these integrals – when expressed in the FFR – depend on the deformation of the beam
as well.

2.3 Inertia shape integrals

The particle’s location relative to the FFR is given by equation (4), where ūm is the cross-
sectional reference location (affected by translatory flexible displacements), and uA is the
offset within the cross-section (affected by rotational flexible displacements). This composi-
tion is used in the following for the transformation of the 3D integrals over the volume V to
1D integrals along the beam axis ζ . The integrals over the cross-sectional area A (equations
(9)–(12)) are highlighted in gray color to make them more easily recognizable. The integrals
corresponding to rigid-body motion (not affected by the introduction of the complemented
shape function matrix) are:

mRR =
∫

V

ρ I dV = I
∫

ζ

∫
A

ρdAdζ (13)

S̄t =
∫

V

ρ ū dV =
∫

ζ

∫
A

ρ (ūm + uA)dAdζ =
∫

ζ

[
ūm

∫
A

ρ dA +
∫

A

ρ uA dA

]
dζ (14)

J̄θθ =
∫

V

ρ ˜̄uT ˜̄u dV =
∫

ζ

∫
A

ρ ˜(ūm + uA)
T

˜(ūm + uA)dAdζ
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=
∫

ζ

[
˜̄uT

m
˜̄um

∫
A

ρ dA + ˜̄uT
m

∫
A

ρũA dA +
∫

A

ρũT
A dA ˜̄um +

∫
A

ρũT
A ũA dA

]
dζ. (15)

The integrals related to flexible motion are based on the complemented shape function ma-
trix S according to equation (8). These are:

S̄ =
∫

V

ρ S dV =
∫

ζ

∫
A

ρ
(
Stra − ũA Srot

)
dAdζ

=
∫

ζ

[
Stra

∫
A

ρ dA −
∫

A

ρũA dASrot

]
dζ (16)

J̄θf =
∫

V

ρ ˜̄u S dV =
∫

ζ

∫
A

ρ
(

˜ūm + uA

) (
Stra − ũA Srot

)
dAdζ

=
∫

ζ

[(
˜̄um

∫
A

ρ dA +
∫

A

ρũA dA

)
Stra

−
(

˜̄um

∫
A

ρũA dA −
∫

A

ρũT
A ũA dA

)
Srot

]
dζ (17)

Mff =
∫

V

ρ STS dV =
∫

ζ

∫
A

ρ
(
Stra − ũASrot

)T (
Stra − ũASrot

)
dAdζ

=
∫

ζ

[
ST

traStra

∫
A

ρ dA − ST
tra

∫
A

ρũA dASrot

−ST
rot

(∫
A

ρũA dA

)T

Stra + ST
rot

∫
A

ρũT
A ũA dASrot

]
dζ. (18)

Note that Stra = Stra(ζ ) and Srot = Srot(ζ ). Along with the cross-sectional integrals’ depen-
dency on the deformation state rI due to flexible rotation (cf. Sect. 2.2), the integrals in
equations (14), (15), and (17) also depend on the deformation because ūm = ūm(ζ, rI).

2.4 Load terms

Finally, the loads Qf
g, Qf

v, and Qf
e also contain the shape function matrix S. g denotes the

gravitational acceleration expressed in the FFR, while a is the FFR acceleration due to an-
gular velocities in the MBS:

Qf
g =

∫
V

ρ ST g dV = S̄T g (19)

Qf
v = −

∫
V

ρ ST
(
a + ω̃ω̃ū + 2ω̃ ˙̄u)

dV

= −
∫

ζ

∫
A

ρ
(
Stra − ũASrot

)T

· (a + ω̃ω̃ (ūm + uA) + 2ω̃
(
Stra − ũASrot

)
rII

)
dAdζ

=
∫

ζ

[
ST

tra

(
(−a − ω̃ω̃ūm − 2ω̃ Stra rII)

∫
A

ρdA
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−ω̃ω̃

∫
A

ρuAdA + 2ω̃

∫
A

ρũAdASrot rII

)

+ST
rot

(∫
A

ρũT
AdA(a + ω̃ω̃ūm + 2ω̃ Stra rII) − ω̃

∫
A

ρũT
A ũA dAω

+2

(
ω̃

∫
A

ρuA uT
A dA −

∫
A

ρũT
A ũA dAω̃

)
Srot rII

)]
dζ (20)

Qf
e =

n∑
i=1

ST
tra(ζi)Fi + ST

rot(ζi)Mi . (21)

In equation (20), the conversions ũT
Aω̃ω̃uA = −ω̃ũT

AũAω and −ũT
Aω̃ũA = ω̃uAuT

A − ũT
AũAω̃

have been used. Equation (21) differs from the other load terms because the external loads
Qf

e are n pairs of discrete forces and moments (Fi ,Mi ), while Qf
g and Qf

v are volume forces.

3 Results

The modified implementation has a significant influence on the inertial loads term Qf
v acting

on the flexible motion. The added value of using the complemented shape function matrix
S = Stra − ũA Srot instead of the original shape function matrix S = Stra for calculating Qf

v is
illustrated in the following. Section 3.2 verifies the implementation based on an academic
test case with analytic reference results, and Sect. 3.3 presents results for a practical test
case. Prior to these problem-specific results, a general verification based on a simple rotor
blade is provided in Sect. 3.1.

3.1 General verification

The beam formulation presented in this paper is used for the modal analysis of a model
helicopter rotor blade [15]. The rotor radius is 1.397 m, and the rotor speed varies between
0 and 660 rpm. The blade is attached to the hub at a radial station of 0.076 m (5.4% of the
rotor radius) via hinges for flap (out-of-plane) and lead-lag (inplane) motion of the blade.
The reference includes all the required configuration data of the structural model. It should
be noted that the Young’s modulus in [15] is given as E = 1.0 · 107 lb/in2, but its unit is
obviously intended as lbf/in2.

The VAST beam model consists of 18 BAM elements. The corresponding radial stations
of the nodes are listed in Table 2. 15 elements are required to account for the abrupt pa-
rameter changes along the radius according to [15, Table 1]. Three additional elements5 are
inserted in the uniform-blade section between R = 0.718 m and R = 1.295 m (51% to 93%
of the radius).

In Fig. 2, the resulting eigenfrequencies (“VAST-BAM, S = Stra − ũA Srot”) are compared
to the measured and predicted eigenfrequencies from [15], “TM4760”. The two eigenfre-
quencies corresponding to the rigid-body flap and lead-lag modes (lowest two graphs) are
not provided in [15]. The correlation between VAST-BAM and NASTRAN is very good.
A discussion of the correlation between the numerical predictions and the experimental

5Only one element for the uniform section caused too high eigenfrequencies. The first seven eigenfrequencies
converged with three or more additional elements for the uniform section.
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Table 2 Nodal stations of the 18
BAM elements R (m) Comment R (m) Comment

0.076 hinge & FFR location 0.718 begin of uniform section

0.174 0.862 inserted

0.225 1.006 inserted

0.270 1.151 inserted

0.318 1.295 end of uniform section

0.330 1.340

0.391 1.346

0.453 1.372

0.603 1.378

. . . table continues to the right. . . 1.397 tip location

Fig. 2 Campbell diagram of the
model helicopter rotor blade, all
frequencies normalized to a
nominal rotor speed of
	 = 69.115 rad/s (660 rpm),
configuration data and reference
results (TM4760) taken from [15]

eigenfrequencies is omitted because it is unclear how the beam configuration data in [15,
Table 1] has been determined. Accordingly, this test case constitutes a code-to-code verifi-
cation only.
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3.2 Verification of torsion dynamics based on an academic test case

The modified implementation including Srot accounts for the effect of inertial loads on the
beam’s nodes’ flexible rotation. One particularly relevant effect of inertial loads on flexible
rotation in helicopter rotor analysis is the propeller moment [2, 5], which is illustrated in
Fig. 3. The cross-section of a 1D beam may have different inertial properties in its two
directions. For example, the lead-lag inertia per unit length of a typical rotor blade cross-
section is larger than its flap inertia per unit length. In this case, for a rotating blade, the
centrifugal forces Fc generate the propeller moment Mp that tends to rotate the section such
that it lays flat in the plane of rotation.

The configuration used to verify the propeller moment is sketched in Fig. 4. The “beam”
consists of four quasimassless6 and torsionally compliant FE elements (thin part of the
beam), which together have the torsional stiffness k. The fifth and last element is a quasi-
rigid7 cuboid of size a · a · c with homogeneous mass density ρ (thick tip of the beam). Note
that the beam axis ζ is not bent, i.e., the cuboid’s longitudinal axis coincides with one of its
shorter dimensions a and not with the longer side c. The beam is clamped to a hub with a
constant rotational speed 	 and has an undeformed inclination of ϑpre. Due to the propeller
moment acting on the cuboid, the beam is elastically twisted by ϑflex < 0.

Fig. 3 Phenomenological explanation of the propeller moment Mp

	 = 100 rad/s

ϑpre = 1 ◦

k = 2777.5 Nm/rad

R = 10 m

a = 0.01 m

c = 1.0 m

ρ = 1 · 105 kg/m3

Fig. 4 Beam configuration for verifying the propeller moment

6The mass per length of the quasimassless beam elements is m′ = 1 · 10−6 kg/m.
7The Young’s modulus of the quasirigid beam element is E = 1 · 1012 N/m2.
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The propeller moment on the cuboid with inclination ϑ = ϑpre + ϑflex is

Mp = −	2 · (Iηη − Iξξ

) · sin(ϑ) · cos(ϑ), (22)

where the mass moments of inertia are Iηη = m/12
(
a2 + c2

)
around the vertical axis and

Iξξ = m/12
(
a2 + a2

)
around the transverse axis, both with m = ρ a2 c. The expression

given in equation (22) can, for example, be identified in the torsional differential equation
presented in [4] and is explicitly called “propeller moment” in [2]. The torsional stiffness of
the rotating beam in equilibrium counteracts the propeller moment, i.e., ϑflex = Mp/k. Since
ϑ < 1 ◦, the simplifications sin(ϑ) ≈ ϑ and cos(ϑ) ≈ 1 are justifiable, so that

ϑflex = −	2

k

(
Iηη − Iξξ

) · (ϑpre + ϑflex

) ⇔ ϑflex =
−	2

k

(
Iηη − Iξξ

)
ϑpre

1 + 	2

k

(
Iηη − Iξξ

) = −0.75◦. (23)

In VAST, the configuration of Fig. 4 is modeled using the BAM elements described in this
paper. Only for this test case, the elongation degrees-of-freedom u are disabled to suppress
geometric stiffening, which is not included in the analytical reference calculation. Table 3
compares the resulting flexible-tip twist for S = Stra and S = Stra − ũA Srot with the analytical
solution. As expected, Stra does not account for the effect of the propeller moment at all.
However, with S = Stra − ũA Srot, the result is correct within the accuracy expected from the
numerics and discretization.

To address the frequency-domain behavior of the beam, the restoring propeller moment
can be interpreted as an additional stiffness kp, for which the small-angle assumption for ϑ

is again applied:

kp = ∂Mp/∂ϑ = 	2
(
Iηη − Iξξ

)
. (24)

The expected torsional eigenfrequency is
√(

k + kp

)
/Iζζ with Iζζ = m/12

(
c2 + a2

)
. Ta-

ble 4 presents the first torsion eigenfrequency of the beam for the nonrotating case 	 =
0 rad/s and for 	 = 100 rad/s. In the nonrotating case, the numerical results deviate from
the analytical reference, which is 9.18790 Hz, by only −0.004%, which confirms the con-
sistency of the analytical and numerical structural models (without inertial loads). At
	 = 100 rad/s, a first torsional eigenfrequency of 18.3758 Hz is expected analytically. How-
ever, with S = Stra, the eigenfrequency remains equal to that of the nonrotating case. With
S = Stra − ũA Srot, the eigenfrequency matches the analytical prediction with an error of only
−0.002%.

Table 3 Equilibrium flexible twist ϑflex of the beam in Fig. 4

Analytical VAST-BAM, S = Stra VAST-BAM, S = Stra − ũA Srot

ϑflex = −0.75000◦ ϑflex = 0.00000◦ ϑflex = −0.74996◦

Table 4 First torsion
eigenfrequency of the beam in
Fig. 4, also with 	 = 0 rad/s

	 0 rad/s 100 rad/s

Analytical 9.18790 Hz 18.3758 Hz

VAST-BAM, S = Stra 9.18756 Hz 9.18756 Hz

VAST-BAM, S = Stra − ũA Srot 9.18756 Hz 18.3754 Hz
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These results show that the complemented shape function matrix is needed to account
for the propeller moment. Note that the rotation of the cross-sectional integrals in equations
(10)–(12) by T must include the deformation, i.e., T = T(rI). This is crucial to determine
kp (see equation (24)) because Mp depends on ϑflex. The torsion eigenfrequency, in turn,
depends on kp.

3.3 Validation based on a practical test case

As an example of a modern rotor blade, a prototype blade [10] from a helicopter rotor
research program at Airbus is investigated. Figure 5 shows the blade with a double-swept
planform. The real blade is attached to the rotor hub via a combined bearing that allows
flap and lead-lag motion of the blade, and features an elastomeric spring–damper device.
Furthermore, a dedicated lead-lag damper is integrated into the blade root. The kinematics of
this lead-lag damper along with the blade pitch actuation via control rods constitute multiple
load paths, which are not yet supported in VAST. Therefore, a simplified blade-attachment
model is used in VAST: The bearing is modeled as a sequence of a flap hinge and a lead-lag
hinge. A surrogate rotational flap spring and a surrogate rotational lead-lag spring–damper
are applied at the respective hinges. A torsion hinge with a discrete surrogate torsional spring
is also introduced – it models the elasticity of the control rod and the swashplate.

Equilibrium calculations are conducted in vacuo at a nominal rotor speed for blade pitch
angles within [−10 ◦,20 ◦]. The elastic tip twist with respect to the FFR is presented in Fig. 6
for both implementations of S used to calculate Qf

v. At a pitch angle of 10 ◦, a tip twist of
−0.3 ◦ is observed with S = Stra, while S = Stra − ũA Srot yields a significantly more pro-
nounced tip twist of −0.5 ◦. The nonzero tip twist with S = Stra is explained by the complex
blade geometry with a pretwist distribution and a double-swept planform. Accordingly, in
contrast to the test case in Fig. 4, the pure consideration of centrifugal loads acting on the
blade axis introduces some torsion moments in the beam.

While the results shown in Fig. 6 lack reference data for validation, experimental and
numerical reference results are available for the Campbell diagram of the prototype blade,
which is presented in Fig. 7. In [10], the blade eigenfrequencies were identified based on a
whirl-tower test of the full-scale rotor (“reference, experimental”). Furthermore, the eigen-
frequencies were calculated with a standalone FE program (“numerical-BAM”) using BAM

Fig. 5 Double-swept prototype
blade, picture from [10]

Fig. 6 Equilibrium flexible tip
twist with respect to the FFR in
vacuo at a nominal rotor speed
for different blade pitch angles
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Fig. 7 Campbell diagram of a
double-swept rotor blade,
modeled with the original and
complemented shape function
matrices S for the calculation of
Qf

v, reference results taken from
[10]

elements (not MBS-capable). The assignment of mode types (L = lead-lag, F = flap, and
T/F = torsion/flap) has been adopted from [10].

The bottom of Fig. 7 shows the first lead-lag mode (×) and the first flap mode (+). These
modes feature a negligible deformation of the blade, but primarily contain flap or lead-lag
displacements in the respective hinges, so they are rigid-body modes. The correlation is very
good between all numerical and experimental results. The two different implementations of
S in VAST-BAM do not cause deviations. The same holds for the second flap mode (+) that
includes flexible flap bending of the blade.

In contrast, differences are observed for the torsion/flap modes ( ). At a normalized rotor
speed of 1.0, the first normalized torsion/flap eigenfrequency T1/F3(a) in the experiment is
4.25. The VAST prediction with S = Stra is 4.11, which is 3% lower than in the experiment.
In contrast, the result using S = Stra − ũA Srot for calculating Qf

v is 4.20, which matches the
experimental reference with an error of −1% and also fits the numerical reference better. For
the second torsion/flap mode T1/F3(b) with an experimental normalized eigenfrequency of
5.50, the prediction error improves from −5% to +1%. The improvements are even more
significant at higher rotor speeds. The second lead-lag mode (×) is marginally affected by
the changed implementation of S. This can be explained by a coupling with the T1/F3(a)
mode that has an eigenfrequency very close to that of L2. Through this coupling, the pro-
peller moment – that tends to influence torsion modes – may also affect L2. The deviation of
both VAST-BAM implementations from the numerical reference, however, is not explained



FFR beam modeling for torsion dynamics of helicopter rotor blades

by the effect of the propeller moment. A distinct reason for the overprediction by the nu-
merical reference could not be identified.

As expected, the upgrade from S = Stra to S = Stra − ũA Srot in the calculation of Qf
v

primarily affects the torsion modes of the rotor blade. This can be explained by the effect of
the propeller moment, as described in Sect. 3.2. The upgrade is needed to properly predict
the torsion eigenfrequencies with the FFR formulation implemented for VAST-BAM.

4 Conclusions

The FFR formulation is used to model helicopter rotor blades as 1D beams within an MBS.
To appropriately account for the torsion dynamics of a rotor blade in this approach, rota-
tional shape functions must be considered in the inertia shape integrals and when projecting
loads (e.g., centrifugal forces) onto the flexible degrees-of-freedom. This can be achieved by
using the complemented shape function matrix, which includes the effect of rotational de-
flection combined with the beam-axis offset of a particle. The added value of this modified
FFR formulation is the consideration of the propeller moment that is demonstrated for an
academic test case with analytic reference results. To address a practical test case, a double-
swept rotor blade is analyzed. The prediction of the torsion eigenfrequencies significantly
improves when using the complemented shape function matrix in the calculation of inertial
loads acting on the flexible degrees-of-freedom.
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