Decarbonizing waterborne transport using fuel cells and DC grids

Dheeraj Gosala Research Scientist, DLR Institute of Maritime Energy Systems

05.01.2024

Knowledge for Tomorrow

Background

Global GHG Emissions (2018)

GHG Emissions from Shipping

Fuel EU Maritime Initiative

Reduce GHG intensity of fuels by up to 80% by 2050

Obligation ships to use on-shore power supply or zero-emission technology at ports

Zero-emission technology:

- Fuel cells
- Batteries
- PV/Wind energy

DLR Institute of Maritime Energy Systems

- Founded in May 2021
- Headquartered in Geesthacht, testing infrastructure in Kiel

Research Themes:

- Low- and zero-emission and renewable energy converters and systems
- Onboard energy storage, distribution, bunkering, and transportation of alternative fuels
- Optimization of ship performance in various sea states
- Design methods for ship integration and reliability assessment of new energy systems
- Digital twins

DLR Institute of Maritime Energy Systems

Powertrain Configuration

All Electric Ship

All Electric Ship

All Electric Ship

Speed – Torque Map

Naik et al., "Achieving Bharat Stage VI Emissions Regulations While Improving Fuel Economy with the Opposed-Piston Engine ", SAE Intl. Journal of Engines, 2017

Naik et al., "Achieving Bharat Stage VI Emissions Regulations While Improving Fuel Economy with the Opposed-Piston Engine ", SAE Intl. Journal of Engines, 2017

12/2 ik et al., "Achieving Bharat Stage VI Emissions Regulations While Improving Fuel Economy with the Opposed-Piston Engine ", SAE Intl. Journal of Engines, 2017

Energy Converter Efficiency

Variable Speed Gensets display higher part-load efficiencies

PEM Fuel Cells

PEMFC

- High technology maturity
- No pollutant emissions (NOx, PM, ..)
- Quiet operation no NVH implications

> 50% electrical efficiency

- Low technology maturity
- No pollutant emissions (NOx, PM, ..)
- Quiet operation no NVH implications

- High temperature operation (600 °C)
- Internal fuel reforming possible
- Slow transient operation

60% electrical efficiency85% comb heat & power efficiency

Cruise Ships

- Major contributor to global tourism
 \$150 billion economic activity
 - •1.2 million jobs
- Significant emissions from cruise ships
 - CO2 \equiv 84,000 cars
 - NOx \equiv 420,000 cars
 - PM \equiv 1.05 M cars

Energy efficiency & pollutant reduction of cruise ships essential to meet sustainable development goals

Scope

- Improve efficiency
- Reduce pollutant emissions (harbors & sensitive areas)

Batteries PEM Fuel Cells DC grids

Grid Configuration in Modern Cruise Ships

Power Generation & Energy Storage

AC Power Distribution

Power Consumers

Grid Configuration in Modern Cruise Ships

Grid Configuration in Modern Cruise Ships

Cruise Ship Operation

Pollutant-free operation in harbors and sensitive areas important

Energy System Configuration

Energy System Configuration

Gensets + Battery + Fuel Cell

Simulation Setup

- Backward model
- Static efficiency maps
- Lumped loads
- Power-domain analysis

Results – Fuel Energy Consumption

Batteries and fuel cells can yield up to 11.5% energy savings

Results – Fuel Energy Consumption

DC grid promises further energy savings of 2.1% – 4.3%

PE: Power Electronics

Sensitivity Analysis

Component Sizing

Component Efficiencies

Energy Management

How should the total demanded power be split between all the power producers?

Rule-Based Techniques

- Intuitive and robust
- Easy to implement & diagnose
- Not optimal depends on how good the calibrator or the designer is

Optimization-Based Techniques

- Optimal/ close-to-optimal solution
- Computationally intensive real-time implementation challenging
- Knowledge/ prediction of future conditions needed

Energy Management

The optimal energy management strategy is 8.9% more efficient than the rule-based algorithm ...

... however takes significantly longer to computationally execute

Real-time near-optimal energy management strategies necessary for future maritime energy systems

Conclusions

- PEM Fuel Cells and Batteries can enable up to 11.5% energy savings
- DC grids promise further energy savings of 2.2% 4.3% over AC grids
- Zero-pollutant ship operation at ports and sensitive areas without fuel penalty
- Energy Management critical for hybrid energy system configurations

Upcoming: SOFCs in maritime applications

Funded by

Horizon Europe-funded project, 2022-2027

- 500 kW LNG-SOFC-pilot demonstration at TRL7 on a cruise ship by 2027
- · Applicability over various maritime use cases cruise ships, dredgers and offshore vessels
- Scalability up to 20 MW including hoteling and share of propulsion loads
- Fuel flexibility with carbon-neutral fuels

23% GHG reduction expected

Decarbonizing waterborne transport using fuel cells and DC grids

Dheeraj Gosala Research Scientist, DLR Institute of Maritime Energy Systems

05.01.2024

Knowledge for Tomorrow

Dr. Steffen Knodt, Institut für Maritime Energiesysteme, 05.01.2024

Interdisziplinarität der Abteilungen

2 Energie- und Infrastrukturabteilungen

- Energieinfrastrukturen (EIN)
- Energiekonverter und -systeme (EKS)

3 Schiffbauliche Abteilungen

- Schiffsperformance (SPF)
- Schiffszuverlässigkeit (SZV)
- Schiffsintegration (SIG)

2 Holistisch integrative Abteilungen

- Virtuelles Schiff (VIS)
- Maritime Forschungsanlagen (MFA)

