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Abstract—Modern real-time systems are susceptible to cyber-
attacks. The growing adoption of multi-core platforms, where
safety and non-safety critical tasks coexist, further introduces
new security challenges. Existing solutions suffer from either a
lack of determinism or excessive cost. This paper addresses these
shortcomings and proposes an offline analysis to compute all
feasible schedules for real-time tasks running on a multi-core
platform, isolating compromised tasks while guaranteeing a fail-
operational system and low-cost reconfigurable scheduling. Our
experimental results using a UAV autopilot system on a quad-core
platform (Raspberry Pi) demonstrate that the proposed scheme
incurs run-time recovery overhead at the level of microseconds.
Also, the reconfiguration process covers up to 100% of all possible
responses for compromised tasks in the synthetic test cases.

Index Terms—Real-time Systems, Schedule Reconfiguration,
Multicore, Security.

I. INTRODUCTION

Real-time systems are integral to numerous critical
applications in our everyday life, including automobiles,
aerospace systems, smart grids, industrial control systems, and
space rovers, to name a few. For safe operations, designers
of modern real-time autonomous systems must ensure the
systems function correctly and perform required tasks within
predefined time bounds, often termed as deadlines. Due to the
high value to the adversaries, use of off-the-shelf components,
and wider network/Internet connectivity, modern real-time
systems are also exposed to cyber breaches, as evidenced
by recent attacks on automobiles, police drones, and medical
robots.

A recent trend in real-time system design is to use
multi-core chips for better performance and energy efficiency.
Typically, safety and non-safety critical tasks in a multi-core
platform can coexist [1]. However, sharing the same resources
between critical and non-critical tasks can expose the
system to certain risks, particularly regarding security attacks
[2]. Compromising a non-critical task, as demonstrated by
the researchers [3], could potentially allow attackers to
compromise the entire system [4].

Safety-critical applications require autonomy to endure
security attacks and execute in a “fail-safe” manner. Existing
response options to thwart security breaches include run-time
reconfiguration [5], task redundancy deployment [6], or task
restart procedures [7], [8]. However, run-time reconfiguration

lacks determinism — a critical requirement for real-time
systems. Besides, implementing task redundancy can be
prohibitively expensive and increases task response times,
thus resulting in missed deadlines. In addition, restarting any
malicious task (or the entire platform) does not eradicate
the vulnerability, as an adversary can repeat the attack.
Further, they are platform-dependent, require architectural
modifications, and increase system downtime.

Due to the limitations of existing solutions, this paper
investigates the following problem:

How can a real-time system running on a multi-core
platform remain safe and operational (i.e., meet temporal
constraints of all tasks) under security breaches where
attackers compromise one or more tasks?

In response to the above problem, we propose a
reconfigurable scheduling approach (named RESCUE) that
works at the software (viz., scheduler) level (i.e., does
not require custom hardware). Our proposed technique
autonomously adjusts task schedules and core allocation based
on pre-computed “recovery plans.” Our idea stems from the
fact that rather than an immediate task restart, it could be
more beneficial to accumulate comprehensive insights into the
attacker’s motives and the root cause of the attack. At the
same time, the system is functional with the same level of
autonomy (viz., does not miss any deadlines). This entails
monitoring the compromised task to gain valuable information
for devising effective attack mitigation strategies [9]. Hence,
our technique will aid in systems forensics. Task termination
becomes imperative at a certain stage due to escalated risks, a
predefined threshold being reached, or sufficient information
being acquired. However, one concern is ensuring the attack’s
repercussions do not extend to other tasks allocated to the
same resource (i.e., processor cores). Thus, we need a recovery
plan. This plan outlines the steps to reschedule these tasks
onto alternative resources, ensuring the system’s continued
functionality and security.
Contributions. We propose an offline analysis technique
(RESCUE) that (a) explores the space of all feasible
scheduling for a given set of real-time autonomous tasks
running on a multi-core platform, and (b) computes the
necessary recovery plans invoked during a suspicion of an979-8-3503-7128-4/24/$31.00 ©2024 IEEE
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Fig. 1. Our proposed reconfiguration process (RESCUE) — offline analysis
evaluates safety-critical (green) and non-safety-critical (blue) tasks and
core counts, generating reconfiguration plans: a base schedule (χ0) and
compromised task responses. χ0 remains in use until a task compromise,
e.g., τn, triggers core q0 isolation and activates recovery plan χn.

attack. Each plan (we refer to it configuration) represents a
feasible schedule of at least the safety-critical tasks while
isolating compromised tasks on other cores. Fig. 1 shows a
case when the safety-critical task τn is got compromised. The
system will be autonomously rescheduled to the recovery plan
χn in which τn is isolated on core q0, and the other tasks,
including a fresh instant of τn are scheduled on the other three
cores.

In this paper, we made the following contributions.
• An offline analysis that explores the space of feasible

scheduling for different compromised tasks (§III).
• A security-aware partitioning algorithm that allows the

designers to integrate security constraints (§III-C).
We performed a comprehensive evaluation using synthetic

workloads and an autonomous system case study (UAV
autopilot systems running on Raspberry Pi). Our approach
enables run-time reconfiguration with microsecond-level
overhead while covering up to 100% of potential responses
for compromised tasks (§IV).

II. MODEL AND ASSUMPTIONS

A. System Model

We consider a real-time system equipped with M identical
cores Q = {q0, q1, . . . , qM−1} running a finite set of N
independent real-time tasks T under a real-time operating
system (RTOS). Tasks are periodic and each task τi is defined
as a tuple {Ci, Di, Ti, πi, αi}, where Ci is the worst-case
execution time (WCET); Di is the relative deadline; Ti is the
period, such that Ci ≤ Di ≤ Ti; πi is the priority; αi is the
affinity set, which contains the indices of the cores on which
τi can run. The affinity set can change during run-time. We
consider the task level fixed-priority preemptive scheduling,

i.e., each task τi is assigned a fixed priority πi that does not
change at run-time. The task set T is sorted by task priorities,
i.e., ∀i : πi ≤ πi+1 where 0 is the highest priority.

The worst-case response time R+
i of a task τi is then the

maximum response time among all jobs of τi. We consider a
constrained deadline model, i.e., Di ≤ Ti. A task τi misses its
deadline if and only if: ∃ℓ ∈ N+ : Rℓ

i > Di, where Rℓ
i is the

response time of the job ℓ. All tasks ∈ T can be assigned to
any core. However, the worst-case execution time of τi does
not change.

The tasks are classified into safety-critical and non-safety-
critical tasks. We denote by τs (resp. τ s̃) the safety-critical
(resp. non-safety-critical) task. Consequently, we denote by
T s (resp. T s̃) the set of all safety-critical (resp. non-safety-
critical) tasks, where

T = T s
⋃

T s̃ : T s = {τsi |∀τi ∈ T }, T s̃ = {τ s̃i |∀τi ∈ T }.

We assign the tasks to the cores using the partitioned
scheduling with a task-level fixed priority scheduling policy.
Hence, ∀τi ∈ T : |αi| = 1. Our partitioning algorithm
is implemented as Satisfiability Modulo Theories (SMT)
constraints (§III-C). The system may have security constraints
(SC) that the partitioning algorithm has to consider. For
example, a security constraint may state that two tasks τi and
τj with different criticality must not be allocated on the same
core. The system may have any number of security constraints.

We assume that the tasks are subject to attacks. If a task
got compromised, denoted τ̂ , it will be isolated from other
tasks. On the one hand, all non-safety-critical compromised
tasks will be assigned to only one core qρ. Formally, if τ̂ s̃i
and τ̂ s̃j then αi

⋃
αj = {qρ}. In other words, we have a best-

effort approach to isolate non-safety critical tasks, such that
we isolate only what can be scheduled to one core; other tasks
are ignored. On the other hand, we isolate every compromised
safety-critical task on one core alone. Formally: if τ̂si then:
∀τj ∈ T : αi

⋂
αj = ϕ. The system has a safe-mode, in which

only the safety-critical tasks run on some cores to guarantee
a fail-operational system.

B. Threat Model

We assume that an adversary may compromise one or
several specific tasks. However, we do not make explicit
assumptions about the methods by which a task could become
malicious. For example, an attacker might exploit existing
system vulnerabilities or bugs, or use social engineering
tactics [10]. The specific means by which a task can be
compromised is outside the scope of this paper. Further, for
multi-vendor systems, a rouge vendor could inject malicious
logic that may trigger at run-time [11]. Our focus here is
to “isolate” anomalous tasks and ensure other, time-critical,
benign tasks can meet their temporal requirements, and hence,
the system remains safe. We assume that the RTOS provides
mechanisms that support the isolation of various processes. We
further assume the existence of a detection mechanism running
on a protected space (say within the kernel) that triggers the
reconfiguration process when a task has been compromised.



TABLE I. A toy system configuration (seven tasks running on four cores).

Task Ci Di = Ti πi αi touti Type
τ0 10 50 0 [1] 20 Critical
τ1 10 50 1 [0] 20 Critical
τ2 15 50 2 [0] 30 Critical
τ3 40 200 3 [0] 80 NonCritical
τ4 60 150 4 [1] 120 NonCritical
τ5 110 1000 5 [2] 220 NonCritical
τ6 65 400 6 [3] 130 NonCritical

III. RESCUE: SECURITY-COGNIZANT SCHEDULING

This paper proposes a reconfigurable scheduling technique,
RESCUE, that reacts to security attacks on real-time tasks.
Our goal is to reschedule the non-compromised tasks on a
subset of cores to isolate the compromised task/s on the other
cores while guaranteeing the real-time requirements of other
tasks. The compromised task will be isolated for a predefined
period.

Table I shows a real-time taskset running on a quad-core
platform (M = 4). In the task set, τ0 and τ2 must not be
scheduled on the same core as a design requirement. Consider
that τ3 got compromised. Letting τ3 continue running on q0

with the safety-critical tasks τ1, τ2 is dangerous. Our solution
aims to reconfigure the system to a new configuration in which
we re-schedule the non-compromised tasks on cores q0, q1, q2

and isolate the compromised task τ3 on q3. Such isolation may
save more auditing logs on the activity of τ3 for forensics
analysis.1 When τ3 is isolated, it cannot read/write to I/O and
not interfere with any non-compromised task.

We now present how to compute the configuration, the
reconfiguration methodology, and the timing analysis. We start
with a few definitions.

A. Configurations

Defining a feasible schedule for the real-time tasks under
partitioned scheduling requires finding feasible partitions. We
must allocate each task to one core where its schedulability is
guaranteed. Note that there might be more than one feasible
schedule for a task set and a multi-core platform.

Definition 1. For a given task set and a multi-core platform,
a configuration, denoted by χl, is an allocation of the tasks
to the cores such that all the real-time tasks are schedulable.

Hence, there might be more than one configuration for
a given task set and a multi-core platform. We propose an
SMT-based partitioning algorithm to compute a configuration.
The algorithm uses a “busy-window”-like analysis as SMT
constraints (§III-C). The schedule of tasks to the cores where
no compromised tasks might be given or computed using our
partitioning algorithm. We refer to this configuration as the
basic configuration χ0.

Definition 2. For a given task set, a combination, denoted by
Cl, is a set of tasks where each task could be compromised
or not, i.e., the compromised safety-critical task will be
represented by its compromised instance.

1Post isolation forensics, however, is not within the scope of this work.

Definition 3. If τi is not compromised in Cl and τi is also not
compromised in Ck, we say Ck ≥ Cl.

For every combination, we need to compute a new
configuration. There are 2N combinations representing a
lattice equipped by the partial order ≥. However, we cannot
find a feasible schedule for every combination because we
aim to isolate the compromised tasks on some cores. Also, a
minimum set of cores is needed for the safety-critical tasks to
keep them running. Hence, we can compute configurations
for a subset of the lattice before moving to a safe-mode
configuration.

Definition 4. A safe-mode configuration χσ is a configuration
where only the safety-critical tasks, T s, are scheduled.

For a combination Cl, if there is no feasible schedule, we
assign the safe-mode configuration χσ . The configurations also
can be ordered in a similar way to the combinations: χk ≥ χl

if Ck ≥ Cl.
RESCUE builds on three algorithms to compute and

connect the configurations in a lattice form. Fig. 2 shows
the interactions between the algorithms. Alg. I computes
the feasible configuration by utilizing the security-aware
scheduling presented in Alg. II. Alg. III illustrates the
procedure to connect the configurations to compose the final
output of the offline phase of RESCUE.

Algorithm I (BUILDCONFIGURATIONS). We define the
configuration χl as a data structure as Line 3 shows:

• key is a unique name given to χl;
• comb is the associated combination Cl;
• schedule is the affinity set of the tasks according to χl;
• previous is a pointer to the previous configuration χk

where χk ≥ χl;
• next is a pointer to the next configuration χm, where

χl ≥ χm.
Note that χl may have multiple configurations in its next
and previous fields. We start with computing the basic
configuration χ0 (Lines 6-10), in which we try to balance
the load on the cores. The comb is assigned an empty set
because there are no compromised tasks. Next, we compute
the safe-mode configuration χσ (Lines 11-13). For χσ , we
follow Definition 4 and consider only the safety-critical tasks
(T s) and try to schedule them on the minimum number of
cores. The rest of the algorithm tries to compute a feasible
configuration χl for every combination Cl (Lines 15-31).

For every combination Cl: First, we check if there is
a feasible schedule of the non-compromised tasks (Line
16). We try to minimize the number of cores needed to
schedule them to make room to isolate the compromised
tasks. If (a) there is no feasible schedule or the schedule
uses all the cores, and (b) there is no room to isolate
any compromised task, we skip this combination (Lines
17-20), i.e., we assign the safe-mode configuration χσ to Cl.
Second, we start with isolating as much as possible of the
compromised safety-critical tasks (Lines 22-27). We isolate,
i.e., schedule, each compromised safety-critical task τ̂si on one
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Fig. 2. Offline and online analysis phases and the various steps used in RESCUE.

core. Third, we try to isolate (schedule) as much as possible
of compromised non-safety-critical tasks on one core (Lines
28, 29). Finally, we call Alg. III to connect the computed
configurations.

Algorithm II (SECURITYAWARESCHED). This algorithm
represents the partitioning approach and the schedulability
test, which is called in five places in Alg. I. The partitioning
approach and the schedulability test are security-aware and
SMT-based solutions (§III-C). However, we present Alg. II
here for better readability.

The algorithm can work in two modes: balance and best. In
the balance mode, the algorithm calls the call smt procedure
to allocate the tasks into all cores (Lines 4, 5). This mode
is used for the basic configuration χ0. In the best mode, the
algorithm calls the call smt procedure in a loop (Lines 6-13).
In each iteration, one more core is added to the set of cores
given to the SMT solver. It stops once the SMT solver can find
a solution, which guarantees that the tasks are scheduled on the
minimum number of cores. It stops with an empty schedule,
i.e., it fails if there are no more cores exist.

Lines 17-24 present the call smt procedure. It builds
the scheduling constraints (Lines 18-20) and the security
constraints (Lines 21, 22). We call the SMT solver in Line
23.

Algorithm III (CONNECTCONFIGURATIONS). This is the
last algorithm in the offline phase of RESCUE. It takes
the configurations generated by Alg. I and connects them
depending on the ≥ relation. For each configuration χl,
we search in the lattice for a parent configuration χk, i.e.,
χk ≥ χl. We update the previous attribute of the child (χl)
and the next of the parent (χk), where the key is the index
of the compromised task (Lines 5-8). The configuration χl

may have more than one parent depending on the number
of compromised tasks in Cl. If the configuration has no
parents, we delete the configuration (Lines 9, 10). For each
configuration χl that does not have any child, it has to connect
to the safe-mode configuration χσ , i.e., add χσ to χl.next.
Also, if the length of the next attribute of χl is smaller than
the number of compromised tasks in Cl (Line 19), then there
are unfeasible configurations that had to be children of χl. In
this case, we add the χσ to replace the missing children. In
other words, the unfeasible configurations are replaced by the
safe-mode configuration.

In the example task set (Table I), the schedule of tasks to

Algorithm I: BuildConfigurations
1 Input: taskset T , cores Q, SC
2 Output: lattice of configurations
3 Declare struct χ {key, comb, schedule, previous, next}
4 lattice← {}
5 M ← |Q|

/* create the basic configuration */
6 sched← SecurityAwareSched(T , Q, SC, balance)
7 if not sched then
8 return lattice /* not schedulable */

9 χ0 ← χ(key=ConfigBasic, comb={}, schedule = sched,
previous = None)

10 lattice← lattice
⋃

χ0

/* create the safe-mode*/
11 sched← SecurityAwareSched(T s, Q, SC, best)
12 χσ ← χ(key=ConfigSafe, comb=T , schedule = sched,

next=χ0)
13 lattice← lattice

⋃
χσ

14 Combs← computeAllCombs(T )
/* create other configurations */

15 for Cl ∈ Combs do
16 sched,Qa ← SecurityAwareSched(T s ⋃{τs

i |∀τi ∈
Cl}, Q, SC, best)

17 if not sched then
18 continue /* not schedulable */

19 if Qa = ∅ then
20 continue

21 schedŝ ← {}
22 for τ̂i

s ∈ {τ̂s|∀τ̂s ∈ C} do
23 while Qa ̸= ∅ do
24 q ← Qa.pop
25 α̂i

s ← q.index
26 schedŝ ← α̂i

s

27 break

28 if Qa ̸= ∅ then
29 sched

ˆ̃s ← SecurityAwareSched({τ̂ s̃|∀τ̂ s̃ ∈
C}, Qa, best)

30 χl ← χ(key=Config+C, comb=C, schedule =
sched ∪ schedŝ ∪ sched

ˆ̃s)
31 lattice← lattice

⋃
χ

/* connect configurations */
32 lattice← ConnectConfigurations(lattice)
33 return lattice

cores represents the basic configuration χ0. In this example,
there are 128 feasible configurations. If τ3 is compromised,
the system will move to the configuration χ4 in which τ3 is
isolated on q3. According to the proposed algorithms (Alg. I -



Algorithm II: SecurityAwareSched
1 Input: taskset T , cores Q, SC, approach
2 Output: sched, Q
3 New smt solver
4 if approach = balance then
5 success, sched = call smt(T , Q, SC)

6 if approach = best then
7 success← False
8 Qu ← {}
9 while not success do

10 if Q = ∅ then
11 break

12 Qu ← Qu ∪Q.pop()
13 success, sched = call smt(T , Qu, SC)

14 Qa ← Q
15 return sched,Qa

16
17 call smt(T , Q, SC):
18 for qρ ∈ Q do
19 for τi ∈ T do
20 smt solver.add constraint(

∑
j≤i

⌈
Di
Tj

⌉
.Cj .x

ρ
j ≤ Di)

21 for sc ∈ SC do
22 smt solver.add constraint(sc)

23 success, sched = smt solver.solve()
24 return success, sched

Alg. III) we have: χ0.next[3] = χ4 and χ4.previous[3] = χ0.
The proposed algorithms generated the full connected lattice

of configurations within 1.3 seconds. The size of the generated
lattice is 4.696 kilobyte.

B. Reconfiguration Methodology

As explained earlier, the configurations, including the
safe-mode configuration, are computed offline. We define
a time-out for each task, denoted touti , which designers
can specify based on the application. The time-out period
represents how long we keep the compromised tasks
isolated before killing the job and keeping the new job
of the safety-critical task or starting a fresh job of the
non-safety-critical task. The reconfiguration is a procedure
triggered when a task is compromised and after the time-out.
Alg. IV presents the reconfiguration procedure. During the
reconfiguration, we move from the configuration χk to χl after
the task τi got compromised if χk ≥ χl. Similarly, we move
from the configuration χl to χk after touti .

Algorithm IV (RECONFIGURATION). This algorithm
represents the online phase of RESCUE and is integrated
with the scheduler. The algorithm utilizes the lattice of
configurations (generated by the offline phase) and an event.
If the event is Isolate, i.e., τi got compromised, then the
algorithm moves to the child configuration in the next attribute
of the current configuration depending on the index of the
compromised task i (Lines 5-11). After a timeout touti , a
new event will be triggered to Integrate τi. In this case, the
algorithm moves to the parent configuration in the previous of
the current configuration (Lines 12-16).

Algorithm III: ConnectConfigurations
1 Input: lattice
2 Output: lattice
3 for χl ∈ lattice do
4 for χk ∈ lattice do
5 if χk ≥ χl then
6 key = χk.comb \ χl.comb
7 χl.previous[key] = χk

8 χk.next[key] = χl

/* delete orphan configurations */
9 if χl ̸= χ0 & χl ̸= χσ & !χl.previous then

10 delete χl

/* connect to the safe-mode */
11 counter ← 0
12 for χl ∈ lattice do
13 if χl ̸= χσ then
14 if !χl.next then
15 χl.next[all] = χσ

16 χσ.previous[all + counter] = χl

17 counter ← counter + 1
18 else
19 if |T | − |{τ̂ |∀τ̂ ∈ C}| > |χl.next| then
20 χl.next[all] = χσ

21 χσ.previous[all + counter] = χl

22 counter ← counter + 1

23 return lattice

Algorithm IV: Reconfiguration
1 Input: lattice, current config: χ, event, taskID: i
2 Output: schedule
3 χ0 ← lattice[ConfigBasic]
4 χσ ← lattice[ConfigSafe]

/* task got compromised */
5 if event is Isolate then
6 if χ.key is ConfigSafe then
7 return χσ .schedule

8 if i in χ.next then
9 return χ.next[i].schedule

10 else
11 return χσ .schedule

/* time-out */
12 if event is Integrate then
13 if χ.key is ConfigSafe then
14 return χ0.schedule

15 if i in χ.previous then
16 return χ.previous[i].schedule

In our example (Table I), if τ3 got compromised, the
schedule moves to the configuration χ4. After a timeout =
τout3 = 80, a new reconfiguration is triggered, in which the
scheduler moves back to the configuration χ0.

Let Mmin denote the minimum number of cores needed to
schedule all tasks; hence, Mmin ≤ M . We bound the number
of isolated tasks using the following lemma.

Lemma 1. The maximum number of compromised safety-
critical tasks that RESCUE can isolate is M −Mmin.



Proof. We isolate each compromised safety-critical task τ̂s on
one core, and we need at least Mmin cores to schedule the
task set. If some non-safety-critical tasks got compromised, we
give the priority to isolate the safety-critical tasks first.

Lemma 2. RESCUE can cover all 2N combinations and
isolate all compromised tasks if 1 + |T S |+Mmin ≤ M and
the compromised non-safety-critical tasks can fit in one core.

Proof. If such an over-provisioned system exists, the proposed
approach could cover all combinations and isolate all
compromised task.

An interesting indicator of the resilience of the schedule
reconfigurability against security attacks is the length of the
critical path, denoted by L, as we formally define below.

Definition 5. The critical path is a sequence of configurations
starting from the basic configuration with no compromised
tasks and ending in the safe-mode.

The length of the critical path indicates the number of
compromised tasks the system can tolerate before entering the
safe-mode. This length, L, depends on the number of cores M ,
the schedulability of the task set, and the security constraints.
For systems not equipped with proper reaction mechanisms
like RESCUE, the best case scenario is that the system will
move to the safe-mode after the first attack. Hence, the length
of the critical path is equal to one. We use the maximum
number of compromised non-safety-critical tasks that may
be excluded after a reconfiguration, i.e., neither executed nor
isolated, as an indicator of the degradation of the efficiency
of RESCUE, denoted by D. In the experiments, we use these
two indicators, L and D to study the efficiency of RESCUE.

C. Partitioning Algorithm

The busy-window [12] under the fixed priority preemptive
(FPP) scheduling is computed as follows:

BWn+1
i =

∑
j≤i

⌈BWn
i

Tj

⌉
∗ Cj (1)

with BW 0
i = Ci. The recurrence stops at the convergence

(i.e., BWn+1
i = BWn

i ) or when when BWi > Di (i.e., task
unschedulable).

Lemma 3. For constrained-deadline periodic tasks, τi meets
its deadline in the worst-case if:

BWi ≤ Di (2)

Proof. In FPP, if BWi ≤ Ti then BWi has one job and
BWi = R+

i . Hence, if Eq. (2) holds, schedulability is
guaranteed.

Lemma 4. Let us consider a fixed-size window of Di. For
constrained-deadline periodic tasks, τi meets its deadline if:∑

j≤i

⌈Di

Tj

⌉
∗ Cj ≤ Di (3)

Proof. For constrained-deadline periodic tasks, if the accumu-
lative load within a window of Di can finish before Di then τi
meets its deadline, i.e., the condition in Eq. (2) is satisfied.

The sufficient condition in Eq. (3) does not need iteration
to be computed. However, it is more pessimistic than the
sufficient condition in Eq. (2), because, if τi meets its deadline,
i.e., Eq. (2) is satisfied:

BWi ≤
∑
j≤i

⌈Di

Tj

⌉
∗ Cj (4)

1) SMT constraints: Now, we have a linear non-iterative
sufficient schedulability condition for τi. To map τi to the
core qρ, we have to guarantee that Eq. (3) is satisfied for all
higher priority tasks already mapped to qρ. We can formulate
the sufficient condition in Eq. (3) as a linear constraint as
follows: ∑

j≤i

⌈Di

Tj

⌉
.Cj .x

ρ
j ≤ Di (5)

where xρ
j ∈ {0, 1} a binary variable indicates whether τj

is mapped to the core qρ or not. Hence, we can define the
partitioned scheduling for periodic tasks under FPP as an SMT
with M ∗N variables and constraints for M cores and N tasks.

The SMT-based partitioned scheduling has the following
constraints:

∀qρ ∈ Q ∀τi ∈ T :
∑
j≤i

⌈Di

Tj

⌉
.Cj .x

ρ
j ≤ Di (6)

Also, the SMT integrates security constraints, e.g., τi and τj
are not allowed to run on the same core as follows:

¬(xρ
j ∧ xρ

i ) (7)

IV. EXPERIMENTAL EVALUATION

We evaluate RESCUE on two fronts: (a) synthetically
generated workload for broader design-space exploration
(§IV-A) and (b) case study on a real-time platform (§IV-B).

A. Synthetic Test Cases

Workload Generation. We randomly generated synthetic
test cases to carry out our experiments as follows: we
distributed the utilization over the N tasks using the UUniFast
algorithm [13]. Periods were generated randomly as follows:
Ti = f ∗ p where f ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and p ∈
{280, 340, 450, 500}. Therefore, the periods of the task set or a
subset of it can be harmonic. Relative deadlines were implicit
Di = Ti. Priorities were assigned according to the deadline
monotonic (DM) approach. The number of critical tasks was
decided randomly so that it is at most 40% of the total tasks.

1) Schedudualbility of the Partitioning Algorithm: The
proposed security-aware SMT-based partitioning scheduling
utilizes a linear sufficient condition of schedulability using
Eq. (3), which is more pessimistic than, e.g., the original
busy-window analysis, i.e., Eq. (2). This experiment tests
the schedulability of our partitioning algorithm compared to
the Arbitrary Processor Affinity (APA) scheduling [14]. APA
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Fig. 3. The schedulability ratio of RESCUE vs the APA scheduling [14]. RESCUE outperforms the APA scheduling for high utilization. The schedulability
ratio of RESCUE and APA scheduling decreases when U/N increases.

scheduling dominates partitioned scheduling. However, the
schedulability test of APA scheduling, which depends on the
response time analysis of global scheduling [15], is very
pessimistic. Hence, it may report a lower schedulability ratio
than the partitioned scheduling. In this experiment, we support
our decision to use an SMT-based partitioned scheduling
by showing the schedulability ratio of the APA scheduling,
namely the heuristic-based scheduling, presented in [14], and
RESCUE. We ran the experiments for M = {4, 6, 8}. Fig. 3
shows the results. We generated 100 synthetic test cases for
each value of the utilization between M/2 ≤ U ≤ M
with step=0.5. Fig. 3 reports the results for N = {16, 20,
24, 28}. APA scheduling cannot outperform RESCUE. In
contrast, the SMT-based partitioned scheduling in RESCUE
can outperform the APA scheduling, e.g., for U = 3.0 when M
= 4. The schedulability ratio of RESCUE and APA scheduling
decreases when U/N increases.

2) Scalability and Efficiency of RESCUE: We generated
100 test cases for each value of the utilization between
M/2 ≤ U ≤ M with step=0.5. We repeated the experiment
for N = {8, 10, 12, 14} tasks and for M = {4, 6, 8}. As
a security constraint, we considered three safety-critical tasks
to run on three different cores. Fig. 4 presents the coverage
ratio for M = 4. The plot boxes in orange (the upper figures)
consider no security constraints, while the blue plot boxes
report the results considering the security constraints. For
all tasks, RESCUE can achieve a coverage ratio of 100%
for low utilization. However, the coverage ratio drops with
the high utilization values. The coverage ratio is explainable
by the schedulability ratio of the security-aware SMT-based
partitioning algorithm. In addition, security constraints impact
the coverage ratio because they impose limitations on the
scheduling options.

We studied the length of the critical path L as an indicator
of the resilience of RESCUE. Fig. 5(a) shows L for M = 4.
For instance, U = 1.0 , the values are reported in order from
left to right for N = {8, 10, 12, 14}. The base-line represents
the value of L for systems that are not equipped with proper
reaction mechanisms such as RESCUE. When the utilization
is low, RESCUE can react to any scenario of compromising

tasks. However, for large values of utilization like U = 3.0 ,
RESCUE does not have many options than moving to the
safe-mode.

Fig. 5(b) shows the degradation of the efficiency of
RESCUE in the form of the number of compromised
non-critical tasks that are neither scheduled nor isolated. In the
worst-case, D can be equal to the number of non-safety-critical
tasks. This happens when RESCUE moves to the safe-mode.
However, the upper whisker ≤ 1, which means that for 75%
of the test cases RESCUE misses no more than one task when
configuring the system after an attack.

To study the scalability of RESCUE, we computed the
execution time of the offline phase for N = {8, 10, 12,
14} tasks and M = {4, 6, 8}. The experiment ran on a
general-purpose Linux server (18-core Intel Xeon CPU and
251 GB Memory). Fig. 6 shows the execution time for M =
4. The sub-figures show a similar trend. Hence, we explain the
results in Fig. 6(b). The median in the orange plot boxes (no
security constraints) increases with the utilization. This can
be explained by Alg. II (Lines 8-13), because increasing the
utilization requires more cores to schedule the task set, which
imposes more iterations on the while-loop. The decreasing
median for the blue boxes, where the security constraints are
considered, is mainly due to the low coverage ratio, i.e., the
small size of the lattice (see Fig. 4). Also, The execution
time of the SMT solver scales with the number of constraints.
Hence, the SMT solver consumes more time to find a feasible
partitioning for the tasks when there are security constraints.

Increasing the number of cores for a given number of
tasks increases the number of iterations that the while-loop
takes in Alg. II (Lines 8-13). The main factor affecting the
scalability is the number of tasks N , where the execution time
increases with N . We now discuss the implementation details
of RESCUE to explain this exponential growth.

RESCUE simulation engine is implemented in Python. The
Algorithm BUILDCONFIGURATIONS (Alg. I) is implemented
such that the for-loop works in parallel, utilizing all available
cores. However, the Algorithm CONNECTNODES (Alg. III)
is the bottleneck in RESCUE. Results show that Alg. III
consumes no more than 2% of the execution time for N=8,
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Fig. 6. Execution time of the offline phase in RESCUE for M =m4. The green line represents the median. The main factor is the number of tasks N . Also,
number of constraints in the SMT solver, and the utilization are the main players.

and up to 43% for N=14. For N=18, the percentage can
reach 92%. Adding parallelism to Alg. III is left for future
development. However, the execution time of the offline phase
has no impact on the online phase.

Fig. 7 depicts the lattice size as the output of Alg. III. The
reported numbers represent the maximum size of the lattice for
several tasks. The experiments show that the size of the lattice
has no relation with the number of cores. The size of the lattice
grows exponentially with the number of tasks. However, the
size of the file is acceptable for nowadays embedded systems.

Note. Although RESCUE’s offline analysis scales ex-

ponentially with the number of tasks, we stress that the
calculation occurs during the design phase (before the system
deployment). Hence, the runtime behavior is not impacted, as
the time needed to adopt and perform the reconfiguration is
independent of the number of tasks and can be accomplished
within a few microseconds, even for large systems.

B. Case Study
We use the ArduCopter2 UAV autopilot system as a case

study. Table II shows the tasks considered in this case study.

2https://github.com/ArduPilot/ardupilot/blob/master/ArduCopter/Copter.cpp
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TABLE II. Task parameters for the ArduCopter UAV case study.

Task Execution
Time

Period/
Deadline

Type

rc_loop 130 4000 Critical
throttle_loop 75 20000 Critical
update_GPS 200 20000 Critical
update_optical_flow 160 5000 Critical
update_altitude 140 100000 Critical
run_nav_updates 100 20000 Critical
update_thr_average 90 10000 NonCritical
three_hz_loop 75 333333 NonCritical
compass_accumulate 100 5000 NonCritical
barometer_accumulate 90 20000 NonCritical
update_notify 90 5000 NonCritical
ekf_check 75 100000 NonCritical
landinggear_update 75 100000 NonCritical
lost_vehicle_check 50 100000 NonCritical
gcs_check_input 180 2500 NonCritical
gcs_send_heartbeat 110 5000 NonCritical

The tasks are periodic with implicit deadlines. As vanilla
ArduCopter does not distinguish critical-vs-non-critical tasks,
we manually inspected source code and documentation and
classified them into critical and non-critical tasks based on
their functionalities for our demonstration purposes. Also, we
consider a quad-core platform. In this case study, the tasks are
considered independent and implemented as threads.

We built a lattice of 65536 feasible configurations with
100% coverage ratio. Building the lattice took 1429.26 s. The
critical path from the basic configuration to the safe-mode
consists of 16 configurations, i.e., L = 16, including the basic
and the safe-mode. Hence, compromising any combination
of safety-critical and non-safety-critical tasks will lead to a
feasible configuration. The system only goes to the safe-mode
when the attack can compromise all tasks. The lattice size (as
a file) is 2.6MiB.

1) Attack Scenario and Findings: We consider that the task
run_nav_update depends on the task update_GPS and
the task update_optical_flow, such that compromising
update_GPS or update_optical_flow will help
the attacker to compromise the task run_nav_update,
especially if they are running on the same core, i.e., sharing
the same L1 cache.

Let us consider the tasks update_optical_flow and
run_nav_update are compromised after tprop time. If the
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Fig. 8. The overhead of the reconfiguration procedure as measured on a
multi-core embedded platform (Raspberry Pi).

system is not equipped with the reconfiguration mechanism,
it will be in the safe-mode of the system. However, using our
technique, the system will reconfigure to a feasible schedule
where update_optical_flow and run_nav_update
are isolated on two different cores, i.e., two new (viz.,
uncompromised) instances of these two safety-critical tasks
will be scheduled. In particular, the following reconfigurations
will take place:

• Reconfigure from the basic configuration ConfigBasic to
Config 1 3 when the task update_optical_flow
got compromised; let this point of time be t0.

• Reconfigure from Config 1 3 to Config 2 62 when the
task run_nav_update got compromised; let this point
of time be t1 > t0.

• After a period of time t0+toutupdate optical flow, the system
moves to the configuration Config 1 9, in which only
run_nav_update is isolated.

• After a period of time t1 + toutrun nav update, the system
moves to ConfigBasic.

As we know the critical relation between the task
update_optical_flow and run_nav_update, we will
add a constraint on the SMT solver such that these two tasks
are not allocated to the same core. We add a second constraint
for update_GPS and run_nav_update. The new lattice
of configurations also L = 16. Hence, we can reduce the
probability of compromising run_nav_update.

2) Reconfiguration Overhead: To measure the reconfig-
uration overhead, we tested the reconfiguration procedure
(Alg. IV) on an embedded system (Raspberry Pi3) with
quad-core Cortex-A72 (ARM v8) 64-bit SoC, working at a
speed of 1.8 GHz. We repeated the test 3000 times and
computed the execution time. Fig. 8 shows the result. The
overhead is negligible as it is at the microsecond level,
which could be acceptable for many real-time autonomous
applications.

V. RELATED WORK

Researchers explore real-time security problems from
various contexts [16]. Hasan et al. propose scheduler-level
techniques to integrate security monitoring tasks [17], [18].
However, unlike ours, such approaches do not consider the
aftereffect of detecting an anomalous task. There exists



architecture-level solutions [8], [19], [20] that proactively reset
the system to remove malicious entities. As we mention
in §I, such techniques may not be feasible for some use
cases. Further, they need custom hardware. In contrast, we
propose scheduler-level defense techniques. There are also
efforts to integrate security mechanisms for both fixed [9],
[21], [22] and dynamic priority [23], [24] systems. However,
they are designed for single-core platforms only. Pre-computed
recovery planes for distributed systems can improve the
availability of the system in case of single computing node
failure [25]. Neither security nor multi-core aspects are
covered in earlier research [25]. To the best of our knowledge,
this is one of the first efforts to introduce the notion of
“schedule reconfigurability” to isolate anomalous tasks and
thus ensure safety while retaining temporal guarantees in
multi-core platforms.

VI. CONCLUSION

Threats to critical real-time systems are growing, and tradi-
tional security measures designed for more general-purpose
systems are not always sufficient. Safeguarding systems
with safety-critical and non-safety-critical tasks that share
resources is a challenging security problem. The increasing
trend of consolidating tasks onto multi-core platforms further
amplifies this concern. This paper presents a scheduler-level
defense approach, RESCUE, involving pre-computed recovery
plans. Through comprehensive evaluations, including synthetic
workload and UAV case study, we show the effectiveness
of RESCUE. Our reactive reconfiguration approach enhances
security and resilience, especially those that use multi-core
chips, such as time-critical IoT applications and autonomous
systems. While our immediate focus here is on the
reconfiguration of tasks in response to cyberattacks, similar
ideas can be expanded to address other problems, such as
safety failures.
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