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Abstract

Despite the importance of scientific software for research, it is often not
formally recognized and rewarded. This is especially true for foundation
libraries, which are used by the software packages visible to the users,
being “hidden” themselves. The funders and other organizations need to
understand the complex network of computer programs that the modern
research relies upon.

In this work we used CZ Software Mentions Dataset to map the depen-
dencies of the software used in biomedical papers and find the packages
critical to the software ecosystems. We propose the centrality metrics for
the network of software dependencies, analyze three ecosystems (PyPi,
CRAN, Bioconductor) and determine the packages with the highest cen-
trality.
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1 Introduction

Since the second half of the last century a computer became as ubiquitous a
tool of a scientific lab as an alembic and burner in the previous ages. Thus
computer software is now crucial to research, bringing new methods and new
scale, and offering the potential for reproducibility and extension. This is true
not only for the sciences, as well as scholarship more broadly (e.g., sociology
and the humanities), making the software revolution both wide and deep. Yet
we have very limited insight into the software actually used in science. This lack
of infrastructural understanding means we are limited in our ability to reward
developers and maintainers, encourage collaboration and coordination, and to
direct science funding in a well-informed manner.

This problem is exacerbated by the fact that today software is a complex
ecosystem with a myriad of dependencies. When a researcher uses a program,
they rely on the work of the people that wrote, tested and maintained it—as
well as the people that wrote, tested and maintained the packages and libraries
that the program depends on, either at runtime or during the compilation phase.
Thus funders who want to support and accelerate science need to find the crit-
ically important pieces, both among the user-facing programs, and those that
are not known to the end users, i.e., the former’s dependencies. This fact has a
number of implications including security ones [Goodin, 2024].

Scientific software is often invisible in publications, because citation practices
in science have not changed at the same pace that software has become crucial.
For example, software is infrequently and inconsistently formally cited [Howi-
son and Herbsleb, 2011, Howison et al., 2015, Singh Chawla, 2016, Howison and
Bullard, 2016, Knowles et al., 2021, Druskat et al., 2024]. There have been recent
efforts to extract the informal citations from the full text of articles [Schindler
et al., 2021, Du et al., 2021, Istrate et al., 2022b,a] and to evaluate the “impor-
tance” of software packages by looking at papers that cite them [Bogart et al.,
2020]. Unfortunately, publications sometimes do not mention all of the software
used in the course of the research.

Besides this, there is another kind of invisibility of scientific software. The
programs visible to the user may rely on many other software packages (known
in the software world as dependencies). While the end users may mention a
package at the top of the software stack, they are likely not even aware of the
packages that are further below in the stack. These may be packages that the
used program depends on directly (direct dependencies), or indirectly, where
the direct dependencies in turn depend on further packages. These latter pack-
ages thus become indirect, transitive dependencies of the user-facing program.
All the work undertaken to develop, maintain, test, and distribute the underly-
ing software is therefore not visible in the publication record itself, and is not
included in derivatives such as citation graphs and knowledge graphs. The situ-
ation resembles the famous XKCD cartoon [Munroe, 2020], where “all modern
infrastructure” critically depends on “a project some random person in Ne-
braska has been thanklessly maintaining since 2003”. The word “thanklessly”
is important in this context: being unknown, these critical pieces of software get
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Figure 1: Classification of software packages inspired by [Stokes, 1997]

much less recognition and credit than they deserve—and than the science needs.
There have been proposals to assign credit to these packages [Katz, 2014, Katz
and Smith, 2014], but so far the problem has not yet been solved. To imple-
ment the proposed transitive credit mechanisms, software projects must start
to publicize the packages they rely on in a way that enables recognition and ci-
tation, beyond the technical dependency already recorded in manifest files such
as pyproject.toml, cargo.toml, pom.xml, etc. One way for projects to do
this is the inclusion of citation information for their own software outputs as
well as for their direct dependencies, e.g., in a citation file in the Citation File
Format [Druskat et al., 2021]. Were such citation information available for the
complete dependency stack of a program, transitive credit could be implemented
by building weighted software citation graphs [Druskat, 2020]. At present the
situation is quite different: sometimes even the maintainers of the down-stack
software are not aware of the top stack programs that depend on their work.
They need this knowledge when making breaking changes to their packages,
that might negatively influence the software that depends on them [Bogart
et al., 2021].

By distinguishing software packages as visible by the end users and impor-
tant for other packages we follow the ideas described by Donald E. Stokes in his
famous book [Stokes, 1997]. In his book, Stokes distinguishes between applied
research with the results visible to the general public, and the pure research,
which is less visible, but important for the applied research. Following his ideas,
we can put the software packages into a two dimensional plane with the axes cor-
responding to the frequency of software mentions and some measure of network
centrality (Figure 1). The majority of the packages will occupy the lower left
corner of the plot, having a fair usage both by the authors of scientific papers
and the authors of the software package, who may intersect. Popular packages
are used by many authors. We are interested in the “Nebraska” packages, not
very visible, but of critical importance. Of course, one can think about highly
visible and critical “Pasteur” packages, which are used both directly and as a
foundation for other libraries.
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We had a fortunate opportunity to explore these ideas due to the generosity
of the Chan Zuckerberg Initiative (CZI). On 24–27 October 2023, CZI hosted a
hackathon on Mapping the Impact of Research Software in Science (see https:
//github.com/chanzuckerberg/software-impact-hackathon-2023). One of
the projects at this hackathon was Tracing the dependencies of open source soft-
ware mentioned in the biomedical literature [Brown et al., 2023]. In this project,
we explored the dependencies of the open source software packages mentioned
in CZ mentions dataset [Istrate et al., 2022b]. We decided to limit the study to
open source packages: first, because the dependencies of closed source packages
are not public, and second, because we believe in the importance of open source
for open and reproducible science. The result of this project is this paper. Here,
we explore approaches to making the software package infrastructure underlying
science more visible. We examine our findings to develop questions to better
understand the idea of criticality and opportunity for improving science through
software ecosystems.

2 Materials and Methods

2.1 Network construction

We combined two datasets: The CZI Software Mentions dataset [Istrate et al.,
2022b] (which was built using a model trained on the Softcite Dataset gold
standard dataset [Du et al., 2021]), and the Ecosyste.ms software dependency
dataset [Nesbitt, 2023], which is built by gathering and normalizing the depen-
dency information from three package managers, one for Python (PyPI) and
two for R (CRAN and Bioconductor). The authorship data was scraped from
Github metadata, for want of consistently available authoritative software au-
thorship metadata.

The CZI Software Mentions dataset [Istrate et al., 2022b,a] identifies which
mentions were traced to which ecosystem. In this way, package names from
CRAN, Bioconductor and PyPi that have been parsed by the software-mentions
project are collected. We used the latest release of the package at time of data
collection (October 2023) along with the names of their dependencies. Those
dependency names have then also been recursively fetched using the most recent
release and dependencies until the full list of transitive dependencies is included.
Limitations of this dependency resolution approach are discussed below.

After this data processing we produced a two-mode network, with nodes for
papers and nodes for packages. Edges from papers to packages were added when
a package was mentioned in the full-text of the paper. Edges between packages
were added when package manager descriptions indicated a dependency (in-
cluding both required and suggested dependencies, and including packaging re-
lated dependencies such as those needed for development, as well as testing and
building documentation). The full code for the processing is available at [Brown
et al., 2023]. The network is available at [Brown, 2023] in GEXF format [GEXF
Working Group, 2009]. It has four classes of nodes:
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paper: papers from the CZI Software Mentions dataset. They are identified by
their DOI. To estimate the impact of the papers we separately downloaded
their citation numbers from OpenAlex [Priem et al., 2022] as of November
2023 (a copy is available in the data subdirectory of [Brown et al., 2023]).

pypi, cran, bioconductor: Software from the corresponding ecosystems. We
used CZI ID ([Istrate et al., 2022b,a] as the identifier. We did not attempt
to identify the same software across the ecosystems (see the discussion
below).

The edges are directed and weighted. An edge from a paper node to a software
node means that the given software is mentioned in the paper, the weight cor-
responds to the number of citation the paper received. An edge from software
node A to software node B means that software A depends on software B as
determined by the corresponding package manager.

2.2 Network analysis

To analyze the network, we relied on directed centrality analysis [Borgatti and
Everett, 2021]. There are several possible options for centrality measure. Our
choice was determined by the following considerations. First, we wanted a
centrality metric that accounts for papers even though in they have no incom-
ing edges in our network (in other words papers do not receive centrality but
should contribute to the centrality of software packages). This criterion excludes
eigenvector centrality. Second, we wanted a centrality metric that accounts for
the weight of edges from papers to software packages (i.e., some papers con-
tribute more centrality through their citation counts). This criterion excludes
the PageRank algorithm which normalizes weights of out-degree. We found that
Katz centrality satisfies these criteria. This approach gives us a free parameter
β to control the importance of papers (which we set equal to 1) such that paper
nodes contribute a factor proportional to β times their citation count to the
software packages they mention. In turn, these software packages contribute
a factor proportional to their own centrality to their dependencies. A package
can therefore be central by receiving mentions from well-cited papers, by having
central dependents, or by a combination of both.

3 Results

In Figure 2, we show the overall network of software packages connected through
their dependencies within their ecosystem and interconnected through the pa-
pers that mention them. Edges from papers to software packages are directed
and weighted by the number of citations the paper received. Edges between
software dependencies are directed from a dependent to a dependency.

We found a dense core of popular packages that receive many mentions (e.g.
ggplot2 in CRAN, tophat in PyPI and limma in Bioconductor), some of which
have many dependencies themselves (e.g. ggplot2). We also found less central
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Figure 2: (a) Network visualization of software packages from three ecosys-
tems (from CRAN in green, PyPI in blue, and Bioconductor in pink) connected
through their dependencies within their ecosystem and interconnected through
papers that mention them. We label the top 3 most central packages in each
ecosystem. The core of the network is dominated by CRAN and PyPI depen-
dencies, despite the fact that three of the 5 most central packages come from
Bioconductor. (b) The top part of the network witn papers added (in grey) to
illustrate how PRISMA can be central due to many mentions in the papers.
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packages mentioned heavily by specific communities (e.g. PRISMA in CRAN or
pymol in PyPI).

Analyzing the entire ecosystems of software dependency, we found that
roughly 10% of software packages are part of dependency loops (i.e., cycles
in the dependency networks). Interestingly, we found no cycles whatsoever in
the connected component of networks that have received software mentions, and
their dependencies. We discuss this finding below.

In Figure 3 we show the distribution of packages from the three investigated
ecosystems over Katz centrality and mention counts. We found a dense cluster of
packages with low Katz centrality and low mentions counts, i.e., the “Majority”
quadrant (see Figure 1).
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Figure 3: Distribution of packages by Katz centrality and counts of their men-
tions in papers. In the calculations we assumed β = 1.
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4 Discussion

The absence of cycles in the network of software packages used in science is
quite interesting. It suggests a more robust design structure in the universe of
scientific software than in the general software world. The lack of cycles also
improves our analysis with Katz centrality as it excludes feedback mechanisms
that can artificially inflate the centrality of packages on a loop. Packages with
low mentions and high Katz centrality are therefore even more critical as they
represent essential dependencies of packages that enable large volumes of re-
search without receiving direct attention. These are exactly the “Nebraskan”
packages referenced by Munroe [2020] that we set out to find. Figure 3 seems
to show one clear example of such a package: velvet, a PyPI package with a
mention count of 197, but a Katz centrality of 0.105.

Generally, the results verify our intuition that the majority of software pack-
ages will have a low Katz centrality and relatively few mentions.

Our paper tries to quantify impact as importance, and put some numbers
behind the intuition. Of course this is by itself a perilous process: there could be
various flavors of both impact and importance, and people may reasonably dis-
agree about the details. Our contribution is to propose a certain quantification,
which agrees with our intuitive understanding.

Besides the possible problems with the exact definition of importance, our
work has a number of limitations:

1. The network analysis is limited by the quality of disambiguation and link-
ing in the CZI Mentions Dataset (see the discussion in [Istrate et al.,
2022a]). Homonyms (different software packages with the same or close
names) may change the network statistics, and preliminary research points
to considerable potential for incorrect linking in the CZI Software Men-
tions dataset due to homonyms [Druskat et al., 2024]. Notably, this affects
the above-mentioned “Nebraskan” package velvet, which is linked to a
Python package of the same name that provides signal processing and
communications algorithms in Python (available on PyPI1). Meanwhile,
all of the mentions of “velvet” point to different versions of algorithms for
de novo short read assembly using de Bruijn graphs in genomics, described
in [Zerbino and Birney, 2008] and implemented mostly in C [Zerbino et al.,
2014]. Sometimes an open source package shares a name with a proprietary
software (e. g. PRISM, PACE), which leads to confusion and incorrect us-
age counts.

2. Our approach is limited to the open source package included into one
of the chosen package managers. This excludes proprietary software like
Excel or GraphPad Prism, and open source non-packaged software like
Gephi [Bastian et al., 2009]. The number of missing packages may be
estimated from Table 14 of [Istrate et al., 2022a] which gives the coverage
linking coverage by GitHub at 64.39%, the coverage by CRAN at 8.36%,

1https://pypi.org/project/velvet/
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the coverage by PyPI at 5.86%, and the coverage by Bioconductor at
3.23%. GitHub coverage can be used as a proxy for the share of the open
source software: while some packages are not hosted by GitHub, their
fraction is anecdotally low. If we assume that each package exists only
in one ecosystem (there are packages present in several, but we neglect
this effect), the combined coverage by CRAN, PyPI, and Bioconductor is
17.45%, i.e. between the quarter and third of the open source packages.
It is very likely that each of these non-package pieces of software do de-
pend on packages in our focus ecosystems. For open source non-package
software it may be feasible to identify source repository URLs and then
to identify packages depended on by the software. That would need to be
done by directly inspecting the source code, possibly using SBOM tools.
OTOH, some non-package software do not have source code available (in-
cluding proprietary GUI software such as SPSS, and cloud-based services);
nonetheless these pieces of code may very well be based on packages in
our focal ecosystem (especially those that use non-restrictive licenses such
as BSD, MIT). In the long term there is a possibility that the requirement
to provide SBOMs for federal government purchasers will give insight into
the packages on which proprietary software relies.

3. In our version of the dependency chart we always used the latest version
of any package. In reality dependencies change between the versions. A
study of development logs often reveals messages like “deleted the depen-
dence on XYZ” or “added the dependence on ABC”. These changes often
make the work of package management software very difficult. A software
dependencies graph is a living network, constantly evolving, with links
added and deleted. In this study we effectively collapse the time, making
an (imperfect) snapshot of the long movie.

A future improvement would be to use each package ecosystem’s specific
dependency resolution algorithm to compute the full transitive depen-
dency tree for each mentioned software package. An even further exten-
sion would be to attempt to do this for the version of the package most
likely used by a specific publication, based on aligning publication date
with the current version used at that time.

4. Our method captures the off the shelf software packages used for the pa-
pers. It does not capture ad hoc software written specifically for the given
paper, which may be contained in the code accompanying the papers.
This code may load software libraries, and thus add software dependen-
cies absent in our graph.

5. The dependencies reflected in the the package managers do not necessarily
reflect the actual usage of the software. A library may be loaded, but not
used for the actual execution path used in the given paper. A more reliable
method would be to reproduce the analysis done in each paper and capture
the actual library calls—which is probably prohibitively difficult for the
number of papers covered.
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6. Many Python and R packages ultimately depend on libraries outside their
ecosystems (most often C and Fortran libraries). These dependencies are
not easily captured by the package management software, and thus are
outside of our analysis.

7. Our dependencies graph does not include the concept of alternatives, when
package A depends on the functionality that can be provided either by
package B1, or package B2. Some package managers like Debian apt have
the possibility of specifying alternatives, but this is not a common feature
of package managers.

8. Different communities place different emphasis in such elements of the
infrastructure as tests. This may lead to the over-representation of testing
infrastructure packages in some cases, for example in Python ecosystem.
We do not try to attempt to decide which elements of the infrastructure are
“actually important”, instead relying on the judgment of the community
of users and developers—while recognizing that such judgment may be
different across the landscape.

9. There are several different Python package managers with greatly overlap-
ping dependency graphs. We used PyPI for this study. Some competitors
like pip and Vonda are also worth investigating.

5 Conclusions and future work

In this work we investigated the network of software packages used in the
biomedical papers. We demonstrated that these packages follow the structure
of “Stokes’ diagram” (famous for ”Pasteur’s quadrant”) with some packages
highly visible to the end users, and some packages less visible, but important in
the network due to their dependencies. We discussed the use of Katz centrality
in discovering the important packages and found examples of such package in
the biomedical field. We also discovered that the structure of the network of
the software packages used in biomedical science is different from the structure
of generic software packages: the absence of dependence loops may indicate a
more robust, or intentional, design.

These findings and insights can be used in funding and development of the
open source scientific software.

Of course there are many ways to extend this work. It would be inter-
esting analyze common workflows for different disciplines, perhaps using co-
occurrences of mentions, and map them into the dependence graph. This might
help to discover packages important for specific sub-fields of biomedical sciences.
Adding temporal dependencies to our graph my help to discover and predict the
development trends.
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