Al-based Oil Spill Detection Using the SAR Data from Sentinel-1

Yi-Jie Yang

Maritime Safety and Security Lab Bremen, German Aerospace Center (DLR), Germany

Motivation

- Large oil spill accidents cause serious environmental damage
- Regular deliberate oil spills continuously influence marine wildlife
 - → Oil pollution "hotspots": usually have high maritime traffic

Eastern Mediterranean Sea

- High Marine Traffic
 - Shortest shipping route from Asia to Europe
 - Oil transit center

- Discoveries of large gas fields in 2010
 - Increasing number of offshore oil and gas exploration and exploitation activities

⁽European Parliamentary Research Service, 2019)

Platforms	Sensors	Properties	
Shipborne	Specialised radar	 Very limited coverage 	
Airborne	Infrared (IR) Ultraviolet (UV)	 Estimate the extent of the oil film Easily affected by weather condition 	
	Microwave radiometer (MWR)	Estimate the oil thicknessLow resolution	
	Laser-fluoro-sensor (LFS)	 Classify the oil spills 	
	Side-Looking Airborne Radar (SLAR)	High costLess efficiency for wide areaLimited coverage	
Spaceborne	Synthetic Aperture Radar (SAR)	Wide coverageHigh revisit frequency	

Importance of Early Surveillance System

Early action to reduce the influence of oil spills

• Physical and ecological characteristics of the spill-covered areas

Oil Spills in SAR Images

Calm surface (closed water)

Marissa Day 13 > Y.-J. Yang > 22 Feb. 2024

Oil Spills in SAR Images

Conventional Workflow for Oil Slick Detection using SAR

 Images of (a) an oil spill and (b) a look-alike (Stathakis et al., 2006)

Conventional Workflow for Oil Slick Detection using SAR

10

azimuth

Object detection approach

azimuth

Oil Spill Detection and Early Warning System

Oil Spill Detection and Early Warning System

> Cooperation work with the Israel Oceanographic and Limnological Research (IOLR)

The ability of a detector on targeting oil spills inside the user defined dataset.

The ability of a detector on targeting oil spills inside the user defined dataset.

- The ability of a detector on targeting oil spills inside the user defined dataset.
- The feasibility of building an automated oil spill detection subsystem based on the trained object detector.

- Training, validating and testing the object detector
- Testing YODA

		Year	# scenes	# objs
Train set	object detector	2015	709	995
as objects Patches Val. set		2016	1290	2288
L –/ Test set /		2017	1910	2767
Oil Spill Detection			2021	3418
YOLO-based Oil Detection Algorithm (YODA)	Binary / mask	2019	2057	1883
		Total	7987	11351
	Oil Trajectory Simulation			

- The ability of a detector on targeting oil spills inside the user defined dataset.
- The feasibility of building an automated oil spill detection subsystem based on the trained object detector.

Data Processing

17

- Training, validating and testing the object detector
- Testing YODA

Year	# scenes	# objs
2015	709	995
2016	1290	2288
2017	1910	2767
2018	2021	3418
2019	2057	1883
Total	7987	11351

 The frequency of oil spills appearing on each pixel based on the manual inspected oil spills from 2015–2018 with a total of 9468 oil spills in 5930 Sentinel-1 scenes.

Illustration of the oil spill detection system

Latency for Operational Procedure

Testing with processing 4 scenes:

Testing the System for Other Oil Pollution Hotspots

Marissa Day 13 > Y.-J. Yang > 22 Feb. 2024

Oil Spill Detection Results – SAR & optic: additional value

Marissa Day 13 > Y.-J. Yang > 22 Feb. 2024

Multi- and Hyperspectral Images

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Nigeria and sinks on 02.02.2022

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Oil production vessel "Trinity Spirit" explodes off the coast of Nigeria and sinks on 02.02.2022

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Environmental disaster caused by the sinking of the oil production ship Trinity Spirit

- Oil spill detection based on
 Sentinel-1 data, DLR Bremen
- Oil spill detection based on Landsat-8,9 data, DLR Neustrelitz

Oil production vessel "Trinity Spirit" explodes off the coast of Nigeria and sinks on 02.02.2022

Oil Spill Detection on Multi- and Hyperspectral Images

Sinking of the tanker MT Princess Empress, loaded with 800,000 liters of industrial oil, on February 28 off the Philippine Island Mindoro, Naujan.

Automatic oil spill detected on two days with different data and methods :

- Threshold method (Landsat, 11 bands)
- Convolutional Neural Network (Index Method)
- Unsupervised classification, k-means (EnMAP, 230 bands)

DARTIS project (2019–2022):

Development of an automated real-time intelligent information system for early warning and preparedness of offshore oil and gas operations off the coast of Israel

Sentinel Success Stories:

Copernicus Sentinel-1 data enable oil spill detection in South-eastern Mediterranean Sea

- Y.-J. Yang, S. Singha, and R. Mayerle "A Deep Learning Based Oil Spill Detector Using Sentinel-1 SAR Imagery," *International Journal of Remote Sensing* 43.11(2022): 4287–4314. doi: 10.1080/01431161.2022.2109445
- Y.-J. Yang, S. Singha, and R. Goldman, "A Near Real-Time Automated Oil Spill Detection and Early Warning System using Sentinel-1 SAR imagery in the Southeastern Mediterranean Sea," *International Journal of Remote Sensing* (2024). doi: <u>10.1080/01431161.2024.2321468</u>

Thank you!

Yi-Jie Yang Yi-Jie.Yang@dlr.de

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) German Aerospace Center Remote Sensing Technology Institute | SAR Signal Processing Maritime Safety and Security Lab Bremen | Germany