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Abstract

Predicting battery lifetime is essential for the safe, sustainable, and profitable opera-
tion of battery systems. Reducing the measurement and parameterization effort and
increasing model accuracy and extrapolation capability are current challenges for
efficient battery aging modeling. This thesis presents an innovative semi-empirical
battery aging model and applies it to optimize the operation of a hybrid system pro-
viding frequency containment reserve. The system consists of a lithium-ion battery
coupled with a power-to-heat module. The defined holistic model includes physically
based calendar and cyclic model equations describing selected aging mechanisms
at the graphite anode. A focus was set on improving the parameterization of the
model equations to increase the model extrapolation capability. First, the influence
of the characterization measurement was quantified and considered. Second, a
multi-step parameterization method is introduced for the cyclic aging model based
on identifying aging modes via incremental capacity analysis. The success of the
targeted parameterization was approved, for example, in identifying various stress
factor dependencies of individual aging mechanisms. The model’s applicability to
frequency containment reserve operation is validated on a dynamically aged cell with
an application-related power profile. The economic analysis shows that operating
the system at medium or high target state of charge and small to medium system
sizes achieves the highest net present values. Furthermore, the battery lifetime
is confirmed as the most critical factor influencing the system revenues at high
FCR prices, which underlines the importance of optimizing operating strategies
considering battery aging.
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Kurzfassung
Die Vorhersage der Batterielebensdauer ist entscheidend für den sicheren, nach-
haltigen und rentablen Betrieb von Batteriesystemen. Die Verringerung des Mess-
und Parametrierungsaufwandes, sowie die Erhöhung der Modellgenauigkeit und der
Extrapolationsfähigkeit sind aktuelle Herausforderungen für eine effiziente Model-
lierung der Batteriealterung. In dieser Arbeit wird ein innovatives semi-empirisches
Batteriealterungsmodell vorgestellt und zur Optimierung des Betriebs eines Hy-
bridsystems angewendet, welches Primärregelleistung erbringt. Das System besteht
aus einer Lithium-Ionen-Batterie kombiniert mit einem Power-to-Heat-Modul. Das
ganzheitliche Modell beinhaltet physikalisch basierte kalendarische und zyklische
Modellgleichungen, die ausgewählte Alterungsmechanismen an der Graphitanode
beschreiben. Zur Erhöhung der Extrapolationsfähigkeit des Modells wird ein Schw-
erpunkt auf die gezielte Parametrisierung der Modellgleichungen gelegt. Zunächst
wird der Einfluss der Charakterisierungsmessung quantifiziert und berücksichtigt.
Des Weiteren wird eine mehrstufige Parametrierungsmethode für das zyklische Al-
terungsmodell eingeführt, die auf der Identifikation von Alterungsmodi auf der Anal-
yse der differenziellen Kapazität basiert. Der Erfolg der gezielten Parametrisierung
wurde beispielsweise an der Identifikation verschiedener Stressfaktorabhängigkeiten
einzelner Alterungsmechanismen bestätigt. Die Anwendbarkeit des Modells auf
den Primärregelleistungsbetrieb wird an einer dynamisch mit einem anwendungs-
bezogenen Leistungsprofil gealterten Zelle validiert. Die wirtschaftliche Analyse
zeigt, dass der Betrieb des Systems bei mittlerem oder hohem Zielladezustand
und kleinen bis mittleren Batteriesystemgrößen die höchsten Kapitalwerte erzielt.
Darüber hinaus wird bestätigt, dass die Batterielebensdauer der kritischste Faktor
ist, der die Einnahmen bei hohen Primärregelleistungspreisen beeinflusst. Die Ergeb-
nisse unterstreichen die Bedeutung der Optimierung von Betriebsstrategien unter
Berücksichtigung der Batteriealterung.
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Introduction 1
1.1 Motivation

To achieve the ambitious targets of the European Union towards a climate-neutral
economy in 2050, measures including a transformation of the energy and transport
sector are necessary [1]. Associated with this, the number of lithium-ion batteries
used in stationary and mobile applications increased rapidly in the past few years.
Germany’s installed capacity in stationary large-scale storage systems supporting
grid stability increased from about 50 MWh in 2015 to 1.2 GWh in 2022 [2]. The
number of battery electric cars increased from 19,000 to 690,000 between 2015
and 2021 [3]. The European Union is investing heavily in research programs to
promote the establishment of a sustainable and competitive European battery value
chain, including battery production, use in an application, and recycling [4]. One
essential strategic research goal is the development of simple and reliable methods
to diagnose and predict battery aging, indicated by a change in battery capacity
and internal resistance [5]. In research and development, the understanding of
battery aging is used to develop improved battery technologies regarding safety,
efficiency, and costs. Furthermore, predicting the battery lifetime is used to optimize
operating strategies and system configurations or make a well-founded decision
about maintenance and replacement intervals. Therefore, analyzing and forecasting
battery aging is essential for increasing the economic and environmental profitability
and safety of battery systems.

Methods of battery aging modeling include empirical approaches based purely on
aging measurement data, physically based semi-empirical models, and detailed
physical-electrochemical models. The method used determines parametrization
effort, model accuracy, and needed computational capability. The semi-empirical
approach chosen for this work offers the advantage of a lower computational demand
than electrochemical models. Furthermore, physically based model equations make
it parameterizable with less measurement effort and provide more extrapolation
capability than purely empirical models [6, 7]. In the face of continuously evolving
battery cell chemistries, battery aging models must be progressively extended and
adapted. For battery storage operators that aim to improve their system design and
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operation without having access to detailed cell internal properties, the need for
efficient modeling methods that still provide sufficient accuracy is high. The cost and
time efficiency of parameterization and the extrapolation capability are important
model properties to be optimized.

An important application for stationary large-scale battery storage systems is fre-
quency containment reserve (FCR) provision on the grid level [8, 9]. FCR is an
ancillary service, that supports the integrity and stability of the power grid through
frequency control [10]. The grid frequency fluctuates when there is a disbalance
between generation and load in the interconnected grid. Systems that can ensure the
grid frequency’s maintenance through targeted energy consumption and release are,
for example, pumped hydro storages, supercapacitors, compressed air energy stor-
ages, flywheels, sector coupling power-to-X solutions, or batteries. In recent years,
the number of stationary battery storages in ancillary services increased rapidly. This
can be attributed to their high efficiency, fast response time, flexible installation, and
falling lithium-ion battery costs. Smaller home storage systems are primarily used
to increase the self-consumption of photovoltaic energy. In the future, they could
provide additional ancillary services as connected virtual plants. The digitalization
required to control decentralized virtual plants is an important element in designing
sustainable future energy systems [8, 10]. In addition, sector coupling, especially
coupling the power and heat sector, has become a widely discussed topic [11, 12]. A
possible sector coupling FCR system is the combination of a battery storage coupled
with a power-to-heat module [13, 14]. The latter contributes to grid frequency
maintenance by converting surplus electrical energy into thermal energy for district
heating. The battery storage can provide positive and negative control power by
storing and releasing energy.

In this work, an improved semi-empirical battery aging model is developed to
model the capacity loss of graphite-based lithium-ion batteries in a stationary sector
coupling FCR application. Thereby, the main objectives are the

1. development of new parameterization methods to reduce measurement effort
and increase model accuracy.

2. development of model equations for the efficient description of graphite anode
aging mechanisms in the calendar and cyclic battery aging.

3. assessment of the economic profitability of different operating strategies and
system dimensions of a FCR battery storage system coupled with a power-to-
heat module under consideration of battery aging.
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The scientific contributions developed to achieve these goals were published in
papers that are combined and framed in this cumulative dissertation. To clarify the
contribution of this work, section 1.2 presents the current state of the art in semi-
empirical battery aging modeling. Afterwards, the structure of the thesis, including
introductory sections, scientific publications, and overall discussion, is explained in
section 1.3.

1.2 State-of-the-art in battery aging modeling

Battery aging models can be divided into three categories: empirical, semi-empirical,
and physical-electrochemical models. The latter are particularly suitable for un-
derstanding chemical and physical processes within the battery, from microscopic
processes at the atomic level up to macroscopic interactions [15, 16]. Empirical
models describe battery aging based purely on statistical description of measured
data [17, 18]. This model category also includes machine learning-based approaches,
which have been increasingly used in the recent years [19–21]. Semi-empirical mod-
els combine the aging measurement data based parameterization with simplified,
physically based model approaches. They thus offer a higher extrapolation capability
than empirical models and are computationally less complex than electrochemical
models [6, 7]. These properties make them suitable for feasibility or cost analyses
in industrial application areas where a potential new battery cell aging must be
evaluated in a limited time with as little measurement and parameterization effort
as possible. Furthermore, due to the low computational effort, they can be used for
battery management system online aging evaluation [22, 23].

Semi-empirical models usually distinguish between calendar and cyclic aging. These
are summed up according to the superposition approach to determine the total capac-
ity loss. This procedure neglects the mutual interaction of calendar and cyclic aging
mechanisms but significantly simplifies model development and parameterization
and is, therefore, commonly applied [24]. Calendar aging models for graphite-based
batteries mostly describe the dominant aging mechanism of SEI growth. The litera-
ture widely agrees on modeling the SEI growth temperature dependence using the
Arrhenius equation [25–28]. The SEI formation rate increases with the battery SoC
following the characteristics of the anode potential [28, 29], but is often empirically
described [25, 27, 30]. There is a broad agreement about this simplified modeling
of SEI- growth. In contrast, the efficient generation of parameterization data still
poses a challenge. Capacity loss occurs only slowly during the battery’s resting
periods, so the calendar aging is usually accelerated at elevated temperatures and
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then extrapolated to lower temperatures. Despite accelerated aging, calendar aging
tests in the literature last one to two years [27, 28, 30]. Between the aging phases,
characterization measurements are performed in which the battery is subjected to
various reference performance tests (RPT). These provide additional battery aging by
cyclization depending on the composition and frequency of the RPT, which differ sig-
nificantly in different aging studies (see table 3.2). The influence of characterization
measurement on calendar aging results is an open question, which is investigated in
this thesis.

In cyclic aging, the possible aging mechanisms and their interaction become more
diverse and complex. Aging model development faces the challenge of including
as many stress factors and aging mechanisms as possible while keeping the model
simple. Only a few models consider all the stress factors commonly used for cyclic
aging, including temperature, current rate, average SoC, and DOD (see table 4.1).
In literature models that accounted for all stress factors, the model equations were
supplemented by empirical model equations without a physical background [31, 32].
On the other hand, exclusively physics-based models are limited in the number of
stress factors included [33–35]. Another challenge is the targeted parameterization
of the model equations. Different aging trends, which can roughly be divided into
initial capacity gain and loss, followed by a stable irreversible capacity loss and
finally rapid cell failure [36], should be assigned to their related aging mechanism
model equations in the parameterization process. Schimpe et al. [37] differentiated
between aging behavior at high and low temperatures and SoC but did not analyze
the related aging mechanisms. The described challenges concerning cyclic aging
modeling and model parameterization are addressed in this work by developing
a physics-based aging model describing graphite anode aging mechanisms and a
method for the targeted parameterization of the model equations based on ICA.

1.3 Outline

The thesis is structured as follows: First, the introductory chapter 2 provides impor-
tant theoretical fundamentals regarding lithium-ion battery aging. It includes the
general operating principle of lithium-ion batteries, important battery aging mecha-
nisms and associated aging modes. The provided overview focuses on lithium-ion
batteries with a graphite anode.

The scientific contributions to achieve the defined objectives of this thesis are divided
into three sections, each published in a separate article. In the first two sections,
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a holistic semi-empirical aging model was developed, including an independent
calendar and cyclic model. They describe stress factor-dependent capacity loss
due to graphite anode aging mechanisms. A comprehensive aging test series was
carried out on NMC lithium-ion battery cells to parameterize the overall model.
This included calendar and cyclic battery aging tests at constant stress factors and
a regularly applied characterization measurement. The model was validated on
a dynamic aging profile based on FCR operation. In the third section, the model
was used in an economic dimension and operating strategy assessment of a sector
coupling FCR system under consideration of battery aging. The content of the
scientific contributions is described in more detail below.

Calendar aging model

Chapter 3 introduces the calendar aging model. It represents the aging mechanism
of solid electrolyte interface (SEI) growth at varying battery temperatures and states
of charge. In the model parameterization, the influence of the characterization
measurement is quantified and explained. The correction of the characterization
effects allows more accurate battery aging evaluation. It thus contributes to the first
goal of the work - an increased accuracy of the model parameterized on measurement
data. The main features of the related scientific work are summarized in Figure
1.1.

Figure 1.1: Calendar aging study structure including battery aging test series, characterization effect
investigation and correction and parametrization of the SoC- and temperature-dependend
capacity loss model. The graphical abstract is based on content from [38].

Cyclic aging model

Chapter 4 presents the developed innovative cyclic aging model, which describes
the aging mechanisms SEI cracking and reforming and cracking of the anode active
material. For its parametrization, a multi-step method is defined. First, active aging
modes are analyzed using non-invasive incremental capacity analysis. The results
are used to conclude the presence of the respective aging mechanism in the cyclic
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aging tests. In the subsequent parameterization, only measurement data in which
the aging mechanism modeled dominates were used. The holistic model capacity
loss prognosis is validated on dynamic FCR aging data to ensure the transferability of
the model results to the considered FCR application. Figure 1.2 shows the graphical
abstract of the corresponding publication, which describes the model structure
with input stress factors, represented aging mechanisms, associated aging modes,
and output capacity loss. The scientific work contributes to each of the defined
thesis objectives by defining an innovative model with an advanced parametrization
method and validating the model results for the FCR use case as preparation for the
economic system profitability assessment.

Figure 1.2: Structure of the cyclic aging model with input stress factors, described aging mechanisms,
associated aging modes, and model output, published in [39].

Economic Assessment

In chapter 5 the aging model is used to optimize the storage dimension and operating
strategy of a stationary, sector coupling FCR system. The system considered consists
of a battery storage coupled with a power-to-heat module. Figure 1.3 shows the
methodology used. It includes load simulation in FCR application, aging modeling,
and a final economic analysis. The study assesses the economic profitability of the
overall sector-coupled system, considering battery aging, which corresponds to the
third thesis objective.

The results of the publications are summarized at the end of each chapter. The
conclusion in chapter 6 presents the core results of the overall study. It contributes
to the advancement of calendar and cyclic semi-empirical battery aging models
and their parametrization, which are essential to meet the challenges of improving
the usage and safety of future battery systems. Furthermore, concrete operating
strategies of a stationary sector-coupling FCR storage system are introduced. The
related outlook gives motivations for follow-up studies and further developments of
the proposed semi-empirical aging model.
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Figure 1.3: Methodology of economic assessment in different operation strategies and system dimen-
sions of a stationary frequency containment reserve (FCR) storage considering battery
aging. The load profile modeling considers the rules and degrees of freedom (DoF) of FCR
generation. The net present value (NPV) is analyzed in the economic analysis as a measure
of system profitability. The Graphical Abstract is taken from the related publication [].
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Fundamentals of Lithium-ion
battery aging

2
During operation, the performance properties of the battery change, which is, in
simplified terms, referred to as aging. Aging mechanisms, such as electrolyte
decomposition or active material cracking, determine battery aging. According
to the cause-effect principle, these lead to various aging modes, such as loss of
lithium inventory, which in turn cause a change in cell capacity and available power.
Understanding the battery aging model and the parameterization methods defined
in this thesis requires knowledge of how the lithium-ion battery works, an insight
into important aging mechanisms of the considered cell chemistry, and an overview
of the associated aging modes and methods to identify them. The following chapter
provides corresponding informations. Finally, it briefly reviews the state-of-the-art
and current challenges in semi-empirical battery aging modeling.

2.1 Lithium-ion battery working principle

Lithium-ion batteries have a high energy density, long service life, and low self-
discharge, which is why they are increasingly used in a wide range of applications.
Furthermore, the cost of lithium-ion batteries has been progressively reduced, which
is linked to the further development of high-volume production, improved module
and cell concepts, and decreased raw material costs [1]. Widely used cathode
materials in stationary and mobile applications today are lithium nickel manganese
cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA), and lithium
iron phosphate (LFP). The materials are typically combined with a graphite anode.
Furthermore, the combination with lithium titanium oxide (LTO) anodes is used,
especially for high-performance and high-safety applications [2–4]. Figure 2.1 shows
a schematic illustration of a lithium-ion battery cell with graphite anode and layered
transition metal oxide cathode.
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Figure 2.1: Schematic illustration of the lithium-ion battery components.

The lithium-ion battery consists of two electrodes in which lithium can be reversibly
stored. They are electrically isolated from each other by a separator. An electrolyte
allows the exchange of ions between the electrodes. The active electrode materials
are deposited on current conductors, usually copper and aluminum foils, which are
connected to an external conductor. As soon as electrical contact is created between
the electrodes, lithium in the anode releases electrons in an oxidation reaction. This
process is triggered by a difference in the electrochemical electrode potentials, which
are connected to the electron energy in the material. The lithium-ions released pass
through the electrolyte and intercalate into the cathode, which accepts the electrons
from the external current path in a reduction reaction. The separation of oxidation
and reduction enables the released electrical energy to be used by connected loads.
The discharge process of the electrochemical cell ends as soon as the anode cannot
provide more lithium-ions or the cathode is filled. When the battery is recharged,
the reaction direction is reversed by applying an external potential. Chemically,
in this case, the designations of the anode (site of oxidation) and cathode (site of
reduction) change. However, historically, the electrodes in the field of batteries are
consistently named after the discharge process [5, 6]. This nomenclature is adopted
in this work.
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2.2 Battery aging mechanisms

Depending on the cell chemistry and the aging stress factors in an application,
various physical and chemical changes occur in lithium-ion battery components.
These changes are called aging mechanisms. The following section introduces
important aging mechanisms on different battery components. In the experimental
work of this thesis, commercial NMC lithium-ion batteries are used. Accordingly, the
overview focuses on NMC cathode and graphite anode electrode materials. Figure
2.2 gives an overview of the included aging mechanisms and an insight into their
complex interaction.

Figure 2.2: Illustration of selected aging mechanisms on lithium-ion battery components and parts of
their interaction. Inspired by Birkl et al. [7].

2.2.1 Electrolyte

If the electrode surface potentials are outside the electrolyte’s stability window,
electrolyte decomposition reactions occur. The electrolyte in lithium-ion batteries
usually consists of a solution of the conducting salt LiPF6 in organic solvent mixtures,
such as ethylene carbonate (EC) and dimethyl carbonate (DMC) [8]. Electrolyte
reduction at the anode and oxidation at the cathode lead to surface layer formation
and release of gases like CO, CO2, and CH4 [9, 10]. The stability and impedance of
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the surface layers strongly depend on the electrolyte’s composition. Therefore, it is
modified with additives to influence the electrode layer structure and increase its
ionic conductivity [11, 12]. The formation of the solid electrolyte interface (SEI)
and cathode electrolyte interface (CEI), which lead to capacity loss and resistance
increase, are described in detail in the associated electrode paragraphs. The con-
sumption of electrolyte material in parasitic reactions additionally leads to the cells
dry-out. Electrode sections are cut off from the electrolyte’s ionic conduction, which
decreases the electrode capacity and increases the current density for the remaining
electrode area [13–15].

2.2.2 Graphite anode

The graphite anode has dominated the anode materials in lithium-ion batteries since
their commercialization in 1991 [16]. Aging at the anode is determined by layer
growth on the anode surface in the form of SEI and metallic lithium. Furthermore,
mechanical stress leads to surface and active material cracking.

Active material cracking

In the graphite electrode, the carbon atoms form a planar network with hexago-
nal symmetry. Lithium can be reversibly intercalated between the superimposed
graphite layers. The opening of the graphite layers occurs in several successive
phase transitions, which are associated with a stepwise volume change of the an-
ode. A total volume expansion of about 13% is observed in a complete charge
or discharge cycle [17, 18]. The volume change causes mechanical stress in the
active material and corresponding surface layer. Additionally, the formation of local
mechanical stress due to lithium concentration gradients is favored at high lithium
(de-)intercalation rates and low temperatures [19, 20]. Consequences include active
material detachment of the current collector and cracking of active material and SEI
on its surface. Without an intact passivating SEI, solvent co-intercalation can occur
at the electrode surface, leading to graphite exfoliation. Active material isolated
from the electric and ionic conduction no longer participates in cyclization and
contributes to long-term capacity loss [21–23].

16 Chapter 2 Fundamentals of Lithium-ion battery aging



Solid electrolyte interface growth

At almost all battery SoC, the graphite anode potential lies below 1 V vs. Li/Li+. This
potential is outside the stability window of organic electrolytes. Therefore, reduction
of the electrolyte occurs [12, 24]. The reduction products deposited on the anode
surface form the SEI. It allows lithium-ions to pass but acts as an electrical insulator,
which inhibits further electrolyte decomposition. The SEI is composed of a complex,
multi-layered structure depending on the reactants contained in the electrolyte, the
graphite anode surface area structure, and the formation conditions. In the widely
accepted SEI mosaic structure, a distinction is made between an inner, compact layer
of inorganic lithium compounds like Li2O and LiF and an outer, more porous layer
of organic components like semi-carbonates and polyolefins [12, 25–27].

In cell production, the initial SEI formation is systematically induced by slow charge
and discharge cycles under controlled current densities, cutoff voltages, and tem-
peratures to generate a stable and uniform SEI [12, 25, 26]. During the battery
lifetime, it continues to grow. The SEI growth depends on cell temperature and
anode potential in calendar aging [28, 29]. At cycling, the active material’s volume
change damages the SEI. The active material is exposed and new SEI is formed
immediately [23, 30, 31]. The SEI growth mechanisms at cyclization may change
from diffusion to migration limitation with increasing SEI thickness, as modeled by
Kolzenberg et al. [32]. Also, the SEI growth and composition can be affected by
dissoluted transition metals from the cathode (see section 2.2.3). The formation of
the SEI layer, which is less permeable to lithium-ions than the electrolyte, increases
the resistance of the battery. Furthermore, lithium is incorporated in the SEI layer,
leading to capacity loss [12, 33].

Lithium plating

If the anode potential falls below 0 V vs. Li/Li+, lithium deposits on the anode
instead of intercalating. The fulfillment of this condition depends on the open
circuit anode potential and the overvoltage, which is higher at charging with high
current rates and at low temperatures [34, 35]. The deposition of metallic lithium
on the anode is usually called lithium plating in the literature. Waldmann et al.
[35] differentiate between the morphologies of the deposited lithium and only refer
to the deposition of lithium as a homogeneous film as lithium plating. Deposited
lithium is partly reversible and can dissolve (lithium stripping) and chemically
intercalate into the graphite anode during a rest period or cycling after the plating
process [36–38]. The residual metallic lithium reacts with the electrolyte, forming
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new SEI. Furthermore, deposited lithium can lose contact with the anode. Both
results in electrically isolated lithium that is no longer available for cyclization [35,
39]. Deposited lithium that forms dendrites can damage the separator and cause
an internal short circuit followed by a thermal runaway. Therefore, uncontrolled
lithium plating represents a high safety risk [34, 40].

2.2.3 NMC cathode

The Li[Ni1−x−yCoxMny]O2 (NMC) cathode consists of a layered structure of mixed
transition metal oxides. Between them, reversible lithium layers can form by chang-
ing the oxidation states of the transition metals. The nickel, manganese, and cobalt
ratio determines electrode performance characteristics such as energy density, power
density, and cycle life. A higher nickel content contributes significantly to the higher
specific electrode capacity. Cobalt provides charge compensation at higher cathode
potentials and reduces cation mixing and manganese stabilizes the lattice structure
[41, 42]. Examples of commercialized compositions include NMC 111, NMC 523,
and NMC 622 [43]. The mole fraction ratios of Ni, Mn, and Co indicated by the
numbers may vary slightly depending on the manufacturer. The next-generation
nickel-rich composition NMC 811 has an exceptionally high energy density and is
considered to be cost-effective. However, the high nickel content is associated with
accelerated battery aging [42, 44–47]. A summary of important NMC cathode aging
mechanisms is given below.

Cracking and structural degradation

During battery discharging, lithium ions are inserted into the NMC interstitial sites.
The oxidation states of the transition metals change, and the crystal structure
expands continuously. The volume change is about 2% for NMC with low nickel
content but increases with increasing nickel concentration [48, 49]. Expansion and
contraction cause mechanical stress on the crystal lattice, which leads to inter- and
intragranular active material fracture and particle disintegration in cyclic operation
[44, 50]. Furthermore, the active material can transform irreversibly. For example,
Ni2+ can enter the lithium layer of the delithiated cathode to reach a preferred
thermodynamic energy state. This cation mixing and other multiple-step phase
transitions lead to the formation of rock salt phases with poor ionic conductivity
[44, 45, 51]. Each phase transformation relates to volume changes, leading to
internal mechanical stresses and crack formation. The structural transformations
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further include reactions releasing oxygen from the cathode lattice, increasingly for
electrodes with higher nickel content [50, 52]. When the battery is overcharged,
the NMC cathode collapses under the release of oxygen since a certain amount of
lithium must always remain in the layered structure for stability. Released oxygen
can oxidize the electrolyte leading to solvent decomposition and further degradation
reactions [52, 53].

Transmission metal dissolution

Structural changes in the cathode and decomposition reactions in the electrolyte
promote the dissolution of the transition metals nickel, manganese, and cobalt.
Especially on cracked particles with a high surface area exposed to the electrolyte,
the transition metals can separate from the cathode composite and dissolve in
the electrolyte [54]. Transmission metal dissolution is triggered by the attack of
hydrofluoric acid HF formed by decomposing the conductive salt LiPF6 in a reaction
with water. The water, in turn, mainly arises from reactions of electrolyte components
with oxygen [45, 55]. Due to the dissolution of transition metals, active cathode
material is lost. The released transmission metals can react with the electrolyte to
form cathode electrolyte interface [56]. Furthermore, they can be transported to the
anode, where they are incorporated into the SEI. A particularly increased lithium
loss due to SEI growth is observed when Mn2+ is released [47, 57].

Cathode electrolyte interface

When the electrolyte is oxidized at the cathode, the CEI is formed. Analogous to
the SEI it consists of an outer layer of predominantly organic components and an
inorganic-rich inner layer [58, 59]. Oxidation of organic carbonate solvents, leading
to CO2, CO, and H2O formation, is elevated at high temperatures and high cathode
potentials [9, 60]. Furthermore, residual lithium compounds left over from battery
synthesis, like Li2O and Li2CO3, catalyze electrolyte reactions, especially in Ni-rich
cathodes [45, 61]. Migration of SEI components can also contribute to CEI formation
[62, 63]. In contrast to the SEI, no additional lithium is trapped in the CEI. Instead,
CEI growth evokes lithium-ion intercalation into the cathode, leading to a drop in
cathode potential [29, 64]. As a result, the maximum cell voltage is reached later
at charging, and the amount of mobile lithium available at discharging is extended.
Various calendar aging studies have already detected and discussed an associated
capacity gain coupled with resistance increase due to CEI layer formation [28, 29].
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2.2.4 Seperator

Various aging mechanisms were introduced in the previous subsections, including
layer formation on the electrodes and cracking, restructuring, and dissolution of the
electrode active materials. These processes release particles into the electrolyte that
may clog the pores of the separator [56, 65]. Furthermore, the separator structure
can change due to mechanical deformation at cyclization or thermal stress [66, 67].
Consequences are resistance increase, an uneven distribution of the current density
in the cell (which in turn favors aging mechanisms like lithium plating [68]), and
isolation of electrode active material area [66].

2.3 Battery aging modes

In the previous section, various possible lithium-ion battery aging mechanisms were
introduced. Depending on cell chemistry and operating conditions, they cause a
change in the battery performance indicators. Between the aging mechanisms and
the measurable change in battery capacity and provided power, there is another
level of abstraction: the aging modes. These include loss of lithium inventory (LLI)
and loss of active material (LAM). The latter can be divided into four categories,
depending on the electrode affected (anode/cathode) and the predominant degree of
lithiation of the lost active material (lithiated/delithiated). Moreover, the resistance
increase (RI) is considered as aging mode [69, 70]. For a more precise separation
of capacity fade aging modes, Dubarry et al. [71] additionally defined under
discharge (UD) and under charge (UC). These describe the capacity loss resulting
from increased polarization resistance due to reaching the discharge and charge end
voltages faster. Figure 2.3 shows an overview of possible stress factor-induced aging
mechanisms and the linked fundamental aging modes LLI, LAM and RI.

To identify and quantify aging mechanisms, usually, post-mortem cell openings
in combination with intensive physicochemical analyses (transmission electron
microscopy, X-ray diffraction, chromatography, etc.) are necessary [24, 73]. In
contrast, there are non-invasive methods to characterize active aging modes. These
mainly rely on electrochemical impedance spectroscopy and quasi-open circuit
voltage (OVC) measurements. The latter are evaluated regarding the differential
voltage (DV) or incremental capacity (IC) [69, 74, 75]. The IC is defined by the
derivative of the capacity dQ with respect to the voltage dV
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Figure 2.3: Aging modes connected to stressfactordependent aging mechanisms. Adapted from [7,
72].

IC = dQ

dV
≈

∆ Q

∆ V
. (2.1)

In practical application, the increment of capacity ∆Q in a fixed voltage interval ∆V
is used [76–78]. The IC curve shows voltage plateaus as peaks. These are associated
with phase equilibria during intercalation and deintercalation of lithium in the anode
and cathode and therefore indicate changes in cell chemistry and kinetics. If the
electrochemical processes within the battery cell change due to aging, this can be
seen in a shift in the height, area, and position of the IC peaks. The so-called features
of interest (FOI) are used to conclude which aging modes were involved in the aging
process. The peak area corresponds to the capacity charged or discharged in the
associated voltage range. A smaller peak area can also implie a smaller peak height.
Furthermore, the height decreases due to a peak broadening if the reaction kinetics
within the cell slows down. A change in polarization resistance shifts the peaks to
higher voltages during charging and lower voltages during discharging. The change
in FOI with different aging modes is shown schematically in Figure 2.4 using a
graphite-based LFP battery as an example. Due to the flat iron phosphate half-cell
potential, the three shown prominent peaks are related to graphite anode’s phase
equilibria. The aging mode LLI results in a drop of the last IC peak at high cell
voltages. If the cathode active material loss is limiting the cell capacity, LAMPE could
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also be detected as a decrease of the third peak. In contrast, LAMNE results in a
reduction of all peak areas. A detailed description of why the effects of the aging
modes appear in this form is given in the intensive ICA study of Krupp et al. [79]
that preceded this thesis. Additionally, the formation of the graphite anode peaks,
mostly identifiable in the ICA of graphite-based lithium-ion batteries, is described in
depth here. In the parameterization of the cyclic aging model of this thesis, the IC
peak area evaluation is applied to separate the acting aging modes LLI and LAM and
thus the expected associated aging mechanisms (see section 4).

Figure 2.4: Shematic of the influence of loss of lithium inventory (LLI) (a), resistance increase (RI)
(b), loss of active material at anode (LAMNE) (c), and loss of active material at cathode
(LAMPE) (d) on the charge IC peaks of a LPF-graphite battery cell. Adopted from [79].
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Calendar aging model 3
This chapter is based on the publication „Calendar Aging Model for Lithium-Ion Batteries
Considering the Influence of Cell Characterization“ by Amelie Krupp, Robert Beckmann,
Theys Diekmann, Ernst Ferg, Frank Schuldt, and Carsten Agert [1]. It includes minor
changes compared to the original, for example, the adaptation of the headings in terms
of the overall thesis structure. The use of the article in the thesis for non comercial
purposes is permitted by the publisher Elsevier.

Abstract
To optimize costs and ensure safety, investigation and modeling of battery aging
is very important. Calendar aging analysis consist of a periodic sequence of calen-
dar aging and cell characterization. The influence of the characterization on the
results of the calendar aging investigation has been assumed to be negligible so far.
Nevertheless, the characterization measurements of different studies, especially the
important capacity measurement, differ fundamentally. This could have an impact
on the results of capacity and resistance change in calendar aging. In this paper,
the effect of characterization is quantified for the first time, using periodic charac-
terization measurements. A significant influence in the form of capacity increase
and resistance decrease is found. It can be explained by an increase in the active
electrode surface area caused by the characterization measurement. Therefore,
the cell characterization is a new possible source for capacity increase in calendar
aging. As an important result, in future studies capacity measurements should be
performed with small currents below 1C to reduce the influence of characterization
on the results. Additionally, a correction of the characterization effect can be done
according to the presented method.
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3.1 Introduction

Diagnosis and prognosis of battery aging is essential not only to ensure safety but also
to optimize profitability of battery storage systems. Battery aging can be detected
by a decrease in capacity and an increase in internal resistance. In aging models,
a distinction is made between calendar aging during rest times of the battery and
cyclic aging due to cyclization.

Many approaches exist for modeling battery aging. Theoretical models calculate
the aging of batteries based on physical relationships. The model scale varies from
macro- to micro-scale, including the modeling of processes at the atomic level. Since
a wide variety of aging mechanisms influence the battery aging, these models quickly
become complex and require high computing effort. They are particularly suitable
for understanding chemical and physical processes within the battery cell. In contrast
to that, empirical models are based on a statistical description of measured data.
There is no need for knowledge of the processes taking place in the cell. They are
usually related to a specific application and limited by the experimental data, which
results in a considerable measurement effort. Semi-empirical models represent a
hybrid form of these approaches. The model equations are based on theoretical
relationships and are parameterized using empirical measurement data. They offer
the advantage of lower computational effort and easier parameterization compared
to theoretical models. Furthermore, due to the physical background, they can be
better extrapolated and require less measurement effort than empirical models
[2–4].

In applications with many rest periods or predominant cyclization with small currents
and small depth of discharge, the analysis of calendar aging is particularly important.
A wide variety of model approaches can be found to describe calendar aging. A
literature review on the cell chemistry and target values considered in different
semi-empirical aging models is provided in Table 1. It is to be noted that many of
the publications included model not only calendar but also cyclic aging, which is not
listed separately.

3.1.1 Battery cell characterization tests

Calendar aging measurements are used to parametrize semi-empirical models. They
consist of a periodic sequence of a calendar aging step and a characterization
measurement. Battery cell characterization usually includes a capacity measurement
and a pulse test, to determine the cells capacity C and resistance R. Optionally, other
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Source Cell Chemistry Target Value
C R

Baghdadi et al. 2016 [5] NCA, NMC x x
Ecker et al. 2012 [6] NMC x x
Grolleau et al. 2014 [7] LFP x -
Hahn et al. 2018 [8] NMC x -
Hoog et al. 2017 [9] NMC x -
Marongiu et al. 2015 [10] NMC, LFP x x
Naumann et al. 2018 [11] LFP x x
Rumberg et al. 2020 [12] NMC x x
Schmalstieg et al. 2014 [2] NMC x x
Smith et al., 2012 [13] NCA x x
Xu et al. 2018 [4] LMO, LFP, NMC x -

Table 3.1: Literature review on cell chemistry and target value (capacity C and resistance R) of
semi-empirical calendar aging models.

supplementary measurements such as an Electrochemical Impedance Spectroscopy
(EIS) or charge/discharge cycles at small current rates are added. The latter can
be used to perform an Incremental Capacity Analysis (ICA) or Differential Voltage
Analysis (DVA).

In the capacity measurement the battery cells are charged and discharged within
their maximum voltage range. At the end of charging, after the maximum voltage is
reached, typically a Constant Voltage (CV) phase follows until the current reaches
a lower limit (mostly 1/20C). This ensures better comparability of the measured
capacities since the lithium ions got more time to rearrange in the electrodes.
Afterwards, the cells are discharged at Constant Current (CC) to their final discharge
voltage to determine the discharge capacity.

The internal resistance is often determined using a pulse test at different states of
charge. In this procedure, the cell is charged or discharged to a fixed SOC with a
constant current. After a pause, a charge and/or discharge pulse at a high current
rate (usually above 1C) follows. When a charge and discharge pulse are performed,
a short rest is inserted between them. Under load, the voltage of the battery deviates
from the voltage at rest due to voltage drop on the polarization resistance. The
polarization resistance is made up of different components that affect the overvoltage
on different time scales. The ohmic resistance causes the initial voltage drop. The
charge transfer resistance, which is influenced by the double layer capacitance at
the border between electrode and electrolyte, produces the flattening voltage drop
in the time range of a few seconds. The final voltage drop is provided by the limited
diffusion speed of the lithium ions in the electrolyte and the electrode material [14,
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15]. Accordingly, the pulse time and current determine which and how intense
components of the polarization resistance are considered. The resistance is then
determined by Eq. (3.1):

Rt = Ut − Ut0

I
. (3.1)

Thereby Ut − Ut0 is the voltage difference caused by the current I, evaluated after
the time t.

Table 3.2 shows the main components of the characterization measurements used in
the calendar aging studies introduced in Table 4.1, provided they presented detailed
information about their measurement process.

Performing a capacity measurement is a fundamental commonality of the charac-
terizations listed in Table 3.2. However, the individual capacity measurements are
significantly different. The most important differences are the number and the
current rate of the measurement cycles. Most capacity measurements are performed
at a current rate of 1C. Hahn et al. [8] determine the capacity at 1C and at C/10.
Since the transport processes in the battery only take place at a limited speed, the
capacity increases with decreasing discharge current. In addition to a higher capacity,
the C/10 measurement showed fewer outliers compared to the 1C measurement.
Furthermore, at a lower current a smaller capacity increase was measured at the
beginning of aging. Since both aspects are beneficial for model fitting, Hahn et al.
[8] decided to use the C/10 capacity measurement to evaluate the capacity decrease
in their calendar aging study. Barai et al. [16] summarized the commonly used
charge and discharge current rates in recent literature and international standards in
capacity measurements in their discussion of non-invasive characterization methods.
Most commonly, the capacity measurement is performed with a current rate of 1C or
C/3. The latter is often used in an automotive application context and is adapted
to the average discharge current of a cell in a battery electric vehicle [16, 17].
Consistent with this, Hoog [9] and Rumberg [12] used a smaller current rate of C/3
in their capacity test.

3.1.2 Aging mechanism in calendar aging and characterization
cycling

The main causes of calendar aging are parasitic reactions between electrolyte and
electrode. They can be classified into three categories: anode reactions (electrolyte
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Source Capacity
Measurement

Pulse Test Other

ch. disch. cycl.
pulse
time
ch/disch

pulse
C-rate
ch/disch

SOC
steps

Baghdadi et al. [5]
CC/CV

1C
CC 1C 2 -/ n.a. -/1C 1

Pseudo
OCV, EIS

Ecker et al. [6]
CC/CV

1C
CC 1C 1

10s/
18s

3C/ 4C n.a. EIS

Grolleau et al. [7]
CC/CV

1C
CC 1C 3

720s/
720s

1C/ 1C 5 EIS

Hahn et al. [8]

CC/CV
1C and
CC/CV

1C

CC 1C
and CC

C
10

3
and
1

-/30s -/4C 3
Charge
CC/CV
C
10

Hoog et al. [9] CC C
3 CC C

3 3 - - - -

Marongiu et al. [10]
CC/CV

1C
CC 1C 1 n.a. n.a. n.a. -

Naumann et al. [11]
CC/CV

1C
CC
1C

2
10s/
10s

C
3 /C

3
and

2
3C/2

3C
and

1C/1C

1
EIS, low
rate
ch/disch

Rumberg et al. [12]
CC/CV

C
3

CC C
3 3 -/18s -/3C 1 OCV

Schmalstieg et al. [2]
CC/CV

1C
CC 1C 1

10s/
18s

1C/ 2C 9 -

Table 3.2: Main components of the characterization measurements in calendar aging experiments.
For the capacity measurement the charge (ch.) and discharge (disch.) current rate and the
number of cycles (cycl.) are shown. For the pulse test pulse time and C-rate of the charge
and discharge pulse and the number of SOC steps are listed. The abbreviation n.a. means,
that the information was not available in the cited source.

3.1 Introduction 35



reduction leads to Solid Electrolyte Interface (SEI) growth), cathode reactions
(including electrolyte oxidation and transition metal dissolution), and coupled
reactions (e.g. transition metals dissolved from the cathode affect SEI growth at the
anode) [12, 18]. SEI growth is assumed to be the dominant aging mechanism and
causes irreversible decrease in capacity due to loss of lithium inventory. Reversible
capacity loss and gain can be caused by the Passive Anode Effect (PAE). Usually, the
anode in lithium-ion batteries is oversized for example due to positioning tolerances
in manufacturing when stacking electrodes. Furthermore, in double-sided coatings,
the externally located anode has no cathode counterpart [19, 20]. Thus, the anode
is not fully utilized during charging and discharging processes. When potential
differences occur between the active and passive part of the anode, lithium ions
slowly enter and leave the overhang by diffusion. After lithium ions entered the
overhang, they are in the short term not available for cyclization and therefore the
cell capacity reversibly decreases. If lithium ions are released from the overhang,
the cell capacity increases. The equalization of the lithium-ion concentration in the
active and passive part of the anode happens on large time scales in the range of a
few days to several months [19, 21].

In addition, reversible capacity gain can also be caused by cathodic side reactions,
which lead to a reintercalation of lithium ions back into the cathode [12, 18].

In contrast to that, during cycling additional aging mechanisms occur due to the
expansion and contraction of the electrode materials caused by the lithium-ion (de-)
intercalation. Thereby, the current rate that the cell is subjected to has an influence
on the dominant aging mechanisms. At cycling with small currents, cracking in
the solid electrolyte interface predominates [22]. Concentration gradients in the
electrodes are kept to a minimum at low current rates, therefore less internal stress
is exerted on individual particles, which reduces cracking in the active material.
When cycling with higher current rates cracking in the anode and cathode active
material becomes more relevant. Furthermore, the probability of lithium plating
increases due to accumulating lithium ions at the anode [23, 24]. Interestingly,
also the SEI growth rate increases with higher current during cyclization. This can
be explained not only by increased fracture and regeneration of the SEI layer, but
also by the electrochemistry of diffusion- and migration-limited SEI growth itself
[25]. The mentioned aging mechanism typically cause capacity loss and resistance
increase. Contrary to this, Dubarry et al. [26] found an improvement in the cell
kinetics of high energy cells cycled with current rates higher than C/5. It is likely
caused by an increase in the active surface area due to deformation and cracking
in the cathode material resulting from volume changes of the electrode particles
during lithium-ion insertion and extraction which is referred to by the authors as
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an ’electrochemical milling’ process. With this, the local effective current density
decreases, which leads to a smaller voltage polarization at a fixed current rate. As
a final result the discharge voltage, which interrupts the discharging process, is
reached later and the capacity of the cell increases.

3.1.3 Open questions in calendar aging studies

Although the characterization measurements in calendar aging studies differ signif-
icantly (see Table 3.2), the influence of characterization on the measured change
in battery capacity and resistance was assumed to be negligible so far. However,
depending on the choice of measurement settings, the additional aging mechanisms
in cycling may significantly affect the loss of capacity and increase in the internal
cell resistance that occurs in the calendar aging measurement.

Some findings in published calendar aging studies could so far not be explained by
calendar aging mechanisms or the PAE. Rumberg et al. [12] attributed a capacity
gain of a cell aged at 10% SOC and 45◦C to the effect of the anode overhang, since
the cells were stored at 30% SOC prior to the start of aging. However, they could
not relate an observed capacity gain at 25◦C and 100% SOC to the PAE. In this case,
capacity should be decreased by absorption of lithium ions through the overhang
during calendar aging. Since it was only a single cell behavior, they did not further
search for an explanation. Naumann et al. [11] also assumed a superposition of
lithium gain from the overhang and lithium loss due to SEI formation as the cause
for the observed capacity gain of their calendar aged cells. They further observed
a drop in resistance which could not be explained directly with PAE, since no SOC
dependence of the effect was found. They assumed the influence of measurement
uncertainties as a possible cause. Lewerenz et al. [20] also noted a drop in resistance
on LFP cells calendar aged at 25◦C. They suggested that this may be due to better
lithium and electrolyte distribution after initial cycling of the cell in the checkup
after a long storage period.

In the discussed literature, a decrease in resistance or an increase in capacity was
found in calendar aged cells that could not be related to the passive anode effect or
calendar aging mechanisms. From this, the central research question of this paper
follows:

• Is there a significant effect of the characterization measurement on capacity
and resistance in calendar aging studies?
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To answer this question, this study focused on quantifying the influence of the
characterization on capacity loss during calendar aging of commercial NMC cells. For
this purpose, a method was developed using periodic characterization measurements.
Considering the effect of the characterization, the reversible and irreversible capacity
loss which belongs to the calendar aging was determined. The corrected data are
finally used to parameterize a semi-empirical calendar aging model.

3.2 Material and methods

This section provides a detailed description of the used cells, measurement systems
and methods to allow reproduction of the results.

3.2.1 Cell specification and testing system

The cells studied were commercial Li(NiMnCo)O2 (NMC)/graphite pouch cells with
a nominal capacity of 64 Ah. The voltage limits are 3.0 V minimum and 4.2 V
maximum voltage according to the data sheet provided by the manufacturer. The
cells were shipped as a module with about 40% SOC and after a few cycles stored at
room temperature. For the aging tests they were removed from the module with
about 50% SOC. At this time, the cells were three years old and accordingly already
pre-aged.
The measurements are performed with a Maccor series 4000 automated test system
with 0 A-150 A current and 0 V-8 V voltage range measuring channels. The current
error specified by the manufacturer is 0.05% of full scale current (∆I = 0.075 A), the
voltage error is 0.02% of full scale voltage (∆U= 1.6 mV). During the measurements,
the cells were acclimatized at a constant temperature in a Vötsch VC 7018 climatic
chamber.

3.2.2 Error analysis

The error of the capacity loss is calculated using the Gaussian error propagation law
for uncorrelated quantities [27]

∆F = ±

√(
δF

δx
· ∆x

)2
+

(
δF

δy
· ∆y

)2
+ .... (3.2)
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Here F = F (x, y, ...) is a functional relation between different directly measurable
quantities x, y and the error of the corresponding quantity ∆x, ∆y. According to
this, the measurement error of the capacity is calculated over

∆C = ∆I · tc (3.3)

with the capcity measurement time tc assumed to be error-free. The error of the
capacity equals ∆C = ±0.075 Ah for a measuring time of one hour. This corresponds
to a relative error of 0.1% with respect to the nominal cell capacity of 64 Ah.

3.2.3 Calendar aging

At the start of the test series a preconditioning was performed. It consisted of five
charge and discharge cycles with 1C. This was followed by an initial characterization
of the cells. For the investigation of the calendar aging, the cells were charged to a
fixed SOC with 1C at 23◦C. The SOC is related to the actual cell capacity Cact:

SOC [%] =
∫

Idt

Cact
· 100%. (3.4)

Subsequently, the cells were climatized for 3h to the defined aging temperature. In
calendar aging, they rested for 60 days before a re-characterization was performed.
The SOC was not actively corrected, therefore a slight SOC shift occurs during aging
due to the self-discharge of the cells. Aging was performed at two temperatures
(23◦C and 40◦C) and three states of charge (50%, 70% and 90% SOC). Due to the
expected Arrhenius dependence of the capacity loss on temperature (see subsection
3.3.4), to investigate two temperatures was considered to be sufficient to save
measurement resources. Two cells were tested at each test condition to identify
possible outliers by considering the expected dependence of the cell aging on the
investigated stress factors SOC and temperature. Table 3.3 shows the test matrix of
the twelve calendar aged cells.

Temperature/ SOC 50% 70% 90%
23◦C 2 2 2
40◦C 2 2 2

Table 3.3: Calendar aging test matrix with the number of cells for each storage condition
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3.2.4 Characterization

The characterization consists of a capacity measurement, a pulse test and a discharge
with a small current at 23 ◦C. In the capacity measurement, the cells were first CC
charged with 1C (64 A) to their final charge voltage of 4.2 V. This was followed
by a CV phase until the current was less than 1/20C. The cells were then CC
discharged with 1C to their final discharge voltage of 3 V to determine the discharge
capacity. After each charging and discharging, a 30-minute rest followed to allow
cell relaxation. The procedure is repeated twice and the second measurement is
used to determine the discharge capacity.

The resistance was determined in a Hybrid Pulse Power Characterization (HPPC) test
at three SOC (10%, 50% and 90% SOC). Thereby, the cells were first charged with
1C to the smallest SOC. After a one hour rest, a 10 s discharge pulse was performed
with 1C. The change in voltage at the beginning and after the end of the pulse was
recorded with a high resolution of 10 ms. The cells rested for 60 s before a 10 s
charge pulse of 1C was applied. After another 60 s pause, the cells were charged to
the next SOC. When the 90% SOC measurement was completed, the cells were fully
charged with 1C CC/CV. Finally, after another 30 minute rest, a CC discharge with
C/10 completes the characterization measurement.

To investigate the influence of the characterization on the calendar aging study, a
periodic characterization was performed with two additional cells. It consists of
continuous characterizations with a 3h rest in between. A complete characterization
procedure is shown in Fig. 3.1.

3.3 Results and discussion

3.3.1 Aging results

The capacity loss of the batteries during the calendar aging measurement Closs,meas

was calculated using

Closs,meas = 1 − C(t)
C(t0) (3.5)

with the cell capacity C(t) at measurement time t and the initial cell capacity C(t0).
Fig. 3.2 shows the capacity loss of the cells during calendar aging at different states

40 Chapter 3 Calendar aging model



Figure 3.1: Voltage and current profile of the characterization over the measurement time.

of charge and temperatures. The error intervals are calculated using the Gaussian
error propagation law according to Eq. (3.5) and (3.2). They do not fully explain
the deviation between the measured values of the two individual cells at the same
aging conditions. That might be caused by not considered systematic errors or by
random errors like the cell-to-cell variation of the single cells. Due to a delay in
the third characterization step, the second measurement interval at 23◦C had to be
extended from two to three months.

As expected, the capacity loss is higher at elevated temperature. Furthermore,
there are differences between the the capacity losses at various storage SOC. It is
noticeable, that a higher SOC does not necessarily correlate with a higher capacity
loss at time t. Although the loss of capacity is lowest at 50% SOC, it is almost the
same in the long term at 70% and 90% SOC. At 23◦C, the capacity loss of one cell
at 70% SOC is nearly twice as high compared to the 90% SOC cells after 422 days.
However, this seems to be a single cell behaviour since the second cell aged at 70%
SOC has a similar capacity loss as the cells aged at 90% SOC.

After the first initial increase, the capacity loss flattens out at 40◦C and reaches a
value of around 1% after 200 days. Subsequently, the curve turns into an exponential
growth. In contrast, the capacity loss at 23◦C increases more linearly towards the
end of the test series. At the beginning of the aging a negative capacity loss, which
means a gain in capacity, was recorded. For one of the cells aged at 50% SOC, the
phase of capacity gain is not finished even after more than one year of aging.
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Figure 3.2: Relative capacity loss as a function of time for calendar aging at various states of charge
and temperatures.

An initial gain in capacity was already observed in various calendar aging studies and
is often explained by the passive anode effect [8, 9, 11]. To estimate the maximum
PAE, the volumetric excess of the anode was determined in an initial cell opening.
Each anode has a 5.2% larger volume than the corresponding cathode. Therefore,
assuming equal volumetric capacity of the electrodes, a maximum of 5.2% of the
cell capacity could be stored in the overhang. To estimate how much of this capacity
can be absorbed or released in the first calendar aging phases, it is assumed that
the passive and active parts of the anode are in equilibrium at the beginning of
the aging tests and that their SOC corresponds to the initial cell state of charge of
50% SOC. Accordingly, the overhang absorbs lithium ions at subsequent calendar
aging at a higher SOC. The SOC of the overhang slowly equalizes to the SOC of the
active anode during calendar aging. Therefore, for the calendar aging at 90% SOC,
it is assumed, that the overhang SOC changes by a maximum of 40% SOC, which
corresponds to a fraction of 2.1% of the total cell capacity. Storage at lower SOC has
a correspondingly lower maximum capacity loss due to the overhang effect: 1% of
the total cell capacity at 70% storage SOC in calendar aging and 0% capacity loss
at 50% storage SOC. Thus, when stored at 50% SOC, a negligible loss or gain in
capacity due to the PAE is expected. Since the battery cells were characterized only
every two months, the main capacity loss due to PAE should occur in the in the first
one to two calendar ageing phases. This does not agree with the measured capacity
gain at 50% SOC which for one cell increases even further towards the end of the
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aging. Additionally, even the cells aged at higher SOC and 23◦C do not show an
increased capacity loss in the first months of aging. This is not in agreement with
the estimated maximum effect of the PAE. For this reason, the PAE does not provide
an explanation for the observed aging behavior, in particular the capacity gain of
the cells aged at 23◦C. There must be another superimposed effect.

3.3.2 Quantification of the characterization measurement effect

A periodic characterization measurement is used to quantify the capacity loss due
to characterization Closs,char. It is then separated from the capacity loss due to
calendar aging, which can be divided into an irreversible part Closs,cal,ir (mainly SEI
formation), and a reversible part Closs,cal,rev (e.g. capacity loss or gain through PAE).
Consequently, the measured capacity loss in calendar aging adds up as follows

Closs,meas = Closs,cal,ir + Closs,cal,rev + Closs,char. (3.6)

A capacity gain is a negative capacity loss and thus compensates capacity loss in the
calendar aging measurement. Fig. 3.3a shows the capacity loss and Fig. 3.3b the
discharge polarization resistance at 10% SOC over the number of characterizations
of the two studied cells in the periodic characterization measurement. The resistance
evaluation is done according to Eq. (3.1) ten seconds after the pulse. The SOC of
10% was chosen because the resistance is highest here and changes in resistance are
best identifiable.

The capacity loss is negative at all characterizations which means that the capacity
increases compared to the initial capacity. The capacity gain is a maximum of
0.8% of the initial capacity after seven characterizations. Subsequently, the capacity
decreases linearly by approx. 0.3% up to the 15th characterization. Since all the
results of the calendar aging at 23◦C up to 300 days after the start of the tests
are less than 0.5% capacity loss (Fig. 3.2), the influence of the characterization
on the capacity is not negligible small. Furthermore, in Fig. 3.3b, the resistance
decreases with the number of characterizations. The effect of characterization
equally affects all cells in the calendar aging measurement and therefore explains a
drop in resistance independent of the aging SOC and temperature. Consequently, the
influence of the characterization measurement can explain the resistance decrease
observed by Naumann et al. [11] and Lewerenz et al. [20].

A capacity gain in combination with the drop in resistance during cyclic aging was
already observed by Dubarry et al. [26] at LFP high energy cells. The capacity gain
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(a)

(b)

Figure 3.3: Capacity loss (a) and resistance at 10% SOC (b) over the number of characterizations in
the periodic characterization measurement.
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is explained by a reduced overvoltage at cyclization, which causes the discharge
to terminate later, increasing the capacity of the cell. This could be the result of a
reduced polarization resistance. Possible causes for a reduced polarization resistance
include an improvement in the electronic conduction in the electrode material, a
reduction in the charge transfer resistance at the interface between the electrode
and the electrolyte, and an improvement in the diffusion of lithium ions through
the active material and the electrolyte. Furthermore, an increase of the electrode
surface and thus a decrease of the effective local current density at the same C-rate
is a possible mechanism to reduce the overpotential at the corresponding electrode.
The increase of the cathode surface was determined by Dubarry et al. [26] to be the
most relevant mechanism which ultimately leads to an increase in capacity of the
LFP cells considered. The influence of a kinetic effect in the periodic characterization
measurement can be investigated analyzing the End Of Discharge Open Circuit
Voltage (EOD OCV). Fig. 3.4a shows the EOD OCV 30 minutes after the battery is
discharged with 1C and C/10 over the number of characterization cycles. The EOD
OCV after discharge with 1C is significantly higher than after discharge with C/10.
A higher open circuit voltage generally means a higher state of charge of the battery.
Thus, the cell was discharged less at 1C discharge due to the higher voltage drop on
the polarization resistance.

The relative EOD OCV for a discharge with 1C and C/10 is shown in Fig. 3.4b.
At both current rates the EOD OCV reduces with the number of characterizations.
The decrease at C/10 is about 0.5% after 15 characterizations while at 1C it is
three times larger. A decreasing EOD OCV indicates a deeper discharge of the cell,
which in turn is connected to an increase in capacity. Since the voltage losses on
the polarization resistance rise with higher current rates, the decreasing resistance
has a stronger influence on the capacity measurement carried out with a higher
current and the capacity gain is more prominent here. This also supports the results
of Hahn et al. [8] who found a smaller increase in capacity in the C/10 comparing
to the 1C capacity measurement results. To reduce the influence of kinetic effect
on the capacity measurement and to limit the aging due to the characterization
itself, a capacity measurement with a smaller current is preferable to a 1C capacity
measurement. The current rate of C/3 offers a good compromise between reducing
measurement time and minimizing the effect of the characterization measurement.
It is, next to 1C, the most recommended current rate to be used in the capacity
measurement by test standards and research community [16].

The influence of the characterization measurement is not equally strong in all battery
cell chemistries. High-power cells, for example, are less affected by kinetic effects
since they are optimized for high power capability [26].
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(b)

Figure 3.4: End Of Discharge Open Circuit Voltage (EOD OCV) (a) and relative EOD OCV (b) 30
minutes after discharge with 1C and C/10 plotted over the number of characterizations in
the periodic characterization measurement.
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3.3.3 Data correction by the characterization capacity loss

To correct the effect of characterization on the capacity in calendar aging, the mean
value of the measured capacity loss during characterization is subtracted from the
capacity loss measured in the calendar aging study. According to Eq. (3.6) the result
is the superposition of the reversible and irreversible capacity loss in calendar aging.
The corrected capacity loss Closs,corr is shown in Fig. 3.5. The error of Closs,corr is
determined over Pythagorean addition of the errors of Closs,meas and Closs,char.

Figure 3.5: Capacity loss in calendar aging corrected by the capacity loss due to characterization as a
function of time.

The correction provides a significant change in the calendar aging capacity loss.
In contrast to the original capacity loss of the calendar aging measurement in
Fig. 3.2, the typical flattening capacity loss with the time occurs at 23◦C instead
of the (initial) capacity gain. Since the correction is independent of SOC and
temperature in calendar aging, the previously recognized basic relationships (1.
higher temperature causes more capacity loss, 2. lower capacity loss at 50% SOC
than at 70% and 90% SOC) remain. The increase in capacity loss with longer test
times is weakened and can now be seen from approximately 290 days on. As the
effect is more noticeable at high temperatures and high SOC, it could be attributed
to dissolution of transition metals at the cathode which deposit at the anode and
accelerate SEI growth. Since we focus on the effect of the characterization, the
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reversible and irreversible capacity loss are not further separated and analyzed in
this paper. Nevertheless, the contribution of the overhang to the initial increase
in capacity loss could be estimated from the data using the method presented by
Lewerenz et al. [21]. According to their theory the initial capacity loss is caused by
the influence of the anode overhang and the following linear capacity loss belongs
to the irreversible battery aging.

3.3.4 Model parameterization

The corrected data are now used to parameterize a semi-empirical aging model. For
simplification, the functions depending on time, temperature and SOC are assumed
to be independent of each other. The separated functions are first parameterized
individually and then combined into an overall model.

Time dependency

For models with few fit parameters, the simple power law tβ time dependency
approach provides a good compromise between high quality of the fit and low
overfitting potential [8]. Describing the capacity loss due to SEI growth, this
approach assumes that there is no SEI at time t = 0. Furthermore, the predicted
capacity loss at infinite test time is infinite. To determine the exponent β of the time
dependency, all measured data are fitted with the equation

Closs,corr(SOC, T, t) = A(SOC, T ) · tβ, 0 < β < 1. (3.7)

The factor A(SOC,T) is determined individually for each measured temperature
and SOC combination, using the mean of the capacity loss of the two aged cells.
The parameter β is set to be the same for all measured data. The fitting is based
on the least squares method and performed using Matlab. To find a minimum
sum of the squares of the residuals, the initial value of A(SOC,T) is varied in ten
steps between 0.1 and 1. The results of the fit are shown in Fig. 3.6. The factor
A(T,SOC) is the same here for 70% and 90% SOC at 40◦C, so only one dashed line
is visible. Furthermore, in the first subplot the Root Mean Squared Error (RMSE)
for the deviation of the measurements mean value from the model is shown. Below
this, the exponent β that results from fitting the data up to time t is plotted. It was
determined from a minimum of three measured values.
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Figure 3.6: Top: Fit (line) of the measured capacity loss at different SOC and temperatures (marker)
over the time with the final exponent β = 0.789. Middle: Root Mean Squared Error
(RMSE) of the model up to time t. Bottom: Model exponent β when fitting data up to
time t.
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For the cells considered, the final model exponent is β = 0.789. It provides a
compromise between the initial root-shaped calendar aging and the long-term
increasing capacity loss. Fitting only data up to 220 days, β is 0.581 which is close
to the square root of time dependency typical for the diffusion limited SEI growth
during storage [28]. The continuously increasing exponent due to the subsequent
stronger increase in capacity loss demonstrates a change in aging behavior of the
cells. The final exponent provides an underestimation of the capacity loss in the
first months of aging. Nevertheless, the RMSE of the model is below 0.05 for all
measurements up to 350 days, which is considered to be sufficient. Afterwards,
the RMSE increases significantly. The changed aging behavior, especially at high
temperature and high SOC, might be due to the influence of coupled reactions
between the cathode and the anode since transition metal dissolution is accelerated
by high temperatures and high SOC [18]. The measurements had to be stopped
after 420 days, therefore it was not possible to investigate whether this effect only
occurs in the short term or continues in the long term.

Temperature dependency

The temperature dependency is modeled by the Arrhenius equation. It characterizes
the change in reaction kinetics with temperature and has already been used in many
aging models [6–8]. The temperature-dependent capacity loss is described by

Closs,corr(T, t) = α · exp
( −Ea

R · T

)
· t0.789 (3.8)

with the ideal gas constant R and the activation energy Ea. The model parameters
are α and Ea. To parameterize the the temperature dependency, a reference SOC
must be selected. The lowest RMSE of the model compared measured data at a
fixed SOC and different temperatures is observed at 50% SOC. For this reason, 50%
SOC is chosen as the reference SOC. Furthermore, by fitting the entire data, the
lowest mean RMSE of the resulting model is achieved. If the SOC and temperature
dependency would have to be evaluated at specific points in time, the best model
results are obtained by using the latest possible date. However, hereby a change in
aging behavior during long-term measurements should be considered. The model
parameters Ea and α resulting from the fit are listed in Table 3.4.
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SOC dependency

The capcity loss dependency on the SOC is evaluated at 40◦C. The cells capacity
losses are more clearly distinguishable at elevated temperature. The SEI growth
at the anode is strongly dependent on the anode potential [18]. Thus it is also
dependent on the SOC of the cell, provided that there is no shift of the electrode
potentials relative to each other. Next to SEI growth, the capacity loss during calendar
aging can be influenced by cathode and coupled side reactions. Their quantity and
SOC dependence varies with the cathode material and electrolyte composition
[23]. Consequently, it is difficult to assume a fixed SOC dependency since various
behaviors are possible at different cell chemistries for the same aging conditions.
Therefore, an analysis of the SOC dependency is performed. For this purpose, Fig.
3.7 shows the corrected capacity loss versus SOC at constant temperature of 40◦C
and fixed points in time.

Figure 3.7: Corrected capacity loss at 40◦C as a function of SOC at different times of the ageing
process.

First, the capacity loss increases linearly with higher SOC. The aging behavior
changes after around 288 days. The capacity loss increases more strongly towards
70% SOC and then stagnates to 90% SOC. Due to increasing side reactions at the
cathode at higher SOC, lithium ions intercalate back into the cathode. This may
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compensate capacity loss above 70% SOC and could be a cause for the apparently
decreasing capacity loss at 90% SOC [12]. The increase in capacity loss between 50%
and 70% SOC (which can also be seen in the exponential increase of the capacity
loss at higher SOC in Fig. 3.5) could be due to transition metals coming from the
cathode, accelerating SEI growth at the anode. These assumptions would need to be
verified in a post-mortem analysis. Below 288 days, a linear SOC dependency can
be assumed:

Closs,corr(SOC, t) = (γ · SOC + δ) · t0.789. (3.9)

The parameter γ and δ resulting from the fit of the total measured data at 40◦C are
shown in Table 3.4.

Ea [kJ/mol] α β γ δ

36.36 2.15 ·104 0.789 1.19 ·10−4 0.01
Table 3.4: Model parameters determined by fitting the corrected calendar aging data.

Total calendar aging model

The seperated functions for the capacity loss dependent on SOC and temperature are
finally combined into an overall model. For this purpose, a scaling of the functions
(3.8) and (3.9) is performed according to Schmalstieg et al. [2]:

Closs,corr(T, SOC, t) = Closs,corr(SOC, t) · Closs,corr(T, t) · Closs,corr,∅
Closs,corr(50% SOC, t) · Closs,corr(40◦C, t) (3.10)

with the mean value of the SOC- and temperature-dependent functions at the
reference SOC (50% SOC) and reference temperature (40◦C)

Closs,corr,∅ = Closs,corr(50% SOC, t) + Closs,corr(40◦C, t)
2 . (3.11)

The model results are shown in Fig. 3.8.

At the beginning and at the end of the measurement, the final model shows larger
deviations from the capacity loss of the considered NMC cells. This is due to
the changing aging behavior from approximately 288 days on. The selected time
dependency according to the power law approach forms a compromise between
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Figure 3.8: Calendar aging model results for the SOC- and temperature-dependend capacity loss over
the time (line) and corrected capacity loss data (marker).

early and long-term aging. The SOC dependency was parameterized on the basis of
a linear relationship, which changes to a flattening SOC relationship in the course
of the aging process. In future calendar aging models the changing aging behavior
should be considered separately to increase model accuracy. Rumberg et al. [12]
included the effect of cathodic side reactions in their calendar aging model. To
the authors’ knowledge, the influence of transition metal dissolution has not yet
been considered in semi-empirical calendar aging models. This is part of future
research.

3.4 Conclusion

In this calendar aging study on commercial NMC cells, additional periodic character-
ization measurements were used to quantify and correct the effect of the checkup on
the loss of capacity due to calendar aging. A gain in capacity due to the characteri-
zation measurement has been detected. It was attributed to an improvement in cell
kinetics which was indicated by a decrease in cell resistance. Due to the decreasing
resistance, the end-of-discharge voltage is reached later, the cell is discharged further
and the capacity increases. A stronger discharge of the cell was proven by the
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evaluation of the end of discharge open circuit voltage. Based on literature research,
the cause of the decreasing resistance was assigned to an increase of the cathode
surface due to cracking and structural disordering. The capacity gain caused by the
kinetic effect and the electrode degradation itself increase with increasing current
rate in the capacity measurement cycles. To ensure that the capacity fade results
of future aging studies are comparable, the findings lead to the recommendation
to perform the capacity measurement in cell characterizations with a lower current
rate than 1C. The current rate of C/3, already often used in literature, provides
a good compromise between saving measurement time and gentle cycling. The
corrected measurement data showed the typical root-shaped capacity loss expected
from SEI growth in the first nine months of ageing. Subsequently, a change in the
aging behavior has been found. It was characterized by an exponential increase in
capacity loss over time, especially at elevated temperature and SOC. Furthermore, a
constant capacity loss was observed between 70% SOC and 90% SOC instead of a
previous linear SOC dependency. This may be attributed to the influence of cathodic
and coupled side reactions. The exact cause of the changed ageing behavior would
have to be further analyzed, for example by a post-mortem analysis. Finally, the cor-
rected calendar aging data were successfully used to parameterize a semi-empirical
calendar aging model for the capacity loss. The presented aging model is well suited
for an estimation of calendar aging. Nevertheless, for a more detailed capacity loss
model, the change in the aging behavior of the batteries with long-term aging should
be addressed in future investigations.
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Cyclic aging model 4
This chapter is based on the publication „Semi-empirical Cyclic Aging Model for Station-
ary Storages Based on Graphite Anode Aging Mechanisms“ by Amelie Krupp, Robert
Beckmann, Theys Diekmann, Gerd Liebig, Ernst Ferg, Frank Schuldt, and Carsten Agert
[1]. Compared to the original publication, the introduction of the calendar aging model
was shortened because it was already introduced in the thesis chapter 3. The use of the
article in the thesis for non comercial purposes is permitted by the publisher Elsevier.

Abstract
Battery life prediction is steadily becoming more relevant due to the increased use
of batteries in stationary and mobile applications. Current semi-empirical aging
models are often supplemented by empirical model equations and parameterized on
the entire available measurement data set. This practice limits their extrapolation
capability and transferability. The model in this work describes the two important
anode aging mechanisms, solid electrolyte interface (SEI) cracking and reforming
and cracking of the active material, by completely physically based equations. A
simple incremental capacity analysis (ICA) method is introduced to allow targeted
parameterization of the model equations with measurement data, in which the aging
modes associated with the respective aging mechanism are present. The overall
model can accurately describe the battery capacity loss under dynamic frequency
containment reserve loading. It is transferable to all graphite-based battery cell
chemistries and provides a basis for future semi-empirical aging models, describing
the capacity loss in a wide variety of applications by considering further aging
mechanisms.
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4.1 Introduction

In the face of a growing need for grid flexibility options and low-emission solutions,
battery storages are increasingly used in a wide range of stationary and mobile
applications. During its lifetime, the characteristics of a battery change because
of aging mechanisms that occur at rest (calendar aging) and under load (cyclic
aging). Aging progresses until the energy and power performance requirements of
an application are no longer fulfilled and the battery must be replaced. Maximizing
the service life of the battery system is crucial not only for its ecological but also for its
economic profitability. Therefore, it is of significant interest for system manufacturers
and operators to predict and minimize the aging of their battery in application which
is reflected in capacity loss and resistance increase. The approach chosen for an
aging model determines its accuracy and the effort involved in parameterization
and computation. The relevance of the individual features depends on the modeling
objective and the final application of the battery. Semi-empirical models are based
on physical correlations but parametrized with battery aging data. They offer
the advantage of lower computational requirements and simpler parameterization
compared to detailed electrochemical models. Furthermore, due to the physical
background, they are easier to extrapolate and involve less measurement effort
than empirical models [2, 3]. Many approaches for cyclic semi-empirical aging
models have been published in the literature. Gewald et al. [4] compiled a tabular
overview of semi-empirical aging models including considered stress factors and
the target values. In Table 4.1, this review is extended with additional literature
sources and restricted to cyclic aging models that consider at least two stress factors.
The stress factors relevant in cyclic aging are temperature, charge and discharge
current, average state of charge (ØSoC), and depth of discharge (DoD). To allow
comparability between individual cell sizes, the current is often represented as the
C-rate, which relates the charge and discharge current to the nominal cell capacity.
Furthermore, the charge throughput Q and the number of cycles N are the basic
stress parameters in cyclic aging.

Considering the semi-empirical models that are summarized in Table 4.1, it is
noticeable that they include different stress factors as their model input. This
means that individual models have limited applicability to different use cases. An
additional challenge is that semi-empirical models often include equations that
are not physically based. This can result in an incomplete understanding of the
role of specific stress factors on cell aging. The battery capacity loss and internal
resistance increase result from a set of aging mechanisms that occur under the
operating conditions of a specific application. Without an understanding of the
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Source Cell chemistry Model input
T I ∅SoC DoD

Baghdadi et al. 2016 [5] NCA+LMO, NMC ✓ ✓
Cui et al. 2015 [6] LCO ✓ ✓ ✓ ✓
Hoog et al. 2017 [7] NMC ✓ ✓ ✓
Hosen et al. 2020 [8] NMC ✓ ✓ ✓ ✓
Petit et al. 2016 [9] NCA, LFP ✓ ✓
Schimpe et al. 2018 [10] LFP ✓ ✓ ✓
Schmalstieg et al. 2014 [11] NMC ✓ ✓
Wang et al. 2014 [12] NCM + LMO ✓ ✓
Xu et al. 2018 [3] LMO, LFP, NMC ✓ ✓ ✓

Table 4.1: Overview of semi-empirical cyclic aging models which consider at least two stress factors
with cell chemistry used in the model parametrization and input parameters.

underlying aging processes in different cell chemistries and under different operating
conditions, it is not possible to draw reliable conclusions from battery aging data
that can be applied in general to other types of systems. Only a few publications
include exclusively mechanistically based model equations considering selected
stress factors [13–15]. Finally, most cyclic semi-empirical models are parameterized
on the entire available measured data set. No distinction and verification of the
actual aging mechanisms are made, although this can significantly increase the
model extrapolation capability. A step in this direction was made by Schimpe et
al. [10] who differentiated between aging at high temperature, low temperature,
and high temperature combined with high SoC in the model parameterization.
They suspected different aging mechanisms as the cause of varying observed aging
processes but did not provide an analysis to confirm the assumption.

To overcome the aforementioned issues, in section 4.2 we present a cyclic battery
aging model that describes the capacity loss in graphite-based lithium-ion batteries.
The focus was set on the capacity loss, as it often determines when the end of life
(EoL) of a battery is reached. The mechanistic model is based on the simplified
description of two important aging mechanisms of the graphite anode: solid elec-
trolyte interface (SEI) cracking and reformation as well as active anode material
cracking. Thereby, the model incorporates the influence of all the above-mentioned
stress factors on the respective aging mechanisms. Furthermore, in section 4.3 we
propose a method for the targeted parameterization of the model equations with
selected measurement data. The discussed aging mechanisms cause different aging
modes: loss of lithium inventory (LLI) and loss of active material at the negative
electrode (LAMNE), which have been found to be the major aging modes for capacity
loss in aging studies on various graphite-based lithium-ion batteries [16–18]. Incre-
mental capacity analysis (ICA) is used to identify measurements in which LLI is the
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dominant aging mode. These exclusively parameterize the base aging mechanism
model connected to SEI growth. In section 4.4 the testing procedure on commercial
NMC cells providing the parametrization data is introduced. The stress factor levels
of the aging measurements are restricted by the operating conditions of a station-
ary, temperature-controlled battery storage system. The aging mechanism model
parametrization is described in section 5.5. Finally, the resulting cyclic aging model
is coupled with the calendar aging model from our previous publication [19]. The
holistic model is validated on data from a cell aged under a dynamic power profile
oriented to the frequency containment reserve operation.

4.2 Holistic capacity loss model

To model the total lithium-ion battery capacity loss, the calendar capacity loss
Closs,cal and cyclic capacity loss Closs,cyc are added up using the superposition
approach:

Closs,tot = Closs,cal + Closs,cyc. (4.1)

Thus, they are assumed to be independent of each other and overlapping effects
including for example the influence of the SEI thickness resulting from calendar
aging on the cracking and reforming of the SEI during cyclization are neglected.
The calendar aging model was introduced and parameterized in our previous study
[19] (see chapter 3). The model equations are based on modeling the aging mecha-
nism SEI formation, which dominates the calendar aging. Rising Temperature and
higher battery SoC accelerate the capacity loss. The cyclic aging model is defined
below.

4.2.1 Cyclic aging model

The presented cyclic aging model describes the macroscopic capacity loss of the
battery by simplified modeling of two microscopic anode aging mechanisms: SEI
cracking and reforming and cracking in the anode active material. The capacity loss
of the battery caused by cyclization is determined by the sum of the capacity losses
due to the individual aging mechanisms

Closs,cyc = Closs,SEI + Closs,AM . (4.2)
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The considered stress factors affecting cyclic aging are DoD, average SoC, current
I, and temperature T . The cycled charge Q in Ah provides the cyclic aging model
basis. It is used to determine the number of equivalent full cycles (EFC)

EFC = Q

2 · Cnom
, (4.3)

which relates to the nominal cell capacity Cnom. One equivalent full cycle corre-
sponds to the charge that flows in a complete charge and discharge process. Fig. 4.1
gives an overview of the model configuration. It shows the considered input stress
factors, the aging mechanisms modeleled, the connected aging modes - which are
relevant for the identification of parametrization data - and the model output, which
is the battery capacity loss. In the following, we describe the aging mechanisms and
related stress factors considered in this work and define the model equations for the
cyclic capacity loss.

Figure 4.1: A model overview. Left: Stress factors considered in modeling the two aging mechanisms
under consideration. Middle: Visualization of the anode aging mechanisms. Right:
Associated aging modes which are evaluated for the targeted parameterization, and model
output.

SEI cracking and reforming

The passivating SEI layer existing due to the formation process and calendar aging
is subjected to mechanical stress due to the expansion and contraction of the active
material during cyclization. Cracks develop, which leads to an increase in the SEI
surface area. On the enlarged surface, more SEI can grow. If the cracks are deep
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enough, the carbon anode surface is exposed to the electrolyte and new SEI forms
instantaneously. Thus, as the cracks open and close during cyclization, further
SEI is continuously formed [20, 21]. In the SEI reaction, electrolyte components
irreversibly react with lithium from the anode, resulting in a loss of lithium inventory
[22–24]. The quantity of this LLI and the associated capacity loss depends on several
stress factors. The mechanical stress due to volume expansion of the anode changes
with the DoD and average SoC of a charge and discharge cycle. In addition to
mechanical effects, the chemical SEI reaction kinetics is relevant. The reaction is
accelerated with higher temperature and lower anode potential, which means higher
battery SoC. The SEI growth further increases with higher currents. In particular,
the charging current is relevant, since the SEI growth is partially suppressed during
discharge [22, 25]. The stress factor-dependent model equations for capacity loss
due to SEI growth are presented below. Following recent aging studies, the effect
of the current rate on capacity loss due to SEI growth can be assumed negligible
[26]. It is considered indirectly by the temperature dependency due to the coupling
between the current rate and temperature rise.

EFC dependency

The diffusion-limited SEI growth and associated capacity loss are proportional to
the square root of time. During long-term cyclization, it is possible to observe a
transition from square root dependent to linear capacity loss. This can be explained
by the transition between diffusion- and migration-limited SEI growth with a certain
SEI thickness [22] or repeated SEI cracking and reforming [27, 28]. To encompass
this changing long-term aging behavior, the exponent of EFC dependency c1 is
determined empirically. The resulting model equation is

Closs,SEI(T,∅SoC, DoD, EFC) = α(T,∅SoC, DoD) · EFCc1 with 0.5 ≤ c1 ≤ 1. (4.4)

The scaling function α(T,∅SoC, DoD) is defined by the multiplicative combination
of independent stress factor dependent functions.

Temperature dependency
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The temperature dependency of the SEI reaction kinetics follows the Arrhenius law
[7, 29]. It is added to equation 4.4 as temperature dependency of alpha, which
results in

Closs,SEI(T,∅SoC, DoD, EFC) = β(∅SoC, DoD) · e
−Ea
R·T · EFCc1 . (4.5)

with the ideal gas constant R and the activation energy of the SEI reaction Ea. The
remaining scaling function β(∅SoC, DoD) is determined in the following.

DoD and ∅SoC dependency

The DoD and average SoC at cyclization affect the volume expansion of the graphite
active material and thus the mechanical stress leading to cracking of the SEI. In the
following, an expansion function is defined based on the anode volume change with
lithiation. An analogous function has already been used in various electrochemical
and mechanical models [21, 30] and is in this work transferred to a semi-empirical
model. When the battery is charged, the lithium-ions move into the gaps between
the carbon layers and increase their distance by about 13% [31]. Due to the high
energy required to open a layer, the lithium-ions do not distribute homogeneously,
but rather leave free spaces between the occupied layers. Therefore, the lithia-
tion happens in several consecutive phases, which are determined over periodic
unoccupied layers between layers with high lithium concentrations. This stepwise
intercalation of lithium in graphite is also reflected in the volume expansion of the
anode. Schweidler et al. [31] investigated the change in graphite volume during
lithiation and assigned individual intercalation stages and phase transformation
regions to it. Fig. 4.2a shows the related percentage volume expansion of graphite
as a function of the lithium concentration x in the hexagonal crystal structure of
graphite LixC6. Furthermore, the relative volume change is shown. Based on this,
we define a SoC dependent expansion function fexp. For several reasons, 100%
SoC of the battery does not have to correspond to 100% lithiation of the anode.
First, the graphite anode in lithium-ion batteries is usually oversized. For the cells
used in this study, it was determined to be about 5% more anode than cathode
capacity in an initial cell opening [19]. Second, during the aging of the battery,
the anode capacity and the number of available mobile lithium-ions change. Thus,
the maximum possible lithiation of the anode at a given battery SoC changes with
aging. Assuming that the cells under consideration have neither LLI, nor LAMNE
at the beginning of the battery aging, 100% SoC of the battery is equated to 95%
lithiation of the anode, corresponding to the identified overhang. The expansion
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function is defined over fitting the relative volume change of the anode as a function
of the SoC with a seventh-degree polynomial

fexp(SoC) = n1 ·SoC7+n2 ·SoC6+n3 ·SoC5+n4 ·SoC4+n5 ·SoC3+n6 ·SoC2+n7 ·SoC+n8. (4.6)

with the coefficients shown in Table 4.2.

Coefficient n1 n2 n3 n4 n5 n6 n7 n8
Value 2.74 -8.39 8.38 -2.39 -5.05 9.70 0.02 -6.19

Power of 10 10−13 10−11 10−9 10−7 10−6 10−5 - 10−3

Table 4.2: Expansion function fitting parameters.

The Graphite volume change data and the fitted SoC dependent expansion function
are shown in Fig. 4.2a. The polynomial choosen, is able to describe the important
parts of the volume change including the nearly linear start of the volume expansion,
the plateau at medium SoC and the flattening volume change at high SoC. To allow
a qualitative comparison of the mechanical stress at different operating conditions,
the mechanical stress amplitude σ is defined by the difference of the expansion
function values at the maximum and minimum SoC of a cycle

σ(∅SoC, DoD) = fexp(∅SoC + DoD

2 ) − fexp(∅SoC − DoD

2 ). (4.7)

Figure 4.2b illustrates the stress amplitude dependency on DoD and average SoC at
50% ∅SoC and 5% DoD respectively. It monotonically increases with the DoD. The
flattening of the stress amplitude at high DoD is due to the decreasing volume ex-
pansion at high battery SoC, when nearly all graphite layers are occupied (Fig. 4.2a).
The SoC dependency reflects the typical parabolic stress factor correlation in the
range between 10% and 70% SoC, which has been qualitatively detected in a wide
variety of aging studies [4]. At 40% SoC the stress amplitude reaches its minimum
within the plateau in the graphite volume change. Furthermore, there is a maximum
at around 80% SoC after which the mechanical stress decreases. This again relates
to the flattening volume expansion of the graphite material at higher degrees of
lithiation. The flattening of the stress amplitude below 10% SoC has no physical
meaning. It is caused by the use of the chosen seventh-degree polynomial describing
fexp. Since batteries are in practice rarely cycled at those low states of charge, this is
tolerated.
The capacity loss due SEI reformation is assumed to be proportional to the stress
amplitude σ. According to the Paris Law from fracture mechanics a crack in a
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(a)

(b)

Figure 4.2: Graphite expansion function and mechanical stress amplitude σ. (a) Volume change of the
graphite anode as a function of lithium concentration plotted with data from Schweidler
et al. [31] and relative volume change (expansion function) versus battery SoC for a fresh
battery cell. (b) DoD and ∅SoC dependent stress amplitude at 50% average SoC and 5%
DoD respectively.
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material grows exponentially with the number of fatigue cycles. However, the SEI
crack growth is limited. If the anode material is exposed, new SEI reforms directly.
Furthermore, smaller cracks can heal through reforming SEI. For this reason, it is
expected that the SEI cracks only reach a certain depth under small mechanical
stress. The maximum crack depth and thus the increase in SEI surface area and SEI
growth are assumed to be proportional to the mechanical stress which is expressed
by the stress amplitude. With that the model equation 4.5 is extended to

Closs,SEI(T,∅SoC, DoD, EFC) = c2 · σ(∅SoC, DoD) · e
−Ea
R·T · EFCc1 (4.8)

with the scaling coefficient c2.
The SEI growth is also dependent on the chemical reaction kinetics. In graphite
anodes, SEI formation occurs at nearly any SoC when the anode potential is below
the reduction potential of the electrolyte. The reaction probability increases as
the anode potential decreases [22, 23]. For this reason, various calendar aging
studies have shown a capacity loss with a SoC dependency characteristic of the
anode potential [23, 32]. In calendar aging, the anode potential corresponds to
the anode Open Circuit Voltage (OCV). However, in cyclic aging, it is made up of
the OCV and the overvoltage due to the current flow during cycling. To keep the
model as simple as possible, no OCV or overvoltage models are included. Instead, it
is assumed that the anode potential decreases proportionally to the SoC increase.
This approximation is justified for above 20% SoC, before the steep increase of the
anode potential occurs. Following the Tafel equation, the acceleration of the SEI
reaction can be described by an exponential relationship

E(∅SoC) = c3 · ec4·∅SoC (4.9)

with the model parameters c3 and c4. For simplification, the equation refers to
the average SoC of a cycle instead of the actual SoC at cyclization. In contrast to
this, some battery cells show a flattening capacity loss at higher SoC [19]. This
could be attributed to parasitic cathode reactions, which cause a reversible capacity
gain through re-intercalation of lithium-ions into the cathode and thus reduce the
measured capacity loss at high SoC [23]. Since cathode reactions are not separately
considered in this model, the SoC dependency of the SEI growth is adjusted to
be able to model the measured capacity loss. To describe the transition from an
exponential to a saturating process, a sigmoidal function

S(∅SoC) = 1
1 + e−c3·(∅SoC−c4) (4.10)
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would be suitable. The amplitude of the scaling function is one, c3 influences the
slope to reach this amplitude and c4 is the shift of the inflection point in x-direction.
When the model is restricted to a specific SoC range, a linear function

L(∅SoC) = c3 · ∅SoC + c4 (4.11)

can also be sufficient to describe the acceleration of the SEI reaction with the battery
state of charge. By coupling of the SoC dependence of the SEI reaction kinetics with
equation 4.8, the final model equation for capacity loss due to SEI growth under
cyclization

Closs,SEI(T,∅SoC, DoD, EF C) = c2 · σ(∅SoC, DoD) · e
−Ea
R·T · EF Cc1 ·


E(∅SoC)

S(∅SoC)

L(∅SoC)

(4.12)

is obtained. The decision to choose an exponential, sigmoidal or linear SoC de-
pendency must be made individually for each cell chemistry and stress factor range
under consideration. The explicit formulation is applied in the model parameteriza-
tion with data from cyclic aging tests at static stress factors. To model the capacity
loss under dynamic aging conditions, the differential equation

∂Closs,SEI

∂EFC
= c2 · σ(∅SoC, DoD) · e

−Ea
R·T · c1 · EFCc1−1 ·


E(∅SoC)

S(∅SoC)

L(∅SoC)

(4.13)

is used.

Anode active material cracking

With repeated expansion and contraction of the anode during cycling, cracks form in
the active material. These lead to areas of active material, being no longer available
for the reversible storage of lithium during cycling. This is associated with a capacity
loss if the affected electrode is the capacity limiting electrode. Furthermore, the
inactive areas of the material can be lithiated, resulting in a combination of LAM
and LLI. The capacity loss due to cracking in the anode active material caused by
mechanical stress during cyclization is modeled as a function of the stress factors
DoD, average SoC and current during cyclization. The dependency of the graphite
anode volume change on DoD and SoC has already been explained in section 4.2.1.
With higher currents, lithium concentration gradients build up in the active material,
leading to increased mechanical stresses. Furthermore, the active material cracking

4.2 Holistic capacity loss model 69



is accelerated by a lower temperature as the decreasing diffusion coefficient pro-
motes the formation of lithium concentration gradients. The mechanical properties
of graphite itself do not change in the temperature range between 10◦C and 45◦C
[20]. For a temperature-controlled battery storage system, the effect of temperature
is implicitly considered by investigating the current dependency.

EFC, DoD and ∅SoC dependency
The crack growth rate can be described by the Paris law of fracture mechanics for
sub-critical crack growth

∂a

∂N
= C · (∆K)m. (4.14)

The power function describes the change in crack depth a with the number of fatigue
cycles N . C and m are empirical material constants and ∆K corresponds to the span
of the stress intensity. The latter depends not only on the stress amplitude at volume
expansion, but also on the pre-existing crack depth. If the crack opening occurs
perpendicular to the crack surface, the stress intensity factor K can be assumed to
be proportional to the root of the crack depth [20]. The span of the stress intensity
is consequently given by

∆K = ϵ · σt ·
√

a (4.15)

with the empirical pre-factor ϵ and the tensile stress σt. The capacity loss caused
by active material cracking, is assumed to be proportional to the crack depth when
the number of cracks remains constant. The differential formulation of the model
equation for the capacity loss due to cracking in the anode material Closs,AM is
defined analogously to the Paris law

∂Closs,AM (∅SoC, DoD)
∂EFC

= c5 · (σ(∅SoC, DoD) ·
√

Closs,AM )m (4.16)

with the empirical model coefficients c5 and m.

Current dependency

Compared to modeling the SEI growth or formation of lithium plating, there are
significantly fewer validated studies modeling current rate dependent crack for-
mation in the active material [33]. Purewal et al. [20] derived a proportionality
between cell current and tensile stress at the particle surface based on Fick’s second
law of diffusion. Analogously, the span of the stress intensity ∆K is extended by a
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linear current dependency. For the capacity loss change with the number of EFC it
follows

∂Closs,AM (∅SoC, DoD, I)
∂EFC

= c5 · (I · σ(∅SoC, DoD) ·
√

Closs,AM )m (4.17)

with the primitive function

Closs,AM (∅SoC, DoD, I) =

1
I2 · σ(∅SoC, DoD) ·

(
−EFC · (m − 2) · c5 · σ(∅SoC, DoD)2 · I2

2

) −2
m−2

. (4.18)

For a physically meaningful result - a capacity loss that gradually increases with the
number of cycles - the parameter m must be in the range between two and zero.

Passive anode effect

In addition to the aging mechanisms, the passive anode effect (PAE) is considered
in the model parametrization. The PAE can have a significant influence on the
detected capacity loss depending on the cell SoC before and during aging [34, 35].
It originates from the common practice of overdimensioning of the graphite anode
compared to the cathode which results in anode sections having no direct cathode
counterpart. Lithium concentration differences between active and passive part of
the anode (also called overhang) slowly equilibrate by diffusion. If the concentration
in the active part of the anode is higher than in the passive part, lithium diffuses into
the overhang region. On the other hand, if the lithium concentration in the active
part of the anode is lower, it is lithiated from the overhang. The equalization process
and thus the complete PAE occurs in a period of days to months depending on factors
such as temperature, the potential difference between the active and passive anode
parts and the dimensioning of the overhang. However, the main contribution of the
PAE is detectable in the time period directly after setting a new battery SoC, when
the potential difference of active and passive anode is the highest [36, 37]. The
lithium diffusion processes cause a reversible capacity loss or gain. The consideration
of PAE is relevant in many studies, especially when the accurate prediction of the
currently available battery capacity is required [23, 29]. When modeling the overall
lifetime of battery systems, the contribution of PAE to the total capacity loss is only
small. Anyway, it needs to be considered in the lifetime model parametrization
with experimental data. Neglecting it can lead to an over- or underestimation of
SoC-dependent model parameters and thus significantly influence the results of the
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lifetime modeling. Depending on the model objective, there are various options for
considering the PAE: 1. Include the PAE as a part of the aging model [23], 2. Reduce
the PAE on cell characterization results by storing the cell at the SoC of the following
storage or average SoC for a following static cycling period [35], 3. Include the PAE
as an offset in the model parameterization. In the presented work, the capacity loss
or gain due to the PAE Closs,P AE is added to the capacity loss model as an offset:

Closs,cyc = Closs,SEI + Closs,AM + Closs,P AE . (4.19)

This approach assumes that most of the capacity gain or loss due to the PAE already
occurred within the time range between the first and second cell characterization in
the related battery aging measurements. The exchange of lithium in a time step is
proportional to the potential difference between the active and passive parts of the
anode [23, 37]. The PAE capacity loss is approximated by a linear SoC-dependent
function

Closs,P AE(SoC0,∅SoC) = c6 · ∅SoC − c6 · SoC0 (4.20)

With prior knowledge of the initial cell SoC before cyclization SoC0, the zero crossing
of the capacity loss due to PAE can be specified. The slope of the linear function c6

is empirically determined.

4.3 Aging mode identification for model parametrization

As shown in Fig. 4.1, the presented model differentiates between two aging mecha-
nisms that are coupled to different aging modes. This distinction allows a targeted
parameterization of model equations with selected measurements in which only asso-
ciated aging modes occur. While aging mechanisms are difficult to separate without
extensive investigations such as post-mortem analyses, different aging modes can be
identified by using incremental capacity analysis [16]. The incremental capacity (IC)
is determined by the ratio of the change in charge to the change in voltage in a time
step. With a smaller battery voltage change the value of IC increases. Therefore,
battery cell voltage plateaus are displayed as peaks in the IC curve. Fig. 4.3a shows
the IC curve of a typical NMC cell. The three main peaks are marked as peak one,
two and three respectively. As for most graphite-based cells, the peaks are primarily
determined by the anode potential and can be related to graphite anode phase
equilibria [16, 38].
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(a)

(b)

Figure 4.3: Incremental capacity analysis (ICA) method. (a) Incremental capacity plotted over the
cell voltage. The peak areas evaluated in the ICA are marked as area 1+2 and area 3. (b)
Relative peak area over the capacity loss of six NMC cells calendar aged at 40◦C and 50%,
70%, and 90% SoC respectively. The lines indicate the range with a 98% probability, that
a measured area 1+2 value lies within the tolerance interval. It was determined from the
standard deviation and mean value of the probability density function (PDF) also shown.
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The features of interest that include peak height, position, and area are analyzed in
the ICA. The peak position is affected by a change in polarization resistance. With
higher polarization resistance, the battery overvoltage increases and the IC peaks
shift to higher voltages at charging and lower voltages at discharging. The area
under a peak corresponds to the capacity stored in the associated voltage range.
The peak height changes either as the peak area decreases or due to the broadening
of the peaks as the kinetics of charge transfer reactions in the battery slow down.
Therefore, the peak height is sensitive to capacity loss and an increase in resistance.
Since the target variable of the presented aging model is the battery capacity, the
peak area is evaluated to assess the aging modes.
Detailed modeling of the effect of aging modes on the features of interest in different
cell chemistries can be found in literature [16, 39]. In the case of LAM, the anode
or cathode loses active material and thus electrode capacity. Consequently, the
individual phase transitions in the electrodes are reached more quickly. This leads
to a decrease of the corresponding area of each peak formed by the electrode
potential. For the example of an NMC battery, the anode phase equilibria can be
clearly distinguished and LAMNE can be identified by a decrease in the area of all IC
peaks. At dominating LAMPE the cathode terminates the battery discharge, which
especially leads to a decrease of the first IC peak area. In the case of LLI, the graphite
anode is filled with fewer lithium-ions during charging, which means that only the
area of the third IC peak would show a decrease. Conversely, this implies that as
soon as the area of peaks one and two decreases, another aging mechanism beyond
LLI would be present. This applies until LLI has progressed so far that the third peak
disappears and the LLI starts to proportionally reduce the second IC peak.
The change in the peak areas is evaluated by integrating the IC in the peak voltage
interval. The respective voltage window is limited by the minimum between peaks
two and three as shown in Fig. 4.3a. In the case of LLI, the area of the third
peak decreases while that of the other peaks remains constant. To confirm this
effect, calendar aging data can be used. In calendar aging, SEI formation is the
dominant aging mechanism and thus LLI is the prevailing aging mode. In Fig. 4.3b
the evolution of the relative peak areas is plotted over the capacity loss of six NMC
cells calendar aged at an elevated temperature of 40◦C and different SoC [19]. The
data are presented without error bars since it is assumed that the measurement noise
on the IC curve largely averages in the integration process. A systematic offset of the
results due to measurement errors is not relevant since the area change and not the
absolute area value is considered. As expected, the relative area of the third peak
decreases with increasing capacity loss, while the grouped area of peaks one and two
remain relatively constant. The spread of the area 1+2 around the expected value
of one is influenced by random measurement errors and the cell-to-cell variation.
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As shown in the histogram in Fig. 4.3b it is almost symmetrical and can assumed
to be normally distributed. The corresponding standard deviation is 5.8·10−3. The
specified tolerance intervals indicate the deviation from the expected value of one,
in which 98% of all measured values can be found. If additional LAM was present,
all IC peaks would lose area and the marked limits of the grouped peak one and two
area would continuously be exceeded by the measured relative peak areas. These
criteria can be applied in all graphite-based lithium-ion battery cells, provided that
the graphite peaks are clearly identifiable.

4.4 Material and methods

This section provides a detailed description of the used cells, measurement systems
and methods to allow reproduction of the results.

4.4.1 Cell specification and testing system

The tested batteries were Li(NiMnCo)O2 (NMC) /graphite pouch cells with a nominal
capacity of 64 Ah. The cell voltage is limited to 3 V at discharge and 4.2 V at
charge. The cells were obtained from a battery module that was subjected to a
few charge and discharge cycles and one year of storage at about 50% SoC. The
cycling and characterization of the cells was done with a Maccor 4000 battery tester.
The corresponding measurement errors are ∆U = ±0,2 mV for the voltage and
∆I = ±3 mA for the current. The uncompressed single cells were tested in three VC
7018 Vötsch climatic chambers that maintained the ambient temperature constant
with a tolerance of 1◦C. The cells were randomly distributed among the individual
climatic chambers and measurement channels. To reduce the deviation between
results of the single cell measurements, the screws connecting the power cable and
cell contacts were tightened with a fixed torque of 25 Nm and 1.2 Nm, adapted to
the diameter of the used screw threads.

4.4.2 Test matrix

In the cyclic aging test series, 14 cells were cycled with constant stress factors. After
every 100 capacity cycles, a cell characterization was performed. The stress factors
were limited with respect to a temperature-controlled stationary storage system
providing grid frequency containment reserve. Therefore, all tests were done at
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23 ◦C climatic chamber temperature. The DoD range studied was between 0 and
100% DoD with various DoD steps. The average SoC, related to the current cell
capacity, was examined especially at high SoC at three levels of 50%, 70% and,
90% SoC. The focus was set at high SoC that are particularly relevant for hybrid
systems consisting of the combination of a battery storage with an energy sink. The
cycling was done symmetrically with equal charging and discharging current rates
at a maximum of 2C. An overview of all the stress factor combinations used in the
test series is summarized in Table 4.3.

No. DoD [%] ∅SoC [%] C-rate [1/h] Correction
Closs,char

Aging modes

1 5 50 0.5 ✓ LLI
2 10 50 0.5 ✓ LLI
3 20 50 0.5 ✓ LLI
4 40 50 0.5 ✓ LLI
5 50 50 0.5 ✓ LLI
6 60 50 0.5 ✓ LLI
7 80 50 0.5 LLI + LAM
8 90 50 0.5 LLI + LAM
9 10 70 0.5 ✓ LLI
10 10 90 0.5 ✓ LLI
11 10 70 1.25 ✓ LLI
12 10 70 2 ✓ LLI
13 100 50 2 LLI + LAM
14 30 50 0.5 Excluded* LLI + LAM

*because of measuring channel failure

Table 4.3: Cycle aging test matrix including stress factors of the individual measuring points. The
indication whether capacity loss due to the characterization measurement is corrected and
the assigned aging modes are results from sections 4.5.1 and 4.5.2. They have been added
here to facilitate the results assignment to individual stress factor settings.

4.4.3 Dynamic validation profile

For model validation, one cell was exposed to a dynamic power profile adapted
to frequency containment reserve operation. The validation profile is based on
seven days of European frequency data starting on 10 October 2019. In FCR
provision, the battery power scales linearly with the grid frequency deviation of
50 Hz. At a deviation of 0.2 Hz the maximum prequalified power is demanded.
For the considered system configuration, the single cell maximum power is about
300 W, which corresponds to a current rate of about 1.3C at 3.68 V nominal cell
voltage. In addition, rules and degrees of freedom for the provision of FCR were
considered calculating the power profile [40]. These are not the focus of this paper
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and therefore will not be discussed further. The start and target battery SoC in the
dynamic validation profile is 50% SoC.

4.4.4 Characterization

At the start of the test sequence, a preconditioning was performed that includes
five complete charge and discharge cycles at 1C. This was followed by an initial
cell characterization that includes a capacity measurement, a pulse test and a slow
discharge with 1/10C to determine the IC. The capacity measurement started with
a constant current (CC) charge at 1C. When the charging voltage was reached,
a constant voltage (CV) step was used until the current rate was less than 1/20
C. The cell was then CC discharged again at 1C. This was repeated twice with a
half hour break for relaxation after each charge or discharge step. The subsequent
pulse test was performed at 10%, 50%, and 90% SoC respectively. The cells were
charged at 1C until a target SoC was reached. After an hour of rest, the cells were
discharged with a 1C pulse for 10s. This was followed by a 30s rest and a charging
pulse with 1C over 10s. Then the cells were charged to the next target SoC and
the test sequence was repeated. Finally, the cells were fully charged with a CCCV
protocol. After another 30 minutes rest period, a discharge with 1/10C completed
the characterization measurement.
To investigate the capacity loss due to cell characterization, a periodic characteri-
zation measurement was carried out on two cells. It consisted of 15 consecutive
characterization measurements with a rest time of 30 minutes between each charac-
terization.

4.5 Results and discussion

In this section, we present the experimental and theoretical results. At first, the
experimental data processing is explained. Then, the aging mode identification is
done using the IC method introduced. Afterwards, the aging mechanism model
equations are parametrized with data including the corresponding aging modes.
Finally, the complete model with cyclic and calendar aging is validated using dynamic
FCR aging data.

4.5 Results and discussion 77



4.5.1 Data processing

In data preprocessing, we correct the capacity loss measured for the capacity loss
due to cell characterization by subtraction as introduced in our previous study [19].
Furthermore, the calendar aging was subtracted. The calendar aging capacity loss
is modeled in one-second timesteps using the equations attached in ?? and the
SoC and temperature data recorded during cyclic aging. The capacity loss due to
the characterization Closs,char was determined from the periodic characterization
measurement on two separate cells. The cells show an initial capacity gain, which
reaches its maximum of 0.15% after three characterizations. It can be attributed to
a reduction of the polarization resistance due to electrode surface expansion under
mechanical stress in cyclization [19]. An influence of PAE is assumed to be negligible
due to the agreement of the initial cell SoC (50% SoC) with the average SoC of the
characterization measurement cycles. The subsequent characterization capacity loss
mean value was fitted by using the linear function Closs,char = 0.04 · N − 0.31 for
extrapolation. In cyclic aging, the battery is permanently exposed to mechanical
stress. Hence, Closs,char cannot be clearly distinguished from the capacity loss due
to cyclization. Nevertheless, the capacity gain and loss due to characterization can
significantly influence the results of cyclic aging tests – particularly at cyclization
with small DoD, where the capacity loss of the battery differs only slightly from that
in calendar aging. Therefore, all measurements where the cyclic capacity loss in the
third characterization was changed by more than 20% after subtracting Closs,char(N)
were corrected by the capacity loss share of the characterization measurement. For
the other measurements, the influence of the characterization was assumed to be
negligible. Which measurement data were corrected by the capacity loss due to
characterization is noted in Table 4.3 in section 4.4.

4.5.2 Assignment of the aging modes

To select the measurements in which the basic aging mode LLI dominates, the ICA
method introduced in section 4.3 is used. Fig. 4.4 shows the relative peak area of
the analyzed IC peaks 1+2 and 3 plotted over the capacity loss of different cells
from the cyclic aging tests. The evaluated IC curves were smoothed with a moving
average filter over a sliding window of the length of three measurement values.

The cells that were cycled at 10% and 60% DoD are examples of the identified aging
mode LLI. The 10% DoD cell showed only a very small capacity loss of less than
one percent within the cyclic aging. No significant drop can be seen in any of the
peak areas. DoD 60% is the highest cycling DoD assigned to the LLI aging mode.
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Figure 4.4: Relative IC peak area of peaks 1+2 and 3 over the capacity loss for four example cells
cycled at different DoD, 50% ∅SoC , and 0.5C. Furthermore, the 100% DoD, 50% ∅SoC
and 2C cell results are shown. The area marked in blue indicates the LLI tolerance interval
of peak area 1+2 introduced in Figure 4.3b. A continuous decrease of the peak area 1+2
was detected at the highlighted measurement values. Here, loss of active material (LAM)
was identified in addition to the loss of lithium inventory (LLI).

The area of peaks 1+2 does not drop below the area tolerance range identified for
LLI until the end of the tests at a capacity loss of about 3.8%. All measurements
below 60% DoD were also assigned to the LLI aging mode. An exception is the 30%
DoD measurement in which additional LAM was detected in terms of a continuous
drop of the peak area 1+2. The cell used for this specific cycle test showed a clear
voltage noise to the end of the test series. This could be attributed to a defect of
the measurement system channel, therefore the cell was excluded from all further
evaluations. Measurements at more than 60% DoD also show a drop in the peak area
1+2 and therefore were assigned to additional LAM. This can be seen in the example
of the 90% DoD and the 100% DoD and 2C measurements. The classification of all
measurements to the aging modes is shown in Table 4.3 in section 4.4.
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4.5.3 Parametrization SEI cracking and reforming

In the following, we use the measurements assigned to the aging mode LLI to
parameterize the SEI cracking and reforming aging mechanism model. To reduce
the influence of the PAE on the capacity loss EFC dependency, the parametrization
includes two optimization steps. First, the dependence of the capacity loss on the
number of EFC is determined on cells cycled at 50% average SoC, a current rate
of 0.5C, and various DoD. Second, the overall SEI cracking and reforming model
equation including the already determined model parameter c1 is parameterized.

EFC dependency

In the first step, Eq. (4.8) is parametrized, which only considers the mechanical
stress DoD and SoC dependency and the chemical temperature dependency. The cell
temperature was determined by the mean value of the measured temperature in a
cyclization period. The cells heated up only slightly to a maximum of about 24◦C
during cycling at 0.5C. The activation energy of the SEI reaction was already deter-
mined to be 36.36 kJ/mol in the calendar aging of the NMC cells considered [19]
and is adopted for the cyclic aging model. The model parameters are determined
by minimizing the sum of the squares of the residuals using the MATLAB function
lsqnonlin. The model results and their absolute deviation from the measured data
are shown in Fig. 4.5a. The determined exponent of the EFC dependency c1 is
0.98. The capacity loss is almost linear, which can be explained by the onset of
migration-limited SEI growth [22] or the permanent cracking and reforming in the
SEI during cyclization [41]. The mechanical stress amplitude adequately describes
the DoD dependence of the capacity loss. The absolute deviation of the modeled
from the measured values is mostly below 0.5%. Only the 60% DoD measurement
significantly deviates from the model forecast with 1% absolute error after around
650 EFC. The measurement data at 50% and 60% DoD almost coincide, although,
according to the mechanical stress function the capacity loss should increase with
higher DoD. Since the model sufficiently describes all the other DoD dependencies,
this single-cell behavior is not discussed further.

SoC dependency

In the calendar aging of the NMC cells considered, a saturating capacity loss SoC
dependence was observed at high SoC. It was described by a linear function in
the range above 50% SoC [19]. Accordingly, the linear SoC dependency L(∅SoC)
(Eq. (4.11)) is used in the cyclic aging model. To parametrize the SoC dependency of

80 Chapter 4 Cyclic aging model



(a)

(b)

Figure 4.5: SEI growth model optimization results at (a) different DoD, 0,5C and 50% ∅SoC (b)
different SoC, 10% DoD and 0.5C.
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the chemical SEI growth in Eq. (4.12), all capacity loss results which were identified
for LLI are used (see Table 4.3). Only the measurements at increased current rates
and 70% SOC were excluded from the model parameterization due to a significantly
increased measurement noise. The capacity loss offset due to the passive anode
effect is added to the cyclic capacity loss according to Eq. (4.19) and (4.20). The
model parameters resulting from fitting the measured data are shown in Table 4.4.
In Fig. 4.5b, the model results at different SoC and 10% DoD are plotted together
with the absolute model deviation. The capacity loss at elevated average SoC and
a current rate of 0.5C is described with a small absolute error of less than 0.25%.
The increased measurement noise at higher current rates and 70% SoC leads to
significant absolute errors of the model in comparison to single datapoints. The
model assumption that the current rate dependence of the SEI growth is negligible
is confirmed by the measured data since no increased loss of capacity is detected
with higher current rates. The remaining difference in the model results at 70% SoC
is caused by the temperature increase of the cells at cycling with higher current rates.

Symbol c1 c2 c3 c4 c5 c6 m Ea

Value 0.98 9.31
·104

3.90
·10−3

0.20 4.00
·10−3

34.50
·10−3

1.23 36.36

Unit % 1/% % hm %1− m
2 kJ/mol

Table 4.4: List of cyclic aging model parameters.

Passive anode effect
The slope c5 of the linear Closs,P AE function was determined to be 34.50·10−3. To
check the plausibility of the result, an estimate of the capacity loss and gain due
to the influence of the overhang was done by using the slope method presented
by Lewerenz et al. 2018 [36]. They linearly extrapolated the irreversible capacity
loss after compensation of the anode overhang effect. The offset due to the PAE is
determined at the y-axis intercept of the fitted line. The method was verified on
calendar-aged cells and is transferred to cyclic aging in this work. This is possible
since the aging mechanism SEI formation dominates in the used measurements,
which allows the assumption of a linear irreversible capacity loss also in cyclic
aging. Fig. 4.6 shows the results of the analysis for the 50%, 70% and 90% ∅SoC
measurements. The linear fit was performed on the measured data after the full
compensation of the initial PAE, which is assumed to be after at least 300 EFC. That
accounts to about two months of aging, depending on the average SoC and DoD
of the respective cycles. At 50% SoC the offset of the identified PAE capacity loss
is on average -0.02%, with a standard deviation of 0.28%. At 70% SoC and 90%
SoC, a capacity loss of 0.76% and 1.49% due to PAE were determined respectively.
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Measurements at 70% ∅SoC and current rates above 0.5C were not included in the
analysis due to their increased measurement noise. Because of the limitation of the
available measurement data, no statistical error evaluation of the could be done
here. It could be expected that the error increases at SoC that derivate more from
the initial SoC0 since there are more lithium exchange processes between overhang
and active anode taking place. According to Eq. (4.20), the modeled capacity loss
offset with 50% initial cell SoC is 0.00% at cycling with 50% average SoC, 0.68%
at 70% average SoC and 1.36% at 90% average SoC. The absolute deviation of
the offsets determined by the slope method and the model optimization are 0.02%,
0.08% and 0.13% for 50%, 70% and 90% SoC respectively. The modeled values
lie within the standard deviation range of about 0.28% and are therefore plausible.
It must be noted that we concentrate on states of charge above 50% SoC in the
parameterization of the model. Whether the model functions used can also describe
cyclization at lower average SoC was therefore not verified.

Figure 4.6: Capacity loss plotted over the number of equivalent full cycles (EFC) for cells cycled with
different SoC at 10% DoD and 0.5C. The linear extrapolation to estimate the passive
anode effect is done on the data with filled or highlighted markers.
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4.5.4 Parametrization active anode material cracking

To parameterize the overall model including the active material cracking aging
mechanism (Eq. (4.19) inserting Eq. (4.12), Eq. (4.18) and Eq. (4.20)), measure-
ments where LAM was identified beyond LLI are used (see Table 4.3). The final
model result and the parametrization data are shown in Fig. 4.7. The capacity loss
due to SEI cracking and reformation is marked with a dashed line and the overall
capacity loss including active material cracking is marked by a solid line. All model
parameters are presented in Table 4.4.

Figure 4.7: Top: Modeled and measured capacity loss at different DoD, 50% ØSoC and 0.5C (unless
otherwise specified) over the number of EFC. The cells were identified with additional
LAM. Bottom: Total cyclic capacity loss model absolute error over the number of EFC.

The capacity loss of the cell aged at 2C and 100% DoD is particularly striking. The
cell reaches its EoL of 20% capacity loss after only about 700 EFC. In addition
to the measured capacity loss, an expansion of the cell’s volume was observed
during and after aging. This indicates gas formation in the battery, which is coupled
to electrolyte decomposition, for example in the formation of the SEI [42]. The
combination of mechanical stress due to volume expansion of the anode and the
lithium-ion concentration gradients building up within the electrode at a high
current rate leads to pronounced cracking in the active material which might be
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the cause of the rapid cell failure observed. The exponential trend of the capacity
loss, which clearly deviates from the SEI model, is well described by the overall
model with a mean absolute error of 0.12% capacity loss. The 80% and 90% DoD
measurements do not show an exponential increase in capacity loss, although the
first signs of LAM can already be detected in the ICA. The LAM is still masked by
predominant LLI which is described by the SEI crack model. The capacity loss at
80% DoD is continuously overestimated by a mean absolute deviation of about
0.72% capacity loss. The absolute model error at 90% DoD is small with below 0.5%
capacity loss. To further investigate the aging process at rapid cell failure, more
long-term measurements at higher DoD and current rates must be carried out in
future studies.

4.5.5 Validation

The overall model was validated on a cell cycled with a power profile adapted to
the FCR use case. Short power pulses distributed symmetrically on charging and
discharging are typical for FCR provision. To model the capacity loss, the average
SoC, DoD, current and cell temperature of each cycle contained in the dynamic
power profile are evaluated. Firstly, coulomb counting is used to determine the
cell SoC for each timestep in the measured dynamic aging profile. Then, the SoC
profile is analyzed with the rainflow counting algorithm using the rainflow function
in MATLAB. The algorithm originates from material fatigue analysis to identify
smaller stress cycles within a dynamic stress profile and was already transferred to
battery cycling analysis in several battery aging studies [3, 7]. The current rate and
temperature are evaluated by the mean value between the start and end times of a
counted cycle. In the considered profile, the cycle charging and discharging current
rate is always below 0.35C. The mean DoD of all counted cycles is very small with
0.17% DoD. The average SoC of the cycles ranges between a maximum of 65% and
a minimum of 20% SoC. A number of EFC is assigned to each identified cycle by the
counted charge at its starting time. Since cycles partially overlap, backsteps may
occur in the identified EFC vector. To overcome this, the number of EFC is set equal
to the previous value in the case of a backstep. This procedure slightly shifts the order
of the cycles but simplifies the evaluation of the total calendar and cyclic aging after
a certain number of EFC and a time t. Cyclic aging is modeled numerically solving
the differential equations (4.13) and (4.17). The aging mechanism capacity loss is
then summed up according to Eq. (4.2). The PAE is not considered in the dynamic
lifetime estimation. The initial value for the active material cracking capacity loss,
which represents the presence of cracks in the anode that grow during cyclization,
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is set to 1·10−6% Closs,AM . The dynamic aging model results and the measured
capacity loss are presented in Fig. 4.8. The measurement data were corrected by the
capacity loss due to characterization (see section 4.5.1).

Figure 4.8: Simulated and measured capacity loss for the dynamic validation profile and absolute
error over the number of EFC and the cycling time.

The modeled total capacity loss underestimates the measured data of the dynamically
cycled cell with a mean absolute deviation of 0.2%. Anyway, the absolute error
remains almost constant in the considered time interval. An offset of the measured
capacity loss can be caused by cell-to-cell variation or overhang effects. A linear fit
of the measured capacity loss after one month of cycling results in a y-axis intercept
of 0.24%. An estimate of the PAE would therefore be consistent with the mean
absolute error of the model. Calendar aging accounts for 70% of the total capacity
loss after 150 EFC and 160 days. However, the modeled portion of cyclic aging can
increase by the end of battery life. Cyclic aging is in FCR provision clearly dominated
by the aging mechanism SEI cracking and reforming, as expected for cyclization
with small DoD and low current rates. The modeled contribution of loss of active
anode material is negligibly small with 1.12 · 10−6% capacity loss. Depending on
the operating strategy and dimensioning of the storage system, the model predicts
a lifetime between 15 and over 25 years until the defined EoL with 20% capacity
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loss is reached. The results frame is consistent with FCR storage lifetime estimations
from literature [43, 44] and will be discussed in a follow-up publication.

4.6 Conclusion

The semi-empirical cyclic battery aging model presented in this work bases on sim-
plified physical model equations describing the graphite anode mechanisms SEI
cracking and reforming and active material cracking. The effect of the acting stress
factors DoD, SoC, current, and temperature is discussed in the model derivation. A
key point of the work is the targeted parameterization of the model equations. An
innovative incremental capacity analysis method is introduced to identify data, in
which the aging modes associated with the respective aging mechanism are present.
Data in which LLI dominates are used to parameterize the basic aging mechanism
coupled to SEI formation. Measurements in which further LAM was identified were
used to parameterize the active material cracking model. Using only those data
for the model parametrization allows a clear separation of the stress factor sensi-
tivities of individual aging mechanisms which increases the model extrapolation
capability. On the considered NMC cells, negligibility of current rate dependence of
SEI growth was confirmed, while strong current rate dependence of cracking in the
active material was found. The aging mechanism model can describe two phases of
cyclic aging. First, the nearly linear capacity loss due to SEI cracking and reforming.
Second, the strong non-linear capacity loss represented by cracking in the active
material. Finally, the cyclic model was combined with the calendar aging model
from our previous publication [19]. The holistic model validation was performed on
a battery cell separately aged with a dynamic power profile adapted to frequency
containment reserve operation. The cell aging was predicted with a nearly constant
absolute deviation of about 0,2% capacity loss. In FCR provision, the capacity loss
is largely determined by calendar aging. The aging mechanism SEI cracking and
reforming dominates the cyclic loss of capacity. The contribution due to cracking in
the active material is negligibly small for the considered cells. The presented aging
model can be applied to all graphite-based lithium-ion batteries. It provides a basis
for the further development of physically based semi-empirical models and can be
extended by further aging mechanisms depending on the cell chemistry considered
and the application-specific operating conditions. For example, in applications with
high current rates and variable ambient temperature an extension with a lithium
plating model is recommended. For the targeted parameterization of the extended
model, ICA can also be used to differentiate between LLI, LAMPE and LAMNE . Fur-
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thermore, the evaluation of electrochemical impedance spectroscopy or relaxation
measurements can be used to support the separation of further aging mechanisms.
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Operating strategy
optimization for a sector
coupling system providing
frequency containment
reserve

5

This chapter bases on the publication „Operating strategy optimization considering
battery aging for a sector coupling system providing frequency containment reserve“ by
Amelie Krupp, Robert Beckmann, Patrick Draheim, Eva Meschede, Ernst Ferg, Frank
Schuldt, and Carsten Agert.

Abstract
Battery storage systems are increasingly used in the frequency containment reserve
(FCR) application. Coupling the battery with a power-to-heat module can further
increase the system’s profitability. Different studies optimized the hybrid system’s
operation by considering country-specific regulations. However, lithium-ion battery
aging has not yet been included. This work analyses the impact of system dimen-
sion and operation on net present value, considering battery aging. The operation
strategy consists of adjusting the target SoE and using the deadband degree of
freedom, which allows to suspend provision of FCR for minor frequency deviations.
Battery lifetime is simulated using a semi-empirical aging model describing graphite
anode aging mechanisms. The highest NPV is obtained with a battery dimension of
0.5 Wh/W, 90% target SoE, and normal deadband utilization. For the considered
NMC battery cells, deadband utilization contributes to battery lifetime extension
when operating at high SoE. Without this cell chemistry-specific lifetime gain, a
lower target SoE of 60% and a larger system size of 0.6 is economically more
advantageous. In a sensitivity analysis, battery aging was detected as the most
crucial parameter influencing system profitability at high FCR prices. The results
highlight the importance of including reliable battery aging simulations in future
FCR operation optimizations.
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5.1 Introduction

The European Union aims to reduce greenhouse gas emissions and reach climate
neutrality by 2050 [1]. A massive expansion of the share of renewable energy
sources (RES) is necessary to achieve this goal. In the long term, the fluctuating
feed-in from RES can lead to increasing frequency fluctuations in the European
interconnected grid [2]. This increases the demand for ancillary services to stabilize
the grid frequency. Frequency containment reserve (FCR), also called primary
frequency control, is the fastest of the frequency regulation mechanisms in Europe.
Various technologies, such as pumped hydro storage, power-to-X solutions, and
battery storages, are used to provide FCR. Battery energy storage systems (BESS)
are well suited due to their high efficiency and fast response time. A decrease in
acquisition costs leads to more lithium-ion batteries used in ancillary services such
as FCR provision [3]. With more FCR providers, competition increases, causing a
decrease in FCR prices [4]. Under these conditions, optimizing the BESS lifetime
profitability is essential for battery operators.

Many economic analyses of stand-alone battery storage systems in FCR application
have already been carried out in literature. Thereby, a consideration of the respective
market conditions defined by the transmission grid operators (TSO) is relevant.
Thien et al. [5] evaluated the impact of different operating parameters on FCR
provision considering the market specifications of the German TSO. Fleer et al. [4]
modeled the revenues under different operating strategies, evaluating the sensitivity
of the results to the evolution of the FCR and battery price. Other studies focused
on possible operating strategies in the Danish FCR market [6–8].

Beyond optimizing the FCR operation strategy and the sizing of the battery storage
unit, there are fundamentally two approaches to increase system profitability. First,
in addition to FCR operation, other services, such as arbitrage trading, can be
provided. Second, the battery storage can be operated in a hybrid system. This
includes, for example, coupling with sector-integrating technologies such as a power-
to-heat (PtH) module. The PtH module can provide negative FCR, which means
taking energy from the grid. This allows the coupled battery storage to operate at a
high state of charge (SoC). Therefore, the hybrid system allows innovative operating
strategies and smaller battery storage sizing. It is an efficient way to increase system
profitability compared to stand-alone battery storages [9–11]. Draheim et al. [12]
conducted an economic analysis of this type of hybrid system under the German
FCR market conditions in 2019. In particular, the taxes, levies, and charges (TLC)
for the PtH module operation were identified as a critical influence on the economic
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viability. Schlachter et al. [13] analyzed the hybrid system’s net present value (NPV)
dependence on battery dimension and SoC setpoint. Operating a small BESS at high
SoC was economically feasible because of smaller initial investment and maintenance
costs. However, many lithium-ion battery cell chemistries exhibit accelerated aging
and, thus, reduced lifetime operating at high SoC, which was not considered in the
mentioned study.

Over time, batteries suffer from capacity loss and resistance increase due to calendar
and cyclic aging. Hence, when they no longer meet their application requirements,
they must be replaced. This is associated with additional investment costs. It is
therefore important to have a good understanding of the expected lifetime of a
BESS in an application, both in terms of reducing its long-term environmental
impact and ensuring economic profitability. The predicted battery lifetime in FCR
application depends on cell chemistry, system dimensioning, and operation strategy.
Battery aging has already been included in various economic analyses, considering
the Danish [6, 7] and German [4, 10] market regulations. The studies predicted
lifetimes in the range of seven to 26 years. This vast spread again demonstrates the
importance of a lifetime-optimized operating strategy. In their economic analysis,
Mündelein et al. [10] considered both, battery aging and the case of coupling BESS
and PtH module for FCR provision. The battery storage consisted of a combination of
lead–acid and lithium-ion batteries. However, the lithium-ion battery was eliminated
due to its higher acquisition costs when the battery system was coupled with a PtH
module. The optimization, therefore, only considered a lead–acid battery coupled
with a PtH module.

In this paper, the hybrid system consisting of a lithium-ion battery storage combined
with a PtH module is economically optimized for its operating strategy and battery
dimension. The battery dimension is defined by the BESS energy to prequalified
FCR power ratio. An intensive investigation of lithium-ion battery aging is included
using the semi-empirical battery aging model introduced by Krupp et al. [14, 15].
It differs from previous studies by considering all battery stress factors in purely
physically based model equations. Furthermore, the model was explicitly validated
on an FCR load profile. For reliable lifetime prediction, the model is extended by
a method for calculating the anode SoC during battery aging. The operational
strategies comprise adjusting the battery state of energy (SoE) setpoint and using
FCR degrees of freedom (DoF). The economic analysis is based on the approach of
Draheim et al. [12] and is updated to the latest regulations and prices applicable
to the German FCR market. The technical data of the analysis refer to the HyReK
2.0 project, in which the coupling of a 14 MWh battery storage and a PtH module
providing FCR is investigated [16].
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The paper is structured as follows: 5.2, describes the currently applicable regulations
in the German FCR market. 5.3 outlines the battery aging model. Furthermore,
the challenges of lifetime modeling based on time-limited battery test series are
discussed. They are accounted for by a new method of using the anode SoC instead
of the battery SoC in aging modeling. 5.4 describes the overall methodology with
load profile calculation, aging modeling, and net present value analysis. Finally, 5.5
discusses the lifetime and NPV results for various operating strategies and battery
dimensions.

5.2 German FCR market

The following summarizes the German FCR market framework and price devel-
opment, FCR regulations and DoF, and applicable taxes, levies, and charges. In
recent years, some adjustments to the FCR regulations have been made, which
allow further flexibility in the market. The overview focuses on addressing recent
regulatory changes.

5.2.1 Market framework and FCR prices

To promote fair competition and transparency, the TSO of Austria, Belgium, the
Netherlands, France, Germany, Switzerland, Western Denmark, and Slovenia trade
their primary control reserve on a common market. The time periods in which FCR
is provided were shortened to four-hour slices in 2020. A minimum power of 1MW
must be bid. In 2019, a uniform pricing system was established. Since then, all
accepted tenders in the merit-order list have been remunerated with the highest
accepted price [17]. The mean FCR- and electricity prices from 2014 to today are
summarized in Figure 5.1. The FCR price has been subject to strong fluctuations
in recent years. Until 2020, prices dropped by about 70%. This can be attributed
to increased competition in the market [3]. Afterwards, the FCR price strongly
increased. It follows the development of the energy markets, which are subject to
a substantial price increase. The shown increase in electricity prices depends on
various factors, such as fuel costs or different power plant operating costs, which are,
in turn, influenced by political measures such as regulations, subsidy programs, or
geopolitical developments [18–20]. How prices will develop in the future remains
unclear [21].
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Figure 5.1: Development of the average German primary FCR and daily Power Future electricity price
between 2014 and 2022 based on data from Regelleistung.net [22] and the European
Energy Exchange AG [23].

5.2.2 Rules and DoF

Despite efforts by the European Network of Transmission System Operators for
Electricity (ENTSO-E) for standardization, the control reserve requirements may
differ across Europe. The FCR rules and degrees of freedom set by the German TSO
are described in more detail below. They include the overfulfillment and deadband
DoF and the 15-minutes criterion with related operating point adjustments. The
reserve mode, newly introduced in June 2022, in which the system’s response to
frequency fluctuations changes when reaching the limits of its stored energy in the
event of a grid alarm state, is not included in the model presented in this paper.
For a more detailed description, the reader is referred to the latest version of the
German TSO FCR prequalification conditions [24].
Systems that provide FCR respond to frequency fluctuations in the grid. The nom-
inal grid frequency in the European interconnected grid is 50 Hz. When there is
an imbalance between generation and consumption, grid frequency fluctuations
occur. To minimize these, FCR providers supply power when the grid frequency
decreases below 50 Hz (positive FCR) and take power from the grid when the fre-
quency increases above 50 Hz (negative FCR). FCR power is proportional to the
grid frequency fluctuation until the maximum prequalified power is supplied at a
frequency deviation of 200 mHz. The FCR power is thus given by
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PF CR (∆f) =


1 if ∆f ≥ 200 mHz

∆f/200 mHz if |∆f | < 200 mHz

−1 if ∆f ≤ 200 mHz

(5.1)

with the frequency deviation ∆f . In Figure 5.2a the required FCR power is plotted
over the frequency deviation. Within certain limits, it is allowed to deviate from this
function. These limits are defined in the degrees of freedom.

Degrees of freedom

The German TSO allow FCR providers certain degrees of freedom that can be
used to support the battery operating strategy. In this study, the overfullfillment and
deadband DoF are considered. Overfulfillment means that at any time, 20% more
FCR power than required can be provided. The frequency range up to a maximum
frequency deviation of 10 mHz is called deadband. Within the deadband, no FCR
power needs to be provided. The DoF ranges are marked in Figure 5.2a.

15-minutes criterion

The battery storage must be able to provide the maximum FCR power for at least
15 minutes at any time during regular operation. This is specified in the so-called
15-minutes criterion. Previously, the 30-minutes criterion was applied, but it was
stopped in 2019 following a decision by the German Federal Network Agency [21].
With the adjustment, battery storages providing FCR can be dimensioned smaller.
This positively impacts their profitability since battery investment costs can be
reduced [5, 12, 13].

The 15-minutes criterion limits the usable energy range of the BESS. A storage with
1 MWh energy and 1 MW prequalified power needs an energy buffer of 250 kWh in
charge and discharge direction. In the case of combining BESS and PtH module, the
energy is only limited at low SoE, as it is possible to switch to the PtH module at high
SoE. Energy ranges of a stand-alone battery storage and battery storage combined
with a PtH module are shown in Figure 5.2b plotted over the battery dimension,
which is defined by the BESS energy to maximum FCR power ratio.

Operating point adjustment
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(a)

(b)

Figure 5.2: (a) FCR power provided as a function of frequency deviation from 50 Hz. The power
ranges of the deadband utilization and overfulfillment DoF are marked. (b) Allowed
energy range at different system dimensions for a stand-alone BESS and a BESS coupled
with a PtH module, considering the 15-minutes criterion and the market lag for charging
and discharging. The PtH switching was set to 90% SoE.
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If there is a risk that the energy range defined by the 15-minutes criterion will
be violated, the battery storage must be additionally charged or discharged. In the
following, this process is referred to as operating point adjustment (OPA). Several
options are available for performing an OPA. Either other technical units of the
same balancing group are used, or power is bought and sold by trading on the
electricity market. The shortest possible delivery interval on the continuous intraday
market is 15 minutes. Power delivery starts at each 15-minute interval, resulting
in a maximum delivery delay of 15 minutes. Trading can be done up to 5 minutes
before delivery starts. This gate closure time introduces a further delay. In total, this
results in a maximum waiting time between service triggering and power delivery of
tlag = 20 minutes. To guarantee compliance with the 15-minutes criterion despite
the lead times, an additional energy buffer of

Elag = 0.25 · Ppq · tlag (5.2)

with the prequalified power Ppq must be reserved. Thereby it is allowed to assume a
frequency deviation of 50 mHz for the lag time, which results in the prefactor 0.25
considering Eq. (5.1) [24].

5.2.3 TLC for battery storages and PtH modules

Taxes, levies, and charges are significant contributors to the profitability of FCR
systems. Worschech et al. [25] presented a compilation of TLC in Germany for PtH
modules and BESS. The TLC charged per consumed energy are especially relevant
for optimizing operation strategies. They include the electricity tax, a part of the
grid fees, the concession levy, and further charges. Another part of the grid fees is
levied per capacity connected to the grid and per year. The values of the TLC from
2022 are summarized in Table 5.1. The value-added tax (VAT) of 19% is levied on
all TLC. Annual costs such as metering fees are not considered because they are not
affected by the operating strategy. In contrast to nationwide taxes and charges, grid
fees are set by the transmission system operator responsible for the system locality.
We refer to the location Bremen in Germany.

With 77.55 e/MWh, the PtH module is charged with over ten times the amount
of TLC than the battery storage. Until recently, PtH modules were additionally
burdened with the RE charge. This has been abolished by 01 July 2022. The
significantly lower cost of using the BESS is due to its exclusion from electricity tax,
grid fees, and CHP charge to avoid double burden for storage and release of energy.
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Name Unit BESS PtH Note/Source
Electricity tax e/MW h 0 20.5 [26]
Grid fees e/MW h 0 48.7 Annual utilization <2500h,

Medium voltage grid [27]
RE charge e/MW h 0 0 Abolished in 2022 [28]
§ 19 charge e/MW h 4.37 4.37 [29]
AbLaV-charge e/MW h 0.03 0.03 [30]
Offshore grid charge e/MW h 0 4.19 Omission for BESS after

§17f EnWG, §27b KWGK
and § 61l EEG [31]

Concession levy e/MW h 1.1 1.1 Special contract customer
[32]

CHP charge e/MW h 0 3.78 [33]
VAT e/MW h 1.84 12.87
Sum e/MW h 6.54 77.55

Grid fees e/kW/year 0 9.2 Medium voltage grid [27]
VAT e/kW/year 0 1.75
Sum e/kW/year 0 10.95

Table 5.1: German TLC for battery storages and PtH modules in 2022.

The PtH module is classified as an end consumer. Therefore, this regulation does
not apply to it, resulting in significantly increased TLC [25].

5.3 Battery aging model

Consideration of battery aging is critical for optimizing the profitability of BESS in
FCR application. The aging model to simulate the battery capacity loss was intro-
duced by Krupp et al. [14, 15]. The semi-empirical model equations describe impor-
tant anode aging mechanisms. In calendar aging, SoC and temperature-dependent
solid electrolyte interface (SEI) growth is modeled. In cyclic aging, SEI cracking
and reforming and anode active material cracking are addressed. They depend on
the depth of discharge (DoD), average SoC (∅SoC ), temperature, and current rate
during cycling. According to the cause-effect principle, aging mechanisms lead to
different aging modes that contribute to capacity loss: loss of lithium inventory
(LLI) and loss of active material at the negative and positive electrode (LAMNE and
LAMPE) [34]. The overall model adds up the separately modeled calendar and cyclic
capacity loss following the superposition approach. A schematic overview of the
battery aging model with input parameters, described aging mechanisms, connected
aging modes, and output is given in figure 5.3. The model was parametrized with
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data from an extensive battery aging measurement campaign on 64Ah NMC battery
cells from the HyReK 2.0 project [14, 15].

SoC, T SEI growth LLI

Calendar aging

∅SoC, T, DoD, I
Anode

active mate-
rial cracking

LLI + LAMNE

∅SoC, T, DoD
SEI cracking

and reforming
LLI

Cyclic aging

Closs

Figure 5.3: Battery aging model block diagram with input parameters, aging mechanism, connected
aging modes and model output.

5.3.1 SoC adjustment

For all considered anode aging mechanisms, the anode SoC is decisive for capacity
loss during cyclization [15]. While the battery SoC is determined by the ratio of
battery charge to battery capacity, the anode SoC refers to the ratio of battery charge
to anode capacity. The anode and battery cell SoC differ for two reasons. First, the
anode overhang offsets the anode SoC at the beginning of battery life. Second, the
anode and battery SoC change differently as the battery ages. The initial anode SoC
offset is automatically considered in (semi-)empirical models parametrized with
capacity loss data. The shift of the SoC to each other can be assumed to be negligible
for small capacity losses, e.g., in model parameterization. However, differentiation
between anode and battery SoC significantly impacts the simulation results when
modeling the battery lifetime. The following explains the difference between battery
and anode SoC and their dependence on the share of the considered aging modes
LLI and LAMNE.

The battery SoC is determined by the ratio of the battery charge Q to the actual cell
capacity Cact

SoCBat = Q

Cact
· 100% = Q

Cini
100% (100% − max (Closs,LAMNE , Closs,LLI))

· 100% (5.3)
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The current cell capacity results from the initial capacity Cini minus the maximum
percentage capacity loss due to LLI or LAMNE from cyclic and calendar aging. Loss
of active material predominates either at the anode or the cathode. Since this
model is specified to anode aging mechanisms, it is assumed that the loss of anode
material in the batteries under consideration will predominate in the long term. If
LAMNE determines the capacity loss, the battery charging process is terminated by
the potential decrease of the fully lithiated anode. Correspondingly, more lithium
remains in the cathode at the end of charge and the cell capacity decreases [34, 35].
If the capacity loss due to LLI predominates, only a part of the available electrode
capacity is used. The charge and discharge are terminated by the rising electrode
potential of the lithium-delivering electrode.

The anode SoC is related to the current anode capacity CAn. It is influenced
exclusively by capacity loss due to LAMNE:

SoCAn = Q

CAn
· 100% = Q

Cini
100% (100% − Closs,LAMNE + COv)

· 100%. (5.4)

Thereby, the initial capacity of the anode is the sum of the initial cell capacity and
the percentage capacity of the anode overhang COv.

With increasing capacity loss, a shift of the anode SoC to the battery SoC occurs.
Combining equation (5.3) and (5.4), the anode SoC can be calculated over

SoCAn = SoCBat · 100% − max (Closs,LAMNE , Closs,LLI)
100% − Closs,LAMNE + COv

. (5.5)

It must be noted that the used Closs,LAMNE describes the actual capacity loss of the
anode active material, even if this is not detectable in the battery capacity because
of predominating LLI. At moderate battery loads in FCR provision, LLI is expected to
dominate capacity loss over the battery lifetime [15, 36, 37]. Assuming negligible
Closs,LAMNE results in the special case of

SoCAn = SoCBat · 100% − Closs,LLI

100% + COv
. (5.6)
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5.4 Methodology

The analysis of system rentability at different operating strategies and system dimen-
sions is divided into three main steps. First, the BESS power profiles are simulated
for each operating case using real grid frequency data. The model inputs are the
battery target SoE, the system dimension, and the deadband DoF utilization strat-
egy. The resulting power and SoE profiles are converted into SoC profiles using
a voltage-SoC lookup table. In the second step, battery lifetime is determined in
the aging modeling. For this purpose, load cycles in the SoC profiles are evaluated
with rainflow counting. Finally, economic comparison of the considered operating
strategy profitability is performed using NPV analysis. The FCR system design is
based on the "HyReK 2.0" project [16]. The modeling is done with Matlab. Figure
5.4 shows an overview of the methodology. The analysis steps are described in more
detail below.

Figure 5.4: Flow chart methodology.

5.4.1 Power- and SoC profiles

The FCR power profiles are calculated over real, second-resolution frequency data
from January 01, 2019, to December 09, 2019. The power profiles are determined
considering the German rules for FCR provision and the DoF overfulfillment and
deadband utilization. Both DoF are used to keep the battery SoE as close as possible
to the start and target SoE. Deadband utilization was modeled in two different
operating strategies. In normal deadband utilization (NormDb), no primary control
power is provided in the deadband unless it serves to achieve the target SoE. In the
second strategy, SoE10Db, all deadband power is exposed in a range of 10% SoE
around the target SoE to reduce the battery operating time. Beyond that, normal
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deadband usage applies. The lower battery energy limit is determined by the 15-
minutes criterium and the market lag. When reached, the storage is recharged for
15 minutes with 25% of the prequalified FCR power. At 90% SoE, the energy infeed
switches to the PtH module. For the battery aging modeling, the single-cell battery
power is relevant. It is calculated from the total FCR power supplied, considering the
interconnection in the 14MWh HyReK battery system. The prequalified FCR power
and the maximum PtH module power are adapted to evaluate different battery
system dimensions.

When analyzing whole systems, it is usually referred to the battery SoE. The energy
change ∆E is calculated by multiplying power and time step size. In contrast, the
aging modeling refers to the battery SoC. The related change of charge in ith time
step ∆ti = ti˘ti−1, with i = 1, . . . , N is determined over

∆Q(ti) = PF CR(ti) · ∆ti

U(ti−1) . (5.7)

The battery voltage U for the previous SoC step is determined with a voltage-SoC
lookup table. It was experimentally created based on a 1/10C discharge at 23◦C
of one of the considered NMC cells. Since we only refer to the battery’s discharge,
the voltage hysteresis is not considered in the voltage-SoC assignment. In FCR
provision, primarily very small power pulses and thus small battery currents occur.
For this reason, it is assumed that the quasi-open-circuit voltage curve without
an overvoltage model describes the actual battery voltage with sufficient accuracy.
Additionally, the discharge data are used to determine the associated starting SoC
for each starting SoE. The maximum deviation between SoC and SoE is 2.5% at
43.5% SoE for the considered cells. The change in battery SoC is calculated over

∆SoC(ti) = ∆Q(ti)
Cact

· 100% (5.8)

with the actual battery capacity Cact. The initial capacity of the battery cells cor-
responds to the nominal capacity Cnom. The current profiles associated with each
power profile are calculated by dividing battery cell power by voltage. The so-called
C-rate relates the charge and discharge current to the nominal cell capacity.

5.4.2 Battery aging modeling

For lifetime estimation, the modeled one-year FCR load profile is repeated contin-
uously until the battery storage reaches its end of life (EoL) at 20% capacity loss.
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The EoL was defined in the HyReK 2.0 project. In principle, lower SoH are also
possible for batteries in stationary applications. However, to model the capacity loss
in the associated SoH range, possible additional long-term aging effects must be
considered.
As the battery ages, its capacity decreases, resulting in larger DoD and a faster
reaching of the upper and lower energy limits. For this reason, the power and SoC
profiles are recalculated every 5% capacity loss. The anode SoC relevant for cyclic
and calendar aging is determined using Eq. (5.6). The load cycles included in the
SoC profile are evaluated with Rainflow Counting using the Matlab function rainflow.
The rainflow counting algorithm identifies all cycles in variable load profiles and has
already been used in various battery studies [5, 38]. The function outputs are the
cycle count Cnt (full or half cycle) with DoD, average SoC, and cycle start and end
time. In addition, the average current rate is determined from the current profile
using the cycle start and end times. Due to predominating low current rates, the
current error caused by overlapping of the identified cycles is neglected for FCR
operation. Furthermore, the number of equivalent full cycles (EFC) is determined.
One EFC describes the charge flowing in one complete capacity cycle of a new battery
cell. The number of EFC for each counted cycle is calculated over

EFC = DoD[%] · Cact · Cnt

100% · Cnom
. (5.9)

The battery aging model was introduced in section 5.3. A fixed temperature of 23 ◦C
is assumed for the calendar and cyclic aging in the stationary temperature-controlled
storage. The SoC evaluation for calendar aging is performed in 60s-time steps. Initial
values for the numerical capacity loss calculation of the calendar aging Closs,cal and
the cyclic loss of active material Closs,LAM are given in Table 5.2. They represent
the initial presence of a SEI layer from formation and the first cracks in the active
material of the anode, which grow during aging.

5.4.3 NPV analysis

The economic rentability is assessed by the widely used net present value method
[4, 9, 12]. The NPV is calculated over

NPV = −Co +
T∑

t=1

Ct

(1 + i)t
(5.10)
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with the initial investment cost C0 and the revenues and costs of the year Ct in
the lifetime of the system T . The investment costs include fixed battery system
investment costs CB and the PtH module investment costs CP tH per installed MW.
The cash flow is discounted to the present. Discounting considers the time value
of money, meaning that a specific money amount today is worth more than in the
future. Revenues include FCR revenues RF CR and heat revenues RP tH . The costs
considered are annual maintenance costs Cm, recharge costs Cr, and costs due to
TLC CT LC . The revenue from FCR is determined by the average of all time slice
FCR prices in 2021. It is assumed that the system is surcharged for the provision
of FCR in the entire year. The year 2021 was used to ensure the actuality of the
results. Anyway, it is important to be aware that this may be an exceptional FCR
price situation (see section 5.2.1). Table 5.2 summarizes all used model parameters.
The costs due to TLC were shown in table 5.1.

Name Variable Value Unit Source
Energy battery system Enom,sys 14 MWh [16]
Nominal cell capacity Cnom 64 Ah [16]
Initial calendar capacity loss Closs,cal(1) 1 · 10−4 %
Initial capacity loss due to
LAMNE

Closs,LAM (1) 1 · 10−6 %

Anode overhang capacity COv 5 % [14]
Discount rate i 5 % [9, 12]
Battery investment costs CB 10.5 million e [16]
PtH investment costs CP tH 25,000 e/MWh [13]
FCR revenues (2021) RF CR 153.972 e/a/MW [22]
Heat revenues RP tH 10 e/MWh [12]
Annual maintainance costs Cm 110,000 e/a [16]
Recharge costs (2021) Cr 96.38 e/MWh [23]

Table 5.2: Simulation parameters for the power and SoC profile calculation, the aging modeling, and
the economic analysis.

5.5 Results and discussion

To analyze, how operating strategy and system dimension affect the system’s prof-
itability, this section discusses the results for the three methodology steps: load
profile calculation, aging modeling, and NPV evaluation. The considered FCR
operating strategies differ by target SoE and deadband utilization strategy. The
two deadband strategies considered, NormDb and SoE10Db, were described in
subsection 5.4.1.
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5.5.1 Power profiles

The main characteristics of the modeled power profiles differ significantly. Figure
5.5a shows two example battery SoE time series for the operating cases 90% SoE
with dimension 1 Wh/W and 60% SoE with dimension 0.5 Wh/W. The storage SoE
moves within the lower limit defined by the 15-minutes criterion and the upper
limit at 90% SoE from which power is fed into the PtH module. In case of a larger
system dimension, the used energy range increases. The modeled SoE time series is
strongly influenced by the target SoE. For 90% SoE, the PtH module is activated more
frequently. The lower energy limit is reached less often than for 60 % target SoE
which results in a lower number of OPAs. To allow comparison of all operating cases
considered, figure 5.5b and 5.5c show important power profile properties plotted
as a function of target SoE and system dimension for the case of not using the
deadband DoF. They comprise the number of OPAs (Fig. 5.5b) and the percentage
of the total operating time in which the battery rests (i.e., is not cycled) and the
PtH module is used (Fig. 5.5c). The number of OPAs increases with decreasing
target SoE and smaller system dimension. In both cases, the recharge limit set by the
15-minutes criterion is reached faster. Times of rest and PtH module usage increase
with smaller system dimensions and higher target SoE due to faster reaching the
limit where power is fed into the PtH module. Table 5.3 summarizes the qualitative
correlations.

SoE Dimension Small
(≤ 0.6Wh/W)

Big
(≥ 0.9Wh/W)

Low (≤ 60%) Number of OPAs
Rest time
PtH time
Lifetime
NPV

–
–
–
–

–
High (≥ 80%) Number of OPAs

Rest time
PtH time
Lifetime
NPV

–
–
–

–
–
–

Table 5.3: Qualitative load profile, lifetime and NPV results for different system dimensions and target
SoE without deadband use. The results are classified in high , medium and low
which each corresponds to one third of the whole results range.

Using the different deadband strategies, the share of rest time in operation increases
significantly. At big system dimensions, up to 20% more rest time for the NormDb
strategy and 30% more rest time for the SoE10Db strategy are reached. The
deadband DoF is used to maintain the target SoE better. Therefore, for medium
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(a)

(b)

(c)

Figure 5.5: (a) Battery SoE over time for two example operating strategies. (b) Number of operating
point adjustments (OPAs) and (c) percentage rest time and PtH module operation time
on the first year of battery operation over the target SoE and system dimension without
using the deadband DoF.
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SoE, less OPAs and PtH module use is necessary with both deadband strategies.
If the target SoE equals a switching SoE, the respective service is triggered more
often. Comparing the two deadband strategies, the target SoE is better maintained
with normal deadband use. For the example case with 90% SoE and dimensioning
0.5 Wh/W, the SoE is larger than 88% SoE in 33.4% of the time with the SoE10Db
strategy. This value is increased to 39.3% with normal deadband usage NormDb.

5.5.2 Battery aging modeling

This subsection deals with the aging modeling results. First, the general model
outcomes are discussed, including the SoC correction’s influence on the capacity
loss results. Afterwards, the lifetime results of different operating strategies are
presented.

Aging modeling and SoC correction

In FCR operation, the battery storage is mainly subjected to very small DoD and low
current rates. This is confirmed in the rainflow counting analysis. For a new battery
storage, about 99% of the counted cycle ranges are below 10% DoD, and 77% are
below 0.1% DoD. The average current rate is around 0.04C. Similar results have
already been described in the literature [5, 39]. The mean SoC varies between the
limits set by the 15-minutes criterion and the PtH switching. As the battery ages, the
usable energy range of the storage decreases.

Figure 5.6 shows the modeled capacity loss plotted against time and the number of
EFC for the example case of 90% target SoE and a system dimension of 0.5 Wh/W.
Here, cyclic aging predominates capacity loss. The model results disagree with
the widely used assumption that calendar aging determines the system lifetime
in FCR application [5, 10]. The aging model was parameterized and validated
on about one year of cyclic and calendar battery aging data. Furthermore, the
results were plausible compared to literature results [39] and HyReK project field
measurements [16] from four years of battery operation in FCR application [15].
Extrapolation to over 20 years of battery lifetime involves large uncertainties, such as
differing single-cell behavior, system interconnection effects, and possibly changing
dominant aging mechanisms. Cell chemistry-dependent long-term aging effects,
such as increased cathode aging, are not considered in the model results and could
increase the share of calendar aging. Furthermore, a shift in the ratio of the calendar
to cyclic aging is possible due to different considerations of the anode overhang in
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Figure 5.6: Modeled capacity loss at 90% target SoE, a system dimension of 0.5 Wh/W and normal
deadband use over the time and number of EFC. The share of calendar and cyclic aging is
marked. The overall model result without anode SoC correction is compared.

the respective aging models. In the calendar aging parameterization, the influence
of the anode overhang was not modeled separately. It was described within the
overall time dependence t0.79. This may lead to an underestimation of the long-term
capacity loss. At maximum, an increase of the time power factor to 1 is expected
for the calendar SEI growth aging mechanism [40]. The possible underestimated
capacity loss of calendar aging would be compensated in the cyclic aging model
parameterization on data corrected by the modeled calendar capacity loss. This could
lead to a shift in cyclic and calendar aging proportions. Even with this correction,
LLI due to cyclic aging significantly contributes to the total capacity loss and should
also be considered in future aging models. The capacity loss due to cracking in the
active material is negligible in the case of FCR operation [15, 36, 37].

Considering the anode SoC instead of the battery SoC in aging modeling using
Eq. (5.6) has a significant influence on the capacity loss results (Fig. 5.6). In the
considered example case, a 1.9-year longer lifetime is predicted using the anode SoC.
Without the correction, the cell ages faster because the anode SoC is still assumed to
be high despite the occurring LLI. This amplifies the modeled calendar and cyclic
aging. The huge lifetime difference underlines the importance of considering the
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SoC correction.

Operating strategy dependence

Figures 5.7a and 5.7b show the modeled battery lifetime over target SoE and
battery dimension with and without deadband use. With a larger system dimension,
the battery lifetime increases. In a larger system, less power is demanded from
each battery cell, reducing currents and DoD contributing to capacity loss in FCR
operation. Furthermore, the operating range of the storage is extended to lower
battery SoE, where aging is reduced. A lifetime minimum is reached at approximately
80% target SoE. This can be explained by the SoC dependency of the calendar and
cyclic aging mechanisms at the graphite anode. At increased anode SoC above
80%, the mechanical stress on the anode active material and the SEI formed on it
decreases because lithium-ions already occupy almost all graphite planes, and less
volume change occurs during lithiation. Consequently, capacity loss due to cracking
and reforming of the SEI decreases. This effect is reduced but not compensated by
the increased chemical SEI reaction kinetics at higher anode SoC [15]. It should
be noted that these are specific results of the model parameterization on the NMC
cells considered. These showed a slight flattening of the capacity loss at higher SoC
in calendar aging, which may be due to influences of cathode side reactions [14].
These were not described separately in the model relating to the graphite anode.
The qualitative lifetime results are listed in Table 5.3.

Figure 5.7b visualizes the influence of deadband usage on lifetime. Deadband
utilization causes a higher battery rest time and better maintenance of the target SoE
(see subsection 5.5.1). The resulting change in lifetime is only small. At medium
target SoE, the three surfaces defined by the different deadband strategies nearly
overlap. The lifetime change with the SoE10Db strategy is also minimal for all other
operating cases. At 90% target SoE, the strategy reduces the battery lifetime by up
to 0.35 years. On the other hand, lifetime gains of up to 0.30 years are modeled at
50% target SoE. With the NormDb strategy, the lifetime increases by up to one year
at high and low target SoE. This can be explained by better maintaining the border
SoE, at which operating is particularly advantageous for the battery lifetime.

5.5.3 NPV analysis

Figure 5.8a shows the lifetime NPV depending on the system dimension for all con-
sidered target SoE. With a larger dimension, the NPV decreases due to higher PtH
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(a)

(b)

Figure 5.7: Battery lifetime over target SoE and battery dimensioning (a) without deadband DoF use
(NoDb) (b) for different deadband strategies.
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investment costs and lower FCR revenues. For high target SoE, neither the reduction
in the number of OPAs and PtH module utilization time associated with larger di-
mensioning nor the additional FCR gains from extended battery lifetime compensate
for these increasing costs. For low target SoE (≤ 60% SoE), the maximum NPV is
reached at a system dimension of 0.6 Wh/W. Especially at low SoE, the number of
OPAs increases at smaller system dimensions, which causes rising recharging costs.
Furthermore, profitability sinks for systems with smaller dimensions because of a
lower battery lifetime. This complements the results of Schlachter et al. [13], who
achieved an optimal hybrid system operation NPV at system dimensions smaller
than 0.5 Wh/W without considering battery aging.
Figure 5.8b shows the NPV SoE dependency for different system dimensions. With a
lower target SoE, the NPV increases for system dimensions bigger than 0.6 Wh/W.
This is due to the reduced use of the PtH module, which is highly burdened with
TLC. Furthermore, the battery lifetime increases below 80% SoE, which means the
system can longer generate revenues by providing FCR. For smaller system dimen-
sions, the NPV decreases towards 50% SoE and increases towards 90% SoE. The
increased number of OPAs at small system dimensions and low target SoE causes
that NPV decrease, especially considering the high electricity prices in 2021. The
increase towards 90% SoE is attributable to the reduced number of recharges and
the increased battery lifetime above 80% SoE. Without deadband use, the highest
NPV result is achieved at 60% target SoE and a system dimension of 0.6 Wh/W.

The impact of the deadband strategies on NPV is shown in Figure 5.8c. The SoE10Db
strategy has a negligible effect on the NPV results. The green peaks of the NPV
bars show that the highest NPV can be obtained for all operating cases using the
NormDb strategy. The highest NPVs are achieved for the 90% SoE and dimension
0.5 Wh/W operating strategy with 18.58 million euro and the 60% SoE and dimen-
sion 0.6 Wh/W operating strategy with 17.90 million euro. The strong increase in
the NPV result at 90% SoE is mainly attributed to the higher battery lifetime due to
normal deadband utilization. Because of this, the 90% SoE, dimension 0.5 Wh/W
strategy surpasses the SoE 60%, dimension 0.6 Wh/W operation, which achieved
the maximum NPV without considering deadband utilization. Again, it must be
pointed out that the increase in battery lifetime over 80% SoC is a characteristic
of the considered NMC battery cells and cannot necessarily be transferred to other
battery cell chemistries.
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Figure 5.8: NPV over (a) the system dimension at different target SoE (b) the target SoE at different
system dimensions without deadband utilization. (c) NPV over target SoE and dimension
for different deadband DoF strategies.
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5.5.4 Sensitivity Analysis

PtH module taxation, FCR price, recharging costs, and battery lifetime are essential
factors determining the hybrid system’s profitability. This publication focuses on
considering battery lifetime in evaluating the most profitable battery operation. An
open question is how much battery lifetime gain contributes to system profitability
today and in future scenarios. To address this question, a two-step, one-factor-at-a-
time sensitivity analysis is performed. The sensitivity of the NPV results to battery
lifetime is investigated in three scenarios

1. fewer PtH TLC,

2. increased recharging costs,

3. lower FCR prices.

In the first step, the chosen scenario parameter is varied by 50%. In the second step,
the NPV change under 50% increased battery life is determined. As a reference, the
highest NPV operating strategy with 90% SoE, system dimension 0.5 Wh/W, and
normal deadband utilization is chosen. Table 5.4 shows the corresponding results.

Scenario NPV [million e] NPV change with lifetime ^ [million e]
Reference 18.58 8.73
PtH TLC _ 20.33 9.13

FCR prices _ -1.71 2.50
Recharge costs ^ 16.76 7.90

Table 5.4: Sensitivity analysis results for the reference operating case 90% target SoE, dimension
0.5 Wh/W, and normal deadband use. Each parameter was varied by 50%; ^ and _ indicate
whether it has been raised or lowered.

The more the NPV changes with a parameter, the higher its sensitivity for it is. In the
literature, a strong NPV dependence on the FCR price has already been determined
[4, 12]. The NPV results confirm this. In the lower FCR prices scenario, the NPV
rapidly decreases, and the system no longer amortizes. Recharge costs have a minor
impact on NPV, closely followed by PtH TLC. However, the weighting of these factors
shifts depending on the selected target SoE. Battery lifetime extension increases
the NPV in each Scenario. With almost nine million euro NPV increase, the impact
of an increased lifetime is significantly higher than that of changed PtH TLC and
recharge costs. Therefore, at the considered high FCR price, battery lifetime is the
most important influencing factor. In the case of reduced FCR prices the effect of an
increased lifetime on NPV strongly decreases. The system can be operated longer,
but the costs almost completely outweigh the additional profit. Therefore, FCR
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prices are the most critical factor for system rentability. At low FCR prices, lifetime
loses relevance compared to operating costs. At high FCR prices, it is crucial to
optimize battery lifetime to increase the system profitability.

5.6 Conclusion

This study economically assessed the impact of the operating strategy and dimension
of a hybrid system consisting of a lithium-ion battery storage coupled with a PtH
module. The operating strategies included different battery target SoE and using
the deadband DoF. Deadband utilization was considered in two strategies: normal
deadband utilization (NormDb) and deadband utilization beyond the range of 10%
SoE around the target SoE (SoE10Db). The analysis consisted of three steps: FCR
load profile modeling, battery aging modeling, and NPV analysis. A focus was
set on reliable aging modeling. The used semi-empirical aging model describing
graphite anode aging mechanisms was introduced by Krupp et al. [14, 15]. It was
extended by a method to calculate the anode SoC considering the aging modes
causing capacity loss. Using the anode SoC instead of the battery SoC in aging
modeling caused a huge predicted lifetime difference of up to two years.

The modeled power profiles were evaluated regarding the number of OPAs, PtH
module usage time, and battery rest time. The closer the respective target SoE was
to the upper or lower battery energy limit, the more frequently the PtH module
was used or the battery was recharged. These effects were amplified for smaller
system dimensions since the corresponding energy limits were reached more quickly.
Deadband utilization caused a higher battery rest time and better maintenance of
the target SoE.
Battery lifetime generally increases with bigger system dimensions and lower target
SoE. The lifetime SoE dependency had a minimum at 80% SoE, which was attributed
to the interaction of mechanical and chemical stress on SEI formation in the exam-
ined NMC cells aging model parametrization. Deadband usage had only little effect
on battery lifetime. With the NormDb strategy, a lifetime gain of up to one year was
reached at high and low target SoE.

The highest NPV results were achieved for smaller system dimensions. Without
considering deadband utilization, the highest NPV is reached with 60% target
SoE and a system dimension of 0.6 Wh/W. With too small system dimensions, the
increased costs due to more use of the PtH module, more OPAs, and reduced
battery lifetime outweigh the increased FCR revenues. Normal deadband usage

5.6 Conclusion 119



achieves the highest NPV in each operating case. Due to the positive impact of the
NormDb strategy on battery lifetime at high SoE, the 90% SoE, dimension 0.5 Wh/W
configuration reaches the highest NPV here. Deadband usage thus supports the
advantageous hybrid system’s operating strategy, where the battery is operated at
high SoE and can therefore be dimensioned smaller.

In a sensitivity analysis, the FCR price was confirmed as the most important pa-
rameter influencing system profitability. For low FCR prices, the PtH TLC, recharge
costs and battery lifetime have a comparable impact on NPV. Currently, PtH TLC
overweight the profit from district heating, which inhibits the use of innovative
sector-coupling operating strategies. In a market with high FCR prices, battery
lifetime is the most important parameter. It is therefore essential to consider battery
aging when optimizing the system’s operation.

The results of the study refer to NMC cells of the HyReK 2.0 project battery storage.
The detected increased lifetime at high SoC was modeled by anode aging mecha-
nisms, but might additionally be caused by cathode side reactions. It is therefore not
necessarily transferable to other graphite-based battery cells. Extending the aging
model by the influence of different cathode reactions on capacity loss and including
possible changing long-term aging behavior is a future task.
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Conclusion 6
Battery aging modeling is an important area of research that aims to predict and
understand the decline in battery performance over time. It is essential to develop
more efficient and reliable batteries, improve their safety, and optimize their usage.
The complexity of the battery cell-specific electrochemical processes that depend
on the application-specific aging conditions makes it challenging to develop accu-
rate aging models. To address these challenges, scientists developed empirical and
physics-based models for different purposes. While detailed physical-electrochemical
models are well suited for understanding microscopic cell effects on short timescales,
hybrid semi-empirical models are well suited for lifetime modeling. The current
semi-empirical models still show potential for development in terms of efficient
parameterization, extrapolatory, and transferability. Therefore, in this work, a new
holistic semi-empirical aging model was developed to describe important graphite
anode aging mechanisms. A focus was on developing innovative parameterization
methods to reduce the measurement effort and increase the model accuracy. The
model was parameterized on aging measurement data from NMC lithium-ion battery
cells and finally used to economically assess the profitability of a sector-coupling
FCR system considering battery lifetime.

The economic analysis included load profile simulation, aging modeling, and net
present value calculation. The considered load profiles were characterized by the set
system dimensioning, the battery storage target SoE and the deadband degree of
freedom strategy used in the FCR provision. Although battery life was confirmed as
a key influencing factor for system profitability, higher rentability was not accom-
panied by a longer battery lifetime in all operation cases. Under normal deadband
utilization, the highest NPV was achieved at 90% target SoE and a system dimension
of 0.5 Wh/W. The suitability of this operating strategy results from the nature of the
sector-coupled system consisting of a battery and a power-to-heat module. Since
the PtH-module can absorb energy at any time, the battery can operate at high
SoE and be sized smaller, which reduces the investment cost. The comprehensive
economic analysis confirmed the suitability of this strategy for the NMC battery
cells considered, despite accelerated battery aging at high SoE. When applying this
operating strategy, it must be considered that the effect of the high battery SoE on
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aging could only be evaluated over part of the battery lifetime within the scope
of this thesis. The 60% target SoE and dimension 0.6 Wh/W operating strategy
achieved the second-highest NPV results and is associated with fewer risks in long-
term aging. The following summarizes the features and development potentials of
the introduced aging model.

In the developed aging model, the independently described calendar and cyclic
capacity loss were superimposed. The calendar aging model considers the aging
mechanism SEI growth during rest at different SoC and temperatures. In the model
parameterization, a focus was set on evaluating and explaining the capacity loss
caused by the regular characterization measurement performed in the aging test
series. An initial capacity gain due to a decrease in internal cell resistance was
observed, which can be explained by crack formation and restructuring of the active
material during cyclization in characterization. It was accounted for in the model
parameterization by correcting the measured capacity loss data by the capacity
loss from a periodic characterization measurement. The corrected measurement
data showed a typical root-shaped capacity loss in the first nine months of aging.
Afterwards an accelerated capacity loss, especially at high SoC was observes, which
might be caused by cathode side reactions. The introduced method to quantify and
include the characterization effect in the model parameterization contributes to
more reliable lifetime modeling considering only the actual battery aging.

The cyclic aging model describes the aging mechanisms SEI cracking and reforming
and active anode material cracking considering the stress factors DoD, average SoC,
current rate, and temperature. A model parameterization method was defined,
which includes two parametrization stages on selectively chosen cyclic aging mea-
surement data. Using ICA, the aging modes contributing to the loss of capacity
were evaluated, distinguishing between LLI and additional LAM occurring. SEI
cracking and reforming is connected to LLI. Therefore, only measurements in which
predominant LLI was identified were used to parameterize the associated model
equations. Measurements with visible additional LAM were used to parameterize
the model equations describing cracking in the active material. The selective pa-
rameterization allowed a clear separation of stress factor sensitivities of individual
aging mechanisms and thus contributed to the increased extrapolation capability
of the model. An example of different stress factor sensitivities was that the NMC
battery aging test series confirmed the negligibility of the current rate influence on
SEI cracking and reforming. In contrast, a strong dependence of cracking in the
active material on the current rate was found. The overall model could describe
the nearly linear capacity loss caused by SEI growth, especially at cyclization with
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small DoD, and the additional intense non-linear capacity loss when LAM starts to
dominate at higher DoD and current rates.

To verify the transferability of the model results to batteries aged in application, the
holistic model was validated on capacity loss data from a battery cell dynamically
aged under FCR conditions. The modeled calendar and cyclic aging significantly con-
tributed to the overall battery capacity loss. The long-term cyclic capacity loss might
have been overestimated e.g. due to the different overhang effect considerations
in the calendar and cyclic aging model. Nevertheless, the overall model described
the summed capacity loss in the validation interval of about six months with a small
absolute deviation of 0.2% capacity loss. Furthermore, the order of magnitude of
lifetime and capacity loss predictions agreed with four-year long-term studies in the
literature and own field measurements of the DLR HyReK 2.0 project.

In brief, this work contributed to the advancement and efficient parameteriza-
tion of semi-empirical lithium-ion battery aging models and the operation strategy
optimization of sector coupling FCR battery storages. The developed model can
be applied to all graphite-based lithium-ion battery cells. Identified possible future
works are described in the following outlook. The summary provides only a small
insight into the challenges the scientific community faces to improve battery aging
modeling. Anyway, with continued development, semi-empirical aging models have
great potential to efficiently support the safe and optimized operation of battery
systems today and in the future.

6.1 Outlook

Consideration of further stress factors and aging mechanisms

The presented model refers to graphite anode aging mechanisms. In the case of
the used NMC battery, a flattening of the expected increase in capacity loss during
calendar and cyclic aging at higher SoC was detected. This can be attributed to the
influence of additional cathode side reactions. In this work, the impact of cathode
effects on the capacity loss was indirectly considered in the model parameterization
on empirical measurement data, but not modeled separately. Cathode side reactions
should be described in independent model equations in the calendar and cyclic aging
to further extend the model’s extrapolation capability. Furthermore, the long-term
effect of cathode reactions on battery aging needs to be studied in more detail.
Moreover, an extension of the presented model to consider stress factor ranges and
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connected aging mechanisms occurring in more demanding applications is desirable.
The stress factor ranges considered in this work’s cyclic aging test series were speci-
fied based on typical load profiles of stationary FCR battery storage systems. This
implies the assumption that the system is temperature-controlled, i.e., not subject
to external temperature fluctuations. Furthermore, the batteries were symmetri-
cally stressed in the cyclic aging analysis, i.e., no distinction was made between
charging and discharging current rates. In mobile applications with fast charging
requirements and fluctuating ambient temperature the model should be extended
by the lithium plating aging mechanism. It occurs at battery charging, therefore a
further differentiation of the charging and discharging current is reasonable. With
consideration of further aging mechanisms, the presented parameterization method
can also be extended. For example, intensive ICA can differentiate between LAM at
the anode and cathode. Furthermore, additional characterization methods such as
electrochemical impedance spectroscopy or relaxation measurements could be used
to select relevant measurement data for parameterizing the aging mechanism model
equations.

Battery long term aging

Modeling battery life is subject to significant uncertainties. Over the battery lifetime,
the dominant aging mechanisms change depending on cell type and application
load profile. This work found a change in the time and SoC dependence of the
capacity loss in the first year of calendar aging. How it evolves over subsequent
years could not be assessed on the existing data set. The capacity gain possibly
caused by cathode reactions could turn into a rapid capacity loss at high battery SoC
in the long term and therefore needs to be investigated in more detail. Furthermore,
the main dynamic model validation was carried out on half a year of aging data. In
battery aging modeling, there is a general need for long-term aging data for model
parameterization, validation, and uncertainty quantification in lifetime prediction.
Generating reliable long-term aging data (in the laboratory environment and from
field measurements) and effectively making it available to the research community
on a shared data platform is a current challenge and a subject of future research.

System effects

In this work, battery aging was measured and modeled at the cell level. The transfer
to the system level was carried out assuming that all cells behave the same and
no interconnection effects occur. Since the internal properties of interconnected
cells always differ slightly, for example, unequal current distributions between cells
connected in parallel occur. Furthermore, system characteristics such as module
bracing, thermal interactions between individual cells and the cooling system, or the
BMS balancing strategy influence battery aging. System effects coupled with cell-to-
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cell variation lead to differing single-cell aging and a statistical distribution of cells
at risk of failure in a system. Each further interconnection level is associated with its
own thermal, electrical, and mechanical characteristics. Modeling approaches can
thus become considerably complicated. Anyway, in the lifetime prognosis of battery
systems, especially with high safety requirements, it is useful to consider system
effects for a more reliable lifetime prognosis.
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