
High-Level Mission Planning for Multi-Agent
Indoor System

1st Rostislav Karásek
Institute of Flight Guidance
German Aerospace Center

38108 Braunschweig, Germany
Rostislav.Karasek@dlr.de

2nd Christian Kallies
Institute of Flight Guidance
German Aerospace Center

38108 Braunschweig, Germany
Christian.Kallies@dlr.de

Abstract—The manuscript presents a high-level mission plan-
ning for multi-agent indoor systems. The high-level mission
planning separates the mission goals between the agents, plans
the order of the mission goals, and provides corridors serving as
constraints for a real-time controller of the multi-agent system in
which the real-time controller searches for optimal paths while
resolving conflicts between the agents. The proposed algorithm
uses a highly optimized tree data structure to represent a
3D indoor environment. Then the set of adjacent tree nodes
defines the shortest possible corridor to fulfill the mission goals
while avoiding obstacles in the indoor environment. Planning
the mission goals order and assignment to agents is an NP-
hard problem that we solve using heuristic algorithms to find a
viable solution before the mission starts. This work implements
a multi-objective optimization algorithm combining a genetic
algorithm and simulated annealing to find a viable solution
for the mission as a composition of the unobstructed corridors
between the individual mission goals found by the A* path
planning algorithm. The evaluation of the proposed high-level
mission planning in a typical indoor environment finds a viable
solution in time, even for a large number of mission goals. Also,
the behavior of the multi-agent system is easily altered to prefer
solutions minimizing the total traveled distance or distributing
the workload evenly between the agents based on the mission
character.

Index Terms—A* algorithm, Christofides Algorithm, Genetic
Algorithm, Multi-Agent System, Multiple Traveling Salesman
Problem, Path Planning, Simulated Annealing, Unmanned Aerial
System

I. INTRODUCTION

Controlling the multi-agent system indoors while avoiding
obstacles and other agents is challenging. Moreover, if the
multi-agent system aims to fulfill a mission, e.g., finding
sources of dangerous gas leakage, the task becomes quickly
impossible in real-time. That is especially true when the multi-
agent system is assigned many waypoints where the gas con-
centration measurements should provide the best information
for localizing gas leakage sources [1]. An approach to decrease
the calculational complexity is to separate the task into high-
level mission planning that assigns the waypoints to agents
in proper order and provides 3D corridors for the individual
agents. Then the low-level control algorithm provides control
signals to guide agents through corridors toward waypoints
while avoiding collisions with other agents. The collision with

the environment is avoided by keeping the agents inside the
corridors.

The task of the multi-agent system is to split the assigned
waypoints between individual agents and plan in which order
to visit the assigned waypoints. We aim that the total traveled
distance of all agents is minimized and simultaneously, the
overall mission time is kept short. We can formally describe
the problem as follows:

• Each waypoint has to be assigned to an agent exactly
once. Return to starting position is not assumed since a
new waypoint may emerge.

• Each agent has to visit all assigned waypoints in an order
that minimizes its traveled distance.

• The waypoints have to be assigned such that the objective
function is minimized.

This problem definition is similar to the Multiple Traveling
Salesman Problem (MTSP) with multiple depots [2]. However,
the MTSP is defined as a single objective optimization problem
that aims to minimize the total traveled distance.

The exact search for an optimal solution is an NP-hard
problem with exponential complexity that is prohibitively slow
even for medium size problems of tens of waypoints. On the
other hand, the heuristic algorithms aim to provide a solution
using a polynomial complexity algorithm, but the solution
can be suboptimal. Notable heuristics approaches are genetic
algorithm [3] and simulated annealing [4]. Refer to [2], [5]
for a detailed overlook of the possible algorithms.

The genetic algorithm is a heuristic algorithm that consists
of a population of possible solution candidates. The best-
performing candidates are selected for the crossover. After the
crossover, some randomly selected candidates are randomly
changed (mutated). The set of new candidates yields a popu-
lation for the next generation.

The walls separating rooms and many small to medium
size objects with possibly complicated shapes are obstacles
between which the multi-agent system must navigate without
collision. The environment has to be represented by a con-
venient data structure for the multi-agent system to use for
navigation. The key feature of the environment representation
is to model the actual environment precisely and efficiently.
If the representation precision is high, the representation is
more complicated, slows navigation, and consumes too much



memory. If the representation is coarse, larger space than
necessary might represent obstacles, leading to longer paths
or even rendering some areas unreachable.

A natural approach to environment representation is to
divide it into cells small enough that each cell is assumed
fully occupied or free. A naive query for a random cell
in a memory yields a linear complexity in the number of
cells. However, storing the cells as nodes in a tree structure
decreases the query complexity to logarithmic in the number
of nodes. The tree structure remains vital for creating and
updating the environment representation, e.g., from a point
cloud [6]. Arbitrary node address can be obtained using the
spacial localization code based on Morton’s code [7]. The vital
property for fast navigation is quickly finding a specific node
in the memory.

Path planning is an integral part of the navigation process
that aims to find the shortest collision-free path between
the agent’s location and the goal location. There are many
approaches to path planning. One possible dichotomy is
stochastic and deterministic methods.

A typical stochastic path planning method is Rapidly-
exploring Random Trees (RRT) [8], which grows a tree based
on the kinetic model of an agent until the goal state is reached.
Another approach to stochastic path planning is a Probabilistic
RoadMap (PRM) [9], which uses a local planner to connect
random agent configurations in a free space. The path is
obtained using a graph-based minimum distance algorithm
when the space is connected enough.

The deterministic methods represent the free space as a
graph and use graph-search algorithms to obtain the desired
path. Most graph-based algorithms are based on Dijkstra’s
minimum distance algorithm [10]. Adding an appropriate
heuristic function to distance measure can speed up Dijkstra’s
algorithm as in A* algorithm [11] or improve the performance
in unknown terrain when replanning is required as in D* Lite
[12].

The presented method does not aim to follow the standard
approach of searching for a complete collision-free path that
the agent should follow as closely as possible. We aim for
high-level mission planning that constrains the free space be-
tween the agents and goals, providing well-defined constraints
for a path planning algorithm that considers the dynamics of
the agents and, therefore, provides more detailed and physi-
cally feasible paths. A possible algorithm based on Model Pre-
dictive Control (MPC) [13] has been established in [14]–[16].
It uses a linearized kinematic model of the agents together with
a set of constraints representing obstacles or possibly the free
space to optimize controls for the whole multi-agent system
while covering a set of given waypoints. The calculational load
of MPC can be prohibitive, especially for multi-agent systems
where constraints encapsulate all obstacles in the environment.
Our solution aims to provide corridors defined as a series of
free nodes that must be transversed by an agent to achieve the
goal. This aim is central to the proposed high-level mission
planning.

11xxxx

00xxxx

10xxxx 00 01 10 11

011010

Fig. 1. Visualization of a single obstacle (black dot) in a 2D environment
by a quadtree of depth three. The color code visualizes which quadrant of a
node corresponds to a tree node at each level of depth.

II. HIGH-LEVEL MISSION PLANNING

A. Environment Characterization

We represent the d-dimensional environment by a tree struc-
ture where each node has 2d equisized children nodes [17].
The tree structure allows the clustering of areas of identical
properties using variable depth of tree branches. Therefore,
it is unnecessary to transverse the tree from the root to the
leaf of the maximum specified depth but stop at the node
with all children with the same properties. The variable branch
depth saves memory and speeds up the query. We store only
nodes representing occupied space, further decreasing memory
consumption.

Fig. 1 shows an example of a 2D environment represen-
tation where the black dot visualizes a single obstacle with
the corresponding location code 011010. The corresponding
quadtree on the left shows that only branches with at least
one obstacle are stored in memory. There is one bit of location
code per dimension per tree depth. Hence, the 2D environment
of depth three requires a location code 2x3 bits long to address
all environment nodes.

This work assumes 3D environment representation. In 3D,
the environment is split into eight octants and each octant into
another eight child octants until the maximum tree depth is
approached. Hence, we refer to the used tree structure as an
octree.

B. Collision-Free Path Planning

Since our environmental representation is already a graph,
i.e., octree, we use the A* algorithm [11] to find the shortest
path through the graph. The A* algorithm works as follows:

1) The start node is inserted into the priority queue imple-
mented as a binary heap [18], where the priority queue
key is the cost to get to the start node, which is zero,
plus the heuristics cost. The distance from the current
node to the goal node is the heuristics cost used in the
A* algorithm.

2) A node with the lowest key is popped from the priority
queue and used as the current node. Each popped node
is marked as finished.



Fig. 2. Example path (blue line) in a 2D environment; start point (red dot),
end point (red cross), occupied area (black boxes), safe and shorted corridor
obtained by the A* algorithm (green boxes)

3) All nodes adjacent to the current node not yet marked
as finished are inserted into the priority queue with
the priority queue key corresponding to the cost to
transverse from the previous node to the current node
plus the cost to get to the previous node from the start
node, plus the heuristics cost of the current node.

4) Steps 2 and 3 are repeated until the popped node is the
goal node.

The path is recovered by following the pointers to previous
nodes starting at the current (goal) node. The total cost to get
to the goal from the start node is the cost of the goal node.

The ancestors closest to the tree root, which are entirely
free of obstacles, serve as graph nodes for the A* algorithm.
This significantly decreases the number of nodes to visit before
finding the shortest path since we do not need to use only the
leaves of the octree.

The A* graph grows as it visits neighboring nodes and uses
nodes not marked as occupied, allowing only collision-free
paths. Since the A* does not necessarily visit all the free-space
nodes, building the whole free-space graph is unnecessary.

We use an efficient approach to find the current node’s
neighbors based on [19]. If the neighbor is free, the algorithm
checks the ancestors progressively until it founds the largest
free ancestor. On the other hand, if the neighbor is partly
occupied, the neighbor’s children, who also neighbor with the
current node, are checked until all free smaller-size neighbors
are found, if any. All largest free neighbors not yet marked as
finished in A* are added to the A* graph and inserted into the
priority queue.

Fig. 2 shows an example environment in 2D where occu-
pied nodes are black. The path planning algorithm finds an
obstacle-free path between the star position marked by a red
circle and the end position marked by a red cross. The shortest
obstacle-free path is shown by a blue line connecting the
centers of the free nodes. The sum of distances connecting the
neighboring nodes serves as the distance for the path planning
algorithm. The path planning connects the previous node’s
center and the waypoint position or two waypoints directly

2 97 0 3 5 6 11 8 10 1 4 66 92

Fig. 3. The two-part chromosome visualization for solving MTSP using
genetic algorithm.

if located in the same node. Fig. 2 shows this for the end
position in the upper right corner. The output of the path-
planning algorithm is the environment node series (corridor)
marked green, serving as constraints for the controller, e.g.,
MPC.

C. Mission Assignment and Path Planning Coupling

Minimizing the total traveled distance while keeping the
traveled distance of all agents similar leads to a multi-objective
optimization problem, where simultaneously minimizing all
objectives might not be possible. The formal definition of the
optimization problem is

x̂ = argmin
xϵX

f (x) , (1)

with the multi-objective function

f (x) = αfd (x) + (1− α) fσ (x) , (2)

where x̂ is the optimal solution of the multi-objective opti-
mization problem. We define two objective functions as

fd (x) =

N−1∑
n=0

d (va,n,V w,x) , (3)

fσ (x) =

√√√√ 1

N

N−1∑
n=0

(
d (va,n,V w,x)−

1

N
fd (x)

)2

, (4)

where the distance function d (va,n,V w,x) returns the sub-
route distance of the n-th agent, starting at position va,n, given
the whole set of waypoint positions V w and the chromosome
vector x.

The weighting of the objective functions (3) and (4) is given
by α ϵ (0, 1) that can be selected based on the desired behavior
of the multi-agent system. Selecting α close to one prioritizes
minimizing the total travel distance while decreasing α gives
more weight to minimizing the standard deviation of distances
traveled by individual agents.

The chromosome vector x uniquely defines which way-
points are assigned to the agents in which order. The distance
between any two points in the environment is obtained using
the A* algorithm.

The proposed method combines the genetic algorithm [3]
and simulated annealing [4] to solve (1). We use the two-part
chromosome representation based on [20], where the first part
represents the order of waypoints and the second represents



cut positions. The cuts separate the waypoints between agents,
a minor modification of the approach in [20], where the second
part represents the number of waypoints assigned to agents.
Representing the number of cuts rather than the number of
assigned waypoints shortens the chromosome’s second part by
one bin. The visualization of the two-part chromosome is given
in Fig. 3. The first part of the chromosome represents the order
of 12 numbered waypoints that should be assigned between
five agents based on the second part of the chromosome. The
second part of the chromosome represents cuts that cut the
first part into subroutes assigned to individual agents. The first
agent is assigned waypoints 2 and 7 in this order. The second
agent is assigned waypoints 9, 0, 3, and 5. The third agent is
not assigned any waypoint since the cut position is the same
as the previous one. The fourth agent is assigned waypoints 6,
11, and 8. And finally, the fifth agent is assigned the remaining
waypoints, 10, 1, and 4.

Often, the first generation is randomly generated in genetic
algorithm. However, this approach creates a population where
the order of the waypoints is too far from optimal, causing
slow convergence of the genetic algorithm. Our method gen-
erates the cuts randomly from a uniform distribution, and the
order of waypoints is a random permutation of waypoints.
Then waypoints associated with each agent are reordered using
the Christofides algorithm [21].

We use the two-part chromosome crossover (TCX) based on
[22], which significantly decreases the search space compared
to the crossover approach in [20]. The parents for crossover are
sampled from the population based on systematic resampling
[23], where the resampling probability wi of the i-th popu-
lation member is the reciprocal of the normalized member’s
objective (2) defined as

wi =
1

1∑J
j=0 f(xj)

f (xi)
, (5)

where the superscripts i and j are indexing members of
the genetic algorithm population with the population size J .
The systematic resampling provides the first parent for the
crossover. The second parent is obtained using systematic
resampling while assuring that a parent is not crossed-over
with itself. The parents are crossed-over with the crossover
probability px, creating a candidate for the next generation. If
the parents are not crossed-over, the first parent becomes the
candidate for the next generation.

Each part of the new candidate’s chromosome mutates with
the mutation probability pm. The mutation uses the swap
method [24] that selects two waypoints randomly and swaps
their order in the first part of the chromosome. The second part
of the chromosome selects one cut randomly and exchanges
it with a new random cut. Then, the second part of the
chromosome is sorted in ascending order so the cuts are in
nondecreasing order. If the second part of the chromosome is
mutated, one or more waypoints are associated with a different
agent. Adding some waypoints to the beginning or end of the
agent’s path can significantly deteriorate the candidate. Hence,
if the second part of the chromosome is mutated, we reorder

Fig. 4. Visualization of the experimental environment representing a typical
indoor environment with separated rooms and medium-sized obstacles (couch,
table, supporting column), agents’ starting positions (red dots), and 80
waypoints to be visited (blue dots).

the candidate’s waypoints using the Christofides algorithm to
improve the candidate.

The objective is calculated for the generated candidate. The
candidate i in generation k is accepted with the probability

p =

{
1; if fk

(
xi
)
< fk−1

(
xi
)

e−(f
k(xi)−fk−1(xi)) 1+log(1+k)

T0 ; otherwise
, (6)

where T0 is the initial temperature constant and fk
(
xi
)

is the
objective function at the k-th generation for i-th population
member. The exponentially decreasing acceptance probability
is based on the simulated annealing acceptance rate with
logarithmic cooling schedule.

A new candidate is generated according to the method
above if the simulated annealing acceptance process rejects the
candidate. This loop continues until the candidate is accepted.
The candidate generation method is repeated until a whole
new population is generated for the next generation.

Finally, the whole process is repeated for the required
number of generations.

III. EXPERIMENTAL RESULTS

A virtual environment visualized in Fig. 4 serves to study
the performance of the proposed high-level mission planning
method. The assumed environment characterizes a simplified
four-room apartment with a size of 15x15 meters. For better
visualization, the floor, ceiling, and surrounding walls are
not shown but are assumed during the path planning. The
environment is converted to the octree with depth eight,
yielding a spatial resolution of about 6 cm.

The experiments assume five agents and a varying number
of waypoints. The agents’ initial position is chosen randomly
inside a 75 cm large cube in the bottom left corner of the
environment. The waypoints are uniformly sampled inside
the environment but ensured to be outside of the occupied



Fig. 5. Visualization of the high-level mission planning output for five
agents, 80 waypoints, and α = 0.25. The color code corresponds to the
agent’s number as given by the color bar. Additionally, the corridor serving
as constraints for the control algorithm for agent 0 is visualized.

space. A seeded random number generator generates both
agents and waypoints. The seed ensures the repeatability of
the experiments. Moreover, it ensures the scenario is identical
while solving for different α.

In total, we evaluated 20 scenarios where the number of
waypoints was 10, 20, 40, 80, and 160, and the α was
0.25, 0.50, 0.75, and 1.00. An example of a scenario for 80
waypoints is shown in Fig. 4, where the red points mark
the agents’ initial positions, and the blue points mark the
waypoints. A workstation with Intel i7-12700 was used to
evaluate all the scenarios using Python programming language.

The calculation of A*-based paths between all required pairs
of points is parallelizable, where each pair of points is either
pair of waypoints or agent-waypoint pair. Then all possible
paths through the waypoints comprise the precalculated paths
between the individual pairs of points. We measure the du-
ration of the optimization routine without the A* algorithm
finding the shortest path between pairs of points since it better
captures the complexity of the proposed algorithm because all
A*-based paths can be obtained in parallel if deployed to a
ground station with a sufficient number of CPU cores.

Fig. 5 shows an example of the high-level mission planning
for 80 waypoints and α = 0.25. The result shows that all
agents are assigned a route since the low value of α prioritizes
even workload distribution between agents. Moreover, the
agents’ routes have similar distances with a standard deviation
of only 1.4 meters. The total traveled distance was 249.3
meters. The main output of the proposed method are the
corridors that serve as constraints for a control algorithm
generating controls for the whole multi-agent system. The light
blue cubes show an example of the corridor in Fig. 5 for agent
0 that traveled 49.6 meters.

The total traveled distances and routes standard deviations
for the different waypoint counts and configurations of α are

TABLE I
THE TOTAL TRAVELED DISTANCE IN METERS fd (x) FOR DIFFERENT

NUMBER OF WAYPOINTS (WP) AND α.

α
wp 10 20 40 80 160

0.25 64.2 137.4 211.4 249.3 425.4
0.50 51.9 99.6 164.1 233.6 365.0
0.75 51.9 98.4 138.0 213.0 313.5
1.00 51.1 94.6 139.5 212.1 320.6

TABLE II
THE STANDARD DEVIATION OF TRAVELED DISTANCE IN METERS fσ (x)

FOR DIFFERENT NUMBER OF WAYPOINTS (WP) AND α.

α
wp 10 20 40 80 160

0.25 15.7 2.3 2.0 1.4 2.6
0.50 20.8 18.2 19.6 9.5 9.7
0.75 20.8 21.1 55.2 37.0 70.9
1.00 20.4 37.8 55.8 52.9 92.6

captured in Table I and Table II, respectively. Noticeably, for
increasing α, the total travel distance decreases while the route
standard deviation increases. An important outcome of the
experiments is that it is possible to control the behavior of
the multi-agent system by weighting the proposed objective
functions (3) and (4). Then based on the mission-specific
criteria, we can decide if we aim to minimize the mission
duration or the total traveled distance.

The presented results were obtained after 10 000 genera-
tions. However, the results are not significantly changing after
3 000 generations, as shown in Fig. 6, where the distances
of individual agents (left axis) and the total traveled distance
(right axis) are plotted as a function of the number of
generations k. With increasing α, the total traveled distance
corresponding to fd (x) decreases. However, the workload is

0 0.2 0.4 0.6 0.8 1

·104

0

50

100

150

200

k

tr
av

el
ed

di
st

an
ce

[m
]

agent 0
agent 1
agent 2
agent 3
agent 4
fd (x)

0

100

200

300

400

totaltraveled
distance

[m
]

(a) α = 0.25

0 0.2 0.4 0.6 0.8 1

·104

0

50

100

150

200

k

tr
av

el
ed

di
st

an
ce

[m
]

agent 0
agent 1
agent 2
agent 3
agent 4
fd (x)

0

100

200

300

400

totaltraveled
distance

[m
]

(b) α = 0.50

0 0.2 0.4 0.6 0.8 1

·104

0

50

100

150

200

k

tr
av

el
ed

di
st

an
ce

[m
]

agent 0
agent 1
agent 2
agent 3
agent 4
fd (x)

0

100

200

300

400

totaltraveled
distance

[m
]

(c) α = 0.75

0 0.2 0.4 0.6 0.8 1

·104

0

50

100

150

200

k

tr
av

el
ed

di
st

an
ce

[m
]

agent 0
agent 1
agent 2
agent 3
agent 4
fd (x)

0

100

200

300

400

totaltraveled
distance

[m
]

(d) α = 1.00

Fig. 6. Plot of the traveled distance of individual agents (left) and the total
traveled distance fd (x) (right) for different α at k-th optimization iteration
with 80 waypoints.



TABLE III
DURATION OF 3 000 GENERATIONS FOR DIFFERENT NUMBER OF

WAYPOINTS (α = 0.50)

wp 10 20 40 80 160
t [s] 549.3 839.7 1375.2 2979.1 11544.1

unevenly distributed between the agents since increasing α
decreases the weight of fσ (x). Interestingly, the total traveled
distances for α = 0.75 and α = 1.00 difference is marginal,
while the influence on the even distribution of workload is
significant. In the case of 40 and 160 waypoints, the total
traveled distance was even worse when the standard deviation
was ignored by α = 1.00 than when α = 0.75 was used.

The duration of the optimization algorithm for 3 000 genera-
tions is in Table III. The results show that the time complexity
is more than linear in the number of waypoints. If we assume
polynomial complexity, we can estimate that the time com-
plexity of the proposed algorithm is O

(
m2.12

)
. The highest

complexity method is the Christofides algorithm with a known
O
(
n3

)
. However, the Christofides algorithm is only called

when the second part of the chromosome is mutated. Since the
mutation probability is usually kept small (0.05 in our case),
the influence on the overall time complexity is also small.
The time complexity of the TCX is not studied in [22], but it
should be less than O (m log (m)) since only parts of parent
chromosomes are sorted during the crossover. Therefore, we
believe that complexity mostly comes from the simulated
annealing-based acceptance and rejection of candidates. As
the optimization progress, the rejection rate increases, and an
increasing number of candidates must be generated before it is
accepted. We believe the performance could be improved by
tuning the annealing schedule, e.g., using adaptive simulated
annealing and early stopping when the optimization converges.

IV. CONCLUSION

We proposed a novel approach to multi-agent high-level
mission planning for path planning in a cluttered indoor
environment. The proposed algorithm solves the problem of
assigning waypoints to multiple agents and providing the order
in which the agents visit the waypoints. Moreover, it provides
unobstructed corridors serving as constraints for a controller
planning the optimal controls for steering the agent through
the assigned waypoints.

The studied problem of assigning waypoints to agents is
similar to an NP-hard MTSP which can be solved exactly with
exponential complexity. Our approach achieves polynomial
complexity by combining genetic algorithm and simulated
annealing heuristics for solving MTSP. We proposed a novel
approach to generating the initial generation of candidates
based on a graph-based Christofides’ approximation to the
traveling salesman problem that significantly speeds up the
optimization convergence.

Future research topics should aim to expand the proposed
method for a 4D environment for collision-free path planning
between moving obstacles. Also, the proposed high-level mis-

sion planning should be integrated with MPC controller to not
only to pre-plan the mission but also execute it.

ACKNOWLEDGMENT

This work has been performed in the framework of the DLR
projects STARE and INTAS.

REFERENCES

[1] T. Wiedemann, D. Shutin, and A. J. Lilienthal, “Model-based gas
source localization strategy for a cooperative multi-robot system—a
probabilistic approach and experimental validation incorporating
physical knowledge and model uncertainties,” Robotics and Autonomous
Systems, vol. 118, pp. 66–79, Aug. 2019. [Online]. Available:
https://doi.org/10.1016/j.robot.2019.03.014

[2] T. Bektas, “The multiple traveling salesman problem: an
overview of formulations and solution procedures,” Omega,
vol. 34, no. 3, pp. 209–219, Jun. 2006. [Online]. Available:
https://doi.org/10.1016/j.omega.2004.10.004

[3] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press, 1975.

[4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, Jun.
1953. [Online]. Available: https://doi.org/10.1063/1.1699114

[5] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the
multiple traveling salesman problem: Applications, approaches and
taxonomy,” Computer Science Review, vol. 40, p. 100369, May 2021.
[Online]. Available: https://doi.org/10.1016/j.cosrev.2021.100369

[6] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: an efficient probabilistic 3d mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, Feb. 2013.
[Online]. Available: https://doi.org/10.1007/s10514-012-9321-0

[7] P. van Oosterom, “The spatial location code,” in Proceedings of the
7th international symposium on spatial data handling: Advances in GIS
research II, 2010.

[8] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The annual research report, 1998.

[9] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996. [Online]. Available: https://doi.org/10.1109/70.508439

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, no. 1, pp. 269—-271, 1959.

[11] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. [Online].
Available: https://doi.org/10.1109/tssc.1968.300136

[12] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354–363,
Jun. 2005. [Online]. Available: https://doi.org/10.1109/tro.2004.838026

[13] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE
control systems magazine, vol. 20, no. 3, pp. 38–52, 2000.

[14] M. Ibrahim, C. Kallies, and R. Findeisen, “Learning-supported approx-
imated optimal control for autonomous vehicles in the presence of state
dependent uncertainties,” in 2020 European Control Conference (ECC).
IEEE, 2020, pp. 338–343.

[15] M. Ibrahim, M. Kögel, C. Kallies, and R. Findeisen, “Contract-based
hierarchical model predictive control and planning for autonomous
vehicle,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 758–15 764, 2020.

[16] M. Kögel, M. Ibrahim, C. Kallies, and R. Findeisen, “Safe hierarchical
model predictive control and planning for autonomous systems,”
International Journal of Robust and Nonlinear Control, 2023. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6808

[17] A. Kuenz, High Performance Conflict Detection and Resolution
for Multi-Dimensional Objects. Braunschweig: Forschungsbericht
Deutsches Zentrum für Luft- und Raumfahrt, 2015.

[18] J. W. J. Williams, “Algorithm 232 - Heapsort,” Communications of
the ACM, vol. 7, no. 6, pp. 347–348, Jun. 1964. [Online]. Available:
https://doi.org/10.1145/512274.512284



[19] J. Vörös, “A strategy for repetitive neighbor finding
in octree representations,” Image and Vision Computing,
vol. 18, no. 14, pp. 1085–1091, 2000. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0262885600000494

[20] A. E. Carter and C. T. Ragsdale, “A new approach to solving the multiple
traveling salesperson problem using genetic algorithms,” European
Journal of Operational Research, vol. 175, no. 1, pp. 246–257, Nov.
2006. [Online]. Available: https://doi.org/10.1016/j.ejor.2005.04.027

[21] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” Operations Research Forum, vol. 3, 1976.

[22] S. Yuan, B. Skinner, S. Huang, and D. Liu, “A new crossover
approach for solving the multiple travelling salesmen problem using
genetic algorithms,” European Journal of Operational Research,
vol. 228, no. 1, pp. 72–82, Jul. 2013. [Online]. Available:
https://doi.org/10.1016/j.ejor.2013.01.043

[23] P. Kozierski, M. Lis, and J. Zietkiewicz, “Resampling in particle filtering
- comparison,” Studia z Automatyki i Informatyki, vol. 38, pp. 35–64, 1
2013.

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Boston, MA: Addison-Wesley Longman Publishing
Co., Inc., 1989.


