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We present a correction term for the calculation of viscous fluxes both at interior faces
and at Dirichlet boundary conditions in the framework of unstructured vertex-centered k-
exact finite-volume schemes. The method achieves a higher accuracy for simulations of wall
dominated flows and ensures a proper order of accuracy even on distorted unstructured
grids. The effect of the correction term is presented in terms of test cases for both laminar
and turbulent wall bounded flows. It is demonstrated how the proposed correction term
improves the entire solution accuracy, thus pointing out the importance of an accurate
discretization of viscous fluxes in the vicinity of walls.

I. Introduction

High-order schemes for unstructured grids offer great capabilities for the reduction of computation time
for detailed Large-Eddy Simulations, while maintaining a large geometric flexibility in the mesh generation
process.1 Promising approaches, such as the Discontinuous Galerkin method2–5 or the spectral volume
method6–9 offer a higher order of accuracy on unstructured grids by introducing additional degrees of freedom
within computational elements. Unfortunately, implementing such schemes into established finite-volume
flow solvers, which often include many complex models, is not a trivial task and requires a high verification
and validation effort. A promising approach to improve unstructured state-of-the-art finite-volume solvers
with a higher spatial accuracy is the k-exact multiple-correction approach by Pont et al.10,11 Its key is
a successive correction of approximate Green-Gauss derivatives, which enables a high-order reconstruction
with favorable parallel scaling properties and low implementation effort. The original cell-centered method
has recently been extended to vertex-centered median-dual grids in combination with an implicit fractional
step scheme for the solution of the Navier-Stokes equations.12 Besides that, a novel central convective flux
approximation has been proposed that is based on an adaptive dissipation control, in order to achieve a
stable solution with a minimum amount of numerical dissipation and without a tedious search for optimum
empirical simulation parameters.13

However, the former works did not account for a k-exact treatment of viscous fluxes in the vicinity of wall
boundary conditions. Even though the accuracy of viscous fluxes is generally considered less important for the
resolution of turbulence, recent work by Chamrathi et al.14 showed that indeed the viscous flux discretization
plays a major role for simulations on marginally resolved grids. In this work, we present a correction term
for the calculation of viscous fluxes at both interior element interfaces and and at Dirichlet boundaries,
which enables a second order accurate discretization in space. This enhanced accuracy is maintained on
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Figure 1: Median-dual grid in 2D, indicated in solid lines. The corresponding primary grid is drawn in
dashed lines. The simulation variables are stored at the location of primary grid nodes, e.g. xα or xβ .

unstructured median-dual grids. The novel flux formulation is applied to the implicit high-order k-exact
multiple-correction scheme on vertex-centered grids,12,15,16 which is implemented in DLR’s finite-volume
flow solver ThetaCOM (turbulent heat release extension for TAU in its combustion version). The impact
of the viscous flux correction concerning the solution accuracy is examined on both laminar and turbulent
wall bounded flow problems, namely a Hagen-Poiseuille flow, a laminar flow around a cylinder and a turbulent
pipe flow.

II. Numerical Methods

The following section gives a brief overview of the utilized k-exact multiple-correction approach for vertex-
centered grids. Starting point is a general transport equation for a field variable ϕ that is convected in a
fluid flow with velocity ui and subject to diffusive transport with diffusivity D:

∂ϕ

∂t
+

∂

∂xi
(uiϕ) +

∂

∂xi

(
D

∂ϕ

∂xi

)
= 0. (1)

Equation (1) is solved with a finite-volume approach, where the computational domain Ω is divided into N
non-overlapping computational elements Ωα. These elements are given by the median-dual representation of
the tesselated domain. The latter is denoted as primary grid and consists of linear elements such as triangles
or quadrilaterals in 2D and tetrahedra, hexahedra, prisms or pyramids in 3D. Figure 1 shows an examplary
median-dual representation of a two dimensional grid. Two elements Ωα and Ωβ are said to be adjacent if

they share a common face Aαβ . The set {β(1)
α } is referred to as the first neighborhood of an element Ωα and

it comprises all adjacent elements to it. Elements that are located at the domain boundary also comprise
a set of points {δα}, which will be used to evaluate numerical boundary fluxes. For reasons of clarity, the
respective element faces on which these points are located will be denoted by Aαδ.

Central to the finite-volume approach is the volume-average ϕα of the considered field variable over Ωα,
which is defined by

ϕα =
1

|Ωα|

˚
Ωα

ϕ(x) dV. (2)

The volume-averaging is applied to the governing equation (1), to obtain a set of equations where the unkown
volume-averages ϕα act as degrees of freedom

∂ϕα

∂t
+

1

|Ωα|
∑

β∈{β(1)
α }

[
F

(αβ)
C + F

(αβ)
D

]
+

1

|Ωα|
∑

δ∈{δα}

[
F

(αδ)
C + F

(αδ)
D

]
= 0. (3)

Here, the convective and diffusive fluxes are defined for all interior faces by

F
(αβ)
C :=

¨
Aαβ

uiϕni dA and F
(αβ)
D :=

¨
Aαβ

D
∂ϕ

∂xi
ni dA (4)

and vice versa for fluxes across boundary faces Aαδ. The goal of any finite-volume scheme is the approxi-
mation of these fluxes in terms of the volume-averages ϕα to close the system of equations and proceed to a
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new time step. In this work, we utilize a k-exact reconstruction approach for this task, where the solution
in the vicinity of an element Ωα is locally approximated by a Taylor polynomial ϕ(k+1)(x;xα) of degree k:

ϕ(k+1)(x;xα) = ϕ
∣∣∣
(k+1)

xα

+
∂ϕ

∂xi1

∣∣∣∣
(k)

xα

(xi1 − xi1,α)+ . . .+
1

k!

∂kϕ

∂xi1 . . . ∂xik

∣∣∣∣
(1)

xα

(xi1 − xi1,α) . . . (xik − xik,α) . (5)

The point xα marks a vertex of the underlying primary grid structure, around which the median-dual element

Ωα is constructed and at which the volume-average ϕα is stored. The value ϕ|(k+1)
xα

denotes the approximation

of the point value ϕ(xα) with an accuracy of O(hk+1). In a similar fashion, the nth derivative term refers
to an approximation of the true point-valued derivative of ϕ at xα with an accuracy of O(hk−n+1). The
k-exact reconstruction approach aims to determine these unknown polynomial coefficients in such a way
that the respective accuracy levels are maintained irrespective of the underling grid structure. Besides
that, it is also required that the volume-average (2) of the reconstruction polynomial (5) is satisified on a
compact neighborhood of elements around Ωα.

17 By using the k-exact multiple-correction approach,10,12 the
unknown derivatives are approximated with a Green-Gauss algorithm that does not meet the aforementioned
accuracy constraints in the first place. The derivatives are then successively corrected to higher orders of
accuracy through geometric correction matrices, that solely depend on the numerical grid. In this way, the
data for enhancing the order of accuracy is implicitly transferred through derivatives of adjacent elements.
This is a major benefit of this approach, since it is not required to exchange large element stencils on
domain boundaries, which is generally the case for non-local k-exact finite-volume schemes. As a result, the
multiple-correction approach significantly reduces the implementation effort for a high-order reconstruction
and guarantees good parallelization properties. Thus, it is an excellent tool to improve state-of-the-art finite-
volume solvers towards a higher spatial accuracy. For a detailed overview of the applied method we refer to
our prior work.12,13,15,16

Once the reconstruction polynomials are calculated, they are used to approximate the surface integrals
of transport equation (1) to close the system of equations. In this work, the approximation of the numerical

fluxes F
(αβ)
C and F

(αβ)
D is realized with a single-point integration, that is based on a Taylor series expansion

around a point xΓ located on the surface Aαβ :

¨
Aαβ

fi ni dA = fi

∣∣∣
xΓ

S(αβ)
i +

∂fi
∂xj1

∣∣∣∣
xΓ

S(αβ,Γ)
i,j1

+ . . .+
1

k!

∂kfi
∂xj1 . . . ∂xjk

∣∣∣∣
xΓ

S(αβ,Γ)
i,j1...jk

+O
(
hk+1

)
. (6)

In this way, any flux function fi can be integrated by means of the reconstructed point value ϕ|xΓ
and its

derivatives at xΓ, as long as these point values maintain appropriate orders of accuracies. The integration
method is based on the introduction of rank p geometric surface moments, which ensure a proper integration
of the surface-integral in a single point, regardless of the shape of the surface Aαβ . They are generally defined
as

S(αβ,Γ)
i,j1j2...jp

=

¨
Aαβ

ni (xj1 − xj1,Γ) (xj2 − xj2,Γ) . . .
(
xjp − xjp,Γ

)
dA, (7)

where the subscripts i and jp are separated by a comma, to highlight that i indicates the face normal direction
and jp the spatial direction of the terms

(
xjp − xjp,Γ

)
. The superscripts (αβ,Γ) indicate the elements Ωα

and Ωβ adjacent to the face, as well as the point xΓ where the Taylor series expansion is located. The rank

zero surface moment S(αβ)
i does not include the superscript Γ since it only refers to the joint normal of the

face Aαβ and is thus independent of xΓ. The same surface moment definition holds also for faces Aαδ located
at domain boundaries.

The approximation of convective fluxes fi = uiϕ is based on a novel central discretization approach
with an adaptive numerical dissipation control. It ensures the stability of the scheme while the numerical
dissipation is reduced to a minimum. This greatly enhances the simulation results compared to conventional
discretization schemes for convective fluxes, regardless of empirical flow parameters. The approach has been
described in detail in our recent work.13 In the following, we will focus on how to utilize the given integration
method for the approximation of viscous fluxes fi = D (∂ϕ/∂xi) in both the interior of the domain and at
Dirichlet boundaries. The former has already been described in a prior work,12 but in a slightly different
form. Thus, the methodology presented here should give an enhanced geometric interpretation of the scheme
and also leads to the foundation for the extension to the viscous flux approximation at boundary faces.
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A. Viscous fluxes at interior faces

The following derivations are presented for a 2-exact reconstruction. Starting point for the calculation of
viscous fluxes at interior faces is the insertion of the flux function fi = D (∂ϕ/∂xi) into Equation (6), which
gives

F
(αβ)
D = D

∂ϕ

∂xi

∣∣∣∣
xΓ

S(αβ)
i +D

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

S(αβ,Γ)
i,j + |Aαβ | O

(
h2
)
. (8)

We start by expressing the gradient ∂ϕ/∂xi|xΓ
at the surface Aαβ in terms of the reconstruction polynomial

of the adjacent elements Ωα and Ωβ . It is desireable to do this in terms of the volume-averages ϕα and
ϕβ to obtain a stronger coupling of the underlying linear system of equations and a resulting suppression
of parasitic errors. This is also the main idea of the discretization scheme by Mathur and Murthy,18 that
will be extended for the approximation of Equation (8) in the context of a k-exact reconstruction. It is also
referred to as face-tangent scheme19–21 and is based on the work of Muzaferija and Gosman22 and Demirdžić
and Muzaferija,23 which are also frequently used to discretize viscous fluxes on unstructured grids.24 All
these schemes rely on the separation of the scalar product between the gradient and the surface normal

(∂ϕ/∂xi|xΓ
)S(αβ)

i into an orhogonal and a non-orthogonal part25

∂ϕ

∂xi

∣∣∣∣
xΓ

S(αβ)
i = ε(αβ)

∂ϕ

∂xi

∣∣∣∣
xΓ

∆xi
(αβ)

︸ ︷︷ ︸
orthogonal

+ ε(αβ)
∂ϕ

∂xi

∣∣∣∣
xΓ

∆x̃
(αβ)
i

︸ ︷︷ ︸
non-orthogonal

, (9)

with the distance vectors ∆xi
(αβ) := xi,β − xi,α and ∆x̃

(αβ)
i := S(αβ)

i /ε(αβ) − ∆xi
(αβ). The geometric

quantity ε(αβ) places a degree of freedom for the construction of the scheme and can be used to unify the
different approaches by Muzaferija and Gosman,22 Demirdžić and Muzaferija23 or Mathur and Murthy.18

An overview of these different approaches can be found in the work of Jasak.25 However, for the present
work, the parameter is calculated according to the Mathur-Murthy scheme:

ε(αβ) =
S(αβ)
i S(αβ)

i

∆xj
(αβ) S(αβ)

j

. (10)

This formulation is also known as over-relaxed approach25 and leads to a stronger weighting of the non-

orthogonal part when the surface normal S(αβ)
i and the distance vector ∆xi

(αβ) are not aligned. This
relationship is shown in Figure 2.

xα

xβ

xΓ

S(αβ)

ε(αβ)∆x̃(αβ)

ε(αβ)∆x(αβ)

Figure 2: Splitting of the surface normal Sαβ into a part ε(αβ)∆x(αβ) that is projected onto ∆x(αβ) and a
part ε(αβ)∆x̃(αβ) orthogonal to it.

Our target is to approximate the scalar products (∂ϕ/∂xi|xΓ
)∆xi

(αβ) and (∂ϕ/∂xi|xΓ
)∆x̃

(αβ)
i in terms of

the reconstruction polynomials of the adjacent elements Ωα and Ωβ , while preserving the underlying k-exact
conservation of the mean.12 For this, a Taylor series expansion is constructed around point xΓ, which is

4 of 18

American Institute of Aeronautics and Astronautics



located at the face Aαβ . For k = 2 this leads to the following reconstruction polynomial

ϕ(x) = ϕ
∣∣∣
xΓ

+
∂ϕ

∂xi

∣∣∣∣
xΓ

(xi − xi,Γ) +
1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

(xi − xi,Γ) (xj − xj,Γ) +O
(
h3
)
. (11)

Equation (11) is volume-averaged over the adjacent elements Ωα and Ωβ , which results in the following
relations:

ϕα = ϕ
∣∣∣
xΓ

+
∂ϕ

∂xi

∣∣∣∣
xΓ

M(α,Γ)
i +

1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

M(α,Γ)
ij +O

(
h3
)
, (12a)

ϕβ = ϕ
∣∣∣
xΓ

+
∂ϕ

∂xi

∣∣∣∣
xΓ

M(β,Γ)
i +

1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

M(β,Γ)
ij +O

(
h3
)
. (12b)

These relations are based on the geometric volume moments M(β,α)
i1i2...iR

of rank R, which can be calculated
in a similar way to the surface moments

M(β,α)
i1i2...iR

=
1

|Ωβ |

˚
Ωβ

(xi1 − xi1,α) (xi2 − xi2,α) . . . (xiR − xiR,α) dV. (13)

The first superscript β refers to the element Ωβ on which the averaging takes place and the second superscript
α denotes a point xα, that is used to center the moment. Note, that both superscripts are separated by
a comma to highlight their different meaning. Volume moments where the centering point coincides with

the primary grid node of the element to be integrated are denoted by Mi1i2...iR,α := M(α,α)
i1i2...iR

. These are
actually the only volume-moments to be stored in memory, since the integration over other points can be
obtained from binomial relations,26,27 as for example by

M(β,α)
i = Mi,β +∆xi

(αβ), (14a)

M(β,α)
ij = Mij,β +∆xi

(αβ)Mj,β +∆xj
(αβ)Mi,β +∆xi

(αβ)∆xj
(αβ). (14b)

Equations (12a) and (12b) are now subtracted from each other, in order to express the projection of the
gradient (∂ϕ/∂xi|xΓ

) onto the distance vector ∆xi
(αβ) in terms of

∂ϕ

∂xi

∣∣∣∣
xΓ

∆xi
(αβ) =

(
ϕβ − ϕα

)
− ∂ϕ

∂xi

∣∣∣∣
xΓ

∆M(αβ)
i − 1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

∆M(αβ)
ij +O

(
h3
)
. (15)

This relation can be used to approximate the orthogonal part of Equation (9), where the following terms are
introduced for reason of clarity

∆M(αβ)
i := Mi,β −Mi,α (16a)

∆M(αβ)
ij := Mij,β −Mij,α +

1

2
∆xi

(αβ)
(
Mj,β +Mj,α

)
+

1

2
∆xj

(αβ)
(
Mi,β +Mi,α

)
︸ ︷︷ ︸

=M(β,Γ)
ij −M(α,Γ)

ij

. (16b)

The derivatives ∂ϕ/∂xi|xΓ
and ∂2ϕ/(∂xi∂xj)|xΓ

on the right of Equation (15) are approximated centrally
from the reconstruction polynomials of both adjacent elements:

∂ϕ

∂xi

∣∣∣∣
xΓ

=
1

2

(
∂

∂xi
ϕ(3)(xΓ;xα) +

∂

∂xi
ϕ(3)(xΓ;xβ)

)
+O

(
h2
)
,

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

=
1

2

(
∂2

∂xi∂xj
ϕ(3)(xΓ;xα) +

∂2

∂xi∂xj
ϕ(3)(xΓ;xβ)

)
+O (h) .

(17)

Since the terms ∆M(αβ)
i and ∆M(αβ)

ij scale with O(h2) and O(h), respectively, a third-order accuracy is

preserved for the approximation of (∂ϕ/∂xi|xΓ
)∆xi

(αβ) when a 2-exact reconstruction is conducted.
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It remains to approximate the non-orthogonal term of Equation (9). To do this, we evaluate the k-

exact Taylor polynomial from Equation (11) at point x̃i,Γ = xi,Γ +∆x̃
(αβ)
i and solve for the scalar product

∂ϕ/∂xi|xΓ
∆x̃

(αβ)
i . This results in the following relation:

∂ϕ

∂xi

∣∣∣∣
xΓ

∆x̃
(αβ)
i =

(
ϕ(x̃Γ)− ϕ

∣∣∣
xΓ

)
− 1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xΓ

∆x̃
(αβ)
i ∆x̃

(αβ)
j +O

(
h3
)
. (18)

On fully orthogonal grids, both points xi,Γ and x̃i,Γ coincide, which causes this equation to vanish. It now
remains to approximate the unknown point-values of ϕ at xΓ and x̃Γ with respective orders of accuracies.
This can be achieved by evaluating the reconstruction polynomials of both adjacent elements Ωα and Ωβ at
xΓ and by performing a central averaging. For k = 2, this leads to

ϕ(x̃Γ) =
1

2

(
ϕ(3)(x̃Γ;xα) + ϕ(3)(x̃Γ;xβ)

)
+O

(
h3
)
, (19a)

ϕ
∣∣∣
xΓ

=
1

2

(
ϕ(3)(xΓ;xα) + ϕ(3)(xΓ;xβ)

)
+O

(
h3
)
. (19b)

A central approach is also used to approximate the second derivative at xΓ, as it was already done in
Equation (17). Finally, all terms are inserted into the viscous flux in Equation (8), which then can be cast
into the following form:

F
(αβ)
D = F

(αβ)
D,LO + F

(αβ)
D,STAB + F

(αβ)
D,HO + |Aαβ | O

(
h2
)
. (20)

The terms F
(αβ)
D,LO and F

(αβ)
D,STAB are also present in the original Mathur-Murthy scheme18 and are defined by

F
(αβ)
D,LO = Dε(αβ)

(
ϕβ − ϕα

)
, (21a)

F
(αβ)
D,STAB =

1

2
D ε(αβ)

(
∂ϕ

∂xi

∣∣∣∣
(2)

xα

+
∂ϕ

∂xi

∣∣∣∣
(2)

xβ

)
∆x̃

(αβ)
i . (21b)

They are often calculated with a deferred-correction28 approach, where the former term F
(αβ)
D,LO is treated

implicitly and the latter term F
(αβ)
D,STAB explicitly.22,24 This results in a higher diagonal dominance of the

system matrix and thus a higher robustness of the scheme.25 The term F
(αβ)
D,HO acts as a correction for the

scheme to satisfy the k-exact conservation. It is defined by

F
(αβ)
D,HO = − 1

2Dε(αβ)
(

∂ϕ
∂xi

∣∣∣
(2)

xα

+ ∂ϕ
∂xi

∣∣∣
(2)

xβ

)
∆M(αβ)

i

}
1-exact contribution

− 1
4Dε(αβ)

(
∂2ϕ

∂xi∂xj

∣∣∣
(1)

xα

+ ∂2ϕ
∂xi∂xj

∣∣∣
(1)

xβ

)(
∆M(αβ)

ij − 2
ε(αβ)S(αβ,Γ)

i,j

)

+ 1
8Dε(αβ)

(
∂2ϕ

∂xi∂xj

∣∣∣
(1)

xβ

− ∂2ϕ
∂xi∂xj

∣∣∣
(1)

xα

)[
∆xi

(αβ)
(
∆M(αβ)

j −∆x̃
(αβ)
j

)]

+ 1
8Dε(αβ)

(
∂2ϕ

∂xi∂xj

∣∣∣
(1)

xβ

− ∂2ϕ
∂xi∂xj

∣∣∣
(1)

xα

)[
∆xj

(αβ)
(
∆M(αβ)

i −∆x̃
(αβ)
i

)]
.





2-exact contribution

(22)

This expression also contains the product between the Hessian ∂2ϕ/(∂xi∂xj)|xΓ
and the first surface moment

S(αβ,Γ)
i,j required to approximate the surface integral in Equation (8) with a higher order of accuracy.

B. Viscous fluxes at Dirichlet boundaries

In the following, the discretization approach for viscous fluxes given above will be extended for element faces
located at Dirichlet boundaries of the computational domain. An extension to Neumann boundary conditions
is straight forward, since the respective fluxes can be inserted directly into Equation (8). However, if Dirichlet
boundary conditions are used, the derivative at the surface must be approximated from the imposed boundary
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values. To maintain the k-exact conservation properties, this requires a similar correction as for the interior
fluxes. Starting point is the viscous flux of the scalar ϕ over the boundary face Aαδ, which is discretized by

F
(αδ)
D = D

∂ϕ

∂xi

∣∣∣∣
xδ

S(αδ)
i + |Aαβ | O (h) . (23)

In contrast to the internal fluxes, we omit rank one surface moments S(αδ,δ)
i,j for the surface integration, since

they exhibit much smaller values than interior moments S(αβ,Γ)
i,j . The justification for this negligence will

also become evident from the results in section III. In analogy to Equation (9), the flux is separated into an
orthogonal and a non-orthogonal part

∂ϕ

∂xi

∣∣∣∣
xδ

S(αδ)
i = ε(αδ)

∂ϕ

∂xi

∣∣∣∣
xδ

∆xi
(αδ) + ε(αδ)

∂ϕ

∂xi

∣∣∣∣
xδ

∆x̃
(αδ)
i , (24)

where we introduce the distance vectors ∆xi
(αδ) = xi,δ − xi,α and ∆x̃

(αδ)
i = S(αδ)

i /ε(αδ) − ∆xi
(αδ). The

parameter ε(αδ) is calculated in a similar fashion as for the interior fluxes given in Equation (10). The
orthogonal part requires the product ∂ϕ/∂xi|xδ

∆xi
(αδ) to be approximated. For k = 2, this is achieved with

a Taylor series expansion around the point xδ which is located on the surface Aαδ. The resulting polynomial

is then used to approximate the point value ϕ
∣∣∣
xα

and its gradient ∂ϕ
∂xi

∣∣∣
xα

at the primary grid node xα of

the boundary element:

ϕ
∣∣∣
xα

= ϕ
∣∣∣
xδ

− ∂ϕ

∂xi

∣∣∣∣
xδ

∆xi
(αδ) +

1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xδ

∆xi
(αδ)∆xj

(αδ) +O
(
h3
)
, (25a)

∂ϕ

∂xi

∣∣∣∣
xα

=
∂ϕ

∂xi

∣∣∣∣
xδ

− ∂2ϕ

∂xi∂xj

∣∣∣∣
xδ

∆xj
(αδ) +O

(
h2
)
, (25b)

The insertion of Equation (25b) into (25a) reveals the product ∂ϕ/∂xi|xδ
∆xi

(αδ) in terms of

∂ϕ

∂xi

∣∣∣∣
xδ

∆xi
(αδ) = 2

(
ϕ
∣∣∣
xδ

− ϕ
∣∣∣
xα

)
− ∂ϕ

∂xi

∣∣∣∣
xα

∆xi
(αδ) +O

(
h3
)
. (26)

It is worth mentioning that the point value ϕ|xδ
is given by the boundary condition and, hence, is known.

In theory, the remaining values at point xα could be determined by the reconstruction polynomial of the
element Ωα. But unfortunately, this approach did not result in a stable scheme in preliminary numerical
experiments. Instead, it is required to also express the product (∂ϕ/∂xi|xα

)∆xi
(αδ) by means of both point

values ϕ|xδ
and ϕ|xα

, which results in a stronger coupling of the underlying system of equations. To do this,
we construct a second Taylor series expansion around node xα

ϕ
∣∣∣
xδ

= ϕ
∣∣∣
xα

+
∂ϕ

∂xi

∣∣∣∣
xα

∆xi
(αδ) +

1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xα

∆xi
(αδ)∆xj

(αδ) +O
(
h3
)
, (27)

which can be rearranged to yield the following formulation for the product (∂ϕ/∂xi|xα
)∆xi

(αδ)

∂ϕ

∂xi

∣∣∣∣
xα

∆xi
(αδ) = ϕ

∣∣∣
xδ

− ϕ
∣∣∣
xα

+
1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
xα

∆xi
(αδ)∆xj

(αδ) +O
(
h3
)
. (28)

This expression is finally inserted into Equation (26).

To compute the non-orthogonal part (∂ϕ/∂xi|xδ
)∆x̃

(αδ)
i in Equation (24), we extrapolate the gradient

at surface Aαδ from the interior of element Ωα and multiply it with the orthogonal distance vector ∆x̃
(αδ)
i :

∂ϕ

∂xi

∣∣∣∣
xδ

∆x̃
(αδ)
i =

(
∂ϕ

∂xi

∣∣∣∣
xα

+
∂2ϕ

∂xi∂xj

∣∣∣∣
xα

∆xj
(αδ)

)
∆x̃

(αδ)
i +O

(
h2
)
. (29)
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Finally, inserting Equation (26) and (29) into Equation (24) and replacing the analytic derivatives by their

k-exact approximative counterparts gives the following expression for the scalar product (∂ϕ/∂xi|xδ
)S(αδ)

i .
For k = 2, this results in:

∂ϕ

∂xi

∣∣∣∣
xδ

S(αδ)
i = ε(αδ)

(
ϕ
∣∣∣
xδ

− ϕ
∣∣∣
(3)

xα

+
1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
(1)

xα

∆xi
(αδ)∆xj

(αδ)

)

+ ε(αδ)

(
∂ϕ

∂xi

∣∣∣∣
(2)

xα

+
∂2ϕ

∂xi∂xj

∣∣∣∣
(1)

xα

∆xj
(αδ)

)
∆x̃

(αδ)
i + |Aαβ | O

(
h2
)
,

(30)

where the point-value ϕ|(3)xα
is calculated from the volume-averaged reconstruction polynomial of element Ωα

ϕ
∣∣∣
(3)

xα

= ϕα − ∂ϕ

∂xi

∣∣∣∣
(2)

xα

Mi,α − 1

2

∂2ϕ

∂xi∂xj

∣∣∣∣
(1)

xα

Mij,α. (31)

Similarly to interior faces, we can decompose the final k-exact viscous fluxes at Dirichlet boundary faces into
the following three terms:

F
(αδ)
D = F

(αδ)
D,LO + F

(αδ)
D,STAB + F

(αδ)
D,HO + |Aαβ | O (h) . (32)

The first two terms F
(αδ)
D,LO and F

(αδ)
D,STAB act as counterparts to the Mathur-Murthy scheme of the interior

fluxes and are defined by

F
(αδ)
D,LO = Dε(αδ)

(
ϕ
∣∣∣
xδ

− ϕα

)
(33a)

F
(αδ)
D,STAB = Dε(αδ)

∂ϕ

∂xi

∣∣∣∣
(2)

xα

∆x̃
(δα)
i . (33b)

Likewise, the term F
(αδ)
D,HO acts as a higher-order correction to achieve the k-exact constraints along the

boundary

F
(αδ)
D,HO = Dε(αδ)

∂ϕ

∂xi

∣∣∣∣
(2)

xα

Mi,α

︸ ︷︷ ︸
1-exact contribution

+
1

2
Dε(αδ)

∂2ϕ

∂xi∂xj

∣∣∣∣
(1)

xα

[
Mij,α +∆xi

(αδ)
(
∆xj

(αδ) + 2∆x̃
(δα)
j

)]
.

︸ ︷︷ ︸
2-exact contribution

(34)

III. Results

In this section, we will investigate the influence of the propsed viscous flux correction terms F
(αβ)
D,HO and

F
(αδ)
D,HO on the overall solution accuracy for both laminar and turbulent wall bounded flows. The considered

test cases require the numerical solution to the incompressible Navier-Stokes equations

∂ui

∂xi
= 0, (35a)

∂ui

∂t
+

∂

∂xj
(uiuj)− ν

∂2ui

∂xj∂xj
= −1

ρ

∂p

∂xi
, (35b)

with the fluid velocity u, the pressure p and the kinematic viscosity ν. This is achieved with a fractional
step scheme that requires the implicit solution of a Poisson equation for pressure-velocity coupling, which is
second-order accurate in time. The utilization of this method in conjunction with a k-exact reconstruction
was shown recently in our work,12,13 to which we refer for the sake of clarity. The scheme is implemented
in DLR’s ThetaCOM code, which features a multigrid preconditioning for the Poisson equation and an
efficient matrix-free Krylov solver for the system of linear equations. All test cases are simulated with a
1- and a 2-exact reconstruction approach, where the convective fluxes are approximed with second- and a
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Figure 3: Normalized axial velocity field for the Hagen-Poiseuille flow and a considered grid for the numerical
simulation with a mean grid width h+ = 1.63 and 390 median-dual elements.

third-order accuracy, respectively. Besides that, we utilize the central convective flux discretization approach
from our recent work,13 which minimizes the introduced amount of numerical dissipation to a minimum. In
all simulations the proposed viscous flux correction is both activated and deactivated, in order to analyze
their contribution on the overall solution accuracy.

A. Hagen-Poiseuille Flow

For the first test case, we consider a pipe of radius R with an applied axial pressure gradient G, such that
a parabolic laminar flow profile emerges. The solution of this problem is given analytically by the following
normalized velocity profile29

u+ =
Umax

uτ

[
1−

(
r+

Reτ

)2
]
, (36)

with the radial coordinate r+ =
√
x2
1 + x2

2/δν , the normalized center velocity Umax = GR2/(4µ) and the
shear Reynolds number Reτ = ρuτR/µ. The variables uτ and δν refer to the shear velocity and the wall
length scale. The parameters are chosen to G = 0.48Pa/m, µ = 0.01Pa · s, ρ = 1.0 kg/m3 and R = 0.5m,
which gives Reτ ≈ 173, δν ≈ 2.886mm and uτ ≈ 3.464m/s. Several simulations are conducted where the
pipe cross section is discretized as shown by the median-dual representation in Figure 3. We apply a no-slip
wall condition at the outer boundary of the pipe, whereas a periodic boundary condition is applied in the
axial direction. In this way it is possible to compute the problem with only two element layers in the axial
direction, which significantly reduces the computational effort. Several grid refinement levels are utilized,
which are given in Table 1. For all simulations, the flow field is initialized with u = 0 and the axial pressure
gradient is applied to the momentum equations as a source term, thus leading to the emergence of a steady
laminar flow profile. The latter is obtained by solving the time-dependent Navier-Stokes equations with
sufficiently small CFL numbers ≈ 0.05 in order to reduce the influence of temporal discretization errors.

Figure 4 shows the normalized volume-averaged velocity profiles that are calculated with both schemes
and a mean grid width h+ = 1.63, which refers to the second grid in Table 1. It can be observed that the
viscous correction terms enhance the accuracy of the simulated profiles for both discretization schemes, even
though the increase in accuracy is greater for the 2-exact scheme. This result is supported by the L2-norm
of the volume-averaged flow field, which is calculated via the exact solution u ex

ax,α by

EL2 (uax ) =

[∑N
α=1

(
uax,α − u ex

ax,α

)2 |Ωα|∑N
α=1 |Ωα|

]1/2
. (37)

Figure 5 shows the errors calculated on the various grids given in Table 1 for both the volume-averaged axial
velocity EL2 (uax ), as well as for the axial velocity gradient EL2 (∂uax/∂x1). The red curves refer to the
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Figure 4: Normalized axial flow profiles for the Hagen-Poiseuille test case, calculated with a mean grid width
h+ = 1.63, 390 median-dual elements and for both 1- and 2-exact schemes.
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Figure 5: Grid convergence study for the L2-error of the volume-averaged axial velocity uax and for the axial
velocity gradient ∂uax/∂x1|xα

of the Hagen-Poiseuille flow, calculated for both 1- and 2-exact schemes.
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Table 1: Gird properties for the Hagen-Poiseuille flow. Given are the number of nodes N in the x1-x2-plane,
the radial and tangential grid widths h+

rad,1 und h+
tan,1 as well as the mean grid width h+ along the entire

radius.

Grid N h+
rad,1 h+

tan,1 h+

1 78 1.79 9.07 3.55

2 390 0.57 3.89 1.63

3 1734 0.24 1.81 0.76

4 7302 0.12 0.88 0.37

5 29958 0.06 0.43 0.18

simulation results where the viscous flux correction terms F
(αβ)
D,HO and F

(αδ)
D,HO are applied, whereas the blue

curves correspond to the default discretization scheme. For both k = 1 and k = 2, the viscous flux correction
significantly increases the overall accuracy levels and leads to a pure second-order accurate convergence of
EL2 (uax ). The latter implies for the 2-exact scheme that the error convergence of its third-order accurate
convective operator is deteriorated by the second-order accurate diffusive operator. This is probably related
to the fact, that the error terms of the viscous fluxes dominate over the convective fluxes due to the low
Reynolds number of the flow. However, the overall error is reduced by at least one order of magnitude due to
the application of the viscous flux correction. It can also be observed, that the errors of the solution gradients
collapse to a first-order accuracy when no flux-correction is used, whereas otherwise it features a second-order
accuracy. However, for the corrected 2-exact scheme the second-order accuracy of EL2 (∂uax/∂x1) reduces
to O(h) as the curve falls below a certain threshold of h+ ≈ 3 · 10−1. This can be explained by the fact
that the gradient approximation is based on volume-averages that exhibit an error of O(h2). This error is
cascaded in the gradient approximation and manifests itself with O(h) in the gradient field. However, the
resulting first-order error term is comparatively small and only appears below the aforementioned threshold.

B. Laminar Cylinder Flow

This test case been propsed by Schäfer et al.30 in the workshop “Flow Simulation with High-Performance
Computers”. It has already been used in a prior work12 to verify the accuracy properties of the proposed
k-exact reconstruction scheme, but with a reduced reconstruction order in boundary elements due to stability
reasons. Furthermore, no clear distinction was made between the contributions of convective and diffusive
flux corrections on the solution accuracy. These issues will be addressed in the following by examining the
influence of the viscous correction terms on the solution similarly to the previous test case. The flow of an
incompressible fluid around a cylindrical obstacle of diameterD = 0.1m within a channel of size 2.2m×0.41m
at Reynolds number of Re = 100 is conducted. The latter is based on the cylinder’s diameter. The obstacle
experiences a periodic change in drag and lift force as a result of the downstream vortex shedding. The aim
of the simulations is to predict the resulting maxima in the cylinder’s drag and lift coefficients, as well as the
frequency f of these oscillations. The latter is characterized by the Strouhal number St = Df/U which is
based on cylinder diameterD and the mean flow velocity U = 1.0m/s. For a detailed overview of the test case
we refer to the work by Schäfer et al.30 The simulation is conducted on five meshes with varying numbers of

0.00

0.04

0.08

0.12

|Ω
α
|/
D

2

Figure 6: Median-dual grid for the laminar cylinder flow problem with 2753 elements, colored by the nor-
malized element size |Ωα|/D2.
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Figure 7: Contours for the laminar cylinder flow problem with 10887 vertices, calculated with the 2-exact
scheme and with the applied viscous flux correction. The top figures show the absolute volume-averaged
velocity |uα| as well as the vorticity ωα. The figures below show the contribution from the 1- and 2-exact
viscous flux correction that is calculated according to Equation (38).

primary grid vertices N = {2753, 5583, 10887, 22152, 43332}. The meshes consist of triangular elements and,
apart from the cylinder curvature, there is no significant refinement of the elements in the vicinity of walls.
The coarsest mesh is shown in Figure 6 by means of its median-dual representation. At the beginning of a
simulation run, the velocity field is initialized with u = 0. Subsequently the time-dependent Navier-Stokes
equations (35a)-(35b) are solved for a simulation time of 8 s with a Courant-number of approximately 0.4.

Figure 7 shows the calculated flow field that stems from the 2-exact scheme on a grid with 10887 primary
grid vertices during the state of maximum lift and with the utilization of the viscous flux correction. The
top figures show the absolute velocity and the vorticity. Both fields clearly indicate a Karman vortex street
that is in excellent agreement with the solution given in other works.31–33 The two figures below show the
contribution ∆Fα that stems from the k-exact viscous flux correction summed over all element surfaces:

∆Fα =
∆t

|Ωα|


 ∑

β∈{β(1)
α }

F
(αβ)
D,HO(u1) +

∑

δ∈{δα}
F

(αδ)
D,HO(u1)


 . (38)

The values are based on the x1-velocity and are calculated with the respective 1- and 2-exact contributions
indicated in Equations (22) and (34). Both correction components are mainly persistent in the vicinity
of boundary elements, especially close to the cylinder. A comparison with the mesh structure in Figure 6
indicates that the 1-exact correction is also active in areas where the elements share higher irregularities due
to local refinement. In contrast, the 2-exact correction is more affected by the underlying solution, which is
revealed by comparison to the vorticity field.

The actual influence of the viscous correction terms on the target variables of this test case is shown in
Figure 8 by means of a grid convergence study for both 1- and 2-exact schemes. The blue curves represent
calculated values for the Strouhal number St, the maximum lift coefficient CL,max and the maximum drag
coefficient CD,max which stem from simulations without the usage of the viscous correction. The red curves,
on the other hand, refer to simulations where the terms are used with their corresponding 1- and 2-exact
contribution. For both k = 1 and k = 2, the correction yields more accurate target values at coarser grid
levels. This is particularly evident for the 2-exact scheme, where both maximum lift and drag coefficients
are approximated with a reasonable accuracy at N = 10887 nodes. On the other hand, omitting the viscous
flux correction causes the maximum drag coefficient to converge towards too low values. This indicates that
it is necessary to maintain the underlying k-exact reconstruction for both convective and diffusive fluxes in
order to achieve accurate simulation results. In contrast, an accurate prediction of the Strouhal number is
less affected by the correction terms.
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Figure 8: Grid convergence study results for the Strouhal number St, the maximum lift coefficient CL,max

and the maximum drag coefficient CD,max of the laminar cylinder test case. The dashed areas correspond
to reference values given by Schäfer et al.30

C. Turbulent Pipe Flow

This test case is used to simulation a turbulent pipe flow at a Reynolds number Reτ = uτR/ν = 180. The
latter is based on the pipe’s radius R = 0.5m and the shear stress velocity uτ = 3.6m/s. The length of
the considered pipe is 10R, periodic boundary conditions are imposed on both ends and no-slip boundary
conditions are applied to the pipe walls. The flow is driven by an axial pressure gradient which compensates
friction losses and thus yields a constant bulk velocity. For a detailed description of this test case we
refer to the work of Eggels et al.34 and Fukagata and Kasagi.35 Direct numerical simulation results of
Fukagata and Kasagi are used to validate the present simulation outcomes. The flow field is calculated via
Large-Eddy Simulations (LES) by solving the spatially filtered, time-dependent Navier-Stokes equations.
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Table 2: Grid properties for the turbulent pipe flow test case. Ni refers to the number of nodes in axial,
radial and tangential direction and h+

i denotes the dimensionless grid scale at the wall.

NK Nrad Ntan Nax h+
rad h+

tan h+
ax

Coarse / Hexas 54665 21 48 64 2.45 23.54 28.13

Coarse / Hybrid 62725 13 62 64 2.20 18.24 28.13

Fine / Hexas 496521 45 104 128 1.13 10.88 14.06

Fine / Hybrid 256839 19 89 128 1.06 12.71 14.06

Reference DNS35 96 128 256 0.46 8.54 6.79

(a) Hexahedral mesh type. (b) Hybrid mesh type.

Figure 9: Considered mesh types for the turbulent pipe flow test case.

Subgrid-scale modeling is conducted via the Wall-Adapting Local Eddy-Viscosity (WALE) model.36,37 For
a detailed overview on the underlying LES setup, we refer to our previous work.13 There it was shown,
that an accurate prediction of the flow’s velocity profiles requires a low amount of numerical dissipation,
which in our case is preserved due to the employed adaptive dissipation control. However, the influence of
the discretized viscous fluxes on the solution accuracy was not studied in detail, which will be done in the
following. We consider two different grid types, namely a purely hexahedral mesh and a hybrid mesh. The
latter consists both of prisms in the core region with r/R < 0.7 and of hexahedrals in the vicinity of the
wall. For both types, a coarse and a fine configuration is utilized, whose particular properties are given in
Table 2. Figure 9 shows both coarse grid types. The simulations are initialized with a fully turbulent flow
field that stems from preliminary simulations. After an initialization period of 30 flow through times, the
flow is temporally averaged for further 250 flow through times in order to gather temporal statistics of the
velocity field. These comprise mean values ⟨ui⟩ and mean fluctutations ⟨u′

iu
′
i⟩.

Figure 10 shows the mean axial flow profiles ⟨uax⟩ that have been calculated on all grids and with both
k-exact discretization schemes. Again, the blue lines refer to simulations without the viscous flux correction
and the red lines vice versa. At first sight, both schemes feature a very good agreement with the DNS
results of Fukagata and Kasagi.35 Only for the coarse hexahedral grid, the mean axial velocity is slightly
overpredicted in the log-law region (y+ > 30). Neglecting the proposed viscous flux correction causes only
small deviations in the flow profiles. Mainly on the coarser grids, a slight underestimation of the axial velocity
can be observed in the viscous sublayer near the wall. This error is consistent with the results of the Hagen-
Poiseuille flow, where the axial velocity was also slightly too low in the absence of the correction term. It thus
seems that the correction term mainly affects the regions in which the viscous forces actually dominate the
flow, whereas the remaining flow is mainly influenced by the accuracy of the convective operator. Only for
the 2-exact scheme and the coarse hexahedral grid the viscous flux correction leads also to a better agreement
with the DNS profiles in the log-law region. A slightly higher influence of the viscous flux correction term
can be observed in the profiles of the averaged axial velocity fluctuation in Figure 11. Again, all profiles are
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Figure 10: Normalized averaged axial velocity profiles u+ = ⟨uax⟩/uτ along the dimensionless wall coordinate
y+ = yuτ/ν for the turbulent pipe flow. The results stem from the four grids given in Table 2. The dashed
lines denote the universal law of the wall u+ = y+ and the logarithmic law of the wall u+ = 5.5+ ln y+/0.41.
The DNS profile stems from the work of Fukagata and Kasagi.35
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Figure 11: Normalized averaged axial velocity fluctuation profiles
√
⟨u′

axu
′
ax⟩ against the dimensionless wall

coordinate y+ = yuτ/ν for the turbulent pipe flow. The results stem from the four grids given in Table 2.
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in very good agreement to the reference data. For k = 1, the utilization of the flux correction leads to a
significant improvement of the profile accuracy on the fine hexahedral grid. A similar behaviour is visible
for k = 2 on both the fine hexahedral grid and on the coarse hybrid grid. Similar discrepancies were also
observed for the radial and tangential fluctuations, which are not shown. The results thus indicate that
the correction term is required to accurately capture the averaged velocity fluctuation profiles. However,
the influence on the solution is considerably weaker than it was for the laminar test cases. In addition, the
different grid configurations of the pipe’s core seem to have only a relatively small effect on the quality of
the flow profiles, regardless of whether the viscous flux correction is used or not.

IV. Conclusion

In this work, we proposed a correction term for the approximation of viscous fluxes both at interior
faces and at Dirichlet boundaries in the scope of k-exact schemes on unstructured median-dual grids. The
approach has been incorporated into the k-exact multiple-correction method for vertex-centered grids of
the DLR in-house code ThetaCOM. The influence of the correction term on the spatial accuracy has been
demonstrated for a Hagen-Poiseuille flow, a laminar flow around a cylinder and for a turbulent pipe flow.
The results clearly show that the correction significantly improves the overall accuracy for both a 1- and
2-exact discretization scheme.

However, it appeared that its influence on the overall simulation accuracy was higher for the laminar test
cases. One possible explanation is that the grids used for the turbulent pipe flow exhibited fewer irregularities
than the grids used for the laminar cylinder flow. The viscous flux correction was found to be predominantly
active in the vicinity of wall boundaries. On the other hand, the difference could also be explained by the
fact that the errors of the convective flow operator dominate at higher Reynolds numbers, causing the error
terms, which are eliminated by the viscous flux correction, to be less important.
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