DECARBONIZING DIRECT AIR CAPTURE WITH SOLAR POWER

Enric Prats-Salvado, Nipun Jagtap, Nathalie Monnerie, Christian Sattler Institute of Future Fuels – German Aerospace Center (DLR)

What is direct air capture of CO_2 ?

How does direct air capture work?

Solid Direct Air Capture (S-DAC)

Climeworks (2024, 36 kt CO₂/y, Iceland)

Liquid Direct Air Capture (L-DAC)

Carbon Engineering (2025, 500 kt CO₂/y, US)

How can we use solar energy in L-DAC?

How can we use solar energy in L-DAC?

Is there a suitable location for solar L-DAC?

- 1) Access to desalinated water $\rightarrow \approx 100$ km from the ocean
- 2) Economically feasible solar field \rightarrow Between ±45° latitude
- 3) Available land $\rightarrow \geq 500 \text{ km}^2$ of unprotected, flat and of low environmental and economic interest

LCA results: global warming

8

LCA results: burden shifting

Impact of associated emissions

Take home messages

DAC: Enabling the energy transition

Solar energy & DAC: Synergies in specific locations

Solar thermal energy: Feasible solution for decarbonization

Thanks for your attention!

Enric Prats-Salvado Institute of Future Fuels (DLR)

The authors of this work gratefully acknowledge the funding of the **HI-CAM** project by the **German Helmholtz Gemeinschaft**, as well as the financial support from **DLR's** basic funding for the **SOLHYKO** project.