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Kurzfassung

Trotz Filtertechniken emittieren kerntechnische Anlagen kleine Mengen von ra-
dioaktiven Spurenstoffen in die Luft, deren Einfluss auf die Umwelt in Quellnähe
nur schwer detailliert gemessen werden kann. Daher sind schnelle und effiziente
Ausbreitungsmodelle nötig, um die Ausbreitung von Spurenstoffen zu überwachen
und vorherzusagen. In Deutschland wurde dafür das lagrangesche Atmosphärisches
Radionuklid Transport Model (ARTM) entwickelt. Es simuliert die Ausbreitung
von Ableitungen aus kerntechnischen Anlagen typischerweise bis zu einer Entfer-
nung von 20 km innerhalb der planetaren Grenzschicht. Solche Transportmodelle
müssen sorgfältig validiert werden um sicher zu stellen, dass sie die Ausbreitung
von Spurenstoffen wirklichkeitsgetreu abbilden.

Die vorliegende Arbeit beschreibt und erweitert das Model ARTM und zeigt
eine Auswertung der dreidimensionalen Ausbreitungseigenschaften von Spurenga-
sen. In einer Sensitivitätsstudie wird der Einfluss von Stabilitätsklasse, Rauhig-
keitslänge, Verschiebungshöhe, Quellhöhe und Spurenstofftyp auf die dreidimen-
sionale Ausbreitung der Abgasfahne analysiert. Zudem wird der

”
well-mixed“ Zu-

stand von fünf Turbulenzmodellen, den Standardmodellen von ARTM 2.8.0 und
3.0.0, einem alternativen eingebauten und zwei weiteren neu implementierten Mo-
dellen untersucht. Flugzeuggestützte CO2 Messungen in der Nähe des Braunkohle-
kraftwerks Be lchatów (Polen) von der CoMet Messkampagne 2018 erlauben die Be-
wertung der Modelergebnisse unter sehr instabilen Grenzschichtbedingungen. Ein
Modellvergleich mit numerischen Wettervorhersage- und Large-Eddy-Modellen er-
weitert die Untersuchung auf leicht instabile atmosphärische Bedingungen.

Die Ergebnisse zeigen, dass die Stabilitätsklasse, als Maß für die atmosphärische
Stabilität, den größten Einfluss auf die Simulationsergebnisse hat und einen signi-
fikanten Beitrag zur Unsicherheit der Konzentrationsverteilung atmosphärischer
Spurengase liefert. Die Verwendung von gemessenen Obukhov-Längen verbessert
die Genauigkeit erheblich, da damit die Stabilität als kontinuierliche Größe anstel-
le einer klassifizierenden parametrisiert werden kann. Das Turbulenzmodell von
ARTM 3.0.0 weist die größte Abweichung zum

”
well-mixed“ Zustand von ca. 20%

auf. Alle simulierten Konzentrationen sind in derselben Größenordnung wie die
flugzeuggestützten in situ Messdaten. Die Turbulenzeinstellungen von ARTM 2.8.0
und 3.0.0 unterschätzen die Abgasfahnenbreite um bis zu 50%. Die drei anderen
Turbulenzmodelle weisen deutlich geringere Abweichungen auf. Im Gegensatz zu
sehr instabilen atmosphärischen Bedingungen liefert das Standardturbulenzmodell
von ARTM 2.8.0 bei schwach instabiler Atmosphäre vergleichbare Ergebnisse wie
die anderer Transportmodelle. Die Ergebnisse dieser Arbeit können dazu beitra-
gen, die Genauigkeit der mit ARTM simulierten Abgasfahnen bei sehr instabilen
atmosphärischen Bedingungen durch die Wahl geeigneter Turbulenzmodelle zu
verbessern.
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Abstract

Despite of filtering techniques, nuclear facilities emit small amounts of radioac-
tive tracers to the air. Detailed measuring of the effects of such discharges to
the environment in the vicinity of the emitter covering an area of several square
kilometres is very challenging. Fast and efficient atmospheric dispersion models
are thus required to monitor and predict atmospheric dispersion of trace species
in the vicinity of nuclear facilities. In Germany, the Lagrangian Atmospheric
Radionuclide Transport Model (ARTM) was designed for this purpose. It simulates
the dispersion of discharges from nuclear facilities typically up to 20 km distance
within the planetary boundary layer. Such transport models have to be validated
carefully to make sure that they simulate tracer dispersions comparable to reality.

This study shows the description and extension of ARTM as well as the analysis
of the three-dimensional dispersion properties and their evaluation. In a sensitiv-
ity study, the effects of stability class, roughness length, zero-plane displacement,
source height and tracer type on the three-dimensional plume dispersion are anal-
ysed. Furthermore, the dispersion of five turbulence models, the default turbulence
models of ARTM 2.8.0 and ARTM 3.0.0, one alternative built-in turbulence model
of ARTM and two further turbulence models newly implemented into ARTM are
studied. Airborne CO2 observations in the vicinity of the lignite power plant
Be lchatów, Poland, during the CoMet campaign in 2018 allow to evaluate the
model performance under unstable boundary layer conditions. An intercompari-
son of ARTM with numerical weather prediction and large-eddy simulation models
extend the investigation to slightly unstable atmospheric conditions.

The results show that the stability class, as a parametrisation of the atmo-
spheric stability, causes the largest impact and hence the largest uncertainty in
the simulation results. The usage of measured Obukhov lengths substantially
improves the accuracy because of its continuous stability parametrisation. The
turbulence model of ARTM 3.0.0 show the largest deviation from the well-mixed
state by up to approx. 20%. All simulated mixing ratios are in the same order of
magnitude as the airborne in situ data. The turbulence setups of ARTM 2.8.0 and
3.0.0 underestimate the plume widths by up to 50%. The three other turbulence
models agree better with the observations simulating comparable plume widths.
The intercomparison reveals that, in contrast to very unstable boundary layer con-
ditions, the turbulence model of ARTM 2.8.0 delivers comparable results to those
of the other transport models under slightly unstable conditions. The results of
this work may help to improve the accuracy of plumes simulated by ARTM rep-
resenting real plumes in very unstable atmospheric conditions by the selection of
distinct turbulence models.
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Chapter 1

Introduction

Amid the anthropogenic climate change nuclear power plants are widely seen as a
possibility of generating carbon dioxide (CO2) neutral and continuously available
electrical energy. Despite the nuclear phase-out of some countries in Europe, the
number of countries supporting this technique is still large. In 2021, about 10%
of the electrical energy worldwide was provided by 436 nuclear reactors in 32
countries. In the same year, ten reactors were permanently shut down while six
new reactors were connected to the grid and 56 reactors were under construction
(Gospodarczyk 2022).

Besides the benefits of energy generation from nuclear reactors, there are major
concerns about hazardous drawbacks originating from such facilities. This touches
not only the fear of nuclear accidents and the largely unresolved questions of long-
term storage of nuclear wastes but also the discharges during routine operation
or decommissioning. Under routine operation, the process of controlled nuclear
fission generates radioisotopes that are spread within the reactor building. During
decommissioning, contaminated aerosols are produced due to the cutting and the
demolition of contaminated metal or concrete. In both cases, contaminated air
is treated using filter techniques and released via ventilation stacks to the atmo-
sphere. Despite the filtering small amounts of radioisotopes may remain in the
emitted air.

The monitoring of radioisotopes at the ventilation stack is common practice
and obligatory in most countries. However, it is very challenging to quantify
the impact of these emissions on the environment in the vicinity of the power
plant based on observations. The only alternative to obtain comprehensive local
and temporal information about the immissions is from atmospheric dispersion
simulations (De Visscher 2014). To ensure public safety, governments all over
the world enacted national regulations to use atmospheric dispersion models for
monitoring the dispersion of discharges from nuclear facilities to the air.

In the atmosphere the dispersion of tracers largely depends on random motions
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of the air and its molecules. These diffusive effects are referred to as molecular dif-
fusion and turbulent motion, respectively. Molecular diffusion is usually neglected
in atmospheric dispersion because of its small range compared to turbulent diffu-
sion. Particularly in the planetary boundary layer, which is strongly influenced
by interactions with the Earth’s surface, the atmosphere is usually turbulent. The
concentrations of pollutants thus vary depending on time and location even when
the pollution source and the weather conditions are constant. Accurately repre-
senting the large number of factors influencing the dispersion is a major challenge
for air dispersion models. The result of an atmospheric dispersion simulation can
not be expected to correspond in all details to the real-world dispersion (De Viss-
cher 2014).

Nevertheless, it is important that any dispersion model is a sufficiently accurate
representation of its corresponding real-world system. This can be tested in a
validation process, which often consists of two main parts: i) a sensitivity analysis;
and ii) a comparison of simulation results with measurements. The sensitivity
analysis investigates the change of the simulation results with variations of the
input parameters (Kleijnen 1995). For a simulation model it is important to know
whether an observable or unobservable input parameter critically influences the
model outcome. The sensitivity analysis shows which input parameters are the
most sensitive or important ones. This information can be used to estimate the
contribution of uncertainties in the input parameters to the simulation result’s
uncertainty. The application of an appropriate sensitivity analysis method is a
key issue and depends on the complexity of the simulation model. The application
of only one analysis method may result in wrong conclusions (Kleijnen 1995).

The comparison of simulation and observations can show whether a model
simulates the real world counterpart sufficiently accurately. Following De Viss-
cher (2014), an atmospheric dispersion model successfully simulates its real-world
system when the following three criteria are fulfilled:

1. The simulated and the actual hourly average concentrations must not deviate
by more than a factor of two for most of the time.

2. The long-time averaged concentrations of the simulation and the observations
have to be close.

3. The distributions of the ranked concentration values from simulation and
observations have to be very similar when ranking the concentration values
at different locations and times from lowest to highest, respectively. It is not
required that the simulations and observations at corresponding positions
and times have to have the same rank.

This requires the availability of appropriate high quality measurement data sets,
which can be an issue. This requirement does not only account for the data that
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is compared with simulation results but also for the data that is used to generate
input parameters for a model (Kleijnen 1995).

The sensitivity analysis uses the variation on model result characteristics (or
target quantities), which indicate the dispersion of tracers. Also, the comparison
of simulation results with observations close to the surface of the earth may not be
sufficient to draw conclusions about how well the model simulates the dispersion.
A data set used for comparison should ideally include measurement points from
the entire extent of the modelled atmosphere to cover the dispersion at larger
distances from the surface, too.

In this work, the Atmospheric Radionuclide Transport Model (ARTM) is de-
scribed and its results are analysed and evaluated against measurements. ARTM
is a Lagrangian particle dispersion model primarily designed for the dispersion
simulation of radionuclides from nuclear facilities under routine operation in the
planetary boundary layer at the micro-scale to the meso-γ-scale (approx. 0.5 km
to 20 km) (Hanfland et al. 2022). ARTM is in operation at the Federal Office
for Radiation Protection and other authorities of Germany for the estimation of
exposure of the population for regulatory and authorisation purposes. Over the
last 15 years, ARTM was continually developed into a mature model system, but
for further improvements more detailed knowledge about the performance of the
model is needed. With this work I intend to fill some of these knowledge gaps and
to demonstrate possible improvements. First, there is only insufficient information
about which input parameters significantly affect the simulation results and which
input parameters are thus of special importance. Second, the data base of the val-
idation of ARTM is insufficient. The discharges of nuclear facilities under routine
operation are typically released via stacks with often large heights. In contrast to
this, previous validation attempts focused of the dispersion close to the surface.
During this work, I also found that the description of turbulence under unstable
atmospheric conditions needs to be improved. Thus, the aims of this work are
summarised as: i) sensitivity analysis; ii) the improvement of the description of
the turbulent dispersion; and iii) the evaluation against measurements of emissions
from power plants.

Hettrich (2017) performed a first sensitivity study on input parameters such
as emission strength, source geometry, roughness length and stability class for
ARTM. However, the analysis was based on a case study and was restricted to one
single receptor location near the surface without considering the whole simulation
domain. Note that such one-receptor studies are very sensitive to wind direction
changes and in real cases hard to interpret. Since the concentration distribution at
the ground is the result of the dispersion within the simulated planetary boundary
layer, it is expected that the variation of input parameters does also influence the
entire three-dimensional structure of the simulated exhaust plume.
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In this work, I extend the sensitivity analysis of Hettrich (2017) from one spe-
cific test scenario to a general simulation setup and study the impact of input
parameters on the dispersion structure within the entire three-dimensional plane-
tary boundary layer. In addition to the analysis of concentration data, the particle
deposition is studied. I analyse which input parameter has the largest influence
on simulation results and causes the largest uncertainty if not properly provided
for the simulations.

In regulatory practice, the turbulence of the atmosphere is described by us-
ing stability classes because of their simplicity. In ARTM, stability classes are
translated into associated Obukhov lengths. However, the Obukhov length is a
continuous turbulence parameter and its reduction to six classes causes strong dis-
cretisation of the possible magnitudes of dispersion in the model and thus leads to
higher simulation errors. It is expected that using measured Obukhov lengths for
ARTM might increase the accuracy. Therefore, in this work I study the difference
on the range of plume volumes when using the continuous Obukhov length instead
of stability classes as turbulence parameter.

In ARTM, turbulent fluctuations are modelled by turbulence models. They
consist of two sets of turbulence variables describing the wind speed fluctuation
and the correlation time scale in all three dimensions. The formulation of these
variables is not unique. In literature, a variety of turbulence models have been
proposed, which have been derived from measurement data (Panofsky et al. 1977;
Hanna 1982; Gryning et al. 1987; Kerschgens et al. 2000; Degrazia et al. 2000).
In ARTM, there are four different turbulence models implemented. Originally,
the turbulence model described in the guideline VDI 3783 part 8 (2002) was the
standard turbulence model of ARTM version 2.8.0. However, Janicke et al. (2011)
showed that there are deviations between simulated and observed wind speed fluc-
tuations at several measurement sites under unstable atmospheric conditions. As
a consequence of these findings, the initially recommended turbulence model for-
mulation was modified. In 2021, version 3.0.0 of ARTM was released containing a
new turbulence model recommended by the recently updated guideline VDI 3783
part 8 (2017).

Until today, simulations of ARTM with the different turbulence models have
only been compared with observations close to the ground or up to 200 m height
(Janicke et al. 2011; Martens et al. 2012; Hettrich 2017). Thus, it is not known,
whether the structure of the dispersed tracers simulates real dispersion plumes
correctly at larger heights.

In this work, I used a new data set of high quality airborne in situ CO2 mea-
surements of an exhaust plume of a large lignite power plant to compare to the
tracer dispersion simulation results of three built-in turbulence models of ARTM
focusing on the three-dimensional structure of the plumes. I further implemented
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two alternative turbulence models to study differences between them and to evalu-
ate which turbulence model simulates the tracer dispersion closest to the measured
exhaust plume under very unstable atmospheric conditions.

This work is organised as follows. In chapter 2, an introduction to the planetary
boundary layer is given. It starts with a theoretical background of the vertical
structure of the planetary boundary layer and a description of the phenomenon
of atmospheric turbulence in the planetary boundary layer. This is followed by a
brief historical review of atmospheric dispersion modelling including an overview of
the main model types and applications focusing on Lagrangian particle dispersion
models. Required steps for the validation of Lagrangian particle dispersion models
are followed by an overview of the dispersion simulations performed in this work.
In chapter 3, I give an extensive description of the physical and mathematical
concepts of ARTM. This includes the description of the applied diagnostic wind
field model, the general particle transport model and the characteristic features
affecting the transport of radionuclides. These are radioactive decay, dry and
wet deposition and the estimation of the γ-cloud shine. In chapter 4, I study the
influence of input parameters of ARTM on the simulation results. In the following,
three built-in and two newly implemented turbulence models are presented and
their mixing abilities under very unstable atmospheric conditions are investigated.
In chapter 5, I further present a comparison of CO2 dispersion simulations of
ARTM with airborne in situ measurements. The measurement data allow the
evaluation of the three-dimensional structure of the real exhaust plume and are
compared with simulations that originate from all five turbulence models. Finally
the model is intercompared to five other atmospheric transport models. This
includes the comparison of simulation results with airborne remote sensing and
in situ observations at two different atmospheric stabilities: slightly unstable and
very unstable. The simulations are used to assess the uncertainty of estimation
methods of future satellite missions for monitoring greenhouse gas emissions from
point sources. A summary of the findings of this work is given in chapter 6 and
an outlook is presented in chapter 7.
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Chapter 2

Atmospheric dispersion in the
planetary boundary layer

Wind is the most important meteorological parameter to describe the atmospheric
transport of gases and particulate matter (PM). Besides advection, turbulence
is a main contributor to transport and dispersion. There are different types
of modelling approaches to capture the behaviour of dispersion numerically. In
this chapter a description of some of the fundamental properties of the planetary
boundary layer (PBL) is given followed by a brief history of atmospheric disper-
sion models (ADMs), their applications today and an introduction to the concepts
of atmospheric dispersion modelling focusing on Lagrangian particle dispersion
models (LPDMs).

2.1 Introduction to the planetary boundary

layer

The properties of the PBL differ from other parts of the atmosphere and signifi-
cantly affect large parts of live living on Earth. According to its vertical thermal
structure, the atmosphere can be divided into several parts with the troposphere
being the one in contact with the surface of the Earth. On average it reaches a
height of approx. 11 km and can be further divided into sublayers. The lowest por-
tion of the troposphere, which is directly influenced by the underlying surface, is
called the planetary boundary layer (PBL). In the following, its vertical structure
and the general phenomenon of atmospheric turbulence are described. Further-
more, the theoretical background for the estimation of the vertical wind profile in
the PBL is given.

7



2.1.1 The vertical structure of the planetary boundary
layer

The PBL is characterised by spatially and temporally variable thickness (≈ 10 m –
4 km) with a limiting capping inversion layer above. It responds to surface forcings
such as frictional drag, heat transfer or pollutant emissions with timescales of about
one hour or less (Stull 1988).

About the lowest 10% of this PBL is known as the surface layer or constant flux
layer. In Germany, this layer is also called Prandtl-layer. Within this layer, also
often the turbulent fluxes of momentum, heat and moisture vary by less than 10%
of their magnitude and the influence of the Coriolis force is weak. The largest part
of the PBL, above the surface layer, is called Ekman-layer. It is characterised by
decreasing turbulent fluxes with increasing height and the influence of the Coriolis
force that results in a rotation of the wind vector with height until it is parallel to
the geostrophic wind. The capping inversion on top of the Ekman-layer confines
the PBL from the rather laminar wind flows above. It traps pollutants, turbulence
and moisture below. The troposphere above the PBL is called the free troposphere
or free atmosphere (Stull 1988; Stull 2006; Etling 2008). The finer structure and a
generic temperature profile of the PBL for the daytime is illustrated in Fig. 2.1.

Surface layer

Daytime temperature
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Capping Inversion layer

Free troposphere

Neutral mixing
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Tropopause
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d
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Figure 2.1: Scheme of the vertical temperature profile in the troposphere and its finer structure
within the PBL. After Lin et al. (2015).

Depending on the thermal structure of the atmosphere it can be categorised as
either unstable, stable or neutral. Supposing an air parcel at an arbitrary location
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within the PBL. If this parcel is displaced vertically its temperature changes due to
the different pressure. In dry air this temperature gradient is called dry adiabatic
lapse rate Γd = −dT

dz
= 9.77 K km−1. If water vapour is a constituent of the air

the lapse rate can deviate from the dry adiabatic lapse rate due to condensation
of water vapour and the release of heat. The released heat reduces the cooling of
ascending air parcels and the lapse rate. This wet adiabatic lapse rate depends on
temperature and pressure. If an air parcel is displaced upwards its temperature
changes according to dry adiabatic lapse rate if no condensation or evaporation
occurs. If its new temperature is larger than the temperature of the surrounding
air then it can continue rising and the atmosphere is termed unstable. If the
temperature of the displaced air parcel is lower compared to the surrounding air
then it would sink back down to lower altitudes and the atmosphere is termed
stable. In the case of the displaced air parcel and the surrounding air having the
same temperature, the parcel remains at the new position and the atmosphere is
termed neutral (Seinfeld et al. 2016).

The PBL is subject to a diurnal variation of the temperature profile depending
on the irradiation to the surface, besides the weaker effects of radiation absorption
by the atmosphere itself. The absorbed energy at the surface is transferred to the
atmosphere via transport processes. Whenever the surface is warm compared to
the surrounding air, e.g. due to irradiation by sun light, the air close to the surface
becomes warmer, too. Warm air parcels expand and become less dense than their
surrounding. Such warm air begins to rise. The PBL becomes thermally unstable.
The unstable layer in direct contact with the surface is called the mixed layer and
typically occurs at day time. During night time, when the sun light is missing
and the surface is colder than the air due to radiative cooling, the air next to the
surface cools down, too; the lower atmosphere becomes stable and is called the
stable nocturnal boundary layer. This layer does not extend from the surface all
the way up to the capping inversion. The portion of the boundary layer between
the stable nocturnal boundary layer and the capping inversion is a residual of the
daytime mixed layer and is often called the residual layer. Under rather windy
and overcast conditions, the PBL becomes neutral due to limited irradiation and
radiative cooling (Stull 2006; Seinfeld et al. 2016).

2.1.2 Atmospheric turbulence

Turbulence is part of the atmospheric flow and can be visualised as swirls of differ-
ent sizes called eddies. These eddies are generated by instabilities of the mean flow
and range from global or planetary scale down to molecular scale (Garratt 1992;
Stull 2006). The scales of eddies are summarised in Table 2.1. Eddies larger than
200 km are described as two-dimensional turbulence because their horizontal ex-
tent is large compared to their vertical extent. Such quasi two-dimensional eddies
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Table 2.1: Scales of motion in the atmosphere. Two-dimensional turbulence scales are marked
with ∗, three-dimensional turbulence scales with †. After Stull (2006).

Larger than Scale Name

20 000 km∗ Planetary scale
2 000 km∗ Synoptic scale

200 km∗ Meso-α }
Mesoscale20 km† Meso-β

2 km† Meso-γ
200 m† Micro-α Boundary-layer turbulence
20 m† Micro-β Surface-layer turbulence
2 m† Micro-γ Inertial subrange turbulence

2 mm† Micro-δ Fine-scale turbulence
Air molecules † Molecular Viscous dissipation subrange

are prevalent in a stably stratified atmosphere such as the stratosphere (Kraichnan
et al. 1980; Lilly 1983). Smaller eddies are three-dimensional turbulence (Kraich-
nan et al. 1980). Large-scale eddies are for instance created by the breaking of
large-scale Rossby-waves. Eddies of smaller sizes, as they occur in the PBL, are
often created by instabilities of e.g. the already explained rise of warm air caused
by solar heating of the surface. Other mechanisms generating turbulence can be
the deflection of wind by an obstacle such as a tree or a building or the frictional
drag on the air flow over the surface, which causes wind shear producing turbulent
eddies. In general, eddies are not stable in space and time; a part of the iner-
tial energy of larger eddies is used for the generation of smaller eddies, which is
known as the turbulence cascade. This process ranges from the largest eddies all
the way down to the molecular scale, where turbulent kinetic energy is continually
dissipated (Stull 1988; Garratt 1992; Stull 2006).

Eddies of different sizes result in the fluctuation of wind speed at different
time scales around an average wind speed value. The wind speed fluctuation is
quantified by its spectrum shown in Fig. 2.2. The wind speed fluctuations can
not be described deterministically but statistically. As proposed by Reynolds, the
wind speed components #»u = (u, v, w) in Cartesian coordinates #»x = (x, y, z) can
be decomposed as

u = u+ u′ (2.1a)

v = v + v′ (2.1b)

w = w + w′ (2.1c)

into a mean or average wind speed u, v, w and a fluctuation or turbulence part
u′, v′, w′ (Reynolds 1895). The turbulence part may vary rapidly with time. The
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Figure 2.2: Spectrum of horizontal wind speed derived from Van der Hoven (1957) in 100 m
height. The graphic shows the turbulence energy over the eddy frequency. After Stull (1988).

intensity of the turbulence in the direction of u is defined as the variance

σ2
u =

1

N

N∑
l=1

(ul − u)2 =
1

N

N∑
l=1

(u′l)
2

= u′2 (2.2)

with the number of wind speed measurements N and the index l = 1, . . . , N . For
the other wind speed components v and w Eq. 2.2 is analogue (Stull 2006). Often,
the x-coordinate is chosen parallel the mean wind speed u because turbulence
along and perpendicular to the mean wind direction can be different.

Fluctuations of wind speed are often accompanied by fluctuations of scalar
quantities such as temperature, humidity or pollutant concentration. An example
is the rise of warm air heated due to the irradiated surface. The vertical heat flux
is the intensity of the co-variation of the potential temperature θ together with
the vertical wind speed w. Similar to Eq. 2.2 it is described as the covariance

cov(w, θ) =
1

N

N∑
l=1

(wl − w) ·
(
θl − θ

)
=

1

N

N∑
l=1

(w′
l) · (θ′l) = w′θ′ (2.3)

(Stull 2006; Foken 2016).
The sum of the variances of all wind speed components represents the kinetic

energy of the turbulence. The turbulent kinetic energy per unit mass is defined as

TKE =
1

2

(
u′2 + v′2 + w′2

)
=

1

2

(
σ2
u + σ2

v + σ2
w

)
(2.4)

(Stull 2006).
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2.1.3 The vertical wind profile in the planetary boundary
layer

In the PBL the mean wind is highly variable with height above the surface. At
the surface the wind velocity is zero. With increasing height the velocity typically
increases because of the decreasing influence of the surface. This behaviour is
similar to the behaviour of a fluid flow confined by a wall as it is described in
classical fluid mechanics. In contrast to the description of classical fluid mechanical
systems, the mean wind profile is dependent on the atmospheric stability, too.
Furthermore, the wind can be affected by the Earth’s rotation. Understanding of
the physical processes and their influences on the wind is necessary to be able to
describe the dispersion of substances. In the following, the description of wind
velocity and wind direction behaviour in the PBL under different atmospheric
stabilities is given.

The surface layer in a neutral atmosphere

The wind profile in the lower PBL (surface layer) can be derived theoretically from
the Reynolds-averaged Navier-Stokes (RANS) equation for an incompressible flow.
The x-component can be given as

∂u

∂t
+

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= (fzv − fyw) − ∂ϕ

∂x
− 1

ρ

∂p

∂x

+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
−
(
∂u′u′

∂x
+
∂v′u′

∂y
+
∂w′u′

∂z

)
, (2.5a)

the y-component as

∂v

∂t
+

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= (fxw − fzu) − ∂ϕ

∂y
− 1

ρ

∂p

∂y

+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
−
(
∂u′v′

∂x
+
∂v′v′

∂y
+
∂w′v′

∂z

)
(2.5b)

and the z-component as

∂w

∂t
+

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= (fyu− fxv) − ∂ϕ

∂z
− 1

ρ

∂p

∂z

+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
−
(
∂u′w′

∂x
+
∂v′w′

∂y
+
∂w′w′

∂z

)
(2.5c)

where fx,y,z are the components of the Coriolis parameter, ϕ = agz is the geopo-
tential with the acceleration of gravity ag, ρ is the density, p is the pressure and
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ν is the molecular diffusion coefficient (Etling 2008; Oertel et al. 2017). In the
surface layer, the following assumptions can be applied to simplify Eqs. 2.5:

1. The flow is in steady state ∂u
∂t

= ∂v
∂t

= ∂w
∂t

= 0.

2. The mean flow is horizontally homogeneous ∂u
∂x

= ∂u
∂y

= ∂v
∂x

= ∂v
∂y

= 0.

3. There is no vertical mean flow (neutral atmospheric conditions) w = 0.

4. The Coriolis parameter f is negligible in the lower part of the PBL.

5. Horizontal pressure gradients are negligible ∂p
∂x

= ∂p
∂y

= 0.

6. The coordinate system is rotated such that the main flow is in x-direction.

7. The molecular friction is negligible. For the x-component

ν
(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
= 0. (analogue for y- and z-component)

8. The momentum flux is horizontally homogeneous. For the x-component
∂u′u′

∂x
= ∂v′u′

∂y
= 0. (analogue for y- and z-component)

With these simplifications and the fact that the geopotential is horizontally const.(
∂ϕ
∂x

= ∂ϕ
∂y

= 0 and ∂ϕ
∂z

= ag

)
, Eq. 2.5a reduces to

∂w′u′

∂z
= 0 (2.6)

and reveals that the momentum flux w′u′ = const. with height under neutral
conditions. The momentum flux w′u′ is unknown. Any attempt of deriving an
exact solution for the momentum flux results in further unknown variables. This
behaviour is known as the closure problem (Keller et al. 1924). In order to circum-
vent this problem, closure assumptions can be used such as the gradient transport
theory, also known as the K-theory, (Stull 1988; Etling 2008; Foken 2016). Anal-
ogous to the case of molecular dispersion, a proportionality coefficient K is used
to relate the flux of a state variable ξ to the gradient of it (Foken 2016). It is
assumed that the turbulence has the same diffusive effect as molecular dispersion.
The turbulent flux u′kξ

′ of the state variable is directed opposite to the gradient of
ξ as

u′kξ
′ = −Kξ

∂ξ

∂xk
(2.7)

where xk and uk are the component k ∈ {x, y, z} of the location and velocity
vector, respectively. In general, the diffusion coefficient is dependent on location
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and time, Kξ = Kξ(xk, t) (Etling 2008). According to Eq. 2.7, the momentum flux
can be described as

w′u′ = w′u′0 = −Km
∂u

∂z
(2.8)

where u′0 is the wind speed fluctuation at the height where the average wind speed
vanishes and Km is the diffusion coefficient of the momentum or eddy viscosity.
Using the definition for the friction velocity

u∗ =
√

−w′u′ (2.9)

Eq. 2.8 can be written as

u2∗ = Km
∂u

∂z
. (2.10)

So far, the eddy viscosity Km is unknown but according to the mixing length
approach after Prandtl (1925), it can be described as

Km = ucl (2.11)

with the characteristic velocity uc and the mixing length l. The characteristic
velocity can be defined as

uc = l

∣∣∣∣∂u∂z
∣∣∣∣. (2.12)

Thus, the eddy viscosity can be given as

Km = l2
∣∣∣∣∂u∂z

∣∣∣∣. (2.13)

The mixing length is a measure for the size of the eddies. Since the lower PBL is
limited by the surface, the radius of an eddy cannot be larger than the distance
between the centre of the eddy and the surface. Thus, Prandtl defined the mixing
length as

l(z) = κz (2.14)

with the von Kármán constant κ. After inserting Eqs. 2.13 and 2.14 into Eq. 2.10
and applying the square root to the first order partial differential equation

∂u

∂z
=
u∗
κz

(2.15)

is obtained after rearrangement. Using the boundary conditions that at height
z = z0 the mean wind speed u = 0, the integration gives the mean wind speed
profile in the lower PBL as

u(z) =
u∗
κ

ln

(
z

z0

)
(2.16)
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for the neutral boundary layer. z0 is the roughness length, which defines the
height above the surface where the mean wind speed vanishes. The roughness
length depends on the surface roughness that depends on surface coverage such as
grass, snow, trees or other obstacles. The value of z0 varies for the different ground
coverages but it is not equal to the height of the obstacles itself (Etling 2008).

The logarithmic wind profile given in Eq. 2.16 can also be obtained empirically
for the neutral boundary layer. When applying the similarity theory (Stull 1988)
to wind speed measurements in the surface layer, the logarithmic wind profile is
the expected solution. A detailed derivation of the wind profile from measured
data is given by Stull (1988).

The Obukhov length as turbulence parametrisation

For the case of stable or unstable boundary layer conditions, thermal stratification
influences the wind profile, which leads to deviations from the mean wind speed
profile under neutral conditions given in Eq. 2.16. The relative importance of
turbulence produced by buoyancy versus vertical wind shear effects is described
by the flux Richardson number

Rif =

ag

θ̃
w′θ′

w′u′ ∂u
∂z

(2.17)

where θ̃ is the mean potential temperature, which is also assumed to be constant
in time. Using the definition of the friction velocity in Eq. 2.9, Eq. 2.15 and a
constant heat flux w′θ′ = w′θ′0 = const., Rif can be formulated as

Rif =

ag

θ̃
w′θ′0

−u2∗ u∗κz
= −κag

θ̃

w′θ′0
u3∗

z =
z

L
(2.18)

with the Obukhov length

L = − θ̃

κag

u3∗
w′θ′0

. (2.19)

Thus, L describes the characteristic height where the turbulent energies due to
wind shear and buoyancy have the same absolute value (Etling 2008).

Depending on thermal stratification (vertical heat flux) the Obukhov length
has the following values:

stable: w′θ′0 < 0 ⇒ L > 0

neutral: w′θ′0 = 0 ⇒ |L| −→ ∞
unstable: w′θ′0 > 0 ⇒ L < 0

The Obukov length is often used to characterise the atmospheric stability and to
parametrise the turbulence in the PBL (Etling 2008; Stull 1988).
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The non-neutral surface layer

For the description of the stable or unstable surface layer, Monin et al. (1954)
applied the concepts of similarity theory proposing that in a horizontally homoge-
neous surface layer the mean flow and turbulence characteristics only depend on
four independent variables: The height above the surface z, the friction velocity
u∗, the heat flux at the surface w′θ′0 and a coefficient describing buoyancy ag

θ̃
. Ex-

cept for z all the variables can be found in the definition of the Obukhov length
in Eq. 2.19.

The starting point for describing the wind profile in stable and unstable condi-
tions is Eq. 2.15, which describes the wind profile in the neutral surface layer.
Similarity theory requires physical processes to be described by dimensionless
quantities, therefore, Eq. 2.15 has to be used in its dimensionless form

κz

u∗

∂u

∂z
= Φ

( z
L

)
(2.20)

with a dimensionless function Φ. Equation 2.20 is valid for neutral and non-neutral
surface layer conditions depending on the exact formulation of Φ. According to
the similarity hypothesis of (Monin et al. 1954), Φ has to be a function only of L
and z and is often called profile function. The function is generally written in the
form

Φ
( z
L

)
= 1 + α

z

L
(2.21)

with an arbitrary coefficient α. For neutral conditions α is not important because
z
L

= 0 and Eq. 2.20 is equivalent to Eq. 2.15. For the stable and unstable boundary
layer, α has to be determined from measurements. Often the profile functions

Φ = 1 + 5
z

L
for

z

L
> 0 stable,

Φ = 1 for
z

L
= 0 neutral, (2.22)

Φ =
(

1 − 15
z

L

)− 1
4

for
z

L
< 0 unstable

after Businger et al. (1971) and Dyer (1974) are used. By integrating Eq. 2.20
with the respective profile functions from Eqs. 2.22, the wind speed profiles for
stable and unstable stratification are obtained as

u(z) =
u∗
κ

(
ln
z

z0
+ 5

z − z0
L

)
for

z

L
> 0 stable,

u(z) =
u∗
κ

[
ln

(
ψ − 1

ψ0 − 1

)
− ln

(
ψ + 1

ψ0 + 1

)
+ 2

(
tan−1 ψ − tan−1 ψ0

) ]
for

z

L
< 0 unstable

(2.23)
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with

ψ =
(

1 − 15
z

L

) 1
4

and

ψ0 =
(

1 − 15
z0
L

) 1
4
,

(2.24)

respectively (Etling 2008; Ragland 1973). Both deviate from the average wind
profile of the neutral surface layer given in Eq. 2.16 at page 14 but the logarithmic
character is still present.

The wind profile in the neutral Ekman-layer

The part of the boundary layer above the surface layer is denoted as the Ekman-
layer and covers most of the mixing layer. Because of the larger distance from the
surface not all the assumptions, which have been made for the surface layer on
page 13 hold. With increasing height, the Coriolis force becomes more important
and pressure gradients can no longer be neglected. Thus, the assumptions 4 to 6
are no longer applicable. However, under the assumption of a steady state and
horizontally homogeneous flow, we can derive another set of equations describing
a wind profile that changes direction with height. Furthermore, to simplify this
derivation it is assumed that the Ekman-layer begins at the surface (Etling 2008).

Starting from the RANS equations 2.5 at page 12 and applying the remaining
assumptions, the horizontal components of the wind speed follow

−fz v +
1

ρ

∂p

∂x
= −∂w

′u′

∂z

fz u+
1

ρ

∂p

∂y
= −∂w

′v′

∂z
.

(2.25)

In contrast to the surface layer (Eq. 2.8 at page 14), the vertical momentum flux
of the horizontal wind components (w′u′ and w′v′) and consequently Km is not
constant. The gradients of the momentum fluxes represent the turbulent friction.
At the top of the boundary layer hm (at large distance from the surface) the
horizontal momentum fluxes (turbulent friction) vanish and the wind is equal to
the geostrophic wind

ug = − 1

ρ fz

∂p

∂y
and vg = +

1

ρ fz

∂p

∂x
. (2.26)

When moving towards the surface, the turbulent friction increases which changes
the balance between the Coriolis force, the pressure gradient force and the turbu-
lent friction. This results in a change of the wind direction forming the so-called
Ekman-spiral (Etling 2008).
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When inserting Eqs. 2.26 into Eqs. 2.25, applying the K-theory and integrat-
ing from the surface to the boundary layer top (0 ≤ z ≤ hm), the wind speed
components can be calculated as

u(z) = ug

[
1 − exp

(
− z

LE

)
cos

z

LE

]
− vg exp

(
− z

LE

)
sin

z

LE

,

v(z) = vg

[
1 − exp

(
− z

LE

)
cos

z

LE

]
+ ug exp

(
− z

LE

)
sin

z

LE

(2.27)

with the Ekman length

LE =

√
2
Km

fz
. (2.28)

This delivers a qualitative description of the wind speed from the surface to the
top of the boundary layer. However, it does not generally agree with observations,
which typically show smaller rotations of the wind direction with increasing height.
The problem is the assumption of a constant Km with height, which is not valid
for the surface layer. Thus, other descriptions such as a two-layer description can
be found in literature. It is assumed that the turbulent diffusion increases linearly
with height in the surface layer up to the surface layer top zs (0 ≤ z ≤ zs) and stays
constant above to the top of the boundary layer (zs ≤ z ≤ hm). This corresponds to
a surface layer as described in Subsec. “The surface layer in a neutral atmosphere”
at page 12 with the Ekman-layer above (Etling 2008).

When the x-direction of the coordinate system is assumed to be in the direc-
tion of the mean geostrophic wind ug, the wind profiles for the horizontal wind
components in the surface layer (0 ≤ z ≤ zs) can be given as

u(z) =
u∗
κ

ln
z

z0
cosα0,

v(z) =
u∗
κ

ln
z

z0
sinα0

(2.29)

and in the Ekman-layer (zs ≤ z) as

u(z) = ug

[
1 −

√
2 exp

(
−z − zs

LE

)
sinα0 cos

(
z − zs
LE

+
π

4
− α0

)]
,

v(z) = vg
√

2 exp

(
−z − zs

LE

)
sinα0 cos

(
z − zs
LE

+
π

4
− α0

)
.

(2.30)

α0 denotes the difference of the wind directions compared to the geostrophic wind.
The values for ug, vg, z0 and zs have to be measured. Under the assumption that
the wind speed components are continuous at zs the values for u∗ and α0 can be
calculated iteratively to obtain the complete wind profile. Wind profiles for the
stable and unstable boundary layer can be composed in an analogous way (Etling
2008).
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2.2 Introduction to dispersion modelling

Dispersion is the key process that influences the accumulation and dilution of any
substance in the atmosphere. It is defined as the spreading of atmospheric con-
stituents and the result of turbulent diffusion, molecular diffusion and mean wind
shear (AMS 2022). Atmospheric constituents are the natural air constituents as
well as contaminations originating from natural and anthropogenic emissions. The
contamination of the environment by any chemical, physical or biological agent in-
cluding gaseous pollutants and PM that modifies the natural characteristics of the
atmosphere is defined as air pollution (WHO 2022). This includes non-ionizing
as well as ionizing substances. The monitoring of the constituents of the air oc-
curs at certain measurement stations which only provide local information about
concentrations. Satellite observations can provide much better spatial coverage
but only very few air pollutants such as nitrogen dioxides (NO2) can be measured
from satellites with sufficient accuracy. Atmospheric dispersion modelling can pro-
vide additional information in all three dimensions and thus became a common
tool for air quality assessment and the estimation of immissions of radionuclides
complementary to observations (De Visscher 2014). ADMs use mathematical equa-
tions to describe the transport of constituents of the atmosphere by advection and
turbulent diffusion. Concentrations of the constituents are calculated at various
locations (Holmes et al. 2006; Stockie 2011). Besides the basic physical properties
of diffusion, other processes such as sedimentation of PM, deposition at the sur-
face, plume rise of emissions or chemical reactions can be included in ADMs as
well depending on the purpose of the model (Stockie 2011; Beevers et al. 2020).
In general, the application of ADMs is not limited to local or regional scales or to
the PBL but can be applied to global scale and higher atmospheric levels, too.

2.2.1 A brief history of dispersion modelling of air pollu-
tants and radionuclides in the atmosphere

The development of atmospheric dispersion models can be seen as a consequence of
the growing understanding of atmospheric flows and of progresses of the description
of turbulent motion at the beginning of the twentieth century and the development
of computers in the late 1940’s. It is difficult to identify one specific event that
marks the beginning of atmospheric dispersion modelling because the development
of the theoretical background was an important constituent of this process. In
the following, some milestones are given than can be seen as the basis that later
resulted in the formulation and implementation of atmospheric dispersion models
of different types for the purpose of simulating the spread of emission plumes of
air pollutants and radionuclides.

A first milestone was the formulation of the eddy diffusion theory. It is the gen-
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eralization of the molecular diffusion to the turbulent diffusion in the atmosphere.
Fundamentals of this theory were simultaneously presented by Taylor et al. (1915)
and Richardson (1922) in England as well as by Schmidt (1925) in Austria. They
used observations of smoke, volcanic ash and other PM to develop their description
of the spread of emission plumes. Only 6 years after his contribution to the eddy
diffusion theory, Taylor (1921) continued his work on turbulent diffusion and pre-
sented his exact Lagrangian solution for the rate of spread of tracer in stationary
homogeneous turbulence (Thomson et al. 2012).

Based on the work of Taylor et al. (1915) and Taylor (1921), Sutton et al.
(1932) further improved the early eddy diffusion theory and formulated first dis-
persion models in the context of chemical warfare for emissions from continuous
point sources of gas and PM at the ground and from chimneys (Sutton et al. 1934;
Sutton 1947a; Sutton 1947b). However, the applicability of these models were
limited to neutral atmospheric stability and to scales of only a few hundred me-
ters covering durations of minutes. Due to further investigations at the Chemical
Defence Experimental Establishment in Porton, USA, Pasquill (1961) gave a for-
mulation describing the dispersion of tracers in an exhaust plume under a variety
of atmospheric conditions with the concentration distribution of the plume having
a Gaussian shape in its lateral and vertical direction. An early implementation of
a Gaussian plume model was presented by Turner (1964). In his work, he com-
pared sulphur dioxide (SO2) measurements in an urban area (Nashville, USA) with
simulated concentrations emitted by an area source.

While the analytical solution for the transport of tracer in the atmosphere led
to the Gaussian plume models, there is also the deterministic solution of the conti-
nuity equation resulting in the formulation of Eulerian transport models (Leelőssy
et al. 2018). Improvements in the eddy diffusion theory resulted in the first imple-
mentation of a Eulerian transport models by Reynolds et al. (1973). They used the
continuity equation in combination with the eddy diffusion theory (today known
as K-theory) for the modelling of tracer dispersion to simulate the photochemical
reactions of air pollutants over Los Angeles.

Based on the Lagrangian solution for the rate of spread of tracer in turbulent
flows, a third type of dispersion models was developed in parallel to the others
(Thomson et al. 2012). These LPDMs represent a stochastic solution for the tur-
bulent motion of particles or parcels of the flow (Leelőssy et al. 2018). Early
attempts used simple random walk models to simulate the turbulent dispersion
of tracer. However, such treatments of turbulent diffusion are insufficient because
they generalize the turbulent diffusion over the complete spatial range (near-field
and far-field) (Thomson et al. 2012). Following some discussions of the charac-
teristics of Markov processes, Bullin et al. (1974) applied a Markov process for
the turbulent motion of tracers in their early implementation of a LPDM. In the
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following years, a large number of studies have been published investigating the
dispersion of passive tracers with LPDMs (Thomson 1987).

Although atmospheric dispersion models were considered to be of interest for
the identification of the impact of nuclear power plant emissions to the environ-
ment (Slade 1968; Apsimon et al. 1985), their application received a boost after
the nuclear accident of Chernobyl in April 1986. Different Lagrangian dispersion
models were applied to study the dispersion of radionuclides over Europe (Albergel
et al. 1988; Pudykiewicz 1989). Another consequence of the Chernobyl accident
was the development and further development of different types of dispersion mod-
els for the simulation of radionuclides from the meso-scale over regional-scale to
the synoptic-scale (Barnicki et al. 1996; Thaning et al. 1997; Stohl et al. 2005;
Ryall et al. 1998; Jones et al. 2007; Arnold et al. 2012). Today, ADMs are widely
installed for monitoring and regulatory purposes of nuclear power plants under rou-
tine operation and at accidents (Simmonds et al. 1995; Jones et al. 2007; StrlSchV
2018).

2.2.2 Modelling the dispersion of pollutants and radionu-
clides

Today, there is a vast field of applications for ADMs. Different kinds of pollutants
have been studied to improve dispersion modelling and to analyse the impact of
the pollutant to the environment, respectively. In the following, a few examples
of the application of atmospheric dispersion models are given.

The dispersion of ash and other pollutants from the Eyjafjallajökull volcanic
eruption have been simulated with the aim to improve the quantitative estimation
of volcanic ash emission rates (Stohl et al. 2011). Devenish et al. (2012) used
dispersion simulations of the eruption to minimise uncertainty contributions of
different input parameters of long-range dispersion models such as the height of
eruption column or the size of the particulates. Schumann et al. (2011) applied
atmospheric dispersion simulations to find safe flight zones during and after erup-
tions to allow safe airborne in situ and remote sensing measurements of volcanic
discharges1. Atmospheric dispersion models have also been used for the simulation
of the airborne spread of some disease of livestock such as foot-and-mouth disease
or bluetongue (via insects spread by the wind) (Sørensen et al. 2001; Gloster et al.
2010; Burgin et al. 2017). Sheridan et al. (2004) and Hayes et al. (2006) stud-
ied the dispersion of odour from intensive pig and poultry production units in
Ireland and how it is influenced by feed, building design and operation. One of
the most frequently studied topics with air dispersion modelling is the dispersion

1Large concentrations of volcanic ash can damage jet engines of aircraft within short time
and thus represent a serious threat to flight safety (Chen et al. 2015).
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of air pollutants in urban areas. The large number of pollution sources in urban
areas, the complex structure of urban areas with buildings and the dense popu-
lation in cities make urban areas a target area for authorities and the scientific
community. The dispersion of substances such as carbon monoxide (CO), carbon
dioxide (CO2), nitrogen oxides (NOx), SO2 and particulate matter PM10 of road
traffic, harbour and industrial emissions and their impact on air quality are heav-
ily studied (Karppinen et al. 2000; Mazzeo et al. 2008; Ionov et al. 2021; Borrego
et al. 2003; Gariazzo et al. 2007; Berchet et al. 2017). Atmospheric dispersion
models are also used to identify the source location of conventional or radioactive
tracers when measurements at receptors are provided (Lin et al. 2003; Becker et al.
2007; De Meutter et al. 2017). This inverse modelling is an advantage of LPDMs
because the dispersion backwards in time can easily be calculated compared to
Eulerian dispersion models (Henne et al. 2016; Seibert et al. 2004).

Radionuclides are associated with special hazardous potential. Thus, the dis-
persion of radionuclides in the atmosphere is of special interest either for the case of
accidental releases or for releases under routine operation of nuclear installations.
Dispersion modelling of different radionuclides originating from the Chernobyl and
the Fukushima Nuclear Power Plant (NPP) accidents were performed in order to
estimate radionuclide concentration levels and dose estimation (Gudiksen et al.
1989; Lauritzen et al. 1999; Chino et al. 2011; Lin et al. 2015; Arnold et al. 2015;
Sato et al. 2020). The exposure of the population to airborne discharges from
nuclear installations under routine operation is very low compared to the exposure
from natural background radiation and very challenging to be measured directly
(Murith et al. 1986; Ohera et al. 1993; Lee et al. 2019). Therefore, it is common
to use atmospheric dispersion models to estimate the exposure of the population
(Schorling 1995; Simmonds et al. 1995; Smith et al. 2002; Mayall 2003; AVV 2012;
StrlSchV 2018; AVV Tätigkeiten 2020).

2.2.3 Overview of the types of atmospheric dispersion
models

For all these purposes and more, there are different types of atmospheric dispersion
models available: Gaussian plume models, Gaussian puff models, Eulerian trans-
port models and Lagrangian particle dispersion models. All the different model
types have certain advantages and disadvantages concerning their applicability and
computational load.

Gaussian plume models use a simplified description of the dispersion of ex-
haust plume. Under the assumptions of a homogeneous and steady-state flow the
exhaust plume originating from a continuous source can be described as a cone
with Gaussian lateral (perpendicular to the direction of mean wind speed) and
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vertical (as far as not limited by the surface) concentration distribution (Turner
1964; Leelőssy et al. 2014). Due to their simple analytical formulation, Gaus-
sian models are inexpensive in terms of computation time. However, they rely on
strong assumptions such as steady-state and homogeneous wind conditions, which
limits their applicability to a maximum distance of a few tens of km from the
source. Further, they are not designed to simulate low wind conditions (Holmes
et al. 2006). Although hourly plume concentrations can have a Gaussian distribu-
tion under some conditions this is usually not the case for shorter averaging times
(De Visscher 2014).

A further development of Gaussian plume models are the Gaussian puff models.
They simulate the exhaust plume as a number of puffs sequentially emitted at the
source and having a Gaussian concentration distribution in all directions. Each puff
is subject to the local mean wind flow and independent of other puffs. Hence, these
models can also simulate curved plumes when the mean wind direction rotates
(Leelőssy et al. 2014). Their results are more accurate compared to Gaussian
plume models and perform well for distances up to 50 km. Gaussian puff models
are computationally more expensive as Gaussian plume models because they have
to handle a large number of puffs instead of one single plume (De Visscher 2014).

Eulerian models solve the transport equation numerically in a fixed coordinate
frame and for fixed grid points. The transport equation describes the concentration
of a single tracer in time and depends on the advection of the tracer, the sources
or sinks of the tracer and the turbulent diffusion of the tracer. The turbulent
diffusion is usually modelled analogous to the molecular diffusion of Fick’s law
(Zannetti 1991; De Visscher 2014). Eulerian models are more expensive concerning
computation time. They work well at large scales but the dispersion is not well
represented close to the source and at sub-grid scale (De Visscher 2014).

In contrast to the direct simulation of concentrations of the model types de-
scribed above, Lagrangian particle dispersion models calculate distinct trajectories
of tracers or fluid parcels represented by a large number of numerical particles. In
its simplest realisation these numerical particles are assumed to be points that fol-
low the underlying wind and turbulence fields exactly. The turbulent fluctuation
is often estimated as a random walk (Leelőssy et al. 2014). LPDMs mimic the
transport of single particles and thus simulate closest to real transport processes.
However, the computational costs depend on the number of numerical particles
and can become very high for large scale, long-term simulations with multiple
sources (De Visscher 2014).

Any atmospheric simulation of tracer dispersion needs information about me-
teorology such as mean wind direction, mean wind speed and atmospheric stability
as input. Based on this meteorological input the dispersion of tracers is simulated
according to the model type (Gaussian plume model, Gaissian puff model, etc.).
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Different models require different levels of detail of the meteorological information.
The complexity ranges from a simple vertical wind profile to three-dimensional
prognostic meteorological fields. Such three-dimensional inputs can be provided
for example from Large-Eddy-Simulation (LES) model, numerical weather predic-
tion (NWP) models or computational fluid dynamic (CFD) models (Leelőssy et al.
2014; Zannetti 1991; De Visscher 2014). In contrast to this, there are also ADM
systems which calculate the meteorology and the dispersion of tracers at the same
time.

2.2.4 Lagrangian particle dispersion models
(LPDMs)

In classical fluid mechanics there are two ways to describe fluid motion: the Eule-
rian (field) description; and the Lagrangian (particle) description. Both perspec-
tives are illustrated in Fig. 2.3. They complement each other because they describe
the same flow (Cohen et al. 2007).

ψm(t)

ψk(t)

ψn(t)

ψl(t)

z

y
x

a)

ψa(t)

ψb(t)

ψb(t+ ∆t)

ψc(t)

z

y
x

b)

Figure 2.3: Illustration of a) the Eulerian and b) the Lagrangian description of a fluid flow.
a) In the Eulerian perspective an underlying flow (solid black lines) is described by the fluid
flow property ψ at different fixed locations k, l,m, n (solid dots) at time t. b) In the Lagrangian
perspective the underlying flow is described by flow properties for fluid particles {a, b, c} following
the flow at different time steps t (solid dots) and t+ ∆t (circle).

The Eulerian description uses a fixed reference frame in space and time. It
gives information about the properties of the flow in the form of a field. The flow
is described at discrete and fixed positions in space. At these positions the fluid
properties are given at the same time. Those properties can be for example spatial
distribution of air temperature or wind speed. Meteorological stations measure
the weather according to the Eulerian description (Etling 2008; Cohen et al. 2007;
Lin 2013).
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The Lagrangian description uses reference frames that change in space and
time. One reference frame is bound to one fluid parcel and moves with it. In-
formation about the flow field are given by observation of distinguishable fluid
parcels or tracers through space and time. The paths of the fluid particles form
trajectories on which the fluid properties are described at any time (Etling 2008;
Cohen et al. 2007; Lin 2013).

Fluid properties of the two perspectives can be transformed into each other
using the substantial derivative

Dψ

Dt
=
∂ψ

∂t
+ #»u · #»∇ψ (2.31)

where ψ is a state variable associated with a fluid particle. The left-hand side of
the equation represents the rate of change when following the fluid particles. The
first part of the right-hand side ∂ψ

∂t
represents the rate of change in the Eulerian

reference frame i.e. the rate of change at a fixed position and the second part
#»u · #»∇ψ is a non-linear advection term representing the advection from one location
to another with the flow where the value of ψ may be different (Cohen et al. 2007;
Lin 2013).

LPDMs are a type of dispersion models, which use numerical particles to sim-
ulate the dispersion according to the Lagrangian perspective. A large number
of numerical particles are released at the emission source. They are then propa-
gated in space and time individually according to the underlying flow field which,
usually is given in the Eulerian description (Thomson 1987; Lin 2013). Each nu-
merical particle forms a distinct trajectory and represents a certain amount of
tracer. The basic properties of the numerical particles are that they are not sub-
ject to any deformation or inertia so that they follow the flow field and its eddies
exactly. Furthermore, they are large compared to the intermolecular distance and
have comparable densities as the surrounding air. Thus, no buoyancy or sedimen-
tation occurs without additional properties assigned to the numerical particles
(Luhar 2013), which would be the case when modelling PM or when discharges
have higher temperatures than the surrounding air. The position of a numerical
particle is advanced from one time step to the next as

#»x (tm+1) = #»x (tm) + τ
[

#»u (xm) + #»u ′ + #»u add

]︸ ︷︷ ︸
#»u trans

(2.32)

with time t, time step τ = tm+1 − tm (m is the index of the time step) and the
additional velocity #»u add that comprises for instance velocities due to sedimentation
or buoyancy. The average wind speed, the turbulent wind speed fluctuation and
the additional wind speed are the transport velocity #»u trans of a numerical particle
(Anfossi et al. 1993; Hanfland et al. 2022). An example for the trajectories of ten
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numerical particles simulated by a LPDM with additional plume rise is illustrated
in Fig. 2.4.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

H
e

ig
h

t 
[m

]

x Distance [m]

Figure 2.4: Trajectories of ten particles emitted from a stack (point source) with additional
plume rise simulated with the Atmospheric Radionuclide Transport Model (ARTM).

The flow field is of great importance because it provides the driving force to
propagate numerical particles, the mean wind components #»u and the turbulence
components #»u ′. The mean wind field is generated from separate meteorological
models, which often provide not only flow information but also other meteorological
parameters such as temperature, humidity or cloud cover. Such models are either
coupled directly to the LPDM or they provide data sets that can be read by the
LPDM. Depending on the scale of its application, the meteorological fields can
originate from NWP models for larger scale applications, static diagnostic models
for applications in the range of a few km to a few tens of km or prognostic fluid
dynamic models for smaller scale applications. LPDMs mimic also the turbulent
motion by a suitable statistical process (Holmes et al. 2006; Leelőssy et al. 2018;
Trini Castelli et al. 2018; Pisso et al. 2019). This process is often modelled as
a Markov chain process in the form of a Langevin equation (Thomson 1987; Lin
et al. 2013).

The concept of LPDMs is beneficial for the simulation of atmospheric disper-
sion because it describes the physical processes of particle dispersion closer to
reality compared to other approaches (Wilson et al. 1996). They also allow the
unique application of inverse simulations to gain information about the location
of unknown emission sources when tracers are recorded at a known receptor (Lin
et al. 2003). However, depending on the number of numerical particles, LPDMs
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can become computationally intensive. A concrete example for the formulation of
the LPDM ARTM is presented in Chapter 3.

2.3 Model evaluation

As proposed by Kleijnen (1995) and Rao (2005), model validation should comprise
two parts: Sensitivity analysis (SA) and the comparison with observations. The
SA investigates the influence of the variation of input parameters to the model re-
sults. This can reveal whether a model reacts as expected when changing a certain
input parameter. Furthermore, it can answer the following questions: How does
the uncertainty of input parameters influence the model output; which parameters
require additional research in order to reduce output uncertainty; which parame-
ters are most significant or insignificant for the model’s output (Hamby 1994; Frey
et al. 2002; Rao 2005; Saltelli et al. 2008; Hanfland et al. 2023).

The comparison of simulation results with observations shows how well the
simulation represents the real-world system. In the case of complex systems such
as the atmosphere, this may require a large number of comparisons using different
boundary conditions. For simulations modelling the processes in the PBL, it is
beneficial to use data sets sampling the whole vertical extent of the PBL than
just the atmosphere close to the surface. This makes measurement campaigns
expensive and thus, it can be challenging to find proper measurement data sets
for comparison studies.

For LPDMs that work with a Markov process for the turbulence modelling,
it is also important to demonstrate that initially uniform distributions of tracers
in an incompressible flow remain uniform as it is postulated by the second law
of thermodynamics (Sawford 1986; Thomson 1987; Lin et al. 2013; Bahlali et al.
2020). As pointed out by Thomson (1987) this cannot in general be assumed
for turbulence modelling via Markov processes. By applying these three tasks to
Lagrangian atmospheric dispersion models, the credibility of model results can be
demonstrated. These important concepts guided the work performed in this thesis.

Additionally, ARTM was part of a joint atmospheric transport model compar-
ison. The performance of ARTM was compared to more sophisticated, computa-
tional more expensive models to account for difference in simulation results.

For the validation attempts presented in this work a large number of ARTM
simulation runs (25 628) had been performed. An overview of the performed sim-
ulations is given in Tab. 2.2.
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Chapter 3

The Atmospheric Radionuclide
Transport Model (ARTM)

The Atmospheric Radionuclide Transport Model (ARTM) is a LPDM developed
by the Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH (GRS) on behalf
of the Federal Office for Radiation Protection (BfS) of Germany in 2007. Its
purpose is to provide annual activity fields of radionuclides emitted from nuclear
facilities under routine operation in the vicinity of the emitter in slightly structured
non-urban terrain. It is based on the model AUSTAL2000 2.2.11 that had been
developed for conventional tracers before. Typical simulation domains have a
horizontal extent between 2 km× 2 km and 15 km× 15 km and vertically cover the
entire PBL (Hanfland et al. 2022; Hanfland et al. 2023).

ARTM consists of a static mass-conserving diagnostic wind field model. This
has to be distinguished from computational more expensive prognostic meteorolog-
ical fields provided by NWP models like COSMO or CFDs models like GRAMM
and MISKAM, which are used by other LPDMs such as FLEXPART, STILT,
NAME, HYSPLIT or GRAL (Lin et al. 2003; Stohl et al. 2005; Ryall et al. 1998;
Draxler et al. 1998; Oettl 2015; Doms et al. 2013; Eichhorn et al. 2010). The
second part of ARTM is a particle transport model that propagates the numerical
particles according to the calculated wind fields. Wind speed fluctuations and
Lagragian correlation time scales are feed into a Markov process to parametrise
turbulence (Hanfland et al. 2022; Hanfland et al. 2023).

The physical and mathematical concepts of ARTM that are important for the
understanding of this study are published for the first time in a peer-reviewed
article in Hanfland et al. (2022). Major parts of the Secs. 3.1 and 3.2 with the
Subsecs. 3.2.1 - 3.2.8 of this work are published in Hanfland et al. (2022) and are
cited here. Features such as the handling of buildings or the plume rise through
cooling towers are not part of this study and thus excluded from the following
description.
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3.1 The wind field model TALdia

The diagnostic wind field model TALdia was developed by Janicke Consulting and
provides wind and turbulence fields for the Lagrangian particle dispersion model
ARTM when terrain is present (Janicke et al. 2003; Janicke et al. 2004; GRS
2007). TALdia uses a mass conservation approach to model the wind field within
the simulation domain. Hourly wind fields are generated by using a boundary layer
model and in situ wind measurements #»umeas (velocity and direction) at a single
location within the simulation domain (Richter et al. 2015b). In the absence of
terrain, only the boundary layer model described in the next section is applied to
model the wind and turbulence fields. In this work TALdia 2.7.0 is described.

3.1.1 The boundary layer model of TALdia

The boundary layer model is based on similarity theory and employs a logarith-
mic wind profile where the mean wind speed | #»u (z)| at height z depends on the
atmospheric stability as

| #»u (z)| =
u∗
κ
·

{
ln

[
(ψ − 1) (ψ0 + 1)

(ψ + 1) (ψ0 − 1)

]

+2
(
tan−1 ψ − tan−1 ψ0

)} for
zd0
L

< 0

{
ln
zd0
z0

+ 5

(
zd0 − z0

L

)}
for 0 ≤ zd0

L
< 0.5{

8 ln
(

2
zd0
L

)
+ 4.25

(zd0
L

)−1

− 0.5
(zd0
L

)−2

− ln
(

2
z0
L

)
− 5

z0
L

− 4

} for 0.5 ≤ zd0
L

< 10

{
0.7585

zd0
L

+ 8 ln 20 − 11.165 − ln
(

2
z0
L

)
− 5

z0
L

}
for 10 ≤ zd0

L

(3.1)

with
zd0 = z − d0, (3.2a)

ψ =

(
1 − 15

zd0 + z0
L

) 1
4

(3.2b)

and

ψ0 =
(

1 − 15
z0
L

) 1
4

(3.2c)
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where κ = 0.4 is the von Kármán constant and d0 represents the zero-plane dis-
placement (Stull 1988; VDI 3783 part 8 2002). The Obukhov length L is either
determined directly from measurements or by determining the atmospheric strat-
ification and divide its stability into six SCs parametrising the turbulence in the
atmosphere (Klug 1969; Richter et al. 2015a). In the latter case, the Obukhov
length can be determined using the SC and the roughness length. The determina-
tion scheme may depend on the TM. Most TMs use Tab. 3.1 except for the default
TM of ARTM 3.0.0, which uses Tab. 3.2 instead. The profile below z = d0 + 6 · z0
follows a linear profile down to the surface with | #»u (z = 0)| = 0. The transition
from logarithmic to linear profile is continuous (TA Luft 2002).

For the determination of the friction velocity, Eq. 3.1 is evaluated at the height
of the measurement data z = zmeas using u∗ = 1 m s−1. The resulting wind speed
is denoted with | #»u (zmeas)|u∗=1m s−1 . The friction velocity can be seen as a propor-
tional factor between the obtained wind speed at the height of the measurement
data when using u∗ = 1 m s−1 and the real, measured wind speed | #»umeas| and is
given by

u∗ =
| #»umeas|

| #»u (zmeas)|u∗=1m s−1

· 1 m s−1 (3.3)

(Janicke Consulting et al. 2015).
The mixing layer top hm is assumed to be equal to the boundary layer top and

depends on the atmospheric stability (Richter et al. 2015a; VDI 3783 part 8 2002).
For unstable atmospheric conditions, a mixing layer depth of 1 100 m is used (TA
Luft 2002). For all other conditions

hm = min(Hm, 800 m) (3.4)

is valid, where

Hm = 0.3
u∗
fc


1 for L ≥ u∗

fc(
fcL

u∗

) 1
2

for 0 < L <
u∗
fc

(3.5)

and fc denotes the Coriolis parameter (TA Luft 2002; Seinfeld 1986).
The wind direction dwind(z) within the boundary layer is assumed to change

with height above ground level (agl) according to an Ekman spiral and is given as

dwind(z) = dmeas +D(z) −D(zmeas) (3.6)

with the wind shift at height z

D(z) = 1.23 ·Dh ·
[
1 − exp

(
−1.75

z

hm

)]
(3.7)
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Table 3.1: Scheme for the determination of the Obukhov length in meter from the SC and the
roughness length as it is used by ARTM 2.8.0. After Richter et al. (2015a) from Hanfland et al.
(2022).

Stability class

Roughness
length
z0 (m)

I II III1 III2 IV V
very

stable
stable neutral indifferent unstable

very
unstable

0.01 7 25 99999 -25 -10 -4
0.02 9 31 99999 -32 -13 -5
0.05 13 44 99999 -45 -19 -7
0.10 17 60 99999 -60 -25 -10
0.20 24 83 99999 -81 -34 -14
0.50 40 139 99999 -130 -55 -22
1.00 65 223 99999 -196 -83 -34
1.50 90 310 99999 -260 -110 -45
2.00 118 406 99999 -326 -137 -56

Table 3.2: Scheme for the derivation of the Obukhov length in meter from SC and roughness
length as it is used by ARTM 3.0.0. After Richter et al. (2020).

Stability class

Roughness
length
z0 (m)

I II III1 III2 IV V
very

stable
stable neutral indifferent unstable

very
unstable

0.01 5 25 354 -37 -15 -6
0.02 7 31 448 -47 -19 -8
0.05 9 44 631 -66 -27 -11
0.10 13 59 842 -88 -36 -15
0.20 17 81 1 160 -122 -49 -20
0.50 28 133 1 893 -199 -80 -33
1.00 44 207 2 951 -310 -125 -52
1.50 60 280 4 000 -420 -170 -70
2.00 77 358 5 107 -536 -217 -89
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where the wind shift Dh depends on the Obukhov length as

Dh =


0◦ for

hm
L

< −10

45◦ + 4.5
hm
L

for − 10 ≤ hm
L

< 0

45◦ for L > 0

(3.8)

and dmeas is the wind direction of the measurement data (TA Luft 2002).
Using the mixing layer depth hm and the friction velocity u∗, the standard

deviation of wind fluctuation σ, the Lagrangian correlation time TL and the dif-
fusion coefficient K are calculated for each component of the wind vector. The
first two quantities (σ and TL) are sufficient to describe the turbulence and their
formulation is denoted as the turbulence model (TM). The x-direction is defined
in downwind direction, the y-direction is horizontally perpendicular to it and the
z-direction is in vertical direction. The components of the wind fluctuation, as
they are used in TALdia 2.7.0 (included in ARTM 2.8.0), are

σx(z) =


2.4u∗

(
1 + 0.01486

−hm
κL

) 1
3

exp

(
−z
hm

)
for L < 0

2.4u∗ exp

(
−z
hm

)
for L > 0

(3.9a)

σy(z) =


1.8u∗

(
1 + 0.03522

−hm
κL

) 1
3

exp

(
−z
hm

)
for L < 0

1.8u∗ exp

(
−z
hm

)
for L > 0

(3.9b)

σz(z) =


1.3u∗

[(
1 − 0.8

z

hm

)3 −z
κL

+ exp

(
−z
hm

)3
] 1

3

for L < 0

1.3u∗ exp

(
−z
hm

)
for L > 0

(3.9c)

for a given grid cell point (VDI 3783 part 8 2002).
The components of the Lagrangian time scale are parametrised according to

TLi =
2Σi

C0η
(3.10)

where Σi = σ2
i is the variance of the wind fluctuation, i indicates the coordinate

(i = x, y, z), C0 = 5.7 denotes the Kolmogorov constant and η is the dissipation
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rate of turbulent kinetic energy. Depending on the atmospheric stability, η can
be determined empirically (VDI 3783 part 8 2002). For unstable and neutral
stratification it can be given as

η = max

{
u3∗
κz

[(
1 − z

hm

)2

+
z

hm

]
+
−u3∗
κL

[
1.5 − 1.3

(
z

hm

) 1
3

]
,
u3∗
κz

}
(3.11)

while for stable stratification

η =
u3∗
κz

(
1 + 4

z

L

)
(3.12)

holds.
The corresponding diffusion coefficients Ki are

Ki = ΣiTLi. (3.13)

The tensors Σ(x), K(x) and T L(x) are (3 × 3)-matrices constructed using the
components Σi, Ki and TLi for each grid cell, respectively.

3.1.2 Wind field modelling

In the initialization step I, an initial wind field is constructed from the mea-
surement data #»umeas (Ratto et al. 1994) according to the boundary layer model
described above. The wind profile contains a logarithmic shape in the Prandtl
layer (up to approx. 200 m agl). For wind flowing perpendicular to a mountain
ridge, the wind velocity above the ridge increases. This leads to unrealistic large
wind velocities at the ground of the mountain top. Janicke Consulting (2014) de-
scribed this problem and ARTM uses a modification of the initial wind field by an
additional profile c(z) in order to overcome this artefact. The logarithmic shape
of the wind profile in the Prandtl layer is removed by multiplying the initial wind
field with c−1. The profile c(z) is given as

c(z) =



ln (6)

ln
(

200m−d0
z0

) for 0 < z < d0 + 6z0,

ln
(
z−d0
z0

)
ln
(

200m−d0
z0

) for d0 + 6z0 < z ≤ 200 m,

1 otherwise

(3.14)

(Janicke Consulting et al. 2015). The initial wind field and thus the modified initial
wind field V 0 do not necessarily fulfil the continuity equation which, assuming
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constant air density, is given as

#»∇ · #»u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.15)

(Ratto 1996). #»u denotes the wind vector while x, y and z are the coordinates in
the cartesian coordinate system.

In the adjustment step F, the initial wind field V 0 is then optimized under the
constraint of the continuity equation 3.15 to obtain the intermediate wind field
V inter (Janicke Consulting 2014; Ratto et al. 1994). For this purpose, the method
presented by Sasaki (1958) and Sasaki (1970) is used where the functional

E(u, v, w) = ∫∫∫
1

2

[
ah(u− u0)2 + ah(v − v0)2 + av(w − w0)2

]
dx dy dz (3.16)

represents the deviation between the initial and the intermediate wind fields (Ratto
1996). u0, v0, w0 and u, v, w are the wind components of the initial and the inter-
mediate wind field, respectively, while ah and av are the horizontal and vertical
weighting factors or stability parameters and are termed “Gauss precision moduli”
(Sasaki 1958; Sherman 1978). They are constant for the whole simulation domain.
For the two horizontal directions identical Gauss precision moduli are assumed
(Richter et al. 2015b). The aim is to minimize Eq. 3.16 under the constraint of
mass conservation leading to the variational problem

δ

{∫∫∫
1

2

[
ah(u− u0)2 + ah(v − v0)2 + av(w − w0)2

]
dx dy dz

+

∫∫∫
λ

#»∇ · #»u dx dy dz

}
= 0 (3.17)

where δ denotes the first variation and λ = λ(x, y, z) is the Lagrange multiplier.
The Euler-Lagrange equations

u = u0 +
1

ah

∂λ

∂x
(3.18a)

v = v0 +
1

ah

∂λ

∂y
(3.18b)

w = w0 +
1

av

∂λ

∂z
(3.18c)

give the solution of the variational problem of Eq. 3.17 (Ratto 1996). The substi-
tution of the partial differentials of the continuity equation 3.15 with the Euler-
Lagrange equations 3.18 leads to an elliptical equation for λ as

∂2λ

∂x2
+
∂2λ

∂y2
+

(
ah
av

)
∂2λ

∂z2
= −ah

(
∂u0

∂x
+
∂v0

∂y
+
∂w0

∂z

)
(3.19)
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which is then solved numerically using the Alternating-Directions Implicit (ADI)
method (Press et al. 2002; Richter et al. 2015b). For solving Eq. 3.19 the boundary
conditions described in Sec. 3.1.3 are used to ensure the resulting wind field to be
free of divergence.

This resulting intermediate wind field V inter is multiplied by the profile c(z) of
Eq. 3.14 to restore the previously removed logarithmic wind profile in the Prandtl
layer. According to Janicke Consulting (2014), this workaround leads to lower
and thus, more realistic wind velocities at the ground of mountain ridges. The
adjustment step F is applied again to c(z) · V inter to obtain the divergence-free
final wind field V (Janicke Consulting 2014).

3.1.3 Boundary conditions

In order to obtain a unique solution for the adjustment step F (Eq. 3.17), boundary
conditions for λ can be specified implicitly from Eq. 3.17 as

λ δ #»u · #»n = 0 (3.20)

on the boundaries in x-, y- and z-direction where δ denotes the first variation
normal to each boundary and #»n is the outward unit vector normal to the grid
cell surface of the wind field (Sherman 1978; Ratto et al. 1994; Homicz 2002). A
detailed derivation is given by Homicz (2002).

Eq. 3.20 is only valid when either i) λ = 0 or ii) δ #»u · #»n = 0; if both terms i)
and ii) are equal to zero there would be no unique solution (Sherman 1978):

i) If λ = 0 is valid the variation of the normal wind component δ #»u · #»n at the
boundary is not zero. This implies an adjustment of the initial wind field
in normal direction at the boundary, which means that there is a change of
air mass entering or leaving the grid cell boundary. This is a “flow-through”
boundary.

ii) If the variation of the normal wind component is zero (δ #»u · #»n = 0) then there
is no adjustment of the initial wind field at the boundary, which implies no
air mass change through the boundary. This represents a “no-flow-through”
boundary.

Flow-through boundaries are used for the lateral and the top border of the sim-
ulation domain while a no-flow-through boundary is used for the bottom of the
simulation domain (Janicke et al. 2003).

3.1.4 Parametrisation of atmospheric stability

The Gauss precision moduli ah and av of Eq. 3.16 serve as an interface to get
information about the atmospheric stability into the process of the wind field
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modelling (Sherman 1978) and to determine whether an obstacle is passed more
likely in horizontal (flow around) or vertical (flow over) direction (Ratto 1996).
Both Gauss precision moduli are connected as

ah =
1

av
(3.21)

where av is a function of the Strouhal number Str and defined as

av =
1

2
Str2 +

√
1 +

1

4
Str4. (3.22)

The Strouhal number Str is the product of the Brunt-Väisälä frequency NBV and
a characteristic time tc as

Str = NBV · tc (3.23)

where

NBV =

√
ag

θ

dθ

dz
(3.24)

and

tc =
Lc

vc
. (3.25)

ag is the acceleration of gravity and θ is the potential temperature. In the case
of unstable and very unstable conditions the potential temperature gradient dθ

dz
is

assumed zero leading to av = ah = 1. For other stratifications dθ
dz

is determined
from the SC and the wind velocity after KTA 1508 (2017, Tab. 7-2). For the
characteristic wind velocity vc = vc(z), the wind profile of the initial wind field
V 0 at the position of the measurement data is used (Janicke Consulting 2014). Lc

is the geometric mean Lc =
√
hclc of a characteristic height (height of a terrain

structure) hc and a characteristic length lc given by

lc =
hc
2γ

(3.26)

with the average slope within the simulation domain

γ2 =

∫ (
∂b
∂x

)2
+
(
∂b
∂y

)2
dx dy

Adomain

. (3.27)

b = b(x, y) is the terrain elevation and

Adomain = (xmax − xmin)(ymax − ymin) (3.28)
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is the area of the simulation domain where xmin/max and ymin/max represent the
edges of the simulation domain in x- and y-direction. The characteristic height hc
is defined as

hc = 4

√∫
[b(x, y) − b̄ ]2 dx dy

Adomain

(3.29)

with the mean terrain elevation

b̄ =

∫
b(x, y) dx dy

Adomain

(3.30)

(Janicke Consulting 2014).

3.1.5 Coordinate system

TALdia uses a height-based terrain-following σ-coordinate system initially pre-
sented by Gal-Chen et al. (1975). In the simulation domain the vertical coordinate
z is zero at the bottom of the domain while the top of the simulation domain is
denoted as ẑ = const (Gal-Chen et al. 1975). Positions between the terrain surface
b and the domain top ẑ can be expressed as h = z − b. It is assumed that ẑ → ∞
leading to ĥ = ẑ (Janicke Consulting 2014). For the terrain-following coordinate
system a new vertical coordinate s is introduced as

s(x, y) = ĥ(x, y) · σ = ĥ(x, y) · z(x, y) − b(x, y)

ẑ(x, y) − b(x, y)
(3.31)

(Janicke Consulting 2014; Ratto 1996; Gal-Chen et al. 1975).
At the terrain surface z(x, y) = b(x, y) is valid and thus the coordinate s is

always zero at the surface. At the top of the domain z(x, y) = ẑ(x, y) and therefore
s = ĥ = ẑ (Ratto et al. 1994; Janicke Consulting 2014). For the case of a flat
surface (no terrain is present) the vertical coordinate remains unchanged s = z.

The vertical component of the wind speed is also transformed and used in
ARTM. The vertical velocity ws within the terrain-following coordinate system is
obtained by differentiating Eq. 3.31 with respect to time leading to

ws = w −
(
∂b

∂x
u+

∂b

∂y
v

)
(3.32)

with the original vertical velocity w (Janicke Consulting 2014). A detailed deriva-
tion is given by Gal-Chen et al. (1975).
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3.2 The particle dispersion model

The ARTM version 2.8.0 uses the particle dispersion model suggested by the As-
sociation of German Engineers (VDI) guideline 3945 part 3 in combination with
VDI guideline 3782 part 3 for the plume rise (VDI 3945 part 3 2000; VDI 3782 part
3 1985; Richter et al. 2015a; Janicke Consulting 2014). The model also contains
radionuclide specific features such as radioactive decay, dry and wet deposition
and γ-cloud shine.

3.2.1 The transport

The transport is modelled according to Eq. 2.32 at page 25 for LPDMs. In order
to simplify the follow up formalism, I repeat the equation using different indices
as

#»xnew = #»xold + τ
[ #»
u ( #»xold) +

#»

u′ + #»uadd︸ ︷︷ ︸
#»utrans

]
(3.33)

with the new (old) particle positions #»xnew(old), the average velocity
#»
u and the

turbulent velocity
#»

u′ representing the Reynolds decomposition of the wind vector
(VDI 3945 part 3 2000; Mesinger et al. 1976). #»uadd is an additional velocity vector
representing e.g. sedimentation or buoyancy, #»u trans denotes the transport velocity
and #»xold is the former particle position. The time steps τ are small compared to
the Lagrangian correlation time and they are in the order of seconds to tens of
seconds in practice.

#»
u is obtained by spatial interpolation from the final wind field V at the particle

position (see Sec. 3.1.2) and is constant for the time t = 1 h while the turbulent

velocity
#»

u′ changes for each τ ≪ t according to the Markov process

#»

u′ = Ψ( #»xold) ·
#»

u′old +
# »

W ( #»xold) + Λ( #»xold) · #»r (3.34)

(VDI 3945 part 3 2000). Ψ is the autocorrelation tensor and given as

Ψ ≈ I − τ( #»x )
(
Σ ·K−1

)
(3.35)

with the identity matrix I,
# »

W is the drift velocity

# »

W ≈ τ( #»x )
#»∇ ·Σ, (3.36)

Λ is the Cholesky decomposition of a tensor Ω given as

Ω = λλT ≈ τ( #»x )
[(
Σ ·K−1

)
·Σ + Σ ·

(
Σ ·K−1

)T]
(3.37)
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and #»r is a random vector with its components following a standard normal prob-
ability density distribution (Janicke 2000). The tensors Σ and K are obtained
from the boundary layer model described in Sec. 3.1.1.

The Eqs. 3.35 to 3.37 are derived under the assumptions of i) the additional
velocity is zero ( #»uadd = 0); ii) there are suitable boundary conditions to obtain a
homogeneous steady state particle distribution; iii) in such a homogeneous steady
state particle distribution the mean wind speed and its variance is equal to the
mean particle velocity and its variance, respectively; iv) at time scales much larger
then the Lagrangian correlation time a particle cloud spreads like the classic diffu-
sion equation predicts; and v) the small time steps τ( #»x ) depend on the location.
Using location dependent time steps τ avoids very small time steps in the whole
simulation domain and keeps the model computational efficient (VDI 3945 part 3
2000). A detailed derivation of Eqs. 3.35 to 3.37 is given by Janicke (2000).

3.2.2 Particle initialisation and boundary conditions

All numerical particles start either as a point, line, area or volume source. In
the latter cases the numerical particles are distributed randomly within the line,
area or volume source. The initial turbulent velocity of each numerical particle is
chosen randomly according to a standard normal distribution with the mean value
#»

u′ = Σ( #»x ) and the standard deviation σnorm = 1 m s−1 (VDI 3945 part 3 2000).
Particles crossing the upper and lateral boundaries of the simulation domain

are erased from the simulation. At the terrain surface, numerical particles are
elastically reflected instantaneously (with deposition for PM as described in Sec.
3.2.4) and their turbulent velocity is changed to

#»

u′new =
#»

u′old − 2( #»n ·
#»

u′old) · #»n (3.38)

(VDI 3945 part 3 2000).
The upper boundary of the mixing layer within the simulation domain can

be crossed by the numerical particles. The atmosphere above the mixing layer is

modelled as a region with no diffusion (
#»

u′ = 0) (VDI 3945 part 3 2000; GRS 2015).

3.2.3 The plume rise

Usually a rise of the plume relative to the emission height occurs due to buoyancy
and inertia (Briggs 1971). In ARTM emissions are divided into two categories,
emissions with heat content Q lower or higher than 1.4 MW. The heat Q in MW
is calculated as

Q = cp ·Rnorm (Te − 283.15 K) (3.39)
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with cp = 1.36 · 10−3 MW s m−3 K−1 being the specific heat capacity for the emis-
sions of a pit coal fire, Rnorm being the volume flux under standard conditions
(temperature T = 273.15 K and pressure p = 1013.25 hPa) and Te being the tem-
perature of the emissions (VDI 3782 part 3 1985).

For the first case (Q ≤ 1.4 MW), the momentum plays a significant role for the
plume rise (VDI 3782 part 3 1985). Thus, according to Moses et al. (1968) the
maximum plume rise (relative to the height of the source agl) is given as

hmax = max (hb, hi) (3.40)

with
hb =

(
0.35 · wemission · dsource + 84 ·Q

1
2

)
| #»uh|−1 (3.41)

and
hi = 3 · wemission · dsource · | #»uh|−1. (3.42)

wemission denotes the vertical velocity of the emission flux, dsource is the diameter of
the source and | #»uh| is the horizontal wind velocity in the height of the source taken
from the final wind field V (GRS 2015). Equations 3.40 to 3.42 are valid for all
turbulence conditions in the atmosphere (VDI 3782 part 3 1985). The horizontal
distance between the source and the maximum plume rise depends only on the
heat Q and is given as

| #»xhmax| = 209.8 ·Q0.522. (3.43)

For the second case (Q > 1.4 MW), the calculation depends on the turbu-
lence in the atmosphere (VDI 3782 part 3 1985). Following Briggs, the horizontal
distance from the source to the maximum plume rise is determined by

| #»xhmax| = exp

 ln
(
hmax·| #»uh|

α

)
− χ lnQ

q

 (3.44)

(VDI 3782 part 3 1985; Briggs 1971). The empirical parameters α, χ and q depend
on the atmospheric stability and the heat Q and are summarized in Tab. 3.3. The
maximum plume rise hmax for this case is calculated according to

hmax = β ·Qϵ · | #»uh|γe (3.45)

with the empirical parameters β, ϵ and γe given in Tab. 3.3 (Briggs 1971; VDI
3782 part 3 1985).

After the determination of hmax and | #»xhmax| an additional vertical velocity #»wpr

for the numerical particles due to the plume rise is calculated as

#»wpr =
hmax

trise
(3.46)
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Table 3.3: Values of the parameters in Eqs. 3.44 and 3.45 for the different SCs and heat contents
Q. After VDI 3782 part 3 (1985). From Hanfland et al. (2022).

stability class

I II III1 + III2 IV + V
very

stable neutral indifferent unstable
very

stable unstable

Q > 1.4 MW
1.4 MW
< Q ≤
6 MW

Q >
6 MW

1.4 MW
< Q ≤
6 MW

Q >
6 MW

α 3.34 3.34 2.84 2.84 3.34 3.34
χ 0.333 0.333 0.333 0.333 0.333 0.333
q 0.667 0.667 0.667 0.667 0.667 0.667
β 74.4 85.2 78.4 102 112 146
ϵ 0.333 0.333 0.750 0.600 0.750 0.600
γe −0.333 −0.333 −1 −1 −1 −1

where

trise = 0.4 · |
#»xhmax|
| #»uh|

(3.47)

denotes the rise time. A numerical particle is assumed to move vertically with #»wpr

beginning from its release at the source until trise is reached (GRS 2015).
The given equations for the plume rise are only valid for emissions from sources

with a vertical flux not influenced by obstacles. In the case of wind speeds at source
height lower than 1 m s−1 it is substituted with | #»uh| = 1 m s−1. Latent heat in the
discharge is explicitly excluded (VDI 3782 part 3 1985).

3.2.4 Sedimentation, dry and wet deposition

The sedimentation of PM is realised by numerical particles with an additional
velocity #»uadd in the transport equation 3.33. Sedimentation velocities used by
ARTM depend on the aerodynamic diameter of particulate matter (VDI 3945 part
3 2000). The five size classes ARTM uses for PM are given in Tab. 3.4 together
with their sedimentation velocities.

Each numerical particle represents a mass and may carry an activity aν of a
real particle species ν. If such a numerical particle hits an obstacle or the terrain
surface, a fraction ζν,dry of its activity aν is deposited. After this process the new
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Table 3.4: Size classes for particulate matter (PM) used in ARTM with their aerodynamic
diameters daero in µm, sedimentation velocities wsed in m s−1, deposition velocities udep in m s−1

and washout coefficients r0ν,w in s−1 for a precipitation rate of 1 mm s−1 after Richter et al.
(2015b). From Hanfland et al. (2022).

Size Class
daero wsed udep r0ν,w

in µm in m s−1 in m s−1 in s−1

PM 1 daero < 2.5 0.00 0.001 1 · 10−4

PM 2 2.5 ≤ daero < 10 0.00 0.01 2 · 10−4

PM 3 10 ≤ daero ≤ 50 0.04 0.05 3 · 10−4

PM 4 50 < daero 0.15 0.20 4 · 10−4

PM u 10 < daero 0.06 0.07 3 · 10−4

activity of the particle is given by

aν,new = (1 − ζν,dry) aν,old. (3.48)

The factor ζν,dry is given as

ζν,dry =
2 udep

udep + wsed + σw,0

√
2
π
fp

(3.49)

where

fp =
exp

(
− w2

sed

2σ2
w,0

)
1 + erf

(
wsed

σw,0

√
2

) , (3.50)

udep is the deposition velocity given in Tab. 3.4 and σw,0 is the vertical wind fluc-
tuation close to the ground (Janicke 1985; VDI 3945 part 3 2000). The deposition
velocities for mercury and iodine in their organic bounded form are 0.0001 m s−1

and in their elementary form are 0.01 m s−1, respectively. The particle is elastically
reflected and its turbulent velocity is changed according to Eq. 3.38.

Wet deposition denotes the deposition due to washout by precipitation and
thus, also activity deposition occurs. For each particle species a specific washout
coefficient r0ν,w is defined which is used to obtain the washout factor

rν,w = r0ν,w · ϕaprec (3.51)

where ϕprec is the precipitation rate and a is a tracer specific exponent which may
have i) a value of a = 0.8 for PM and iodine isotopes or ii) a value of a = 1 for
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tritiated water (AVV 2012; Richter et al. 2015a). The activity fraction remaining
in the atmosphere is given by

aν,new = (1 − rν,wτ) aν,old (3.52)

(VDI 3945 part 3 2000).
The washout coefficients for the precipitation rate 1 mm h−1 of radionuclides as

PM are given in Tab. 3.4. Washout coefficients for organic bounded mercury and
iodine are 7 · 10−7 s−1, in their elementary form they are 7 · 10−5 s−1, respectively.
The activity of a grid cell bottom area due to wet deposited originates from the
vertical column above the bottom area to the top of the simulation domain (VDI
3945 part 3 2000).

3.2.5 Radioactive decay

The radioactive decay of numerical particles is represented as an exponential decay
of the activity of a radioactive species as

aν,new = aν,old · exp (−τλdecay) (3.53)

where λdecay is the constant of decay for the corresponding radionuclide. Radioac-
tive decay is only considered for numerical particles in the air not on the ground.
Daughter products are not considered in ARTM (Richter et al. 2015a).

3.2.6 Activity concentration distribution

The simulation domain is divided into grid cells with coordinate indices i, j, k
where the volume of a grid cell is denoted Vi,j,k. The activity concentration of
a particle species ν consists of spatio-temporal mean activity concentration aνi,j,k
within each grid cell and the time interval [t0, t1]. During this time interval, all
numerical particles n with activity concentration aν,n contribute to the grid cell’s
mean activity concentration aνi,j,k for n = 1 . . . N .N is the total particle number.
Using the step function

f
(n)
i,j,k(t) =

{
1 the particle n is inside Vi,j,k at time t,

0 otherwise
(3.54)

for each numerical particle to decide at which time the particle contributes to the
grid cell, the mean activity concentration can be calculated as

aνi,j,k =

∑N
n=1

∫ t1
t0
f
(n)
i,j,k(t) · aν,n(t) dt

Vi,j,k · (t1 − t0)
(3.55)

(VDI 3945 part 3 2000).

44



3.2.7 Activity deposition rate distribution

The calculation of the dry activity deposition rate is similar to the calculation of
the activity concentration distribution. The grid cells divide the terrain surface
into areas Al,m where l and m identify the grid cells in x- and y-direction. At

a certain point in time t
(n)
l,m the particle n hits the terrain surface area Al,m and

deposits a fraction ζν,dry of its activity. Thus, for a time interval [t0, t1] the dry
deposition rate is calculated as

dνl,m =

∑N
n=1

∫ t1
t0
δ(t− t

(n)
l,m) · ζν,dry · aν,n(t) dt

Al,m · (t1 − t0)
(3.56)

(VDI 3945 part 3 2000).

3.2.8 γ-cloud shine

Radioactive isotopes - as part of the exhaust plume - may radiate γ-rays to all
directions in space (Hallenbeck 1994). The γ-radiation of the plume at the terrain
surface is called γ-cloud shine and is calculated by ARTM based on the grid cells
(Richter et al. 2015a). The γ-radiation G(xlm, ylm) to the area of a grid cell at the
surface with coordinates l and m is given as

G(xlm, ylm) =

∑
i,j,k

aνi,j,k

∫
Vi,j,k

B(µRi,j,k
l,m )K(µz, µSi,j,kl,m ) exp

(
−µRi,j,k

l,m

)
4πRi,j,k

l,m

2 dx dy dz (3.57)

where B is the dose buildup factor, µ is the aggregate attenuation coefficient, K is
the correction factor for influences of the ground, S is the horizontal distance from
the source of the γ-ray to the observed grid cell and R is the three-dimensional
distance, respectively (VDI 3945 part 3 2000; Richter et al. 2015a).

The dose buildup factor B depends on the radiation energy. For simplicity,
the energy spectrum is divided into two parts at 0.2 MeV. Energies of the lower
(upper) part of the spectrum are approximated with coefficients for E = 0.1 MeV
(E = 1 MeV), respectively (Richter et al. 2015a). Thus, the dose buildup factor is
approximated as

BE(µE ·R) = 1 +
5∑

f=1

bE;f · (µE ·R)f for E ∈ {0.1 MeV, 1 MeV} (3.58)

with the aggregate attenuation coefficients µ1MeV = 7.78 · 10−3 m−1 (AVV 2012;
Richter et al. 2015a) and µ0.1MeV = 1.82·10−2 m−1 (Jacob et al. 1984; Richter et al.
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2015a). Values for the coefficients bE;f are summarized in Tab. 3.5. The coefficients
b1MeV;f are only valid if µ1MeV ·R < 15, for higher values B1MeV(µ1MeV ·R ≥ 15) =
B1MeV(15) is used (AVV 2012; Richter et al. 2015a).

Table 3.5: Coefficients bE;f for the calculation of the dose buildup factors in Eq. 3.58 after
Richter et al. (2015a) for energies of 0.1 MeV and after AVV (2012) for energies of 1 MeV. From
Hanfland et al. (2022)

Energy f = 1 f = 2 f = 3 f = 4 f = 5

0.1 MeV 1.92 1.74 −3.39 · 10−2 3.86 · 10−2 −2.11 · 10−3

1 MeV 7.7 · 10−1 3.5 · 10−1 −4.0 · 10−2 3.2 · 10−3 −8.2 · 10−5

The correction coefficient for the influence of the ground K is approximated as

KE(µE · z, µE · S) ≈
3∑

f=0

3∑
g=0

af,g(µE · z)f · exp
(
−g

2
· µE · S

)
for E ∈ {0.1 MeV, 1 MeV} (3.59)

where the coefficient af,g is taken from Tab. 3.6 (Jacob et al. 1985; Richter et al.
2015a; AVV 2012).

Table 3.6: Coefficients af,g for the calculation of the correction coefficients for the influence of
the ground KE after Jacob et al. (1985). From Hanfland et al. (2022).

0.1 MeV

g = 0 g = 1 g = 2 g = 3

f = 0 0.279 0.595 −0.205 0.622
f = 1 0.135 0.866 −0.716 −0.578
f = 2 −0.0131 −0.324 0.1103 0.2892
f = 3 0.0003 0.0313 −0.0017 −0.0337

1 MeV

g = 0 g = 1 g = 2 g = 3

f = 0 0.485 0.064 1.705 −1.179
f = 1 0.137 1.878 −4.817 2.883
f = 2 −0.0035 −0.8569 2.0527 −1.2552
f = 3 −0.0018 0.0997 −0.2392 0.1503
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For the calculation of the γ-cloud shine, the integration of Eq. 3.57 is solved
using Gaussian Quadratures (Press et al. 2002; Richter et al. 2015a). The calcu-
lation is straight forward for all grid cells except for the case where the grid cell of
radiance also contains emitters. In that case, a coordinate transformation to polar
coordinates is necessary in order to omit a singularity in the integrand of Eq. 3.57.
Details about the calculation are given by Richter et al. (2015a).

3.2.9 Sample Error

In ARTM the simulation results consist of concentration fields, fields for dry and
wet deposition and fields for the γ-cloud shine. All this fields are given with as-
sociated uncertainties that represent the sample error. Assuming we observe one
molecule that is represented by a numerical particle. Molecular diffusion is ne-
glected because it is small compared to the turbulent diffusion. During the disper-
sion the molecule is transported by advection and turbulent diffusion. In ARTM
the corresponding numerical particle is propagated by the mean wind (advection)
and the turbulent wind speed that is associated with the turbulent diffusion. The
turbulent diffusion is modelled as a stochastic process, i.e. the trajectory of the
numerical particle represents just one possible realisation of all possible trajectory
of the associated molecule. This is valid for all the numerical particle trajectories
simulated by ARTM. The resulting concentration fields of a simulation are thus
only one representation of all the possible representations and they are subject
to a certain uncertainty. ARTM estimates this uncertainty as the sample error
(Janicke Consulting 2014). Other common names are the standard error of the
mean or just the standard error and it characterises the uncertainty in the mean
calculated concentrations as the best estimate for the actual concentration (Taylor
1997).

In ARTM the set of numerical particles of one simulation run is internally split
into Ng sub-sets. This is the equivalent to an ensemble with Ng members. The
dispersion simulations of all sub-sets use the same initial and boundary condi-
tions but the turbulent diffusion of each sub-set of numerical particles is simulated
independently. This means that each sub-set uses its own unique set of pseudo-
random numbers for the simulation of the turbulent velocities. ARTM uses the
Ng sub-sets to estimate the sample error of the concentration for each grid cell of
the simulation domain (GRS 2015; Janicke Consulting 2022).
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Statistical background

Assuming X is a random variable forming the population X = {X1, X2, . . . , XN}.
The population mean µ or population expected value E(X) is

µ = E(X) =
N∑
i=1

XiPi (3.60)

where Pi is the probability of the value Xi. If X is uniformly distributed all Pi are
equal. Sometimes the population mean is written as µ = ⟨X⟩.

The variance of a population Var(X) = σ2
X is the weighted sum of the squared

difference from the mean

Var(X) = σ2
X =

N∑
i=1

(Xi − µ)2Pi. (3.61)

If we only assume a sub-set of the population as a sample x = {x1, x2, . . . , xn}
then the sample mean x is different from the above population mean µ as

x =
n∑
i=1

xipi (3.62)

with the probability pi of xi. We assume that x is uniformly distributed with
pi = 1

n
. The sample variance can be expressed as

Var(x) = σ2
x =

1

n

n∑
i=1

(xi − x)2 (3.63)

or as the unbiased sample variance

Var(x) = σ2
x =

1

n− 1

n∑
i=1

(xi − x)2 (3.64)

which includes a correction (Taylor 1997).
The deviation of the sample mean x from the population mean µ can be ex-

pressed as the variance of the sample mean

Var(x) = σx = Var

(
1

n

n∑
i=1

xi

)
1)
=

1

n2
Var

(
n∑
i=1

xi

)
2)
=

1

n2

n∑
k=1

Var (xk) =
1

n2
n · Var(x) =

1

n2
n · σ2

x =
σ2
x

n
(3.65)
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where at 1)

Var(aX) =
1

n

n∑
i=1

(
aXi − aX

)2
=

1

n

n∑
i=1

(
a2X2 − 2a2XX + a2X

2
)

=
1

n

n∑
i=1

a2
(
X2 − 2XX +X

2
)

= a2
1

n

n∑
i=1

(
X −X

)2
= a2 Var(X) (3.66)

was used and at 2) Bienaymé’s identity was applied. It states that for pairwise
independent samples x1 and x2 the sum of the variances is equal to the variance
of the sum

Var(x1 + x2) = Var(x1) + Var(x2) (3.67)

(Press et al. 2002). The square root of Eq. 3.65 is defined as the standard error
(Taylor 1997).

Calculation of the sample error

In the following, for simplicity, we focus on one single gird cell of the simulation
domain. The calculation of the sample error for the other grid cells is analogue.
In ARTM the shortest evaluation time period h is one hour. For each sub-set one
activity value ah,n with n = 1 . . . Ng is given for the observed grid cell. Summing
over all Ng sub-sets results in

sh =

Ng∑
n=1

ah,n. (3.68)

This sum can also be estimated by multiplying the activity value of one single
sub-set with the number of all sub-sets

Ah,n = Ng · ah,n. (3.69)

The mean of the estimates Ah,n using the activity values from all sub-sets given as

Mh =
1

Ng

Ng∑
n=1

Ah,n =
1

Ng

Ng∑
n=1

(Ng · ah,n) =

Ng∑
n=1

ah,n = sh (3.70)

is equal to the sum of all activity values given in Eq. 3.68. This sample mean Mh

deviates from the population mean µh, where Ng → ∞ or the number of numerical
particles → ∞. The deviation of Mh from its expected value µh is given by the
mean squared error (variance) as

√
Var(Mh) =

√
σ2
Ah,n

Ng

Eq.3.64
=

[
1

Ng(Ng − 1)

Ng∑
n=1

(Ah,n −Mh)
2

] 1
2
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=

[
1

Ng(Ng − 1)

Ng∑
n=1

(
A2
h,n − 2Ah,nMh +M2

h

)] 1
2

=

[
1

Ng(Ng − 1)

(
Ng∑
n=1

A2
h,n −

Ng∑
n=1

2Ah,nMh +

Ng∑
n=1

M2
h

)] 1
2

=

{
1

Ng(Ng − 1)

[
Ng∑
n=1

(Ng · ah,n)2 −
Ng∑
n=1

2Ah,nMh +

Ng∑
n=1

M2
h

]} 1
2

=

{
1

Ng(Ng − 1)

[
Ng∑
n=1

(Ng · ah,n)2 − 2Mh

Ng∑
n=1

Ah,n +

Ng∑
n=1

M2
h

]} 1
2

Eq.3.70
=

{
1

Ng(Ng − 1)

[
Ng∑
n=1

(Ng · ah,n)2 − 2Mh ·Ng ·Mh +

Ng∑
n=1

M2
h

]} 1
2

=

{
1

Ng(Ng − 1)

[
Ng∑
n=1

(Ng · ah,n)2 − 2NgM
2
h +

Ng∑
n=1

M2
h

]} 1
2

=

{
1

Ng(Ng − 1)

[
Ng∑
n=1

(Ng · ah,n)2 − 2NgM
2
h +Ng ·M2

h

]} 1
2

=

{
1

Ng(Ng − 1)

[
N2

g

Ng∑
n=1

a2h,n − 2NgM
2
h +Ng ·M2

h

]} 1
2

=

{
1

Ng(Ng − 1)

[
N2

g

Ng∑
n=1

a2h,n −NgM
2
h

]} 1
2

=

{
1

Ng − 1

[
Ng

Ng∑
n=1

a2h,n −M2
h

]} 1
2

Eq.3.70
=

{
1

Ng − 1

[
Ng

Ng∑
n=1

a2h,n − s2h

]} 1
2

=

{
1

Ng − 1

[
Ng · qh − s2h

]} 1
2

(3.71)

where

qh =

Ng∑
n=1

a2h,n (3.72)
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is the sum of squared activities of the time period h (Janicke Consulting 2022).
Now, assuming two sequential time periods h = h, h + 1 and applying the

identity of Bienaymé’s (Eq. 3.67) the standard error can be expressed as

√
Var(Mh +Mh+1) = [Var(Mh) + Var(Mh+1)]

1
2 =

(
σ2
Ah,n

Ng

+
σ2
Ah+1,n

Ng

) 1
2

=

[
1

Ng

(
σ2
Ah

+ σ2
Ah+1,n

)] 1
2

Eq.3.71
=

[
1

Ng − 1

(
Ng · qh − s2h

)
+

1

Ng − 1

(
Ng · qh+1 − s2h+1

)] 1
2

=

[
1

Ng − 1

(
Ng · qh − s2h +Ng · qh+1 − s2h+1

)] 1
2

=

{
1

Ng − 1

[
Ng(qh + qh+1) −

(
s2h + s2h+1

)]} 1
2

=

{
1

Ng − 1

[
Ng(qh + qh+1) −

(
s2h + s2h+1 − 2shsh+1 + 2shsh+1

)]} 1
2

=

{
1

Ng − 1

[
Ng(qh + qh+1) −

(
(sh + sh+1)

2 − 2shsh+1

)]} 1
2

=

{
1

Ng − 1

[
Ng(qh + qh+1) + 2shsh+1 − (sh + sh+1)

2
]} 1

2

=

{
1

Ng − 1

[
Ng

(
qh + qh+1 +

2

Ng

shsh+1

)
− (sh + sh+1)

2

]} 1
2

(3.73)

with the definitions

qh,h+1 ≡ qh + qh+1 +
2

m
shsh+1, (3.74)

sh,h+1 ≡ sh + sh+1 =

Ng∑
n=1

ah,n +

Ng∑
n=1

ah+1,n (3.75)

and
Mh,h+1 ≡Mh+(h+1) (3.76)

leading to √
Var(Mh,h+1) =

{
1

Ng − 1

[
Ng · qh,h+1 − s2h,h+1

]} 1
2

(3.77)
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which has the same structure as Eq. 3.71 but for sequential time periods.
The standard error in ARTM is then estimated by the relative standard devi-

ation of the mean as√
Var(Mh,h+1)

Mh,h+1

=

√
σ2
Ah,h+1,n

Ng ·M2
h,h+1

Eq.3.70
=

√
σ2
Ah,h+1

Ng · s2h,h+1

Eq.3.77
=

√√√√ 1
Ng−1

[
Ng · qh,h+1 − s2h,h+1

]
s2h,h+1

=

√√√√ 1

Ng − 1

[
Ng ·

qh,h+1

s2h,h+1

− 1

]
(3.78)

(Janicke 2022a; Janicke 2022b; Janicke Consulting 2022).
For long simulation periods H = h + (h + 1) + (h + 2) + . . . , ARTM uses Eq.

3.75 and 3.74 iteratively to estimate the relative standard deviation of the mean
activity as √

Var(AH,n)

s2HNg

=

√(
Ng

qH
s2H

− 1

)
1

Ng − 1
. (3.79)

By default, ARTM uses Ng = 9 sub-sets (GRS 2015).
This sample error depends on the number of numerical particles and decreases

with increasing particle number. It can be seen as a figure-of-merit whether the
number of numerical particles used in the simulation is large enough to obtain
statistically reliable simulation results for the individual grid cells.
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Chapter 4

The influence of input parameters
and turbulence models

This chapter describes the evaluation of the ARTM model. In a first part it gives
a description and the results of the sensitivity study of ARTM. This is followed
by a description of five turbulence models (three are already part of ARTM while
two are newly implemented) as well as the description and the results of the study
of their vertical mixing properties.

Parts of this chapter are published in Hanfland et al. (2022) and Hanfland et
al. (2023). Significant parts of the section 4.1 (first paragraph of Subsec. 4.1.1,
parts of Subsec. 4.1.2 and first paragraph of Subsec. 4.1.3) are published in
Hanfland et al. (2022) and are cited here. Major parts of Section 4.1 (second and
third paragraph of Subsec. 4.1.1, parts of Subsec. 4.1.2 and second paragraph
of Subsec. 4.1.3) are published in Hanfland et al. (2023) and cited here. Major
parts of Section 4.2 (Subsec. 4.2.1, 4.2.2 and 4.2.3) are published in Hanfland
et al. (2023) and are cited here. For the sake of readability there will be no further
citations at the mentioned text parts in this chapter.

4.1 Dependence of simulation results on input

parameters

It is important to understand how a model responds to variations of the input
parameters. SA is a common tool to study such dependencies in a systematic way,
it is crucial for model validation and can serve to guide future research (Hamby
1994; Frey et al. 2002; Saltelli et al. 2008). Furthermore, it can answer the follow-
ing questions: how does the uncertainty of input parameters influence the model
output; which parameters require additional research in order to reduce output
uncertainty; which parameters are most significant or insignificant to the model’s
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output; does the model behave as expected when varying a certain input parameter
(Hamby 1994; Rao 2005; Hanfland et al. 2023).

4.1.1 Methods for the quantification of sensitivity

SA methods are classified as either local or global depending on the sampled input
parameter space (Saltelli et al. 2008; Morio 2011; Zagayevskiy et al. 2015). Local
SA samples only a small region of the input parameter space using distinct loca-
tions. This results in a small number of simulation runs and thus little computing
time. In contrast, global SA samples the entire input parameter space, which re-
sults in a larger number of simulations and also larger computing time. The smaller
number of simulations of local SA allows the analysis of the simulation results in
a descriptive way. In this work, this analysis is called qualitative SA. The large
amount of simulations of the global SA makes the descriptive analysis of simula-
tion results inconvenient or even impossible. In order to simplify the analysis and
to quantify the influence of input parameters on the simulation output, sensitivity
coefficient based methods have been developed. They condense the information of
sensitivity to one quantity, the sensitivity coefficient. Such methods are available
for local and global SA (Saltelli et al. 2008; Morio 2011; Zagayevskiy et al. 2015).
The coefficient-based analysis is called quantitative SA in the following.

The results of the quantitative SA of the two classes as well as of two methods
of the same class may differ depending on the shape of the input parameter space.
Thus, the application of several different methods is necessary (Iman et al. 1988;
Hamby 1995). Therefore, a qualitative evaluation of local SA as well as several
different quantitative local and global SA methods are applied in this work in
order to provide a more comprehensive assessment of the response of ARTM 2.8.0
to different input parameters.

Evaluation methods for qualitative sensitivity analysis

In order to objectively evaluate the results of the qualitative SA some target quan-
tities are used. For instance, the spread of the exhaust plume is described with the
normalised volume covered by the pollutant. The normalisation can be done either
by normalising the volume covered by the plume in one horizontal simulation level
with the entire volume of that specific level or by normalising the volume covered
by the whole plume in the simulation domain with the volume of the entire simula-
tion domain. Furthermore, the mean plume volume of the three lowest simulation
levels is determined to get information about the spread close to the ground.

A second target quantity is the distance between the source and the position
of maximum activity concentration (PMAC) in x-direction xmax in each horizontal
level. To compare the influence of the input parameters on the concentration dis-
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tribution close to the ground, the slope of the maximum concentration distribution
given by

mslope =
hs − hl
xmax

(4.1)

is calculated, where hs is the source height and hl is the level height. These slopes
are only used for comparison when the investigated levels are below the source
level.

For the analysis of the activity deposition rate, the surface area of the simula-
tion domain is divided into rings formed by concentric circles around the source.
The distance between the circumferences is 1 km (see Fig. 4.1 on page 58). The de-
position rate is evaluated in each ring, respectively. Additionally, the total amount
of deposited activity is evaluated.

Local coefficient-based sensitivity analysis methods

A local sensitivity analysis is performed at one point in the input parameter space
which typically correspond to the default or reference inputs (Borgonovo et al.
2016). The output of a model is represented by Y = g(X1, . . . Xk) where the
random variables Xi with i = 1, . . . , k denote the different input parameters. The
representations (or values) of Xi are denoted with xi. The input parameters Xi

are varied one at a time while all the others are held constant at their reference
values xrefi . This local SA approach is similar to estimating the partial derivative
∂ Y
∂ Xi

and characterises the effect of the input parameter Xi on Y at the reference

point Xref = (xref1 , . . . , xrefk ) (Morio 2011).

Sensitivity index The sensitivity index described by Hoffman et al. (1983) uses
the default parameter set (reference point) where each parameter is varied one at
a time by their full range, respectively. For continuous input parameters, several
discrete values have to be pitched in order to limit the number of model evaluations.
The sensitivity index is calculated as

SIi =
Yi,max − Yi,min

Yi,max

(4.2)

where Yi,max(min) indicates the maximum (minimum) output value, respectively.
The sensitivity index is a value between 0 ≤ SIi ≤ 1 and gives the fraction of
output variation caused by the varied input parameter (Hamby 1994).

One-at-a-time sensitivity measure The one-at-a-time sensitivity measure
calculates the variation of the model output normalised to the largest output vari-
ation ∆Ymax that had been observed for the different input parameters. Starting
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from the reference parameter set, the parameters are varied one at a time by a
percentage α. The resulting model outputs Yi,±α = g(X1, . . . , Xi · (1±α), . . . , Xk)
are then used to calculate the sensitivity coefficient for the input parameter Xi as

SMα
i =

|Yi,+α − Yi,−α|
∆Ymax

(4.3)

where ∆Ymax = max (|Yl,+α − Yl,−α|) ∀l ∈ i (Link et al. 2018). In this work the
percentages ±25 % and ±50 % are used for α. SMα

i is a value between 0 ≤ SMα
i ≤ 1

where unity identifies the input parameter with the biggest effect on the model
output Y .

Global coefficient-based sensitivity analysis methods

Global SAs sample the whole input parameter space, which leads to a broader
representation of the sensitivity compared to local methods but also increase com-
putation time. A general discussion about global SA can be found in Saltelli et al.
(2008).

Sobol’ indices The variance-based Sobol’ indices use variance decomposition
to calculate indices of different orders (Sobol’ 1993). Usually only two key Sobol’
indices are determined: the first-order index Si; and the total effect index STi.

For the first one, the conditional expected value of the model output
EX∼i

(Y |Xi) with a constant value of Xi and varying values for all other input
parameters X∼i is computed. For different realisations of Xi, VXi

[EX∼i
(Y |Xi)]

reflects the variance of the model output Y originating from a variation of the
input parameter Xi. The first Sobol’ index is then given by

Si =
VXi

[EX∼i
(Y |Xi)]

V (Y )
(4.4)

where V (Y ) is the unconditional variance of the output where all Xi are varied.
VXi

[EX∼i
(Y |Xi)] cannot be larger than V (Y ) and thus for the sensitivity coefficient

0 ≤ Si ≤ 1 is valid. This index is the first-order sensitivity index and does not
take higher-order effects (i.e. interactions between different input parameters) into
account (Saltelli et al. 2008).

The second index considered here is the total effect index. It takes higher order
terms into account, which might be important depending on the model. The total
effect is calculated as

STi = 1 − VX∼i
[EXi

(Y |X∼i)]

V (Y )
(4.5)

where VX∼i
[EXi

(Y |X∼i)] = VX∼i
[EXi

(Y |X1, X2, . . . , Xi−1, Xi+1, . . . , Xk)] ≤ V (Y )
is the total variance of all input parameters except Xi. As the first order index, this
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total effect index is a value between zero and unity where a value of zero indicates
no influence of Xi on the output Y while unity indicates a strong influence (Saltelli
et al. 2008). A comprehensive description of the method is given by Saltelli et al.
(2008).

For the analysis presented here, the python library SALib (Herman et al. 2017)
is used for the quasi-random sampling with low discrepancy after Joe et al. (2008)
of the input parameter space as well as for the calculation of the Sobol’ indices. It
furthermore allows the estimation of the 95 % confidence intervals (Herman et al.
2023).

δ-method In comparison with the Sobol’ indices, the δ-method takes the com-
plete density distribution of the model output into account, which ensures the
conservation of the whole information of the output density distribution (Bor-
gonovo 2007). The probability density function (PDF) of Xi is denoted fXi

(xi).
The sensitivity coefficient δi for the input parameter Xi is calculated using the
marginal density distribution of the input parameter fXi

(xi) and the difference
between the unconditional density function fY (y) and the conditional density dis-
tribution function fY |Xi

(y) of the model output with fixed representation Xi = xi
as

δi =
1

2

∫
fXi

(xi)

[∫
|fY (y) − fY |Xi

(y)| dy

]
dxi (4.6)

(Borgonovo 2007). δi represents the total effect of an input parameter Xi on Y .
It can take a value between zero and unity (0 ≤ δi ≤ 1) where zero means that
the output is independent of Xi (Plischke et al. 2013). The same library SALib
(Herman et al. 2017) was used to apply the δ-method including the estimation of
the 95 % confidence interval.

4.1.2 Simulation setup for the sensitivity analyses

In order to analyse the sensitivity of model results on the different input parame-
ters, simulations of gaseous and particle-bound radioactive tracers are performed.
A single point source (at x = 25 m, y = 25 m) with varying vertical position close
to the left border of a rectangular simulation domain extending 10 km from west to
east and 1 500 m from south to north was used (see Fig. 4.1). The vertical exten-
sion of the simulation domain is 1 500 m. The spatial resolution for both horizontal
directions is 50 m. Vertically, the 1 500 m high simulation domain is divided into
19 levels of varying thickness gradually increasing from the lowest layer (3 m thick)
to the top simulation layer (300 m thick). The thicknesses of the different levels
are summarized in Tab. 4.1. In order to focus on the evolving dispersion pattern
the topography is assumed as flat surface. A constant westerly wind (270◦) was
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Figure 4.1: Simulation domain with the average activity deposition rate of PM1 in logarithmic
scale. The red lines denote the concentric circles around the source dividing the ground surface
into evaluation areas. The x-direction is in west-east orientation, the y-direction in north-south
orientation. From Hanfland et al. (2022).

used for the entire simulation period of 24 hours with a velocity of 1 m s−1 in 10 m
height.

As I want to focus on dispersion properties radionuclides with long half-life are
used in this analysis. The krypton isotope 85Kr with a decay constant of λdecay =
2.05 × 10−9 s−1 was used as gaseous tracer. This results in a decay of less than
0.02 % within the simulation period. The emission source is represented as a source
with a constant activity rate of 1 Bq s−1. Additional simulations are performed for
PM, in which case the emitted activity rate stays unchanged but the emission only
occurs in the first 20 hours of the day. Doing so, all emitted particles are able to
leave the simulation domain within 24 hours which ensures the investigation of the
fraction of particles being deposited relative to the emitted ones. For the emission
of PM, 137Cs with the decay constant λdecay = 7.32 · 10−10 s−1 is used. The decay
ratio is less then 0.006 % within 24 hours. Therefore, the radioactive decay of both
radionuclides has no significant effect on the simulation results in this analysis
and can therefore be neglected. Plume rise and wind direction rotation due to
the Ekman-spiral is not taken into account. Figure 4.1 illustrates the simulation
domain with evaluation areas confined by the concentric circles and the average
deposition rate.

The input parameters stability class SC, roughness length z0, zero-plane dis-
placement factor d, source height hs and tracer type which is either a tracer in the
gas phase or PM with four different size classes representing different aerodynamic
diameters daero are assumed to be the key parameters of ARTM. The zero-plane
displacement d0 depends on d as d0 = d · z0. When using d instead of d0 the input
parameters for the SA are independent. This allows the analysis of the unbiased
effects of input parameter variations. Wind direction and wind speed have a strong
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Table 4.1: Default setup of the horizontal levels in ARTM. The height of the lower boundaries
of the level agl and the level thickness are given in meter. After Richter et al. (2015b) from
Hanfland et al. (2022).

level
lower
boundary
height [m]

thickness
[m]

19 1 200 300
18 1 000 200
17 800 200
16 700 100
15 600 100
14 500 100
13 400 100
12 300 100
11 200 100
10 150 50
9 100 50
8 65 35
7 40 25
6 25 15
5 16 9
4 10 6
3 6 4
2 3 3
1 0 3

influence on the dispersion of tracers, too. However, the stochastic character of
wind direction and wind speed time series that may strongly depend on the ge-
ographic location limit the meaningfulness of a general test case. Furthermore,
the study of wet deposition, as a consequence of precipitation, suffers from sim-
ilar highly variable influences such as precipitation duration, strength and local
distribution. They are highly case dependent and I therefore exclude wind and
precipitation from this general case study. The used parameters and their ranges
are summarized in Tab. 4.2. Usually only a discrete set of six SCs is provided
for the simulations according to German regulations. The number of z0 values
allowed by ARTM is also limited to nine roughness length classes (TA Luft 2002).
For this analysis, the roughness lengths are further limited to the six largest class
values. German authorities recommend a value of the zero-plane displacement
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Table 4.2: Input parameters and their values and ranges. The default parameters for local SAs
are marked with (∗). For the global SAs the given values of the parameters marked with 1) are
sampled. Those marked with 2) are sampled continuously within the range while those marked
with 3) are sampled with a resolution of 1 m within the range. For the coefficient based SAs
the maximum source height was extended to 150 m and marked with 4). After Hanfland et al.
(2022).

Parameter Values/Range

Stability class (SC) 1) very stable, stable, neutral∗, indifferent,
unstable, very unstable

Roughness length (z0)
1) 0.10 m, 0.20 m, 0.50 m∗, 1.00 m, 1.50 m, 2.00 m

Zero-plane displacement

factor (d) 2)
3 . . . 6∗ . . . 9 . . . 15

Source height (hs)
3) 10 m . . . 20 m∗ . . . 120 m (150 m4))

Tracer type Gas∗, PM 1, PM 2, PM 3, PM 4

factor d = 6 (TA Luft 2002; VDI 3783 part 8 2017). The range for the variation
of d is centred on this value and limited to forest canopy heights typical for mixed
forest (Lang et al. 2022). The range for the source height is oriented to the stack
heights of nuclear facilities in Germany. In Tab. 4.2 the parameter values for the
reference point for the local SAs are marked with * symbol. For global sensitivity
analyses, the whole parameter ranges are sampled, respectively. The tracer type
is a fundamental tracer property. However, it is excluded from the quantitative
(coefficient based) SA because the resulting deposition patterns are too complex
to be described by single target quantities in a meaningful way.

The evaluation of the SAs is performed with respect to the target quantities of
the simulation results, which were described in Sec. 4.1.1. Both methods, qualita-
tive and quantitative SA, use

i) the plume volume,

which is a measure for the tracer dispersion and is closely linked to the maximum
mixing ratio. Furthermore, the qualitative local SAs also use

ii) the distance between the source and the PMAC for each horizontal simulation
level and

iii) the activity deposition rate of PM.

In contrast to this the quantitative SA using sensitivity coefficients uses

iv) the distance between the source position and the PMAC at ground level,
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which is of special interest for radiation exposure assessment.
All the modelled concentration and deposition rate values are associated with a

grid cell and the result of contributing numerical particles, respectively. Each nu-
merical particle is subject to advection and the turbulent motion, which is random
(see Secs. 3.2.1, 3.2.6 and 3.2.7). Thus, each concentration value or deposition rate
is associated with a sample error (see Sec. 3.2.9). A high sample error of a grid
cell indicates the concentration or deposition rate value to be rather uncertain.
This is the case for the grid cells at the edge of the plume. For this analysis, the
simulation results are limited to those concentration values and deposition rates
having a maximum sample error of 30 % assuring a sufficient statistical significance
of the result.

4.1.3 Evaluation of parameter sensitivity

Qualitative local sensitivity analysis

Volume of the exhaust plume The volume of the exhaust plume in the sim-
ulation domain - and for each level separately - gives insights into how the plume
spreads in all three dimensions. The SCs have a strong impact on the plume
volume as shown in Fig. 4.2 where the volume covered by the plume in each hor-
izontal level is normalised by the level volume, respectively, for all the different
SCs. It can be seen that the overall plume volume increases with decreasing at-
mospheric stability. The plume volume of the SC “very stable” (smallest plume
spread) covers only 1 % of the volume of the entire simulation domain while the
plume with the biggest spread (“very unstable”) reaches 71 % (see Tab. 4.3). How-
ever, the normalized volume in the lowest three levels doesn’t show a monotonic
behaviour. For these levels, the largest mean plume volume is found for neutral
boundary layer conditions (37.3 %) while the smallest mean plume volume of the
lowest three levels is found for very unstable conditions (13.3 %) resulting in a
variation of the mean plume volume of the lowest three levels of 24 %. For levels
above the emission level (level 5) the volume increases with atmospheric instabil-
ity. Especially the extent of the plume towards higher levels is clearly observable
in Fig. 4.2. This vertical spread is not limited by the simulated mixing layer height
as it is shown in Tab. 4.3. For neutral atmospheric conditions the mixing layer
height is above the top level of the plume while for all other cases it is directly at
the lower border of the top plume level (for indifferent stratification), within the
top plume level (“stable” and “very stable”) or below the lower border of the top
plume level (“unstable” and “very unstable”).

The roughness length has less influence on the plume volume with a minimum
coverage of 7 % for z0 = 0.1 m of the simulation domain and a maximum coverage of
24 % for z0 = 2.0 m while keeping the other input parameters’ reference values. In
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Figure 4.2: Normalised plume volume of the 19 horizontal levels for the SCs. The point source
is located at 20 m agl (in level 5). From Hanfland et al. (2022).

Table 4.3: The plume volume relative to the volume of the simulation domain, the mixing layer
height (VDI 3783 part 8 2002) and the upper and lower boarder of the top plume level for the
different SCs. From Hanfland et al. (2022).

SC
plume

volume
mixing layer

height
top plume

level

very unstable 71 % 1 100 m 1 200 − 1 500 m
unstable 61 % 1 100 m 1 200 − 1 500 m
indifferent 39 % 800 m 800 − 1 000 m
neutral (default) 13 % 418 m 300 − 400 m
stable 2 % 127 m 100 − 150 m
very stable 1 % 62 m 60 − 100 m
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the lowest three simulation levels, only a very weak volume alternation (5.3 %) can
be observed. No spread towards higher levels is observed, thus growth of the plume
coverage from small to large values of z0 occurs mainly in the mid levels of the
plume. However, the influence of z0 to the plume volume depends strongly on the
SC. The maximum effect of z0 on the volume is observed for neutral atmospheric
conditions. For both, more stable and less stable conditions, the influence of the
roughness length on the plume volume decreases.

The overall influence of the zero-plane displacement height d0 = d · z0 on
the plume volume is weaker than the influence caused by the roughness length.
Nevertheless, the mean plume volume for the three lowest simulation levels show
a different picture with a variation of 7 % by varying the zero-plane displacement
factor as given in Tab. 4.2. This shows a stronger influence of d0 on the lowest
three simulation levels than z0. The turbulence is determined by the Obukhov
length and thus, the friction velocity u∗ via SC and z0 while d0 predominantly
influences the wind profile because it shifts the logarithmic wind profile vertically.
There is no spread of the plume towards higher levels observed by varying the
zero-plane displacement.

The overall volume of the plume is hardly affected by a variation of the source
height in the given range. However, the source height strongly influences the
particle spread in the lowest three levels. When varying the source height, the
mean plume volume of the lowest three levels changes by 9.8 %. In agreement
with the boundary layer model the diffusion coefficient close to the ground is
smaller than at higher levels. Therefore, tracers do not spread well at levels close
to the ground. A spread of the plume towards higher levels is expected to be
proportional to the source height but was not observed because of the limited
range of the source height variation compared to the simulation grid resolution in
medium and high levels.

Distance from source to maximum concentration The turbulence in the
atmosphere is not only a key to the plume extent but also influences the PMAC in
each horizontal level of the plume. Figure 4.3 shows that the distance between the
source and the PMAC decreases with increasing turbulence in the atmosphere. The
information about the position of the maximum concentration is of special interest
in the levels close to the ground where most organisms are living. For the lowest
three levels average slopes for the PMAC from −13.1 m km−1 to −128.7 m km−1 for
very stable and very unstable conditions were observed, respectively. This shows
the very unstable atmosphere to be better mixed in the levels close to the ground
despite of the surface effects (smaller diffusion coefficient close to the ground).

Compared to the SC a variation of the roughness length has a weaker influence
on the distance between the source and the PMAC. This is observed in the middle
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Figure 4.3: Position of the maximum concentration in each level for the six SCs. The point
source is located at a height of 20 m agl (in level 5). From Hanfland et al. (2022).

and upper levels but also in the levels close to the ground. Here, the slopes of
the three lowest levels are steeper compared to those for a variation of the SC
and determined between −39.5 m km−1 and −153.3 m km−1. This indicates the
PMAC to be closer to the source than it is the case for the variation of the SC.
However, there is a strong dependence of the SC especially in the lowest levels.
The influence of the roughness length increases for more stable conditions while it
decreases for more unstable conditions.

The zero-plane displacement hardly affects the distance between source and
the PMAC. In contrary, the height of the source has a strong influence on the
maximum concentration. With a shift of the source to different heights agl the
plume and thus the PMAC in each level shifts vertically as well.

Deposition of PM on the ground PM may deposit to the ground. Depending
on the aerodynamic diameter the deposition rate changes as it can be seen in
Fig. 4.4 for neutral conditions (reference setting) as well as for very stable and
very unstable atmospheric conditions. For neutral conditions, deposition rates are
larger for large particles resulting in a bigger amount of deposited material closer
to the source. While for PM larger than 10 µm (size classes PM 3 and PM 4)

64



almost all particles are deposited, smaller particles can spread widely and can stay
in the atmosphere for a long time. Values of the percentage of deposited activity,
compared to the emitted one, are given in Tab. 4.4.
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different particulate matter size classes. The activity deposition rates are shown for very stable,
neutral (default) and very unstable boundary layer conditions. From Hanfland et al. (2022).

The deposition rate is not only dependent on the aerodynamic diameter but also
on the SC as seen in Fig. 4.4. In the case of very stable atmospheric conditions the
deposition rate for PM smaller than 10 µm (size classes PM 1 and PM 2) decreases
only slightly with increasing distance from the source while the larger particles
are almost completely deposited after 3 km (99.46 % of particles of 10–50 µm and
99.93 % of particles > 50 µm). With increasing turbulence in the atmosphere
the overall deposition rate decreases. This leads to a wider spread of the larger
particles at neutral atmospheric conditions and thus to less particles deposited to
the ground at very unstable conditions. This is explained by the turbulence in
the atmosphere cancelling out the sedimentation and keeps the particles in the
atmosphere. This can also be seen in Tab. 4.4 where the amount of deposited
activity shows the lowest values at very unstable conditions for all particle sizes
and monotonically increase when the atmosphere becomes less turbulent.
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Table 4.4: Fractions of deposited activity per SC and particle size class in the whole simulation
domain. From Hanfland et al. (2022).

Deposition [%]

SC PM 1 PM 2 PM 3 PM 4

very unstable 0.8 6.0 33.2 75.5
unstable 1.3 8.7 47.7 88.6
indifferent 2.0 12.2 61.8 94.5
neutral (reference) 4.3 21.8 83.8 98.4
stable 9.8 40.7 97.3 99.7
very stable 14.6 47.3 99, 5 99.9

Sensitivity coefficient-based analysis

All input parameters mentioned in Sec. 4.1.3 were analysed with the quantitative
(coefficient based) SA methods. The results of the calculations of the local and
global sensitivity coefficients are summarised in Tab. 4.5. Concerning the plume
volume, all SA methods result in the highest SA coefficients for the SC. Although
less prominent, this is also observable for the distance between source and the
PMAC at the ground level except for sensitivity indices SI i.

For SM 25
z0

no value can be calculated because a variation of ±25 % from the
reference roughness length value does not lead to a change of the categorial z0
value. Nevertheless, the two different ranges of variation (α = 25 and α = 50)
for SM α

i can give additional information about the sensitivity of target quantities
on parameters. It can be seen from Tab. 4.5 that the deviations between the
coefficients of SM25

i and SM50
i are small for the plume volume while they are

large for the distance between the source and the maximum concentration. The
influence of the input parameters seem to be rather linear for the plume volume
while it is clearly not linear for the distance between source and the PMAC at the
ground.

For the global SA methods, both target quantities show a distinct importance
not only of the first order (direct influence of one single input parameter) but also
of higher order (includes interactions of two or more input parameters) effects.
A small difference between Si and STi shows a large first order effect as it can
be seen for the plume volume. In contrary to this, a large difference reveals a
small first order effect compared to a higher order effect as it can be seen for the
distance between source and the PMAC at ground level. This is in agreement
with the conclusions that can be drawn from the δi coefficients. The sum of the
sensitivity coefficients for the plume volume

∑
i δi = 1.05±0.01 ∼= 1 indicates that

the effects of variation in the input parameters on variation in the plume volume
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are separable, i.e. interactions between input parameters play a minor role. For
the distance between source and the PMAC, the sum of the sensitivity coefficients∑

i δi = 0.690±0.008 ≇ 1 indicates the important role of cross interactions between
the input parameters (Borgonovo 2007). In contrary to the findings of the Sobol’
indices that some input parameters having negligible influences, the δ-method
states the output characteristics to be sensitive to all parameters.

Some of the global SA coefficients have very large relative confidence intervals
and cannot be distinguished from zero (marked with ∗). Some cannot be distin-
guished from others of the same method within their confidence intervals (marked
with †). Increasing the sample size of 24 576 further would be necessary to get
smaller confidence intervals but this would also increase the computation time
(Herman et al. 2023).

Based on the coefficients from Tab. 4.5 the input parameters were ranked ac-
cording to their importance as summarised in Tab. 4.6. The rankings obtained for
the individual SA methods differ not only for the two target quantities but also
between different methods. The overall ranking, which is simply computed as the
sum (Σ) over the different methods, is provided in the last column.

Table 4.6: Ranking of the influence of the input parameters on the plume volume and on the
distance between the source and the PMAC at ground level for local and global sensitivity
analyses methods. From Hanfland et al. (2023).

Plume volume

Parameter SIi SM25
i SM50

i Si STi δi Σ Rank

SC 1 1 1 1 1 1 6 1
z0 2 3 2 3 2 2 14 2
d 3 2 3 3 4 3.5 18.5 3
hs 4 4 4 3 3 3.5 21.5 4

Distance between source and PMAC at the ground level

Parameter SIi SM25
i SM50

i Si STi δi Σ Rank

SC 2 1 1 1 1 1 7 1
z0 3 3 3 3 2.5 3.5 18 3
d 4 4 4 3 4 3.5 22.5 4
hs 1 2 2 3 2.5 2 12.5 2

The most unambiguous result is that all SA methods show the plume volume to
be most sensitive to the SC. The ranks for the other input parameters, in contrast,
vary. The ranking of SM 25

i given in Tab. 4.6 is the average of all possible rankings
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for this method when taking into account that there is no coefficient for SM 25
z0

.
The rankings of the remaining local SA methods SI i and SM 50

i are in agreement
with each other for the plume volume, while the rankings of the global SA methods
disagree. Compared to the rankings for the plume volume, those for the distance
between source and PMAC at the ground level is less uniform.

For both target quantities, the resulting rankings given in column “Rank” in
Tab. 4.6 differ from each other. This emphasises that different target quantities
are not necessarily sensitive to the same input parameters. The simulation result is
highly sensitive to the SC and thus it is a potential source of high uncertainty. The
source height hs has little influence on the plume volume but it is the second most
important parameter for the distance between source and PMAC at the ground
level.

Scatter plot analysis of parameter influence

The simulations of the global SA can be used to illustrate the target quantities

i) plume volume and

iv) distance between source and PMAC at the ground level

dependent of the four input parameters in scatter plots. These can be used to
investigate the behaviour of the model (Saltelli et al. 2008). Figure 4.5 shows
the plume volume above the four input parameters, respectively. For all input
parameters there are gaps between bands of normalised plume volume above 0.25
present. The gaps are the result of the six distinct SCs used in ARTM. In Fig. 4.5,
the distinct bands for the SCs “indifferent”, “unstable” and “very unstable” are
shown. In contrast to this, the bands for “very stable”, “stable” and “neutral”
overlap each other. In Fig. 4.5 b, the plume volumes originating from neutral
conditions can be separated from the more stable ones for the different z0 revealing
a further gap. For the other input parameters analysed in this study such an effect
of causing gaps in the plume volume distribution was not observed. It suggests
that the classification of the atmospheric stability is to coarse.

A SA using scatter plots is hardly possible for ARTM because of the complex
and non-linear dependency of the plume volume. However, it can be seen that a
variation of the SC has a strong influence on the plume volume especially for rather
unstable SCs. Other parameters affecting the plume volume cannot be identified
from Fig. 4.5.

Scatter plots for the distance between source and PMAC at the ground level
and the input parameters are shown in Fig. 4.6. Here, no bands or gaps are
observed for the distance between source and PMAC. In Fig. 4.6 no influence of
the input parameters on the target quantity is recognised if z0 or d were varied.
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Figure 4.5: Scatter plots of the normalised plume volume versus the input parameters d, z0, hs
and SC, colour coded according to the SCs. Data of the first 1 000 samples of the global SA is
used.
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Figure 4.6: Scatter plots of the distance between the source and the PMAC at the ground level
versus the input parameters d, z0, hs and SC colour coded according to SCs. The distance is
normalised with 86.4 km (distance that a particle with a velocity of 1 m s−1 can do within 24
hours). Data of the first 1 000 samples of the global SA is used.
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Figure 4.7: Scatter plots of the normalised plume volume versus the input parameters d, z0, hs
and L−1 colour coded according to SCs. The Obukhov length L is sampled with a sample size
of 1 000.

hs and the SC have an effect on the normalised distance, respectively. Although a
variation of the SC from “very stable” to “neutral” and from “indifferent” to “very
unstable” has no distinguishable effect a variation from “neutral” to “indifferent”
can lead to a large difference in the normalised distance between source and PMAC
at the ground. This graphical SA suggest SC mostly affects the plume volume and
the distance between source and PMAC at the ground level and are in agreement
with the findings of the previous analyses.

The rather coarse classification of the atmospheric stability into six stability
classes limits the possible plume volumes (see Fig. 4.5). The usage of a finer
classification such as the Obukhov length partly overcomes this shortcoming and
lead to a more homogeneous plume volume distribution as shown in Fig. 4.7.
The remaining gaps might be caused by the wide range of the Obukhov length
(−∞ to +∞) that cannot be sampled sufficient with 1 000 samples. A larger
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number of samples or the sampling of the reciprocal Obukhov length could close
the remaining gaps. However, further analyses of the plume volume are necessary
to reveal the cause of the remaining gaps in Fig. 4.7.

4.2 The mixing properties of turbulence models

under unstable conditions

Many LPDMs use a Markov process in the form of a Langevin equation to model
the stochastic turbulent movement of tracers in the atmosphere. This Markov pro-
cess is often parametrised by wind speed fluctuations and Lagrangian correlation
time scales and called as turbulence model (TM) (Lin et al. 2013). Models contain-
ing such a Markov process do not necessarily preserve a well-mixed atmosphere
with time as it is expected by the second law of thermodynamics. This means that
during atmospheric dispersion simulations initially uniformly distributed tracers in
an incompressible flow can be accumulated or diluted in some regions of the sim-
ulation domain. This would violate the second law of thermodynamics. Exactly
fulfilling this criterion is challenging, but it is important to quantify the degree of
deviation from this ideal behaviour to judge the magnitude of systematic model
biases and whether these biases are acceptable (Thomson 1987; Lin et al. 2013;
Bahlali et al. 2020; Katharopoulos et al. 2022; Hanfland et al. 2023). The descrip-
tion of the TMs, the used model setup for the analysis and the evaluation of the
results contained in this section are published in Hanfland et al. (2023) and may
be cited word-by-word.

4.2.1 Description of the turbulence models

The TM implemented in ARTM 2.8.0 as its default model is well known in Ger-
many. It has been reported by Janicke et al. (2011) that it sometimes underes-
timates plume dispersion. Therefore, they introduced a modified TM leading to
more effective dispersion, which can optionally be used in ARTM. In 2022, the new
version 3.0.0 of ARTM was released. It implements a further TM according to the
guideline VDI 3783 part 8 (2017). All three models deviate from the model sug-
gested by Hanna (1982), which is quite widely used and thoroughly tested against
tracer release experiments. However, in contrast to other models the turbulence
may abruptly change between SCs. To overcome this issue of discontinuity, De-
grazia et al. (2000) proposed a continuous description of the turbulence throughout
all atmospheric conditions that approximates the model of Hanna under certain
conditions. Since the used measurement data set for the comparison of simula-
tions and observations was collected under unstable atmospheric conditions the
following analyses focus on unstable stratification. The wind speed fluctuations
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σ and the Lagrangian correlation time scales TL of the five TMs are presented
in the following Eqs. 4.7 - 4.27 for unstable stratification and their profiles are
displayed in Fig. 4.8. For the following quantities I define the x-components along
the average horizontal wind direction, the y-components perpendicular to it in
the horizontal plane and the z-components in the vertical direction. Although the
zero-plane displacement is used in ARTM (GRS 2015) to displace the wind profile
vertically to account for the influence of obstacles, in the sake of simplicity they
are not included in the following equations.

The first model, the default boundary layer model (BLM) of ARTM 2.8.0,
was initially suggested by Kerschgens et al. (2000) and is based on the works of
Lenschow et al. (1980), Panofsky et al. (1977), and Hicks (1985) and Gryning et al.
(1987). It describes profiles for the wind speed fluctuations as

σx = 2.4 · u∗
(

1 + 0.01486
−hm
κL

) 1
3

· exp

(
−z
hm

)
, (4.7)

σy = 1.8 · u∗
(

1 + 0.03522
−hm
κL

) 1
3

· exp

(
−z
hm

)
(4.8)

and

σz = 1.3 · u∗

[(
1 − 0.8

z

hm

)3

· −z
κL

+ exp

(
−z
hm

)3
] 1

3

(4.9)

where u∗ is the friction velocity, hm is the mixing layer height, κ = 0.4 is the von
Kármán constant, L is the Obukhov length and z is the height agl (VDI 3783 part
8 2002; Hanfland et al. 2022). This model is called ARTM2 in the following.

The second TM available in ARTM is based on ARTM2 with a modification in
the exponents as well as in the prefactor of u∗ of the crosswind component σy as

σx = 2.4 · u∗
(

1 + 0.01486
−hm
κL

) 1
3

· exp

(
−0.3 · z
hm

)
, (4.10)

σy = 2.0 · u∗
(

1 + 0.03522
−hm
κL

) 1
3

· exp

(
−0.3 · z
hm

)
(4.11)

and

σz = 1.3 · u∗

[(
1 − 0.8

z

hm

)3

· −z
κL

+ exp

(
−0.3 · z
hm

)3
] 1

3

(4.12)

(Janicke et al. 2011). This model leads to wider plumes and is called PRFMOD
in the following.
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Figure 4.8: Vertical profiles of model characteristics for the five turbulence models ARTM2,
ARTM3, PRFMOD, MODHANNA and DEGRAZIA for very unstable atmospheric conditions.
Wind speed fluctuations σ: a) along wind direction σx; c) in the crosswind direction σy; and e) in
the vertical direction σz against the normalized height (normalised to the boundary layer height).
The corresponding Lagrangian correlation times TL are shown in b), d) and f), respectively. The
turbulent kinetic energy TKE is shown in g). From Hanfland et al. (2023).
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In addition to the two previous models I added a TM to ARTM based on
ARTM2 modified with formulations used in other ADMs (Stohl et al. 2005). This
model uses σz from ARTM2 given in Eq. 4.9 but the horizontal wind speed fluc-
tuations

σx = σy = u∗

(
12 +

hm
2|L|

) 1
3

(4.13)

are equal to the equations suggested by Hanna (1982). The aim of this modification
is to increase the turbulent kinetic energy and to analyse the effect of the horizontal
wind speed fluctuations on the dispersion. In the following, this model is called
MODHANNA.

The Lagrangian correlation times of the three models above are given according
to Kolmogorov’s theory as

TLi =
2 · σ2

i

C0 · η
(4.14)

(Luhar et al. 1989) with the Kolmogorov constant C0 = 5.7 and the dissipation
rate of the turbulent kinetic energy

η = max

{
u3∗
κz

[(
1 − z

hm

)2

+
z

hm

]
+

−u3∗
κL

[
1.5 − 1.3

(
z

hm

) 1
3

]
,
u3∗
κz

}
. (4.15)

The fourth model is the default model of the new version 3.0.0 of ARTM with
the wind speed fluctuations given as

σx = 2.4 · u∗
[
1 + 0.01486

−hm
κL

· exp

(
−0.9

z

hm

)] 1
3

, (4.16)

σx = 2.0 · u∗
[
1 + 0.02568

−hm
κL

· exp

(
−0.9

z

hm

)] 1
3

(4.17)

and

σz = 1.3 · u∗

[(
1 − 0.8

z

hm

)3

· −z
κL

+ exp

(
−0.9

z

hm

)3
] 1

3

(4.18)

(VDI 3783 part 8 2017). The Lagrangian correlation time scales for each compo-
nent i are calculated via the turbulent diffusion coefficients Ki as

TLi =
Ki

σ2
i

(4.19)

with

Kj = 0.9
u(z) · hm
100 · u∗

σj (4.20)
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for the horizontal components j and

Kz = κu∗z

[(
1 − 0.8

z

hm

)4
9z

−L
+ exp

(
−3.6

z

hm

)] 1
2

(4.21)

for the vertical component, respectively (VDI 3783 part 8 2017). This model is
called ARTM3 in the following.

I implemented also a fifth model, which in contrast to the previous four tur-
bulence models that are based on similarity theory, is based on the spectral dis-
tribution of the turbulent kinetic energy of the boundary layer and was presented
by Degrazia et al. (2000). For very unstable boundary conditions the wind speed
fluctuations are given as

σx = 0.53 · u∗
(
−hm
κL

) 1
3

, (4.22)

σy = 0.61 · u∗
(
−hm
κL

) 1
3

(4.23)

and

σz = 0.54 · u∗
(
−hm
κL

) 1
3

·
{

1.8

[
1 − exp

(
−4z

hm

)
− 0.0003 · exp

(
8z

hm

)]} 1
3

(4.24)

with the Lagrangian correlation times

TLi =
lLi
σi

(4.25)

where lLi is the Lagrangian correlation length given as

lLx = lLy = 0.21 · hm
(

0.01
hm
−L

) 1
2

(4.26)

and

lLz = 0.14 · hm
(

0.01
hm
−L

) 1
2

·
{

1.8

[
1 − exp

(
−4z

hm

)
− 0.0003 · exp

(
8z

hm

)]}
. (4.27)

In this work this TM is denoted as DEGRAZIA.
The turbulent kinetic energy per unit mass is determined as

TKE =
1

2

(
σ2
x + σ2

y + σ2
z

)
(4.28)

(Stull 1988).
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4.2.2 Simulation setup for the well-mixed condition test

The well-mixed condition test can characterise the vertical mixing homogeneity of
a model. For these tests simulation domains with periodic horizontal boundaries
and reflecting vertical boundaries are used. This virtually expands the simulation
domain to infinite extent and prevents the simulation from losing tracer mass.
The whole simulation domain serves as a volume source where 115 200 numerical
particles are inserted uniformly within the first simulation hour. The domain size
is 2 000 m× 2 000 m× 1 100 m in x-, y-, and z-direction with a horizontal (vertical)
resolution of 200 m (25 m), respectively. The vertical extent of the domain is equal
to the assumed mixing depth. A temporally constant wind profile for unstable
atmospheric conditions, as described in Hanfland et al. (2022) with a wind speed
of 2.3 m s−1 at 10 m height and a direction of 270 ◦ (westerly) is used. The selected
wind speed originates from measurement sites at very unstable stratification in
Germany. For the evaluation, the hourly mean concentration and its standard
deviation was derived for each vertical level.

4.2.3 Evaluation of the turbulence models

The concentration profiles of the different TMs for very unstable PBL conditions
are shown in Fig. 4.9. The concentration profiles of the state of mixing after
one hour (red line) and after two hours (blue dashed line) are shown. Concen-
tration values are normalised to the mean concentration (c c−1) and the height is
normalised to the mixing depth (z h−1

m ). I used the same initial numerical parti-
cle distribution for all TMs to eliminate possible differences arising from different
initial distributions.

The concentration profiles after one hour differ from the uniform distribution
c c−1 = 1. This indicates a certain degree of segregation of the numerical particles
but most deviations are less than 5% (vertical dotted lines). The largest devia-
tions can be found at the top of the PBL for the ARTM3 model (> 35%) and the
DEGRAZIA model (> 15%). The profiles of the ARTM2 and the MODHANNA
turbulence models are very similar since they both contain the same vertical turbu-
lence parametrisation. The PRFMOD TM differs slightly from the ARTM2 model
due to modifications described in Eq. 4.12. The profile of ARTM3 shows trends
of dilution and accumulation similar to ARTM2, PRFMOD and MODHANNA,
which have similar vertical parametrisations, but magnified in its extent. The
profile of the DEGRAZIA turbulence model shows a different shape because of its
different formulation of the turbulence parameters (see Eqs. 4.24, 4.25 and 4.27).

By t = 2 h, the dilution has further increased at the bottom and the top of
the PBL and the accumulation at z h−1

m ≈ 0.3 (horizontal dashed black line in
Fig. 4.9 a has further increased partly beyond 5% but well below 10% deviation
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Figure 4.9: Profiles of the concentration normalised to the mean concentration c c−1 (a, b, c, d, e)
of the different turbulence models ARTM2, ARTM3, PRFMOD, MODHANNA and DEGRAZIA
after one hour (red lines) and two hours (blue dashed dotted lines) for periodic lateral simulation
domain boundaries and reflecting bottom and top boundaries. The wind speed at 10 m height
is 2.3 m s−1. In b) the x-axis scale changes at c c−1 = 0.9. f) Time series of the normalised
concentration at normalised height z h−1

m ≈ 0.3 for the ARTM2 model, which is indicated by the
dashed horizontal line in a). The x-axis scale changes at 10 hours. From Hanfland et al. (2023).
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for ARTM2, PRFMOD, MODHANNA and DEGRAZIA. For ARTM3, the dilution
at the ground almost vanishes while the dilution above z h−1

m = 0.8 increases to
40% and the accumulation in the middle of the PBL increases to 18%. After the
second hour, no further changes are observed as it can be seen in Fig. 4.9 f for the
ARTM2 turbulence model at z h−1

m ≈ 0.3. Time series for other heights and other
TMs show similar behaviour. Figure 4.10 shows the time series for ARTM2 at
the height levels of z h−1

m ≈ 0 (12.5 m agl) and z h−1
m ≈ 1 (1 087.5 m agl). For the

other TMs the concentration fluctuates around the median within the standard
deviation as it is shown in the Figs. 4.11, 4.12, 4.13 and 4.14, respectively. The
concentration becomes steady after the initialisation during the first two hours.

This well-mixed condition test shows that the simulation result systematically
overestimates the concentration values at z h−1

m ≈ 0.3 for the ARTM2, PRFMOD
and the MODHANNA model after the second hour. Near the surface, which is
important for estimation of exposure to the population, the concentration values
are underestimated. In both cases, the errors are only 5 - 6%. At the top of
the PBL, the models underestimate the expected concentration significantly. The
ARTM3 turbulence model shows the smallest deviation from the mean domain
concentration near the ground but it overestimates the concentration in the middle
of the PBL before turning into a substantial underestimation towards the mixing
layer top. Below z h−1

m = 0.8 the TM DEGRAZIA performs best. At the top of the
PBL the model decreases well below the expected concentration. All the tested
TMs can be assumed as acceptable for simulations at very unstable atmospheric
conditions but the partly large deviations of the concentration from the expected
values at certain heights have to be taken into account when interpreting model
results. At low-wind conditions (1 m s−1 at 10 m height) the deviation from the
uniform concentration is similar (see Fig. 4.15).
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Figure 4.10: Time series of the normalised concentration for the ARTM2 turbulence model at
a) z h−1

m ≈ 0 (12.5 m agl) and b) z h−1
m ≈ 1 (1 087.5 m agl) for 30 days (720 h). From Hanfland

et al. (2023, Supplement).
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Figure 4.11: Time series of the normalised concentration for the ARTM3 turbulence model at a)
z h−1

m ≈ 0 (12.5 m agl), b) z h−1
m ≈ 0.3 (337.5 m agl) and c) z h−1

m ≈ 1 (1 087.5 m agl) for 30 days
(720 h). From Hanfland et al. (2023, Supplement).
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Figure 4.12: Time series of the normalised concentration for the PRFMOD turbulence model at
a) z h−1

m ≈ 0 (12.5 m agl), b) z h−1
m ≈ 0.3 (337.5 m agl) and c) z h−1

m ≈ 1 (1 087.5 m agl) for 30
days (720 h). From Hanfland et al. (2023, Supplement).
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Figure 4.13: Time series of the normalised concentration for the MODHANNA turbulence model
at a) z h−1

m ≈ 0 (12.5 m agl), b) z h−1
m ≈ 0.3 (337.5 m agl) and c) z h−1

m ≈ 1 (1 087.5 m agl) for 30
days (720 h). From Hanfland et al. (2023, Supplement).
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Figure 4.14: Time series of the normalised concentration for the DEGRAZIA turbulence model
at a) z h−1

m ≈ 0 (12.5 m agl), b) z h−1
m ≈ 0.3 (337.5 m agl) and c) z h−1

m ≈ 1 (1 087.5 m agl) for 30
days (720 h). From Hanfland et al. (2023, Supplement).
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Figure 4.15: Profiles of the concentration normalised to the mean concentration c c−1 (a, b,
c, d, e) of the different turbulence models ARTM2, ARTM3, PRFMOD, MODHANNA and
DEGRAZIA after one hour (red lines) and two hours (blue dashed dotted lines) for periodic
lateral simulation domain boundaries and reflecting bottom and top boundaries. The wind
speed at 10 m height is 1 m s−1. In b) the x-axis scale changes at c c−1 = 0.9. f) Time series
of the normalised concentration at normalised height z h−1

m ≈ 0.3 for the ARTM2 model, which
is indicated by the dashed horizontal line in a). The x-axis scale changes at 10 hours. From
Hanfland et al. (2023).
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Chapter 5

Evaluation of ARTM

This chapter describes the comparison of simulation results of ARTM with mea-
surement data and with other atmospheric transport model results. Parts of this
chapter are published in Hanfland et al. (2023) and Brunner et al. (2023). Major
parts of the Section 5.1 (Subsecs. 5.1.1, 5.1.2 and 5.1.3) are published in Hanfland
et al. (2023) and are cited here. All analyses and findings of Section 5.2 (Subsecs.
5.2.1, 5.2.2, 5.2.3 and 5.2.4) are published in Brunner et al. (2023) and cited here.
In order to simplify readability, there will be no further citations at the mentioned
text parts in this chapter.

5.1 Comparison of ARTM simulation results

with observations

The comparison of atmospheric dispersion simulation results with measurements
near the ground is not sufficient to derive any conclusions about the three-dimen-
sional structure of simulated emission plumes. To study the agreement of simulated
and observed plume dispersion it is inevitable to use observations that resolve the
three-dimensional structure of the real plume. Since ARTM simulates the emis-
sions of nuclear facilities with source heights of mainly 100 m to 200 m, it is useful
to choose observational data originating from similar height levels. In this section,
I present a comparison of ARTM simulations with airborne in situ CO2 observa-
tions within the PBL. In such a case, the comparison is challenging because of
the turbulent character of the PBL. As pointed out by Brunner et al. (2023), ob-
servations only provide snap-shots of the real world while simulations provide one
realisation of a multitude of stochastic representations of the real world. Simula-
tions with slightly perturbed initial conditions could result in different dispersion
patterns of the plume. Furthermore, simulation results and observations may have
different spatial and temporal resolutions and uncertainties, which complicate the
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comparison of simulations with observations (Farchi et al. 2016). Thus, in this sec-
tion, the comparison of simulation results with observations for five TMs is given
using rather general plume characteristics such as the plume width per transect
and maximum mixing ratios (Hanfland et al. 2023).

5.1.1 Observational data

The aircraft observations used for this investigation originate from the Carbon
Dioxide and Methane Mission (CoMet 1.0) (Fix et al. 2018; Luther et al. 2019;
Fiehn et al. 2020; Ga lkowski et al. 2021; Wolff et al. 2021; Krautwurst et al.
2021; Andersen et al. 2023; Brunner et al. 2023). The campaign took place in
May and June 2018 and involved three aircraft, two from the German aerospace
center (DLR) and one from the Freie Universität Berlin (FUB), performing in
situ and remote sensing measurements. The objective was to study CO2 and
methane (CH4) emissions from different sources in Europe including power plants,
as well as to compare the different observational methods.

For the evaluation of ARTM, airborne in situ CO2 measurements in the vicinity
of the Be lchatów power plant in Poland were used (Fiehn et al. 2020; Kostinek
et al. 2021). An overview map with the CO2 mixing ratios along the flight path is
shown in Fig. 5.1.

The in situ measurements had been performed on 7 June 2018 between 13:00
and 15:00 UTC aboard the DLR Cessna Grand Caravan 208B. One transect on

Figure 5.1: Map showing the flight path of the DLR Cessna aircraft in the vicinity of the
Be lchatów lignite power plant (blue star), colour coded by the in situ measured CO2 values.
Transects were performed both east (upwind side) and west (downwind side) of the emitting
power plant. The red box indicates the simulation domain. From Hanfland et al. (2023).

88



the upwind side of the emitter was performed at the beginning in order to derive
the mean background CO2 mixing ratio cCO2 = 401.2 ppmv. The exhaust plume
of the power plant was probed during several transects on the downwind side at
heights between 500 m and 1 700 m agl. They form two wall patterns at meridional
distances of approx. 13 km (Wall 1) and 23 km (Wall 2) and a single transect at
approx. 6 km from the source.

CO2 was measured with a cavity ring-down spectroscopy analyser (G1301-m,
Piccaro) specifically modified for the airborne deployment operating at 0.5 Hz.
the CO2 measurement uncertainty is ±0.15 ppmv and the temporal resolution was
increased to 1 s by interpolation to make the data comparable with other data
collected during the campaign. Details of the measurement equipment and related
uncertainties are described by Klausner et al. (2020). The sampling repetition and
the velocity of the aircraft results in a spatial distance of about 140 m between the
0.5 Hz data points. The Picarro instrument measures CO2, methane and water
vapour sequentially and , thus, the values are representative for the last third of
the measurement interval. Observational data for wind direction, wind speed and
flight height is displayed in Fig. 5.2. The original data had been transformed to the
height above ground level instead of the altitude above mean sea level (Hanfland
et al. 2023).
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Figure 5.2: Wind direction, wind speed and flight height measured by the DLR Cessna during
the measurement flight. From Hanfland et al. (2023, Supplement).
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5.1.2 Simulation setups for the model evaluation

I set the simulation domain 33.3 km× 33.3 km× 1.9 km that covers the horizontal
extent of the flight trajectory and vertically extends beyond the mixing layer depth
by four simulation levels. The horizontal resolution was 150 m in both east and
west direction. The extent of the simulation domain with the location of the
emission source (two stacks in a distance of 300 m) is shown in Fig. 5.1. Vertically,
the grid spacing gradually increases from 3 m to 35 m until 100 m height is reached.
Above, 50 m level thickness was used. All level thicknesses are given in Tab. 5.1.

Table 5.1: Horizontal levels used for the simulations when comparing ARTM with observations.
The height of the lower level boarder agl and the level thickness are given in meter. After
Hanfland et al. (2023, Supplement)

level
lower
boundary
height [m]

thickness
[m]

41 1 800 100
40 1 750 50
39 1 700 50
38 1 650 50
37 1 600 50
36 1 550 50
35 1 400 50
34 1 350 50
33 1 300 50
32 1 250 50
31 1 200 50
30 1 150 50
29 1 100 50
28 1 050 50
27 1 000 50
26 950 50
25 900 50
24 850 50
23 800 50
22 750 50
21 700 50

level
lower
boundary
height [m]

thickness
[m]

20 650 50
19 600 50
18 550 50
17 500 50
16 450 50
15 400 50
14 350 50
13 300 50
12 250 50
11 200 50
10 150 50
9 100 50
8 65 35
7 40 25
6 25 15
5 16 9
4 10 6
3 6 4
2 3 3
1 0 3
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ARTM requires several input parameters: SC, z0, d0, orography, several source
specific parameters as well as wind speed and direction at one location in the sim-
ulation domain. Since there were no stationary ground-based wind measurements
available, wind direction and wind velocity as well as SC and mixing layer height
were derived from the airborne measurements. The emission rates were unknown.
However, Brunner et al. (2023) estimated the overall CO2 emission rate accord-
ing to the generated electrical power of the power plant resulting in 1503.0 kg s−1

during the measurement flight. This corresponds to 123% of the annual mean
emission rate of the total 38.4 Mt CO2 reported by the power plant to the Euro-
pean Pollutant Release and Transfer Register (E-PRTR) for the year 2018. The
SC was determined according to the scheme given in KTA 1508 (2017) from the
horizontal wind direction fluctuations measured on several transects at different
height levels and was classified as “very unstable” during the observations (Klug
1969). For the determination of the roughness length z0, the CORINE Land Cover
Inventory of 2018 and the categorisation after TA Luft (2002) was used. The area
is covered mainly by arable land, pastures, coniferous and mixed forest leading to a
mean value of z0 = 0.5 m for the simulation domain. The zero-plane displacement
was assumed to be d0 = 6 · z0 (TA Luft 2002). The mixing layer height of 1650 m
was derived from the observations by locating the abrupt decrease in the wind
speed fluctuation (see Fig. 5.2). The elevation data originates from the Shuttle
Radar Topography Mission version 3 (SRTM3) that has a spatial resolution of
3 arc-seconds (≈ 90 m) (Farr et al. 2007; Hanfland et al. 2023). The stacks are

Figure 5.3: Photograph of the Be lchatów power plant taken by Alina Fiehn from the measuring
aircraft during the measurement flight on 7 June 2018 at 13:13 UTC. The stack height as well
as the plume rise for both stacks is given in the image. The photograph was taken from the
south-south-east of the power plant. From Hanfland et al. (2023, Supplement).

assumed to have had different emission rates (two-thirds : one-third) because pho-
tographs (see Fig. 5.3) taken from the aircraft showed markedly different plume
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rise heights for the two stacks. These plume rises are assumed to be 202 m and
74 m, respectively (Hanfland et al. 2023). The parameter values and the origin of
the orography data are summarised in Tab. 5.2.

Table 5.2: Input parameters needed by ARTM that are constant during the simulation run.
From Hanfland et al. (2023).

Parameter Value Reference

Stability class very unstable (KTA 1508 2017)
Roughness length 0.50 m (TA Luft 2002)
Zero-plane displacement 6 · 0.50 m (TA Luft 2002)
Mixing layer height 1 650 m -
Stack heights 300 m (SkyscraperPage 2023)
Plume rise (western stack) 202 m -
Plume rise (eastern stack) 74 m -
Emission rate (western source) 1 002.0 kg s−1 (Brunner et al. 2023)
Emission rate (eastern source) 501.0 kg s−1 (Brunner et al. 2023)
Orography SRTM3 data (Farr et al. 2007)

ARTM requires radionuclide emission rates in Bq s−1. As tracer CO2 with the
radioactive isotope 14C is used. Its decay constant λ = 5 730 ± 40 years leads to
a decay of 5.5 × 10−6 % within the simulation period, which is negligible. Thus,
ARTM’s internal emission rates in Bq s−1 can be used as an equivalent for a mass
rate in kg s−1 and to convert activity concentration into mixing ratio.

The wind speed (4.4 m s−1) and directions driving the simulation were derived
from one flight transect (13:28:03 UTC to 13:33:14 UTC) at a distance of approx.
13 km to the west of the power plant at a height of approx. 600 m agl. This
transect is located close to the middle of the simulation domain. The histogram of
the wind directions of this transect is shown in Fig. 5.4. Based on this histogram,
two different setups of the model were selected:

i) a single wind direction of 120◦ (mean of the distribution), assuming that the
wind fluctuations are part of the turbulence spectrum and should therefore
be represented by the turbulence parametrisation of ARTM; and

ii) two different wind directions were used alternatingly to drive ARTM, a di-
rection of 106◦ (mean of all directions < 120◦) and a direction of 134◦ (mean
of all directions > 120◦). This assumes that part of the wind variation is
due to meso-scale variability that cannot be resolved by ARTM’s turbulence
scheme.
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Figure 5.4: Histogram of the wind directions of the transect chosen for the determination of
the wind direction and wind velocity. The transect covers a duration from 13:28:03 to 13:33:14
UTC with the mean position 53.31◦ N, 19.15◦ E. The mean measurement height is 599 m agl.
The mean value of the wind direction is 120◦ (red line). The mean value for the wind directions
below 120◦ is 106◦, above 120◦ is 134◦ (blue dashed dotted lines), respectively. From Hanfland
et al. (2023).
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The first setup was applied for all TMs while the second setup was only tested
for ARTM2. The hourly sequence of wind inputs for the model is summarised in
Tab. 5.3. Additional spin-up time before the measurement flight is simulated to

Table 5.3: Hourly inputs for wind direction and wind velocity at 599 m height for the two cases:
one mean wind direction; and two alternating wind directions for the time from 13:00 to 15:00
UTC. The time stamps describe the full hour before the time given in the time column. The
measurement flight was performed during step 14:00 and 15:00 UTC and is marked with 1). Data
from the ECMWF ERA5 data set for 925 hPa pressure level (≈ 600 m agl) are marked with 2).
From Hanfland et al. (2023, Supplement).

Time
[UTC]

Single wind direction Dual wind direction
wind direction
[degree]

wind velocity
[m s−1]

wind direction
[degree]

wind velocity
[m s−1]

09:00 120 4.4 101 2) 7.1 2)

10:00 120 4.4 107 2) 6.1 2)

11:00 120 4.4 105 2) 5.7 2)

12:00 120 4.4 103 2) 5.6 2)

13:00 120 4.4 106 4.4
14:00 1) 120 4.4 134 4.4
15:00 1) 120 4.4 106 4.4

ensure a fully developed plume within the simulation domain. For the single wind
direction case, the mean wind speed of 4.4 m s−1 from the reference transect was
used for the simulation time period at approx. 600 m. For the dual wind direction
case, reanalysis data from ERA5 were used for the spin-up at the 925 hPa pressure
level (≈ 600 m).

5.1.3 Evaluation of the three-dimensional dispersion of
simulated plumes

Horizontal dispersion

The mixing ratio maps simulated with the five TMs at a height of 750 m to 800 m
are shown in Fig. 5.5 together with the observations between 700 m to 800 m. I
subtracted the background CO2 mixing ratio of 401 ppmv from the observation
to get the excess mixing ratio and to make them comparable to the simulation
results.

The simulated and observed mixing ratios of the plumes are in the same order
of magnitude. The simulated plumes show the mean wind direction to be in
agreement with the observed one, however, the meandering behaviour of the real
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Figure 5.5: Modelled CO2 mixing ratio averaged over the simulation time for the case of one
wind direction for a) ARTM2, b) ARTM3, c) PRFMOD, d) MODHANNA and e) DEGRAZIA;
and two wind directions for f) ARTM2 at heights between 750 m to 800 m. The wind directions
and speeds are given in Tab. 5.3; the input parameters in Tab. 5.2. The in situ data along the
flight path between 700 m to 800 m is shown in logarithmic scale in ppmv. f) The two wind
direction case in f) shows the mean CO2 mixing ratio of two subsequent hours for the duration
of the measurement flight from 13:00 UTC to 15:00 UTC. The background CO2 mixing ratio of
401 ppmv is subtracted from the observation. From Hanfland et al. (2023).
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plume that shifts the plume in north-south direction can be observed at transect
1, 2 and 3 in Fig. 5.5 revealing that this behaviour is not covered by all TMs. The
mixing ratio profile in lateral (crosswind) direction simulated by ARTM resembles
a Gaussian distribution. This is expected for a constant wind direction and wind
speed (Thykier-Nielsen et al. 1999).

The different TMs clearly have an influence on the shape of the simulated
plume. ARTM2 TM simulates the narrowest plume. The ARTM3 model results
in a slightly wider plume but compared to the observations they are too narrow.
The PRFMOD and DEGRAZIA turbulence model show much broader plumes that
cover the observed one better. The widest plume is simulated by the MODHANNA
turbulence model and is in good agreement with the observed plume width. The
width of the plumes of the TMs is mainly attributed to the horizontal wind speed
fluctuations and Lagrangian correlation times displayed in Fig. 4.8. The highest
values for σy and TLy in the upper half of the PBL are simulated by MODHANNA,
PRFMOD and DEGRAZIA followed by ARTM3 and ARTM2 in agreement with
the simulated plume widths.

Fig. 5.6 shows the simulated and observed plumes of the different turbulence
models together with the flight height agl along the flight path. Transects 1,
2 and 3 are shaded grey. Data above the simulated top of the boundary layer
are excluded from the figures. In Fig. 5.6, the simulated maximum CO2 mixing
ratios of ARTM2 are at all transects larger compared to the observations. Within
the simulated boundary layer this deviation reaches 300% at 14:08 UTC and is
attributed to the too narrow simulated plume. With increasing plume width of
the different TMs the maximum mixing ratios decrease (see Figs. 5.6 a – e). The
turbulence model ARTM3, PRFMOD, MODHANNA and DEGRAZIA simulate
mixing ratio peaks similar to or below the observed values. Due to dispersion
the mixing ratio maximums decrease with increasing distance from the source for
all models in agreement with the observation. It is important to point out that
simulated mixing ratio values are highly dependent on the emission rates.

The model provides results in hourly resolution, which are expected as the mean
of several realisations of meandering plumes. It is not expected that simulated
values are much larger than the observed ones but this can occur if the width of
the simulated plume or the mixing layer depth are underestimated or the emission
rate is overestimated.

An alternative way to model the meandering behaviour via the turbulence
is the usage of alternating wind directions for subsequent simulation hours for
the ARTM2 turbulence model to explicitly simulate the meandering plume (see
Figs. 5.5 f and 5.6 f). Simulation results from subsequent hours are combined by
calculating the average concentrations. The wind direction derivation is explained
in Sec. 5.1.2. This method generates the widest plume covering the observations
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Figure 5.6: Simulated (red line) and measured (black line) CO2 data along the flight path together
with the flight height (blue dotted line) within the simulation domain. a) ARTM2, b) ARTM3,
c) PRFMOD, d) MODHANNA, e) DEGRAZIA turbulence models and f) ARTM2 turbulence
model with two alternating wind directions. The transects shown in Fig. 5.5 are shaded grey.
From Hanfland et al. (2023).
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and mimics the structure of two maximums at transect 1. However, these two ob-
served maximums originate from snap-shots of the meandering plume and are not
expected to be reproduced by the time-averaged simulation. Moreover, physically
unrealistic plateaus of mixing ratios are simulated in wall 1 and a single narrow
mixing ratio peak in wall 2, which is a result of the alternating wind directions.
Mixing ratio maps of simulations and observations at selected heights from 550 m
agl to 1 100 m agl are given in the Figs. 5.7 to 5.9, respectively.

Vertical dispersion

For the analysis of the vertical plume behaviour, the cross sections of the simulated
plumes at wall 1 are presented in Fig. 5.10 at page 102. The narrowest simulated
plume is obtained by the ARTM2 model and underestimates the width of the
observed plume at heights from 600 m to 1 400 m agl. The plume of ARTM3 model
is slightly wider throughout the PBL. In both, the ARTM3 and PRFMOD model,
the values of σy (TLy) decrease (increase) with increasing height, respectively (see
Fig. 4.8 on page 75). While these opposing trends cancel out each other for the
ARTM3 model they lead to a slightly increase of lateral dispersion with height
for the PRFMOD model. The vertical profiles of σy and TLy of the MODHANNA
model shown in Figs. 4.8 c) and d) appear to lead to a slightly increasing dispersion
with increasing height, too. In contrast, σy and TLy are not dependent from z in the
DEGRAZIA model. Below 200 m the width of all five simulated plumes decrease
towards the surface.

All TMs show a slightly decrease of the mixing ratio with increasing height at a
constant distance from the source (see wall 1 and wall 2 in Fig. 5.6), which agrees
with observations. From the cross sections at wall 1 (see Fig. 5.10) the average
horizontal mixing ratio profiles are derived and shown in Fig. 5.11 at page 103.
Except for the DEGRAZIA model, the decreasing mixing ratio with increasing
height, above 600 m, can be recognised here as well. The average mixing ratio of
the plume simulated from the DEGRAZIA model decreases only towards the very
edge of the top of the simulated boundary layer. However, in Fig. 5.6 the highest
maximum mixing ratios at wall 1 (13:25 UTC - 14:10 UTC) occur at transect 2
for the measurements. The simulations instead show very similar peaks at the two
lowest transects in wall 1 having the highest concentration values.

In contrast to the Gaussian lateral mixing ratio distribution of the plume of
Fig. 5.10 a, the ARTM2 turbulence model with two alternating wind directions
(Fig. 5.10 f) shows the uniform mixing ratio distribution in the plume’s core region
(mixing ratio > 1 ppmv) as it was already shown in Fig. 5.6 f.

Figure 5.12 at page 104 reveals that the cross sections of wall 2 show a similar
behaviour of the plumes. The measured data show a large variation of the plume
width on the different transects emphasising the meandering and turbulent char-
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Figure 5.7: Comparison of the observed (550 m to 650 m agl) and the simulated CO2 mixing
ratio (600 m to 650 m agl). From Hanfland et al. (2023, Supplement).
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Figure 5.8: Comparison of the observed (850 m to 950 m agl) and the simulated CO2 mixing
ratio (900 m to 950 m agl). From Hanfland et al. (2023, Supplement).
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Figure 5.9: Comparison of the observed and the simulated CO2 mixing ratio at the height of
1 050 m to 1 100 m agl. From Hanfland et al. (2023, Supplement).
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Figure 5.10: Cross section of the simulated plumes at wall 1 of the observations for the different
TMs a) ARTM2, b) ARTM3, c)PRFMOD, d)MODHANNA and e) DEGRAZIA. f) the two wind
directions case for ARTM2. The x-axis “y Distance” is in south-north orientation. The dashed
line at 1 650 m agl marks the simulated mixing layer top. From Hanfland et al. (2023).
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Figure 5.11: Profile of the average horizontal mixing ratio of the six simulation cases at wall
1 (see Fig. 5.10). The dashed line at 1 650 m agl marks the simulated mixing layer top. From
Hanfland et al. (2023).

acter of the real plume. Furthermore, it can be recognised that the real plume is
not entirely recorded; the transects are too short at wall 2.

Validation and uncertainty evaluation

In order to quantify the simulations uncertainty, I investigated the deviations of
the simulated and the observed CO2 mixing ratios in the plume by probability
distributions (PDs), comparisons of integrated plume concentration and point-to-
point mixing ratio comparisons.

The deviation of model results and measurements in a plume can be accessed
by the comparison of the PDs and the cumulative probability distributions (CPDs)
of simulated and observed CO2 mixing ratios in the plume. This corresponds to
the method described in the third criterion stated by De Visscher (2014) given at
page 2. At this point it has to be mentioned that the third criterion is the only one
that can be tested using the given data set because there are no data contained
that would allow the calculation of average concentrations at one location over
time. The PDs of simulation and measurement are normalised to the maximum
mixing ratio of the measurements with the integrals of simulated and measured
distributions being equal. To get rid of the mixing ratio fluctuation of the excess
mixing ratio of the measurement, mixing ratio values below 1 ppmv are not taken
into account. The PDs and CPDs of the five different TMs and the observations for
all transects below the top of the simulated boundary layer are given in Fig. 5.13.
The PDs of the simulated and measured plume show the occurrence of mixing ra-
tio values relative to the maximum mixing ratio of the measurements. There is an
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Figure 5.12: Cross section of wall 2 of the observed and simulated CO2 plumes for the different
turbulence models. The dotted line is the simulated PBL top. The right boarder of the graphs
represent the northern simulation domain boarder. From Hanfland et al. (2023, Supplement).
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Figure 5.13: Probability distribution (bars) and cumulative probability distribution (lines) of
simulated and measured mixing ratios of the five TMs. The PDs are normalised according to the
maximum mixing ratio of the measurements and the integral of simulated and measured PDs
are equal. Mixing ratio values below 1 ppmv are not considered in the PDs and CPDs. From
Hanfland et al. (2023).
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overestimation of simulated maximum mixing ratios for the ARTM2 and ARTM3
turbulence model. The high number of data points at approx. 20% of the maxi-
mum mixing ratio of the measurements is due to the fine structure, e.g. shoulders
beside peaks and broad indistinct peaks of the plume not represented in the sim-
ulations. MODHANNA can be identified as the TM showing the best agreement
with the observations concerning the PDs and CPDs, i.e. the occurrence of the
mixing ratio values is most similar to those of the measurement. To quantify the
similarity and to decide whether simulations and measurements are significantly
different, three statistical tests were applied: the Z-test; the Kolmogorov-Smirnov
(KS) test; and the Cramér-von Mises (CvM) test (Conover 1980; Wilks 2006; Uni-
versity of Oregon 2020). The Z statistic represents the distance between the means
of two PDs normalised to the standard error. According to the following limits
the Z statistic is interpreted as (University of Oregon 2020):

Z < 2.0 two samples are the same;

2.0 ≤ Z < 2.5 two samples are marginally different;

2.5 ≤ Z < 3.0 two samples are significantly different;

3.0 < Z two samples are highly significantly different.

The KS statistic represents the supremum of the distance between two CPDs at
the abscissa while the CvM statistic is proportional to the integral of the distances
between two CPDs at the abscissa. For both I assumed a significance level of
0.05. The statistics and their p-values (in brackets) are summarised in Tab. 5.4.
The three statistical tests show that all simulated mixing ratio distributions differ

Table 5.4: Z statistics, Kolmogorov-Smirnov (KS) statistics and Cramér-von Mises (CvM) statis-
tics of the mixing ratio distributions of the five TMs. The p-values are given in brackets, respec-
tively. The significance level is 0.05. From Hanfland et al. (2023).

Turbulence model Z statistic KS statistic CvM statistic

ARTM2 16.8 0.45 (0.00) 25.1 (0.00)
ARTM3 11.5 0.23 (0.00) 12.8 (0.00)
PRFMOD 13.5 0.24 (0.00) 15.5 (0.00)
MODHANNA 10.2 0.20 (0.00) 9.8 (0.00)
DEGRAZIA 15.5 0.27 (0.00) 19.8 (0.00)

significantly from the observed one. Nevertheless, the statistics can be used to rank
the models. MODHANNA shows the best agreement with the observations i.e. the
distribution of mixing ratio values in the transects is most similar to those of the
observations compared to the other TMs. The statistical tests rank ARTM3 second
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but this may be biased by the statistical tests being very sensitive to deviations
in the regions of the PDs with high numbers of low mixing ratio values. I want
to point out that the results do not mean that the MODHANNA model produces
mixing ratio peaks that are structured like the observed ones but the relative
occurrence of mixing ratio values is most similar.

To compare the simulation results, the integral of the mixing ratio values along
the flight path below the simulated boundary layer top (see Fig. 5.6) within the
plume is shown in Tab. 5.5. I used the method mentioned above to get rid of the
baseline fluctuations of the excess mixing ratios to calculate the integrals. This
procedure is also applied to the simulations. Except for ARTM3, there is a good
agreement between the modelled and the measured data: the deviation is less than
13%. Concerning ARTM3, there is a strong vertical gradient in the simulated
mixing ratios of the plume above 700 m as it is illustrated in the Figs. 5.10 b
and 5.11. Tracers are stronger diluted (accumulated) in the upper (lower) half
of the PBL than for other TMs. This corresponds to the findings of Sec. 4.2.
Since the flight path is mainly located in the upper half of the PBL, the integral
along the flight path results in a lower value for ARTM3. The higher mixing

Table 5.5: Integrals of mixing ratio values (values below 1 ppmv are not considered) along the
flight path for simulations Asim and observations Aobs within the simulated PBL (see Fig. 5.6)
given in ppmv × km as well as their ratio. From Hanfland et al. (2023).

Turbulence model Aobs Asim AsimA
−1
obs

ARTM2 1 094 1 186 108.4%
ARTM3 1 094 742 67.8%
PRFMOD 1 094 1 194 109.2%
MODHANNA 1 094 1 114 101.8%
DEGRAZIA 1 094 1 236 112.9%

ratios in the lower half of the PBL might become important when simulations
are used for radiation exposure assessment. The results suggest, that the original
assumption of the emission rate may not deviate much from the actual value.
However, observations below 600 m would be necessary to get a more complete
comparison of simulated and actual plume.

The deviation between simulations of the five TMs and observation at a specific
position can be assessed using density scatter-plots as given in Fig. 5.14. All
mixing ratio values larger than 1 ppmv along the flight path below the top of the
simulated boundary layer are considered. As a guide to the eye the regression with
slope m = 1 is given as a dashed line and represents the equality of simulated and
observed mixing ratios. The deviation from this equality by the factor two or less
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is confined by the red dashed dotted lines. It is not expected to find a lot of data
points at the regression m = 1 due to the fundamental differences of the data set
properties of simulation and observation. However, a large amount of data points
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Figure 5.14: Density scatter-plots of the simulated mixing ratios of the five TMs a) ARTM2, b)
ARTM3, c) PRFMOD, d) MODHANNA and e) DEGRAZIA against the observations. Single
data points in a bin are indicated with (+), multiple data points in a bin are colour coded.
The regression with slope m = 1 (dotted black line) represents the identity of simulation with
measurement, the dotted dashed red line represents a deviation from the regression with m = 1
by a factor two and the solid black line represents the orthogonal linear fit to the data points.
F2 gives the percentage of data points with deviations of not more than a factor two from the
regression m = 1. The residual variance of the orthogonal fit is given by σ2

res. From Hanfland
et al. (2023).

within a deviation of a factor two decreases the uncertainty. The percentage of
data points within these boarders is represented as F2 given in Fig. 5.14. Low
F2 values can also be explained by the large number of measurement data points
outside the simulated plume because it is too narrow. The smallest F2 is derived
for the ARTM2 model. This coincide with the unbalanced distribution of the
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data points around the regression m = 1 with the simulation overestimating the
observed mixing ratios and simultaneously simulating too narrow plumes. This
is represented by the orthogonal regression of data points (black line) given in
the figure with a slope above three. The residual variance σ2

res quantifies the
scattering of data points. The large value for ARTM2 indicates a less compact
data point distribution. ARTM3 shows a more balanced and compacter data but
still distinctly overestimates mixing ratios and underestimates the plume width.
PRFMOD, MODHANNA and DEGRAZIA show similar properties with F2 >
50 %, compacter, well balanced data and less overestimated mixing ratios and less
underestimated plume widths, with the MODHANNA model performed slightly
best for the given measurement and turbulence conditions.

The uncertainty of the CO2 measurement device of ±0.15 ppmv is at least
one order of magnitude smaller than the measured enhanced CO2 concentrations.
Thus, the measurement uncertainty has only a minor impact on the evaluation
results.

5.2 Comparison of ARTM to five other atmo-

spheric transport models

ARTM was also compared to five other atmospheric transport models and to mea-
surements at a different site. Brunner et al. (2023) intercompared five Eulerian
models and included ARTM as the only LPDM. Two of them, COSMO-GHG
(Consortium for Small-scale Modeling-Greenhouse Gas) (Brunner et al. 2019; Jähn
et al. 2020) and WRF-GHG (Weather Research and Forecasting-Greenhouse Gas)
(Ahmadov et al. 2007; Beck et al. 2011), are meso-scale non-hydrostatic NWP
models extended with the capability of modelling the emission, transport of green-
house gases and atmosphere-biosphere exchange fluxes. Three models, WRF-LES
(Weather Research and Forecasting-Large-Eddy Simulation) (Wolff et al. 2021),
ICON-LEM (ICOsahedral Non-hydrostatic Large-Eddy Model) (Kern et al. 2016)
and EULAG (Eulerian/semi-Lagrangian fluid solver) (Prusa et al. 2008) are LES
models.

The overall aims of the intercomparison were: i) the evaluation of the model
simulations against in situ and remote sensing measurements of two test cases;
ii) the analysis of spatio-temporal variability and dispersion of the plumes of the
different models with their individual range of resolution to derive recommenda-
tions for model setups; iii) the analysis of the quantification of CO2 emissions for
the future Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) satel-
lite observations using the cross-sectional flux (X-flux) method and the integrated
mass enhancement (IME) method; and iv) to provide recommendations for fu-
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ture measurement campaigns to support the validation of atmospheric simulation
models and satellite observations.

According to the modelling protocol the participating research groups provided
simulation results of their models in a blind intercomparison study. I conducted
ARTM simulations and provided simulation results for two power plants. Fur-
thermore, I provided a technical description of the model ARTM to the study by
Brunner et al. (2023).

5.2.1 Observational data and modelling protocol

The observational data consists of exhaust CO2 plumes of the two lignite power
plants Jänschwalde and Be lchatów. All measurement data originate from the
CoMet 1.0 campaign. The Jänschwalde data was collected on 23 May 2018 by two
aircraft, the DLR HALO and the FUB Cessna, equipped with in situ and remote
sensing instruments. Both flew at constant heights above the PBL and measured
column mean dry air mixing ratios of CO2 (XCO2) with the CHARM-F lidar
and the MAMAP spectrometer, respectively (Gerilowski et al. 2011; Krautwurst
et al. 2021). The FUB Cessna also flew several transects in the PBL at a fixed
distance from the source at different heights to measure in situ CO2 mixing ratios
with a Los Gatos Research greenhouse gas analyser. The measurements at the
Be lchatów power plant were performed on 7 June 2018. Additional to the in situ
data described in Sec. 5.1.1, CO2 column concentrations from the two aircraft
equipped with remote sensing instruments were measured.

The modelling protocol defined mandatory and optional input parameters such
as the size of the simulation domains, the horizontal and vertical source positions,
emission rates and simulation periods. In the modelling protocol the participants
agreed to a minimum set of three passive CO2 tracer simulations for each power
plant. The simulation results were compared on a simulation domain of approx.
60 km × 60 km with a resolution of 200 m. ARTM was only able to simulate such
a large domain with a coarser resolution of 290 m. The vertical resolution was
not prescribed and was selected individually by the research groups. Optionally,
a second, larger simulation domain with coarser grid resolution was simulated de-
pending on the models’ capabilities. The simulations had to cover at least the
day of the measurement flight and the previous day. For the three mandatory
simulation scenarios, different configurations of emission were chosen. In the low
emission scenario, emissions were released at the height of the stacks without any
plume rise. In the medium emission scenario, vertical emission profiles were calcu-
lated representing the plume rise considering stack height, flue gas temperature,
volume flow and meteorological conditions taken from hourly COSMO-7 analysis
of MeteoSwiss (Brunner et al. 2019). The high emission scenario was similar to
the medium one but the highest plume rise profile of the day of the flight and the
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previous day was selected for the entire simulation period. The research groups
simulated with constant emission rates that correspond to the annual average CO2

emissions reported to the E-PRTR, respectively. Since actual emission rates at the
time of the measurement flights were different, Brunner et al. (2023) estimated the
emissions by comparing the annual reported emission rates to the produced elec-
trical power and rescaled the concentration fields afterwards. The concentration
fields for Jänschwalde were rescaled by 128% and those for Be lchatów by 123%
in order to represent the estimated CO2 emissions during the measurements. The
model output was reported on a prescribed latitude-longitude grid to make model
comparisons easier.

5.2.2 ARTM simulations

For the simulations, ARTM 3.0.0 was used with the default turbulence model
of ARTM 2.8.0 (VDI 3783 part 8 2002; Hanfland et al. 2022). In contrast to
previous versions, it is possible in ARTM 3.0.0 to enter the mixing layer height
manually instead of using a predefined value. Mixing layer heights were derived
from the meteorological data and from the measurements. The meteorological
input data originates from Consortium for Small-scale Modeling-Greenhouse Gas
(COSMO-GHG) simulations provided by Stephan Henne from the Swiss Federal
Laboratories for Material Science and Technology (Empa). For both power plants
the provided meteorology was used except for the time of the measurement flight
for the Be lchatów power plant, where in situ measurements of the DLR Cessna
were used as described in Sec. 5.1.2 to derive wind direction, wind speed and
SC data. It turned out that the boundary layer model of ARTM generated too
narrow plumes at very unstable atmospheric conditions at the Belchatów power
plant. Thus, the two wind directions derived from the measurements (see Sec.
5.1.2) were used alternatingly (14:00 UTC to 15:00 UTC) to cover the turbulence
scales that are not covered by the turbulence parametrisation. For the Jänschwalde
power plant only the meteorology from COSMO-GHG was applied.

5.2.3 Model performance assessment

For the simulation comparison statistical properties such as the plume width and
the concentration amplitude are selected rather than a point-to-point comparison.
Therefore, Brunner et al. (2023) fitted a Gaussian distribution to the CO2 data
of the individual transects. The background was subtracted from the in situ data
while the XCO2 data was already provided as excess CO2 concentrations. The
fit parameters of the Gaussians A (area integral), σ (standard deviation/width)
and µ (plume position shift) are fitted using a non-linear least squares Levenberg-
Marquardt minimisation method. Since the transects are not perfectly perpendic-
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ular to the plume axis, a geometric correction factor cf is applied to estimate the
real plume width σ · cf . The maximum of a Gaussian curve is called the amplitude
and represents the maximum plume concentration of the transect, respectively.
The amplitude of the XCO2 concentrations are converted to ppm to make them
comparable with in situ concentrations and simulations.

5.2.4 Results and discussion

Qualitative comparison of simulations and observations

Concentration maps showing the simulated total XCO2 are used for the intercom-
parison. For the comparison with the observations, four-dimensional CO2 walls of
the simulations as well as CO2 timelines of the simulations along the flight path are
compared with the in situ data of both power plants. For Be lchatów, curtains of
the simulated potential temperatures are compared with the measurements. For
Jänschwalde the potential temperature was not measured. Additionally, XCO2

timelines of simulations and observations from the MAMAP spectrometer and the
CHARM-F lidar are compared for Be lchatów and Jänschwalde.

All models show a development of the turbulence in the atmosphere with nar-
row plumes in the morning and wider plumes around noon. For ARTM, this
development is less prominent than for other models but the day time plumes are
much wider than at night time. All the models agree with simulating the atmo-
sphere of the Jänschwalde case being less turbulent than the atmosphere for the
Be lchatów case.

Comparisons of the simulated potential temperature curtains reveal that the
mixing layer depth varies for the different models. Two models, Weather Research
and Forecasting-Greenhouse Gas (WRF-GHG) and ICOsahedral Non-hydrostatic
Large-Eddy Model (ICON-LEM), showed almost perfectly neutral profiles of the
potential temperature and thus simulated insufficiently turbulent boundary layers
for the Be lchatów case. Since ARTM does not use the potential temperature to
constrain turbulent mixing it is excluded from this investigation.

The comparisons of the simulated and observed CO2 concentrations along the
flight paths show that all simulations deviate from the measurements, which is
expected. However, high resolution simulations are in better agreement with the
observations than their low resolution counterparts.

Deviations between simulated and observed XCO2 are smaller because XCO2

over the entire PBL is less sensitive to the exact vertical CO2 distribution and to
weaknesses in the vertical turbulent mixing.
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Statistical evaluation of plume properties

The statistical evaluation of the plume width, amplitude and integral area of the
Be lchatów case reveals that the width (amplitude) in general increase (decreases)
with increasing distance from the source. The high-resolution models, including
ARTM, tend to underestimate the plume width in the near-field (up to 8 km from
the source). This might be caused by the horizontal spread during the plume rise
that is not considered in the simulations or by the usage of one single source instead
of two with a distance of 350 m from each other. The amplitudes seem to be more
robust than the width as the amplitude shows less variations between the models.
In the near field, the dispersion is stronger for the models with coarser resolution
leading to comparatively wide plumes with low amplitudes. High-resolution mod-
els, conversely, overestimate the amplitudes in the near-field which corresponds to
the narrow widths. At large distances from the source, the simulated amplitudes
are more consistent with observations.

For Jänschwalde, the plumes are more compact due to less turbulence and
larger wind speeds. The evolution of the plume width is quite consistent with
Gaussian plume evolution but coarse resolution models overestimate the width in
the near-field. ARTM is in good agreement with observations without mimicking
additional turbulent motion by using alternating wind directions as it was used
for the Be lchatów case. For Jänschwalde, the atmosphere is less turbulent than
for Be lchatów. The plume width simulated by ARTM shows good agreement with
the observations. Compared to the earlier findings, this result reveals that the lack
of the turbulence model of ARTM 2.8.0 modelling too weak dispersion occurs not
under all atmospheric stratifications. The area integrals of the fitted Gaussians
of simulations and observations are consistent for both power plants. A summary
of the statistical parameters is given in Fig. 5.15. Details about strengths and
weaknesses of specific models are given by Brunner et al. (2023).

Emission quantification of synthetic satellite measurements

In order to assess the credibility of satellite missions that monitor the CO2 emis-
sions of point sources such as the CO2M mission, synthetic (i.e. simulated) emission
plumes are used and evaluated. The simulations of the different models are used
for the Be lchatów case to produce synthetic satellite images of the emission plume
assuming that the simulations provide realistic plumes. Diurnal variations of the
PBL and measurement noise are included to give a more comprehensive analysis.
Two different Gaussian noise scenarios, low- (0.5 ppm) and high-noise (1.0 ppm),
are evaluated using the cross-sectional flux (X-flux) and the integrated mass en-
hancement (IME) methods. The resolution of the simulated noisy plume data is
reduced to 2 km×2 km pixels to mimic the resolution of the CO2M satellite (Sierk
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a)

d)

b)

e)

c)

f)

Figure 5.15: Comparison of statistical characteristics of simulated and observed CO2 plumes as a
function of the distance from the source. a), b), and c) show the plume width (σ · cf), the plume
amplitude (maximum of the fitted Gaussian) and the plume integral area A of the Be lchatów
power plant on 7 June 2018. d), e) and f) show those for the Jänaschwalde power plant on 23
May 2018. The observations are shown as black empty symbols. The grey dotted and dashed
lines represent the plume width of an analytical Gaussian plume model for weakly and highly
unstable conditions, respectively (Briggs 1973). From Brunner et al. (2023).
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et al. 2021).
The X-flux method integrates total column CO2 in kg m−2 along a cross-section

approximately perpendicular to the plume axis and calculates the emission as the
product of this line density in kg m−1 with an effective wind speed parallel to the
plume axis. The IME, i.e. the total mass of the CO2 plume, is determined from
all pixels above a predefined threshold. The emission is then calculated as

Q =
Ueff

lc
IME (5.1)

with the effective wind speed Ueff and the characteristic length lc (Varon et al.
2018).

Figure 5.16 shows the results of the different models for both noise scenarios and
both emission estimation methods. The strong vertical mixing at daytime reduces
the scatter while at night the exact location of the derivation of the effective wind
speed becomes a serious source of uncertainty. The midday-average (9:00 UTC to
15:00 UTC) reveals that uncertainties of 10% − 20% originating from turbulent
fluctuations have to be expected from the satellite measurements. More details
about the presented findings of this section are given by Brunner et al. (2023).

The present results in the context to the earlier findings

The findings of the comparisons of ARTM 2.8.0 simulation results with the results
of other transport models, airborne in situ and remote sensing measurements and
the usage of the simulation results for the estimation of emissions are in agreement
with the findings of the sensitivity analysis and the validation presented in Sec.
5.1. ARTM 2.8.0 simulates dispersion plume concentrations in agreement with the
airborne in situ and remote sensing measurements as well as with the simulated
plume concentrations of the other transport models under very unstable and less
unstable atmospheric stratifications. However, both investigations revealed the
tendency of the default TM of ARTM 2.8.0 to simulate too narrow plumes com-
pared to observations and the other transport models under very unstable strati-
fication. For less unstable stratification, the TM of ARTM 2.8.0 simulates plume
widths in agreement with observations and other transport models. This indicates
that the turbulence formulation used in ARTM 2.8.0 underestimates the turbulent
diffusion and the turbulent kinetic energy under very unstable atmospheric condi-
tions. In the TM the difference of the Obukhov length is not sufficient to simulate
appropriate turbulent diffusion. Other TM as presented earlier in this work might
be promising.
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a)

c)

b)

d)

Figure 5.16: Quantified emissions of the synthetic CO2 emissions of Be lchatów for all hours of 7
June 2018. a) and c) show the X-flux method; b) and d) show the IME method; a) and b) show
the low-noise scenario (0.5 ppm); c) and d) show the high-noise scenario (1.0 ppm). The dashed
line represents the true emission. From Brunner et al. (2023).
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Chapter 6

Summary

This thesis contributes to the understanding of sub-grid turbulent motion of wind
in the planetary boundary layer and its parametrisation in Lagrangian particle
dispersion models. More specifically, I used a meso-γ-scale Lagrangian transport
model in order to analyse the three-dimensional dispersion characteristics of tracers
in a highly turbulent flow. As the Atmospheric Radionuclide Transport Model
(ARTM) model, developed by Gesellschaft für Anlagen- und Reaktorsicherheit
gGmbH (GRS), had not been presented in peer-reviewed literature yet, my first
publication aimed at filling this gap by providing a comprehensive overview of the
physical foundations and mathematical formulations of ARTM (Hanfland et al.
2022).

In order to provide guidance for the application of the model and for further
model improvements, detailed sensitivity analysis and model evaluations were per-
formed. Several different local and global sensitivity analysis methods were used to
identify the dependencies of simulation results on input parameter variations in a
structured way. Sensitivity analyses allow to estimate the influence of uncertainties
of input parameters to the uncertainty of the simulation results. This information
helps to identify input parameters, which have to be determined with special ac-
curacy, e.g. by accurate measurements. An initial, more qualitative study on the
dispersion characteristics of simulation results for gaseous and particulate mat-
ter tracers gave insights into the model’s response to input parameter changes. I
then performed a more detailed and more quantitative analysis where the depen-
dencies of two output characteristics (target quantities) on input parameters were
quantified and ranked. The two selected characteristics are the plume volume and
the distance between source and the location of maximum concentration at the
surface, which together comprehensively describe the three-dimensional structure
of the dispersion of gas plumes. It could be shown that the stability class is in
general the most influential input parameter followed by the roughness length,
the source height and the zero-plane displacement height factor. However, this
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ranking changes depending on the result characteristic. For the plume volume,
the ranking from more to less important is stability class, roughness length z0,
zero-plane displacement height factor d and source height hs while it is stability
class, source height hs, roughness length z0 and zero-plane displacement factor d
for the distance between source and the location of maximum concentration at the
surface. This emphasises the importance of investigating not only a single output
characteristic as done in previous studies. Furthermore, the influence of input pa-
rameters changes depending on the height. Although the roughness length has a
larger influence on the plume volume than the zero-plane displacement factor, it
is the opposite when considering only the volume in the three lowest layers (up to
10 m height). There are also cross-interactions between several input parameters
possible that complicate the interpretation of model dependence. The uncertainty
in the results depend most strongly on the uncertainties of those input parame-
ters, which have the strongest influence on the target quantities. This is especially
true for the input parameter stability class, which is a discrete quantity with only
six classes. Thus, it is important that the input parameters are determined as
precisely as possible to minimise simulation result uncertainties. The analysis re-
vealed that there are large gaps in the continuous space of plume volume that
originate from the usage of only six stability classes as turbulence parameters.
This potentially causes uncertainties of about 15% in terms of plume volume and
consequently in terms of concentration. The overestimation or underestimation of
the plume width has a strong influence on the concentration uncertainty at the
plume boarders. On the one hand, an overestimation of the simulates plume width
results in concentration values at locations, where none is observed. On the other
hand, an underestimation of the simulated plume width results in the absence of
concentration values at locations, where the actual plume is observed. The us-
age of measured Obukhov lengths significantly reduces this uncertainty because it
parametrises the turbulence with higher resolution.

The dispersion in a model like ARTM is critically determined by the formu-
lation of turbulence, i.e. by the selected turbulence model. For the analysis of
the turbulent motion and dispersion simulated by ARTM, five different turbu-
lence models were studied under unstable stratification. Three turbulence models,
ARTM2, PRFMOD and ARTM3, were already included in the ARTM 3.0.0 while
two turbulence models, MODHANNA and DEGRAZIA, were additionally imple-
mented in the framework of this thesis. The five turbulence models were first
tested with respect to how well they preserve an initially well-mixed planetary
boundary layer, or whether they tend to accumulate or deplete mass at certain
altitudes in an unphysical way. Applying this well-mixed condition test under un-
stable atmospheric conditions revealed that all turbulence models had a tendency
of unmixing, but to a variable extent. Except for the ARTM3 turbulence model,
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all models stayed well below 6% deviation for heights up to 80% of the mixing
layer depth (z ≤ 0.8hm). ARTM3, instead, showed up to 18% deviations from
the uniform distribution. In contrast to this, it performed best at the ground level
showing only marginal deviations. The DEGRAZIA model showed a small and
the most homogeneous deviation from the uniform distribution below z ≤ 0.8hm.
For all turbulence models, the deviations increased within the first two simulation
hours but stayed constant afterwards. Given the rather small deviations from an
ideal behaviour, all turbulence models can be used for the purpose of exposure
estimation, but it should be kept in mind that errors of the order of 5% occur
simply due to violations of the well-mixed condition.

In order to reveal how close ARTM simulates the dispersion of plumes to real
world plume dispersion in the planetary boundary layer a case study was per-
formed. The three-dimensional structure of simulated exhaust plumes was com-
pared with airborne in situ observations under very unstable atmospheric condi-
tions. Simulations with ARTM using the five different turbulence models were
performed and analysed. The wind direction and the order of magnitude of the
mixing ratios of the simulations of all turbulence models agreed well with the ob-
servations. However, the comparison of the simulated plumes of the turbulence
models revealed significant differences of their three-dimensional structure, which
also resulted in better or poorer agreement with the observations. The turbulence
model ARTM2 (recommended by the Association of German Engineers until 2020)
produced clearly too narrow plumes, which resulted in an overestimation of mixing
ratio peaks. A workaround using the same turbulence model with subsequently
alternating wind directions to mimic turbulent fluctuations not covered by the
parametrisation resulted in a better agreement with the observations but at the
expense of an unphysical rectangular mixing ratio distribution of the plume. The
other turbulence models simulated wider plumes. The PRFMOD, MODHANNA
and DEGRAZIA turbulence models showed plume width, mixing ratio peak val-
ues and mixing ratio integrals along the flight path in better agreement with the
observations. ARTM3 resulted in only slightly wider plumes compared to ARTM2
still underestimating the observed plume width significantly. The probability dis-
tributions of the mixing ratio values along the flight path deviate significantly
from the measurements for all the turbulence models, which is not surprising since
ARTM only represents the mean turbulent dispersion but does not resolve individ-
ual eddies as seen in the observations. The observations are probably not sampled
over a sufficient long period to produce a statistically representative and smooth
probability distribution. Nevertheless, the statistical evaluation of the probability
distributions and the point-to-point comparisons of simulations and observations
indicated the MODHANNA turbulence model to perform slightly better than other
turbulence models. However, without further comparison studies, the obtained
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turbulence model ranking cannot be generalized to other stability conditions.
In order to put the validation of ARTM on a broader basis, the plume disper-

sion simulated by ARTM, using its default turbulence model ARTM2, was also
compared to five different, more sophisticated atmospheric transport models under
slightly unstable and very unstable atmospheric conditions. The intercomparison
confirmed the same tendency of the ARTM2 turbulence model simulating too nar-
row dispersion plumes at very turbulent conditions. At less turbulent atmospheric
conditions, the plume width simulated by ARTM was more comparable with ob-
servations as well as with simulated plumes from other state-of-the-art transport
models. The simulated (synthetic) plumes were used to assess the applicability
and the uncertainty of two methods, which are frequently used for the estimation
of point source emissions from satellite observations. The two methods, called
cross-sectional flux (X-flux) and integrated mass enhancement (IME) were applied
to the ensemble of simulated CO2 plumes converted to column mean dry air mix-
ing ratios of CO2 (XCO2) as measured from satellites. This allows the evaluation
of the methods and the estimation of their uncertainties. The evaluation of the
two estimation methods for the emission rates from satellite CO2 measurements
showed deviations from the simulated emissions of up to 20% at daytime.

This work contributes to the validation of ARTM under unstable atmospheric
conditions and improves the credibility of the simulation results. The findings
of this study help to understand the impact of variations of input parameters
on simulation results and to guide users of ARTM when interpreting the results
of dispersion simulations. The study also reveals some shortcomings of ARTM
and offers improvements to overcome these deficiencies. The results of this study
demonstrate that ARTM is a useful tool that simulates the dispersion of tracers
comparable to other computationally more expensive state-of-the-art transport
models within the unstable and slightly unstable planetary boundary layer when
choosing a proper turbulence model and turbulence parametrisation.
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Chapter 7

Outlook

The analyses performed in this work resulted in new insights into the sensitivity
of simulation results to the most important input parameters and the agreement
of simulated dispersion plumes with observations. However, new questions arose
that should be addressed in further studies.

The presented sensitivity analyses focused on gas as dispersion tracer while
particulate matter was studied less because of the high quality of the filtering
under routine operation of nuclear power plants. The occurrence of particulate
matter with aerodynamic diameters larger than approx. 1 µm is massively reduced
by filtering. Particulate matter smaller than 1 µm are assumed to show only weak
deviations from the dispersion of gaseous tracers except for the influence of dry
and wet deposition. However, the emissions of nuclear installations can contain a
significant amount of particulate matter in the case of accidental releases. Particle
size is an important characteristic that influences dispersion properties of tracers
and thus is a source of simulation uncertainty. Further investigations about the
impact of the particle size on the three-dimensional spread would result in a more
complete knowledge about the most important parameters of ARTM.

The strong sensitivity of the dispersion on the selection of one of six stability
classes results in large uncertainties in the case of an imprecise determination of
the atmospheric stability. An alternative would be to determine the stability di-
rectly from the Obukhov length, which has the advantage of being a continuous
quantity. However, the atmospheric stability is not linearly proportional to this
parameter. For example, a variation of 50 m of the Obukhov length can cause the
transition from very stable to less stable atmospheric conditions but at neutral
conditions the atmosphere is insensitive to such a variation. This may lead to
varying uncertainties when using poorly measured friction velocity and heat flux
for the calculation of the Obukhov lengths as the turbulence parameter in ARTM.
It is important to quantify these uncertainties and estimate their maximum con-
tribution to the uncertainties of the simulation result. To do so, the application
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of global sensitivity analysis methods such as the Sobol’ indices and the δ-method
seem to be promising.

Nevertheless, compared to the stability classes the usage of the continuous
Obukhov length results in simulated plume volumes that better span the full range
of possible plume volumes. However, the fact that some gaps were still present
shows that the sampling of the Obukhov length values for simulations is not trivial
and proper simulation experiments need to be designed. It is important to un-
dertake further attempts to reveal whether the remaining gaps originate from the
performed random sampling of the Obukhov length with uniform probability or
whether they originate from the applied turbulence model. Additional sensitivity
studies should also be performed with the alternative turbulence models proposed
in this thesis. It cannot be ruled out that the sensitivity ranking depends on the
selected turbulence model, though large changes in the ranking are unlikely.

The comparison of simulations with the five turbulence models with the mea-
surements revealed substantial differences in the three-dimensional plume structure
under very unstable atmospheric conditions. Unfortunately, similar observations
for other atmospheric conditions were not available. Since a model has to simulate
the dispersion close to real atmospheric dispersion under all atmospheric stabil-
ities, more measurement data of plume dispersion under unstable, neutral and
stable conditions are necessary. Measurements covering multiple transects and at
multiple distances as performed during the CoMet 1.0 campaign are necessary to
cover the plume structure in detail and to provide a sufficiently large statistical
sample of situations thus enabling a meaningful evaluation. Furthermore, it is
important that the observational data covers the whole depth of the planetary
boundary layer. The data used in this study covered heights from 600 m up to
the mixing layer top, thus it is not clear whether the simulations agree with ob-
servations below 600 m. Measurements below 600 m would be valuable since the
simulations using different turbulence models differed significantly in this altitude
range.

Another element that should be included in the design of a future measure-
ment campaign is to perform repeated measurements at a given location within
a time period of one hour. This would allow the calculation of hourly averaged
concentration values at a location and account better for the statistical character
of concentration measurements due to wind fluctuations. Such data sets could
improve the evaluation of simulations by diminishing the temporal and spatial
differences between simulation and observation. This would allow the evaluation
of ARTM according to the first and the second criterion stated by De Visscher
(2014) (see page 2) as well. The repeated measurement of in situ data at distinct
locations within the entire planetary boundary layer is an enormous challenge for
experimentalists but necessary for the derivation of time averaged concentration
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values from measurements. One possible measurement campaign design is the
usage of one or more aircraft that repeatedly fly along a planned flightpath. An-
other measurement design could be the application of a large number of unmanned
aerial vehicles (UAVs) equipped with measurement devices. They could repeatedly
hover at certain locations measuring the concentration of tracers. An extension of
the measurements to several hours or days could extend the evaluation of ARTM
beyond a short-term evaluation.

A further component for the success of a measurement campaign is to achieve
the cooperation of providers of the emitting installations. They can provide tem-
porally high resolution emission rates in order to strengthen the meaningfulness
of comparison results by reducing source term uncertainties.

Furthermore, wind data are key parameters for atmospheric transport models.
ARTM uses wind data at one arbitrary but fixed position in the simulation domain
to model the wind and turbulence fields. The ground-based measurement of in situ
wind data, e.g. from a weather pole, over the entire simulation period at a fixed
location would be beneficial for the validation of ARTM. The extension of such
measurements to times before the actual simulation period is even better because
it allows the simulation of a fully evolved plume during that spin-off period based
on one continuous wind data set.

Apart from the mentioned improvements concerning measurement data sets
and campaign designs, the analyses showed also potential targets for the modelling.
The five tested turbulence models are a selection of possible turbulence models
discussed by the scientific community. Interestingly, the turbulence model MOD-
HANNA that uses parts of the turbulence parametrisation presented by Hanna
(1982) performed particularly well. It might be worth using the complete turbu-
lence parametrisation of Hanna (1982) to compare it to the measurement data.
This would make a direct comparison between the turbulence models of Hanna
(1982) and Degrazia et al. (2000) under unstable conditions at large heights within
the planetary boundary layer possible and would extend the analyses presented
by Carvalho et al. (2002). There might also be other promising turbulence models
that can be tested to further improve the accuracy of simulated plume dispersion
compared to observations.

This outlook does not claim to mention all the questions that arise from the
presented study. Nevertheless, it may help to guide future attempts to complete the
understanding of the parametrisation of turbulent diffusion in computer models. It
may also help to improve the modelling of the dispersion of tracers in the planetary
boundary layer by using different turbulence models.
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List of abbreviations

ADI Alternating-Directions Implicit

ADM atmospheric dispersion model

agl above ground level

ARTM Atmospheric Radionuclide Transport Model

BfS Federal Office for Radiation Protection

BLM boundary layer model

CFD computational fluid dynamic

CoMet 1.0 Carbon Dioxide and Methane Mission

COSMO-GHG Consortium for Small-scale Modeling-Greenhouse Gas

CH4 methane

CO carbon monoxide

CO2 carbon dioxide

CO2M Copernicus Anthropogenic Carbon Dioxide Monitoring

CPD cumulative probability distribution

DLR German aerospace center

Empa Swiss Federal Laboratories for Material Science and Technology

E-PRTR European Pollutant Release and Transfer Register

EULAG Eulerian/semi-Lagrangian fluid solver

FUB Freie Universität Berlin

GRS Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH

ICON-LEM ICOsahedral Non-hydrostatic Large-Eddy Model

IME integrated mass enhancement

LES Large-Eddy-Simulation

LPDM Lagrangian particle dispersion model
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NO2 nitrogen dioxides

NOx nitrogen oxides

NPP Nuclear Power Plant

NWP numerical weather prediction

PBL planetary boundary layer

PD probability distribution

PDF probability density function

PM particulate matter

PMAC position of maximum activity concentration

RANS Reynolds-averaged Navier-Stokes

SA sensitivity analysis

SC stability class

SRTM3 Shuttle Radar Topography Mission version 3

SO2 sulphur dioxide

TM turbulence model

UAV unmanned aerial vehicle

VDI Association of German Engineers

WRF-GHG Weather Research and Forecasting-Greenhouse Gas

WRF-LES Weather Research and Forecasting-Large-Eddy Simulation

XCO2 column mean dry air mixing ratios of CO2

X-flux cross-sectional flux
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Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit. url:
http : / / www . verwaltungsvorschriften - im - internet . de / bsvwvbund _

08062020_SII51148301.htm (cit. on p. 22).
Bahlali, M. L., C. Henry, and B. Carissimo (2020). “On the Well-Mixed Condition

and Consistency Issues in Hybrid Eulerian/Lagrangian Stochastic Models of
Dispersion”. In: Bound.-Lay. Meteorol. 174.2, pp. 275–296. issn: 1573-1472.
doi: 10.1007/s10546-019-00486-9 (cit. on pp. 27, 73).

Barnicki, J., A. Foss, and J. Saltbones (1996). “Severe Nuclear Accident Program
(SNAP) - An Operational Dispersion Model”. In: WIT Transon Ecol Envir 16,
p. 10. url: https://www.witpress.com/elibrary/wit-transactions-on-
ecology-and-the-environment/16/9062 (cit. on p. 21).

Beck, V., T. Koch, R. Kretschmer, J. Marshall, R. Ahmadov, C. Gerbig, D. Pil-
lai, and M. Heimann (2011). The WRF Greenhouse Gas Model (WRF-GHG).
Report. Max Planck Institute for Biogeochemistry. url: https://www.bgc-
jena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-

GHG_Techn_Report.pdf (cit. on p. 109).
Becker, A., G. Wotawa, L.-E. De Geer, P. Seibert, R. R. Draxler, C. Sloan, R.

D’Amours, M. Hort, H. Glaab, P. Heinrich, Y. Grillon, V. Shershakov, K.
Katayama, Y. Zhang, P. Stewart, M. Hirtl, M. Jean, and P. Chen (2007).
“Global backtracking of anthropogenic radionuclides by means of a receptor
oriented ensemble dispersion modelling system in support of Nuclear-Test-Ban
Treaty verification”. In: Atmos. Environ. 41.21, pp. 4520–4534. issn: 1352-2310.
doi: 10.1016/j.atmosenv.2006.12.048 (cit. on p. 22).

Beevers, S. D. and M. L. Williams (2020). “Chapter 6 - Traffic-related air pollution
and exposure assessment”. In: Traffic-Related Air Pollution. Ed. by H. Khreis,

128

https://doi.org/10.1029/2012GM001294
https://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_28082012_RSII.htm
https://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_28082012_RSII.htm
https://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_28082012_RSII.htm
http://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_08062020_SII51148301.htm
http://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_08062020_SII51148301.htm
https://doi.org/10.1007/s10546-019-00486-9
https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/16/9062
https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/16/9062
https://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf
https://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf
https://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf
https://doi.org/10.1016/j.atmosenv.2006.12.048


M. Nieuwenhuijsen, J. Zietsman, and T. Ramani. Elsevier, pp. 137–162. isbn:
978-0-12-818122-5. doi: 10.1016/B978- 0- 12- 818122- 5.00006- 5. url:
https://www.sciencedirect.com/science/article/pii/B9780128181225

000065 (cit. on p. 19).
Berchet, A., K. Zink, D. Oettl, J. Brunner, L. Emmenegger, and D. Brunner (2017).

“Evaluation of High-Resolution GRAMM–GRAL (v15.12/v14.8) NOx Simu-
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kräftig unterstützt haben und die mir über die ganze Zeit hindurch mit Rat und
Tat zur Seite standen. Vielen Dank für die Arbeit, die Ihr auf Euch genommen
habt, um mich in die richtige Richtung zu lenken und danke, dass Ihr so viel Text
von mir Korrektur gelesen habt.
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genommen habt, dass ich nicht mehr so viel Zeit für Euch hatte und danke für Eu-
re Geduld mit mir. Mein herzlichster Dank gilt Doro, die mit Verständnis reagierte,
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