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Die Parameter der Waldhöhe, Waldstruktur und Waldbiomasse sind weithin als die drei 
essenziellen Elemente zur Beschreibung und Überwachung von Wäldern bekannt. Für jegliche 
Schätzung dieser Parameter auf einer annähernd globalen Skala, braucht es weltraumgestützte 
Fernerkundungssysteme. Nur durch die Anwendung des optischen Light Dectection and Ranging 
(LiDar) und dem auf Mikrowellen basierten Synthetic Aperture Radar (SAR) können Wälder 
dreidimensional, und mit einer räumlichen Auflösung weniger Meter wiederholt betrachtet 
werden. Beide Technologien spielen dabei entscheidende Rollen. Von der gemeinsamen 
Nutzung der LiDAR Mission GEDI der nordamerikanischen Raumfahrbehörde NASA, wie auch 
der interferometrischen SAR Mission TanDEM-X des Deutschen Zentrums für Luft- und 
Raumfahrt (DLR e.V.) werden erhebliche Synergieeffekte erwartet. Diese begründen sich auf 
einer gemeinsamen Sensitivität zur geometrischen Struktur der Baumkronen bei gleichzeitig 
hoher räumlicher und zeitlicher Auflösung, wie auch der Möglichkeit zur Aufnahme 
komplementärer Geometrien und Aufnahmearten. 

Aufgrund dieses einzigartigen Potentials, beruht die Zielsetzung dieser Arbeit darin, einen 
synergetischen und systematischen Ansatz zur Kombination der räumlich diskreten GEDI LiDAR 
waveforms und den räumlich kontinuierlichen TanDEM-X Kohärenzen zu entwickeln. Zusätzlich 
dazu, werden die benötigten Algorithmen zur räumlich-kontinuierlichen Schätzung der Waldhöhe 
(1) bei einer räumlichen Auflösung besser 1 ha, wie auch eine Waldhöhe-zu-Waldbiomasse 
Allometrie (2) entwickelt. Die in (1) abgeleitete kontinuierliche Waldhöhe wird zusammen mit 
einem aus TanDEM-X Daten berechneten Waldstruktur-Index zur Verbesserung der 
allometrischen Beziehung verwendet. Im Rahmen der Entwicklung zur synergetischen Nutzung, 
werden die GEDI waveforms zur Initialisierung der Waldhöhen-Invertierung aus TanDEM-X 
Daten genutzt. Gleichzeitig, werden die GEDI Waldhöhe und Waldbiomasse Daten auf 
Aufnahmeskala dazu verwendet, die Waldhöhe-zu-Waldbiomasse Allometrie aufzustellen. Ein 
neuartiger horizontaler Waldstrukturindex auf Basis von TanDEM-X InSAR Daten wurde 
entwickelt, um die Bestandsdichte zu approximieren. Dazu wird die Variabilität der Baumkronen-
Höhe durch die InSAR Phasenzentren geschätzt. Weniger dichte Bestände zeichnen sich durch 
eine hohe Variabilität in der Baumkronen-Höhe aus, während dichte(re) Bestände eine 
wesentlich homogenere Struktur aufweisen. Darauf aufbauend, wurde zusätzlich eine Methode 
entwickelt, bei der diese Strukturinformation zur Kompensierung der durch Penetration 
induzierten Unterschätzung der Waldhöhe verwendet wird, auf Kosten einer verschlechterten 
räumlichen Auflösung. 

Die experimentelle Analyse zur Beurteilung der Ergebnisse deutet auf eine hohe Effektivität des 
kombinierten Ansatzes hin. Die Ergebnisse aus den tasmanischen Wäldern zeigen, dass die 
Modelparametrisierung für GEDI und die empirische Profilkorrektur robuste Waldhöhen Daten 
auf großen Skalen liefert. Die großskalige Implementierung der Waldhöhenschätzung wird 
überwiegend durch die lokale Variabilität in der Waldstruktur und dem Profil begrenzt. Parallel 
dazu, legen die Ergebnisse über den Untersuchungsgebieten in Gabun dar, dass der TanDEM-X 
Strukturindex die Fehler in der Waldhöhenschätzung größtenteils kompensieren kann und die 
Höhe-zu-Biomasse Allometrie lokal anpasst. Dadurch konnte die Biomasse-Schätzung im 
Vergleich zu einer singulären Allometrie verbessert werden. Die größte verbleibende 
Unsicherheit (Fehler/Varianz) findet sich in der Fehlerfortführung der übrigen Unsicherheit in der 
Waldhöhen-Schätzung. 

 

 

 

 

 



SAR, SAR Interferometry, Lidar, TanDEM-X, GEDI, Forest, Forest height, Forest structure, 
Forest biomass 

 
Changhyun Choi 
German Aerospace Center (DLR), Microwaves and Radar Institute, Oberpfaffenhofen 

 

Combining TanDEM-X Interferometric SAR and GEDI Lidar Measurements for Improving 

Forest Height, Structure and Biomass Estimates 

ETH Zurich  

 

Forest height, structure and biomass are widely recognized as three important elements to 
monitor as they describe state and development. Any global scale estimation of forest height, 
structure and biomass requires the support of spaceborne remote sensing techniques. Only Light 
Detection And Ranging (lidar) and Synthetic Aperture Radar (SAR) configurations can map 
forests in 3D with metric resolution and repeatedly in time, and contribute critically to this 
challenge. The NASA GEDI lidar mission and the DLR TanDEM-X interferometric SAR (InSAR) 
mission are expected to possess a great synergy potential in this regard due to the common 
sensitivity to the geometric architecture of the forest canopy and high resolution, and to the 
complementary acquisition geometries and measurement approaches.   

With this motivation, the objective of this thesis is to propose a synergetic and systematic 
combination of spatially discrete GEDI lidar waveforms and continuous TanDEM-X InSAR 
coherences, and to develope the necessary algorithms for (i) estimating spatially continuous and 
unbiased large scale forest height maps with resolution of 1 ha or less, and (ii) using the estimated 
height in a (stand-level) height-to-biomass allometric relationship adapted and improved at local 
scales using a horizontal structure index derived from the TanDEM-X data. In the developed 
combination framework, the GEDI waveforms are used to initialize the inversion of forest height 
from TanDEM-X data. A set of performance criteria are implemented throughout the inversion to 
ensure a certain estimation quality. At the same time, the footprint-level height and biomass are 
used to define the height-to-biomass allometry. A new horizontal structure index from TanDEM-
X InSAR data has been developed as a proxy to forest density by characterizing the variability of 
the top forest height through the variability of the InSAR phase center heights. Sparse stands are 
characterized by a high variability, which decreases for dense(r) stands. A methodology has also 
been devised to use the structure information to compensate for (penetration-induced) height 
underestimation biases at the cost of a reduced spatial resolution.  

The experimental performance analysis points to the effectiveness of the developed combination 
framework. Height inversion results in the Tasmanian forests demonstrate that the appropriate 
model parameterization provided by GEDI and the devised implementation can provide robust 
estimates at large scale. The estimation performance is mainly limited by the uncompenstaed 
mismatch between the lidar reflectance and the X-band reflectivity profiles induced by local 
variabilities of forest structure and slopes. In parallel, the results over tropical forest test sites in 
Gabon confirm that the developed TanDEM-X structure index can compensate height estimation 
biases at a large extent, and is able to adapt the height-to-biomass allometry locally and to 
improve the biomass estimation performance when compared to the use of a single allometry. 
The largest remaining uncertainty contribution (in terms of bias and / or variance) is attributed to 
the propagation of the remaining height estimation uncertainty. 
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ABSTRACT 
 

Forest height, structure and biomass are widely recognized as three important elements to 

monitor as they describe state and development. Any global scale estimation of forest height, 

structure and biomass requires the support of spaceborne remote sensing techniques. Only Light 

Detection And Ranging (lidar) and Synthetic Aperture Radar (SAR) configurations can map 

forests in 3D with metric resolution and repeatedly in time, and contribute critically to this 

challenge. The NASA GEDI lidar mission and the DLR TanDEM-X interferometric SAR 

(InSAR) mission are expected to possess a great synergy potential in this regard due to the 

common sensitivity to the geometric architecture of the forest canopy and high resolution, and to 

the complementary acquisition geometries and measurement approaches.   

With this motivation, the objective of this thesis is to propose a synergetic and systematic 

combination of spatially discrete GEDI lidar waveforms and continuous TanDEM-X InSAR 

coherences, and to develope the necessary algorithms for (i) estimating spatially continuous and 

unbiased large scale forest height maps with resolution of 1 ha or less, and (ii) using the estimated 

height in a (stand-level) height-to-biomass allometric relationship adapted and improved at local 

scales using a horizontal structure index derived from the TanDEM-X data. In the developed 

combination framework, the GEDI waveforms are used to initialize the inversion of forest height 

from TanDEM-X data. A set of performance criteria are implemented throughout the inversion to 

ensure a certain estimation quality. At the same time, the footprint-level height and biomass are 

used to define the height-to-biomass allometry. A new horizontal structure index from TanDEM-

X InSAR data has been developed as a proxy to forest density by characterizing the variability of 

the top forest height through the variability of the InSAR phase center heights. Sparse stands are 

characterized by a high variability, which decreases for dense(r) stands. A methodology has also 

been devised to use the structure information to compensate for (penetration-induced) height 

underestimation biases at the cost of a reduced spatial resolution.  

The experimental performance analysis points to the effectiveness of the developed 

combination framework. Height inversion results in the Tasmanian forests demonstrate that the 

appropriate model parameterization provided by GEDI and the devised implementation can 

provide robust estimates at large scale. The estimation performance is mainly limited by the 

uncompenstaed mismatch between the lidar reflectance and the X-band reflectivity profiles 

induced by local variabilities of forest structure and slopes. In parallel, the results over tropical 

forest test sites in Gabon confirm that the developed TanDEM-X structure index can compensate 

height estimation biases at a large extent, and is able to adapt the height-to-biomass allometry 

locally and to improve the biomass estimation performance when compared to the use of a single 

allometry. The largest remaining uncertainty contribution (in terms of bias and / or variance) is 

attributed to the propagation of the remaining height estimation uncertainty. 
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KURZFASSUNG 
 

Die Parameter der Waldhöhe, Waldstruktur und Waldbiomasse sind weithin als die drei 

essenziellen Elemente zur Beschreibung und Überwachung von Wäldern bekannt. Für jegliche 

Schätzung dieser Parameter auf einer annähernd globalen Skala, braucht es weltraumgestützte 

Fernerkundungssysteme. Nur durch die Anwendung des optischen Light Dectection and Ranging 

(LiDar) und dem auf Mikrowellen basierten Synthetic Aperture Radar (SAR) können Wälder 

dreidimensional, und mit einer räumlichen Auflösung weniger Meter wiederholt betrachtet 

werden. Beide Technologien spielen dabei entscheidende Rollen. Von der gemeinsamen Nutzung 

der LiDAR Mission GEDI der nordamerikanischen Raumfahrbehörde NASA, wie auch der 

interferometrischen SAR Mission TanDEM-X des Deutschen Zentrums für Luft- und Raumfahrt 

(DLR e.V.) werden erhebliche Synergieeffekte erwartet. Diese begründen sich auf einer 

gemeinsamen Sensitivität zur geometrischen Struktur der Baumkronen bei gleichzeitig hoher 

räumlicher und zeitlicher Auflösung, wie auch der Möglichkeit zur Aufnahme komplementärer 

Geometrien und Aufnahmearten. 

Aufgrund dieses einzigartigen Potentials, beruht die Zielsetzung dieser Arbeit darin, einen 

synergetischen und systematischen Ansatz zur Kombination der räumlich diskreten GEDI LiDAR 

waveforms und den räumlich kontinuierlichen TanDEM-X Kohärenzen zu entwickeln. Zusätzlich 

dazu, werden die benötigten Algorithmen zur räumlich-kontinuierlichen Schätzung der Waldhöhe 

(1) bei einer räumlichen Auflösung besser 1 ha, wie auch eine Waldhöhe-zu-Waldbiomasse 

Allometrie (2) entwickelt. Die in (1) abgeleitete kontinuierliche Waldhöhe wird zusammen mit 

einem aus TanDEM-X Daten berechneten Waldstruktur-Index zur Verbesserung der 

allometrischen Beziehung verwendet. Im Rahmen der Entwicklung zur synergetischen Nutzung, 

werden die GEDI waveforms zur Initialisierung der Waldhöhen-Invertierung aus TanDEM-X 

Daten genutzt. Gleichzeitig, werden die GEDI Waldhöhe und Waldbiomasse Daten auf 

Aufnahmeskala dazu verwendet, die Waldhöhe-zu-Waldbiomasse Allometrie aufzustellen. Ein 

neuartiger horizontaler Waldstrukturindex auf Basis von TanDEM-X InSAR Daten wurde 

entwickelt, um die Bestandsdichte zu approximieren. Dazu wird die Variabilität der Baumkronen-

Höhe durch die InSAR Phasenzentren geschätzt. Weniger dichte Bestände zeichnen sich durch 

eine hohe Variabilität in der Baumkronen-Höhe aus, während dichte(re) Bestände eine wesentlich 

homogenere Struktur aufweisen. Darauf aufbauend, wurde zusätzlich eine Methode entwickelt, 

bei der diese Strukturinformation zur Kompensierung der durch Penetration induzierten 

Unterschätzung der Waldhöhe verwendet wird, auf Kosten einer verschlechterten räumlichen 

Auflösung. 

Die experimentelle Analyse zur Beurteilung der Ergebnisse deutet auf eine hohe Effektivität 

des kombinierten Ansatzes hin. Die Ergebnisse aus den tasmanischen Wäldern zeigen, dass die 

Modelparametrisierung für GEDI und die empirische Profilkorrektur robuste Waldhöhen Daten 

auf großen Skalen liefert. Die großskalige Implementierung der Waldhöhenschätzung wird 

überwiegend durch die lokale Variabilität in der Waldstruktur und dem Profil begrenzt. Parallel 
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dazu, legen die Ergebnisse über den Untersuchungsgebieten in Gabun dar, dass der TanDEM-X 

Strukturindex die Fehler in der Waldhöhenschätzung größtenteils kompensieren kann und die 

Höhe-zu-Biomasse Allometrie lokal anpasst. Dadurch konnte die Biomasse-Schätzung im 

Vergleich zu einer singulären Allometrie verbessert werden. Die größte verbleibende 

Unsicherheit (Fehler/Varianz) findet sich in der Fehlerfortführung der übrigen Unsicherheit in der 

Waldhöhen-Schätzung. 
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1 INTRODUCTION 

1.1 MOTIVATION  

Forests are one of the most important terrestrial ecosystems and play a significant role in the 

global carbon and water cycle. Besides their importance, forests are today more than ever before 

under the pressure of a growing world population and climate change. Globally, forests are 

characterized by complex 3D patterns which are the result of natural, climatic and anthropogenic 

processes. In this context, strategies for characterizing forest height, structure and biomass, and 

their dynamics in time, are of significant importance. Mapping forest height provides information 

on stand condition and site index. It allows characterizing the successional state of the forest and 

thus can be used to describe forest dynamics [1]. Forest height is an indicator for the site dependent 

timber production potential of a stand and is closely related to forest biomass [2-3]. The 

distribution of forest heights within a stand may be used to assess the disturbance regime. High 

spatial and temporal resolution forest height maps can be used to detect logging activities. At the 

same time, mapping forest structure (intended as “the organization in space and time, including 

the position, extent, quantity, type and connectivity, of the aboveground components of 

vegetation” [4-8]) is critical for understanding the history, function and future of forest 

ecosystems. Indeed, forest structure expresses forest state, functionality, biodiversity and 

evolution, and is an indicator of the successional stage and development as well as sustainability 

and habitability [9-11]. Due to this, it is an important parameter for assessing forest productivity, 

biomass and biodiversity [12-15]. Finally, the knowledge of both height and structure and their 

dynamics can be used to constrain model estimates of above-ground biomass (AGB – intended as 

“living vegetation above the soil, including stem, stump, branches, bark, seeds, and foliage” [16] 

in ecology and carbon stock estimates, but more focused on the dominant stem contribution in 

forestry) and associated carbon flux components between the vegetation and the atmosphere. 

While forest characterization traditionally relies on sampling techniques by means of field 

inventory plots or more recently by using terrestrial laser scanning techniques, any global scale 

estimation of forest height, structure and biomass requires the support of (spaceborne) remote 

sensing techniques.  

Today, only Light Detection and Ranging (lidar) and Synthetic Aperture Radar (SAR) 

configurations can monitor forests in 3D with metric resolution and repeatedly in time, and 

contribute critically to the observation and quantitative characterization of forest height, structure 

and biomass at large scales [17-18]. Full-waveform lidar systems measure directly vegetation 

reflectance profiles (or waveforms) with a fairly high vertical resolution over footprint samples 

along rather narrow stripes in a nadir-looking geometry. This configuration is implemented by the 

NASA’s / University of Maryland Global Ecosystem Dynamics Investigation lidar (GEDI) 

mission [19], operating on the International Space Station (ISS) since 2018 with the scientific 
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objective of mapping forest height, structure and biomass of temperate and tropical forests 

globally. Despite meeting the required measurement accuracy and resolution, GEDI can only 

sample forest structure over a grid of footprints on ground. The resulting sparsity of the spatial 

coverage (possibly reduced even further by cloud cover) may not be adequate to represent actual 

structure variations at small scale without possibility of interpolation (gridding) below 1 km × 1 

km resolution. In contrast, SAR measurements are continuous with high spatial resolution, and 

can be implemented by means of wide swaths in a side-looking geometry allowing large scale 

coverage and short revisit time. Depending on the configuration, SAR systems can measure 

backscattering amplitudes, interferometric coherences or even radar vertical reflectivity profiles. 

However, these profiles are not always straightforward to be interpreted in terms of physical forest 

structure, partially due to their limited vertical resolution. The DLR TerraSAR-X add-on for 

Digital Elevation Measurement (TanDEM-X) mission [20-21] has acquired single-pass 

interferometric SAR (InSAR) data globally without temporal decorrelation at X-band 

(wavelength 3.1 cm) since 2010 for the generation of a global digital elevation model. Despite the 

short wavelength, and the consequential limitations in the penetration of forest volumes, the 

exploration of TanDEM-X InSAR data for forestry has been increasing in time especially 

concerning forest height [22-26] and biomass estimation and classification [27-30]. More recent 

experiments have demonstrated that TanDEM-X data can contribute to the quantification of forest 

structure [31-35]. These application potentials and the obtained performances were certainly 

unexpected before the mission launch, but not all of them are today systematically understood and 

characterized. 

The common sensitivity to forest structure, and the complementary measurement 

configurations, motivate the combined and synergistic use of lidar and SAR data. This 

combination is expected to enhance the quality of forest characterization by improving the 

accuracy and / or the resolution, spatial continuity and coverage of physical forest parameter 

estimates, like forest height, structure, and biomass. This topic is addressed in this thesis with 

particular reference to the combination of spatially discrete GEDI and continuous TanDEM-X 

measurements for obtaining (1) spatially continuous forest height estimates at large scale and 

resolution at 1 ha or even below, and (2) spatially continuous biomass estimates through a (stand-

level) height-to-biomass allometry adapted and improved at local scales using structure 

information. While the differences in wavelength and observation geometry make GEDI 

waveforms and X-band reflectivity profiles different, the high attenuation makes both of them 

sensitive to the geometric architecture of the canopy with a similar information content. Exactly 

this common information content allows GEDI samples to initialize parameter inversions from 

the TanDEM-X data over the complementary continuous coverage, and both the coverage 

continuity and high resolution of TanDEM-X measurements make possible the exploration of a 

set of relevant scales in order to provide (horizontal) structural information that the sampled GEDI 

nature cannot achieve. The ability to link GEDI and TanDEM-X measurements at the different 

complementary coverage (sampled vs. continuous) and scales / resolution performed defines in 

this case the combination. Its realization requires both a deeper understanding of the 

measurements and the development of novel estimation algorithms. 
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1.2 STATE-OF-THE-ART 

Forest remote sensing applications have been developed with both passive and active sensors. 

Passive sensors include in particular optical systems, which record spectral responses from the 

interaction between the solar radiance and forest stand canopies in the nanometers wavelength 

range. Optical data have been predominant in forest remote sensing since decades due to their 

relatively easy processing, interpretation and continuity of observations since the 1970s [36] for 

forest/non-forest mapping [37-38], forest disturbances monitoring [39], forest structure indices 

such the leaf area index [40] or the normalised difference vegetation index. However, cloud 

coverage limits the availability of data for large regions and/or amount of time. Additionally, the 

limited sensitivity to the vertical distribution of vegetation elements especially after canopy 

closure introduces large uncertainties in structural and biomass maps at scales lower than a few 

kilometers [41-42]. 

In contrast, measurements from active remote sensing systems like lidar and SAR (briefly 

reviewd in this Section) are inherently sensitive to the full 3D forest attributes, and because of this 

they have been widely used for height, structure and biomass mapping [17-18]. It is worth 

mentioning that even if height- and structure-related parameters are more or less directly 

retrievable at stand level, the typical resolution of lidar and SAR measurements – especially in 

spaceborne implementation – does not allow the extraction of single-tree information. Thus, well-

defined concepts to estimate forest height, structure, and biomass for the specific sensor 

measurements, resolutions and acquisition configurations are required to link data to 

(conventional) physical parameters at the scales / resolutions performed. The state-of-the-art of 

these concepts are briefly reviewed and discussed in the next Sections with particular reference to 

lidar and SAR configurations like GEDI and TanDEM-X alone and in combination.  

1.2.1 FULL WAVEFORM LIDAR MEASUREMENTS: THE GEDI MISSION   

Vegetation lidar instruments are active configurations usually operating at the wavelength of 

1064 nm or 1550 nm as they propagate well through the atmosphere, they are eye-safe, and the 

reflectance of vegetation elements is very high resulting into a high signal-to-noise ratio. Laser 

pulses are transmitted in a nadir-looking geometry, and intercept the vegetation elements within 

the illuminated footprint on the ground, get attenuated and reflected back to the receiver [5], [7], 

[43-44]. In full waveform lidars the receiver records the reflected distribution of (light) energy 

(i.e., the waveform) as a function of time, which can be converted in range (distance) through the 

speed of light. As a consequence, the received waveform shape depends directly on the 3D 

geometric distribution of the intercepted vegetation elements within the footprint, as well as their 

scattering properties and the actual atmospheric conditions. The footprint diameter can range 

between decimeter in small-footprint lidars and tens of meters in large-footprint lidars. While the 

former is typically designed for fine topographic mapping (and only the discretized returns may 

be recorded), the latter is instead preferred for vegetation mapping. Indeed, footprints comparable 

to the crown diameter (10 – 25 m) are expected to contain both tree top and ground returns. In 
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addition, they increase coverage with a lower cost [43]. Ignoring for simplicity the propagation 

through the atmosphere, and assuming a penetration until the terrain height 𝑧0 and a constant 

weighting within the footprint, the received waveform 𝑃(𝑥, 𝑦, 𝑧) at a position (𝑥, 𝑦) on ground 

from a vegetation volume of thickness 𝐻𝑉 can be written as  

 

𝑃(𝑥, 𝑦, 𝑧) = ∫ 𝑝(𝑧′ − 𝑧)∬ 𝜎(𝑥′ − 𝑥, 𝑦′ − 𝑥, 𝑧′) ∙ 𝑒−𝜏(𝑧′−𝑧0)𝑑𝑦′𝑑𝑥′
𝑧0+ 𝐻𝑉

𝑧0

𝑑𝑧′ (1.1) 

 

where 𝜎(𝑥, 𝑦, 𝑧) is the volumetric reflection of the vegetation layer, 𝜏 the volumetric extinction 

coefficient that accounts for the two-way attenuation within the vegetation layer, and 𝑝(𝑧) is the 

system pulse shape. 

The first and last peaks of a waveform are typically associated with reflecting surfaces at the 

highest and lowest heights within the footprint, respectively. An accurate identification of these 

peaks above the noise level is required on the one hand to precisely geolocate the corresponding 

reflecting surfaces, and on the other hand to calculate statistical quantile metrics from the 

integrated waveform between these ranging points. These statistical quantiles are typically 

referred to as relative height (RH) metrics [45]. Each RH metric expresses the height above the 

ground at which a certain percentage of the total waveform energy is received. For instance, the 

RH100 represents to the height above the ground in which the total energy is received. The RH98 

is often used as a measurement of top canopy height as it is less affected by noise than the RH100. 

RH metrics are typically used alone or in combination to describe the canopy vertical structure 

[46]. The distribution of the waveform peaks has been considered as well [45], [47], under the 

assumption that a peak corresponds to an accumulation of reflected energy induced by an 

accumulation of canopy material. The RH metrics have also been related to biomass. In particular, 

the so-called HOME (Height Of Median Energy), i.e. the RH50, is usually considered [47-48] as 

a proxy to structure, and for instance can locally adapt height-to-biomass allometric relationship 

parameterized e.g. by the RH98.  

The derivation of vertical structure of vegetation canopies from lidar waveform data depends 

on the knowledge of the relationship between lidar waveforms and the spatial structure and optical 

properties of vegetation canopies. Indeed, in the absence of multiple scattering, a received 

waveform can be expressed as a function of the projected area of canopy / background materials 

along the path of the laser pulse [7], [44], which is often expressed in terms of a canopy gap 

probability. This parameter links lidar measurements, vertical and horizontal canopy structure, 

the radiation regime of a plant canopy [44], [49], and enables the estimation of Plant Area Index 

(PAI), cover and their vertical profiles [44], [50]. 

NASA’s large-footprint airborne instrument LVIS (Land, Vegetation, and Ice Sensor) [51] is 

continuously being used in many experimental campaigns, and has demonstrated the value of lidar 

observation for forest mapping. In parallel, there have been only a few spaceborne lidar systems 

dedicated to the observation of land surfaces, like the Shuttle Laser Altimeter (SLA) [52], the 

NASA’s Ice, Cloud and land Elevation Satellite (ICESat) [53] and the current ICESat2 missions 

[54]. In 2018, the GEDI lidar was deployed on the International Space Station (ISS) and is 
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currently collecting waveform measurements (beyond the two-year mission length) over the 

Earth’s surface between 51.6° N and 51.6° S, i.e. covering tropical and temperate forests. In 

contrast to airborne scanning systems such as LVIS, GEDI can only sample forest structure in a 

more or less dense grid which is anyway optimized to maximize geographic coverage in contrast 

to previous missions. For each ISS pass, the three GEDI lasers generate four beams which are 

dithered to collect waveform data along 8 tracks separated by about 600 m in the across-track 

direction. Along each track, every 60 m, waveforms with a footprint of approximately 25 m 

diameter are measured.  

In order to achieve its scientific objectives, the GEDI mission produces a number of science 

data products including footprint-level and gridded data sets. A comprehensive overview is 

provided in [19]. The following data products are of particular interest in the context of this thesis: 

 

• The GEDI waveforms after geolocation and correct positioning with respect to the 

Earth ellipsoid (Level L1B data). A representative transect of GEDI waveforms in the 

Lopé National Park is shown in Fig. 1.1; 

• The RH metrics (Level L2A data) obtained from the waveforms after identification of 

the ground elevation and top canopy height. Fig. 1.2 shows the RH98 in 

correspondence of the footiprints in Lopé within the coverage of a TanDEM-X image 

acquired on Jan. 25, 2016; 

• Footprint-level above ground biomass (AGB, level L4A). 

 

The L4A footprint-level AGB is obtained from models linking the GEDI L2 waveform height 

metrics (especially RH98) to AGB estimated from field measurements. The candidate models 

change with the plant functional types (deciduous broad-leaf trees, evergreen broad-leaf trees, 

evergreen and deciduous needle-leaf trees, and combinations of woodlands, grasslands and 

shrubs) and regions (all continents except Antarctica); these models are discussed and described 

in detail in [55]. The model selection is then driven by the data. Operating with a relatively small 

number of locations available for the training and testing, and ensuring the transferability of the 

derived relationships outside of each location are two main challenges to be faced in the 

development of the AGB models [19], [55]. The first challenge has been solved by simulating 

thousands of large footprint training samples from discrete-return airborne lidar in correspondence 

of the field measurements. To overcome the second challenge, models are updated including new 

GEDI observations in a specific framework [19]. 

A gridded (continuous) mean AGB product (L4B) is then produced from the (sparse) footprint-

level L4A at 1 km × 1 km resolution, together with the related estimated variance. The aggregation 

approach in each 1 km cell changes depending on the density of L4A AGB values. It is noted in 

[19], [56] that the resolution of 1 km is the coarsest resolution required by the ecosystem science 

community. However, the sampling nature of the GEDI mission constrain the spatial resolution 

of the grids that can be produced. Finer resolutions in the order of 100 m × 100 m (1 ha), which 

are commonly understood (and more often desired) to render a meaningful estimate of the 

complexity of structure and biomass variability in space, can be realized only by combining the 
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GEDI data with other remote sensing data characterized by high resolution (comparable to the 

GEDI footprint diameter), spatial acquisition continuity, and sensitivity to forest structure, like 

SAR data in general and TanDEM-X InSAR data in particular. 

 

 

 

 

Fig. 1.1. GEDI full waveforms along a representative transect within the Lopé National Park in Gabon 

along the transect indicated in Fig. 1.2. The distance between consecutive profiles is about 60 m. The 

height axis is referred to the ground (0 m). Each profile is normalized by its maximum amplitude. Dark 

green indicates higher reflectance and white indicates lower reflectance. 

     

 

 

 

Fig. 1.2. Lopé: GEDI RH98 map in lat-lon coordinates in correspondence of footprint positions of the 

available GEDI measurements with 25 m resolution (footprint diameter), covering around 45 km × 60 km, 

corresponding to the area of the TanDEM-X scene acquired on Jan. 25, 2016 (dotted border). The black 

arrow indicates the representative transect whose waforms are shown in Fig. 1.1.  
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1.2.2 INTERFEROMETRIC SAR MEASUREMENTS: THE TANDEM-X MISSION  

Similar to lidar sensors, SAR sensors transmit electromagnetic pulses, but in the microwave 

region of the electromagnetic spectrum corresponding to wavelengths in the order of cm to dm, 

and in a side-looking geometry. The amplitude and phase of the received backscattered pulses is 

measured with resolution on ground often between 1 m and 10 m after the image formation 

process. Both amplitude and phase depend on the geometric and dielectric properties of the 

physical scatterers on ground, their distribution within the antenna footprint (i.e. the illuminated 

area/volume), and the transmit-receive polarization. The side-looking geometry complicates 

additionally the interpretation of a single SAR image, but at the same time it allows the realization 

of wide footprints, i.e. swath widths up to hundreds of kilometers, and the separation of the 

scatterers in ground range direction. Spaceborne SAR configurations of the latest generation can 

therefore realize revisit times between 1 and 2 weeks [18]. 

Radar pulses penetrate more and more through vegetation layers at the decrease of frequency 

(increase of the wavelength), thus interact with vegetation elements at different heights and with 

the underlying ground. However, a single SAR image (or a set of SAR images in different 

polarimetric channels), even if it results from the interaction of the transmitted pulse(s) with the 

whole 3D forest structure, does not allow the reconstruction of the properties of the 3D distribution 

of scatterers within the illuminated volume. Fig. 1.3 shows TanDEM-X SAR image amplitudes 

of a scene over Lopé acquired on Jan. 25, 2016, at X-band (wavelength 3.1 cm). In this case, the 

saturation of the backscattered amplitudes does not allow to distinguish among forest stands with 

different characteristics, and even between forested and bare areas. To remove this limitation, a 

set of SAR images acquired under (slightly) different angular directions (i.e. incidence angles) is 

required in the context of InSAR and tomographic SAR measurements [18].  

The main InSAR measurement is a complex interferometric coherence 𝛾̃(𝜅𝑧) formed by using 

the two images 𝑆1 and 𝑆2 acquired at a given polarization with a given spatial, i.e. baseline, and 

temporal separation [22]. It is a measure of similarity of the two images and can be written as:  

 

𝛾̃(𝜅𝑧) =
< 𝑆1 ⋅ 𝑆2

∗ >

√< 𝑆1 ⋅ 𝑆1
∗ >< 𝑆2 ⋅ 𝑆2

∗ >
 (1.2) 

 

where <…> denotes the expected value. The dependency on range and azimuth in (1.2) and in the 

following has been dropped for simplicity. 𝜅𝑧 is the so-called vertical wavenumber and is linearly 

proportional to the change of incidence angle induced by the spatial separation (baseline) between 

the two images.  

In conventional interferometric applications, 𝜅𝑧 expresses the sensitivity of the interferometric 

phase to (terrain) height variations. 𝛾̃(𝜅𝑧) includes several decorrelation contributions and can be 

re-written as [22]: 

 

𝛾̃(𝜅𝑧) = 𝛾̃𝑇𝑚𝑝 ⋅ 𝛾̃𝑆𝑦𝑠 ⋅ 𝛾̃𝑆𝑐𝑎𝑡(𝜅𝑧). (1.3) 
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Fig. 1.3. Lopé: TanDEM-X (normalized) SLC amplitude image acquired on Jan. 25 2016. The map is in 

lat-lon coordinates, with resolution 25 m × 25 m (13 × 12 looks in range and azimuth), and with coverage 

around 45 km × 60 km. 

 

 

𝛾̃𝑇𝑚𝑝 arises from geometric and/or dielectric changes of the scatterers in the time interval between 

the two interferometric acquisitions. 𝛾̃𝑆𝑦𝑠 comprises a wide range of decorrelation effects related 

to the non-ideality of the SAR system and processing implementations. 𝛾̃𝑆𝑐𝑎𝑡(𝜅𝑧) is originated by 

the phase stability of the scatterers under the different incidence angles induced by the InSAR 

baseline. After range and azimuth spectral filtering [34] 𝛾̃𝑆𝑐𝑎𝑡(𝜅𝑧)  becomes the volume 

decorrelation contribution 𝛾̃𝑉𝑜𝑙(𝜅𝑧) [57]: 

 

𝛾̃𝑉𝑜𝑙(𝜅𝑧) = exp(𝑖𝜅𝑧𝑧0) ⋅
∫ 𝑓𝑉(𝑧) exp(𝑖𝜅𝑍𝑧) 𝑑𝑧

𝐻𝑉

0

∫ 𝑓𝑉(𝑧) 𝑑𝑧
𝐻𝑉

0

 (1.4) 

 

where once again 𝑧0 is the ground height, 𝐻𝑉 is the (top) forest height, and 𝑓𝑉(𝑧) is the vertical 

reflectivity profile, expressing the vertical distribution of scatterers seen by the interferometer. In 

(1.4), the phase of 𝛾̃𝑉𝑜𝑙(𝜅𝑧) converted to height, i.e. the so-called phase center height, corresponds 

to the “center of mass” of 𝑓𝑉(𝑧). The shape of 𝑓𝑉(𝑧) effects also the absolute value |𝛾̃𝑉𝑜𝑙(𝜅𝑧)|: 

the concentration of 𝑓𝑉(𝑧) around a height makes a |𝛾̃𝑉𝑜𝑙(𝜅𝑧)| very close to 1 and almost constant 

at the increase of 𝜅𝑧, while a more extended 𝑓𝑉(𝑧) makes |𝛾̃𝑉𝑜𝑙(𝜅𝑧)| lower than 1, and typically 
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decreasing at the increase of 𝜅𝑧. This sensitivity enables the retrieval of structural information 

from a single (or a limited number of) coherence(s) by means of a model parameterized in terms 

of geometric and scattering parameters. Obviously, the validity of the model is critical for the 

physical significance of the extracted parameters. Fig. 1.4 shows the TanDEM-X interferometric 

coherences over Lopé obtained over the same scene in Fig. 1.3.  If many 𝛾̃𝑉𝑜𝑙(𝜅𝑧) are available 

with an appropriate diversity and distribution of 𝜅𝑧, a direct tomographic inversion of the full 

𝑓𝑉(𝑧) can be attempted without models [18]. 

 

 

 

 
 

Fig. 1.4. Lopé: TanDEM-X coherence image obtained over the same scene of Fig. 1.3. The map is in lat-

lon coordinates, with resolution 25 m × 25 m (13 × 12 looks in range and azimuth), and with coverage 

around 45 km × 60 km.  

 

 

Since its launch in 2010 and still today, the DLR’s TanDEM-X mission (with resolution 

around 2 m in range and azimuth, respectively, and swath width of 30 to 50 km) allows single-

pass InSAR measurements at X-band of 𝛾̃(𝜅𝑧) from space in a bistatic configuration [20-21]. In 

the TanDEM-X bistatic mode, one of the two satellites transmits and both satellites receive the 

scattered signal quasi simultaneously (with temporal differences in the order of a fraction of a 

second). For this reason, 𝛾̃𝑇𝑚𝑝 = 1, and after compensation of the 𝛾̃𝑆𝑦𝑠, 𝛾̃𝑆𝑐𝑎𝑡(𝜅𝑧) and in turn 

𝛾̃𝑉𝑜𝑙(𝜅𝑧) are immediately available. Fig. 1.6 shows the distribution of |𝛾̃𝑉𝑜𝑙(𝜅𝑧)| over the Amazon 

forest as measured by TanDEM-X at 𝜅𝑧  values with no significant variations. Compared to         

Fig 1.5, it is apparent that lower values of |𝛾̃𝑉𝑜𝑙(𝜅𝑧)| in forested areas reflect at the first order a 

larger extent of 𝑓𝑉(𝑧) in height as a consequence of a larger top height. 
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The estimation of forest height [i.e. 𝐻𝑉 in (1.4)] is by far the most assessed application of 

TanDEM-X data in forestry [25], [58-60]. Because of the high TanDEM-X resolution, height 

maps can be obtained already with resolution in the order of 10 m × 10 m. Dual-polarised 

TanDEM-X InSAR measurements enable forest height estimation without any a priori 

information [22]. The achieved estimation error is between 10% and 20% if sufficient capabilities 

to “see” the entire volume extent in height are guaranteed by the penetration at X-band. If this 

condition is not met, taller stands are systematically underestimated. However, dual-pol data are 

available only over selected test sites. If the underlying topography is known, forest height can be 

estimated even from single-polarimetric InSAR coherences [22]. Despite this inversion scheme is 

constrained to flat areas or where a digital terrain model (DTM) is available, it can be implemented 

using data of the standard TanDEM-X acquisition mode, enabling large scale applications [23]. 

Remarkably, the knowledge of the terrain height leads to unbiased height estimates and the 

visibility of the full volume extent is not required anymore. But a DTM is not available for most 

of the forest regions. In this case, remembering equation (1.4) the inversion of forest height can 

still be performed for the absolute value of the measured volume coherence, which does not 

depend anymore on the interferometric phase induced by the terrain height. In order to obtain a 

determined inversion problem (meaning one unknown, 𝐻𝑉, for one measurement, |𝛾̃𝑉𝑜𝑙(𝜅𝑧)|), the 

full 𝑓𝑉(𝑧) must now be assumed or approximated from other sources of information. The choice 

of a suitable shape is critical for controlling the inversion bias (primarily for the taller stands). A 

typical (but not the only one) assumption is a uniform 𝑓𝑉(𝑧) (“box”-shaped) from the ground up 

to 𝐻𝑉  [61-63]: the inversion can be performed even by means of closed-from expressions, 

however the obtained values can show a bias (underestimation) even when X-band penetration is 

not problematic.  

In contrast, the characterization of forest structure is not as advanced as the estimation of forest 

height, mainly because any physical interpretations of InSAR coherences is in an early stage of 

development. Scattering models can include descriptors of structural properties [64]. For instance, 

the application of the interferometric water cloud model as well as a two-level model has been 

shown in boreal forest to allow the retrieval of a forest density index [25], [65], stem volume [65-

67], and to describe growth and management actions [68] from TanDEM-X data. Again, the low 

dimensionality of the observation space (one complex InSAR coherence corresponds to two 

measurements – the amplitude and the phase) and the introduction of a structure parameter 

additional to height require the knowledge of the terrain height to obtain a determined inversion 

problem. On the other hand, the projection of the 3D structure and dielectric characteristics onto 

one single parameter implied by the InSAR models may also lead to ambiguous physical 

interpretations. A second approach relies on the use of allometric relationships to forest height 

only. An attempt in this context regards e.g. the estimation of stem volume at plot level (500 m2) 

in a temperate forest [69]. But the parameterization of this kind of relationships requires the 

availability of an appropriate amount of specific ground measurements sampling uniformly all the 

different conditions. A third investigated approach aims at using the estimated top heights to 

characterize horizontal structure by quantifying the variability in height of the top canopy 

“surface” at a certain resolution (e.g. 100 m × 100 m) [70]. A high variability indicates 
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(horizontally) sparse stands, while a low(er) variability indicates dense(r) ones. It is worth noting 

that this structural information is complementary to the one in the vertical direction provided by 

the GEDI waveform samples. The horizontal structure definition based on top height variability, 

together with an evaluation of the mean height within a stand, has been used in [33] to identify 

growth stages in a test site (Tapajos) in the Amazon forest with a resolution in the order of 50 m 

× 50 m. Importantly, the sensitivity of X-band to the top canopy layer makes possible the 

quantification of the top canopy height variability just by using the TanDEM-X phase center 

height after compensation of the terrain height. This observation is at the basis of the approach in 

[32], in which the top canopy variability is expressed by extending a horizontal structure index 

originally developed for tomographically reconstructed profiles [70] at longer wavelengths to the 

TanDEM-X phase center heights. Interestingly, this index has been found to be in a close 

relationship with the well-established stand density index [70-71]. The quantification of forest 

structure is now fully independent of specific scattering models and allometric relationships, and 

is expected to make a generalization and suitability to different ecosystems easier. Two-point 

statistics can be employed as well. Indeed, in [31] a wavelet analysis at different scales was used 

to separate stands with different structural characteristics within a tropical test site. The analysis 

in [31] also points out that if the terrain height is not compensated from the TanDEM-X phase 

center heights, the retrieved top canopy height variations are not affected by terrain height 

variations for scales (resolutions) smaller than 10 m × 10 m (order of magnitude). However, 

measurements of the phase center height at these fine scales are affected by the phase variance 

induced by the interferometric decorrelation, therefore operating at larger scales (resolutions) is 

preferred. In this case, the compensation of the terrain topography is needed to distinguish a wider 

range of structure types. Independently of the approach, strategies not relying on the knowledge 

of terrain height are not available in the literature, and they are a critical step to extend structure 

characterization to wide coverages, accepting in this case some performance degradation.  

Finally, the use of InSAR measurements for estimating biomass is critical in order to overcome 

backscatter saturation occurring already for very low biomass levels at X-band. Several attempts 

have been reported in the literature with TanDEM-X data. Change of digital elevation model 

heights (correlating to top height changes) have been related to biomass changes [59-60], [72]. In 

parallel, allometric relationships at stand level relating top canopy height and biomass (which are 

also common in forestry) have been used in [24], [28-29], [73] in boreal forests. In [29], [73], the 

forest density as a result of the inversion of a (simplified) coherence model has been included to 

account for the spatial variability of the allometric coefficients, as already mentioned under the 

assumption of a known terrain height. An alternative approach to overcome the inversion of a 

model considers empirical direct relationships between the complex coherence [30] or its absolute 

value [74] and biomass. The general argument for this kind of relationships is that the coherence 

contains information of both the volume height and its (vertical) structure. While it is understood 

that height is the main contribution to volume coherence [26], the contribution of (vertical) 

structure is maybe lower. A simple coherence-to-biomass relationship does not distinguish 

between the two contributions, and its physical interpretability is not straightforward. The 

observed overall correlations between the biomass estimated from the TanDEM-X data and the 
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one estimated from field measurements are promising, but the errors are higher than in model-

based physical approaches. Yet, both model-based and empirical approaches have the common 

issues of the initialization of the relationship parameters, and of their adaptation to local scales. 

 

 

 

Fig. 1.5. GEDI RH98 map in meters (m) over the Brazilian Amazon forest. The map is in geographic 

coordinates in lat-lon, with resolution of 25 m × 25 m. The acquisition period is from 19th mission week 

(2019) to 130th mission week (2021). 

 

 

Fig. 1.6. TanDEM-X volume coherence 𝛾̃𝑉𝑜𝑙(𝜅𝑧) map over the Brazilian Amazon forest with the same 

extension as in Fig. 1.5. The acquisition period is between 2010 and 2020. 
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1.2.3 LIDAR – SAR COMBINATION 

 The development of strategies for the combination of lidar and SAR measurements over forest 

scenarios critically depends on the ability to relate the lidar reflectance profiles and the radar 

reflectivity profiles for the same physical distribution of vegetation elements. This is in general 

not established today at all the radar frequencies. Nevertheless, a few approaches from space have 

been tested using SRTM data in the past, and TanDEM-X data more recently. 

Statistical regressions are an obvious way to overcome the lack of modelling understanding. 

Several examples for such an approach have been reported in the literature, for example aiming 

at biomass estimation by combining lidar heights and SAR backscatter and / or interferometric 

parameters [see e.g. 75-79].  

On the other hand, lidar and interferometric SAR measurements can be linked more 

systematically by means of a scattering model. For instance, lidar data and/or lidar derived 

products have been used to solve the inherent underdetermination of the forest height inversion 

problem from single-polarimetric TanDEM-X InSAR coherences. The most basic combination 

consists in using the lidar-derived DTM to directly enable the forest height inversion, see Section 

1.2.2 [22-25], [73]. Such a combination can exploit even the temporal [23] complementarity of 

lidar and SAR measurements to obtain continuous estimates of forest height and of its changes 

over large scales. A more advanced combination uses lidar data to constrain the forest height 

inversion problem reducing in this way its dimensionality [80-82]. Such approaches are supported 

by a certain similarity of the structural information content of lidar and TanDEM-X 

measurements, induced by the high sensitivity to the geometrical architecture of the canopy, the 

high attenuation rates and the high spatial resolution common to both configurations. In this 

context, very recently the use of lidar waveforms to directly approximate the TanDEM-X 

reflectivity in (1.4) has been proposed [26], [83] or to train models [84]. Experimental results 

demonstrate an adequate performance achieved with respect to fixed reflectivity profiles (see the 

discussion in Section 1.2.2) by using the absolute value of the InSAR coherence, therefore not 

needing the knowledge of the terrain height. For such application, lidar waveforms appear a 

sufficiently good approximation of TanDEM-X reflectivity profiles, even if there might exist 

significant devaitions. Clearly, the underestimation of forest heights as a result of a limited X-

band penetration remains as a serious error contribution for tall and/or dense forest conditions.  

Combination strategies based on the exchange of structural characterization between lidar and 

SAR, and in particular TanDEM-X, measurements have not been developed so far. A reason for 

this is certainly the fact that the interpretation of the SAR reflectivity profiles underlying the 

InSAR coherences in terms of physical forest structure attributes is not as advanced as for lidar 

profiles. Nevertheless, structural characterizations could be used to better select the lidar profile 

to be used for height inversion from TanDEM-X data if only a limited set of lidar profiles is 

available for a TanDEM-X scene (like in the GEDI case), or to initialize the compensation of 

penetration biases in the height estimates, or even to guide / adapt the creation of allometric 

relationships for biomass estimation.   
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1.3 RESEARCH OBJECTIVES 

Given the scientific motivation described in Section 1.1, and the current challenges described 

in the state-of-the-art in Section 1.2, this thesis has the objective of proposing a novel, systematic 

and synergetic combination of spatially discrete GEDI lidar waveforms and continuous TanDEM-

X InSAR coherences, by developing the necessary algorithms for  

 

• estimating spatially continuous and unbiased large scale forest height maps with resolution 

of 1 ha or less, 

• using the estimated height in a (stand-level) height-to-biomass allometric relationship 

adapted and improved at local scales using a horizontal structure index derived from the 

TanDEM-X data. 

 

The proposed combination framework does not rely on any terrain height information. Thus, 

it can be used to derive forest height, structure and biomass estimates at large scales, contributing 

to fill an important application gap as well.  

Forest heights are initially estimated from the absolute value of the TanDEM-X coherences 

using the approach in [26] by initializing the inversion using a “mean” profile within a TanDEM-

X scene derived from the corresponding set of GEDI waveforms. After the inversion, the resulting 

height map is at a fine resolution (25 m) equivalent to the GEDI footprint diameter. Estimation 

biases are counteracted in two steps. First, a remaining profile mismatch is accounted for by 

compensating at fine resolution any residual global bias by linear regression of vertical 

wavenumber – height products (TanDEM-X estimated vs GEDI measured). Second, a TanDEM-

X horizontal structure index is used to compensate for a local residual penetration-induced bias 

by deriving a mean height at a coarser resolution (100 m). This index expresses top forest height 

variations (at 100 m resolutions), and requires the spatially continuous and high-resolution 

measurements that only TanDEM-X can provide in the combination. It is worth remarking that 

while the first compensation makes use of a global relationship built up using the GEDI heights, 

the subsequent averaging process is carried out at smaller scales and relies on TanDEM-X data 

only. 

Next, biomass is estimated (at 100 m resolution) from a height-to-biomass allometric 

relationship in which an allometric factor is multiplied by an exponential function of height 

parameterized by the allometric exponent. The allometric exponent depends on species 

composition and growth conditions, and is reasonably assumed constant even at large scales. The 

allometric factor depends on anthropogenic or natural variations in stand density resulting from 

differences in basal area, age composition but also thinning operations, or disturbance effects, and 

changes at significantly smaller scales. The values of both the allometric exponent and factor are 

here derived by using the GEDI heights and biomass at footprint level. The height-to-biomass 

relationship is then improved by making the allometric factor vary with the TanDEM-X horizontal 

structure index defined above, while the exponent is kept constant. The GEDI heights and biomass 

are then used in this case to derive the relationship linking the allometric factor to the horizontal 
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structure index. The use of such an index is motivated by the fact that it indeed reflects a horizontal 

variability of forest heights expressing density. 

The research goals associated with the thesis objective can be stated by means of six relevant 

questions that define both the novel aspects and the proposed solutions in this thesis:

 

Q1. How far can a horizontal forest structure index derived from TanDEM-X data be used to 

locally adapt the height-to-biomass allometry in heterogeneous forests, and improve biomass 

estimation performance?  

 

Q2. In which way can a horizontal forest structure index be estimated from TanDEM-X data 

in the absence of a DTM? 

 

Q3. What is the role of a horizontal forest structure index in compensating the forest height 

estimation bias in dense (tropical) forests in the absence of a DTM? 

 

Q4. Which is the ability of the GEDI waveform sampling in the parameterization of a height-

to-biomass allometry as a function of resolution and sampling density? 

 

Q5. In which way can GEDI waveforms and heights initialize and/or correct TanDEM-X 

forest height inversion in the absence of a DTM?  

 

Q6. Which performance can be achieved in height estimation by the implemented GEDI-

TanDEM-X combination for wide areas (e.g. country-wide) applications?  

 

1.4 ORGANIZATION OF THE THESIS 

The research questions presented in Section 1.3 have been addressed in Chapters 2, 3, and 4. 

These Chapters consist of peer-reviewed published papers. Each of them can be read and 

understood separately.  

Chapter 2 “Improving Forest Height-To-Biomass Allometry with Structure Information: A 

TanDEM-X Study” answers question Q1 in the ideal case in which a DTM is available. Under 

this assumption, a horizontal forest structure index previously derived for tomographic SAR 

profiles [70] is extended to the TanDEM-X InSAR case following the first experiences in [32]. 

Then, a continuous relationship between the allometric factor defining the forest height-to-

biomass allometry and the structure index is reconstructed from the available lidar data. The 

experimental results show the appropriateness of TanDEM-X data for characterizing structure and 

in this way improving the biomass estimation performance. The experimental analysis has been 

carried out by processing LVIS lidar data and TanDEM-X data acquired during the AfriSAR 

campaign over three test sites (Lopé, Mondah, Mabounie) in Gabon. 
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In Chapter 3 “Forest Biomass Mapping Using Continuous InSAR and Discrete Waveform 

Lidar Measurements: A TanDEM-X / GEDI Test Study”, the questions Q1 in absence of a DTM, 

Q2, Q3, and Q4 are addressed. The estimation of forest height and horizontal structure and further 

biomass from TanDEM-X data in the absence of a DTM is discussed. The possibility of estimating 

top canopy height variations independently of topographic height variations is investigated using 

a wavelet-based scale analysis. The gained understanding is used to define a new horizontal forest 

structure index with physical meaning similar to the one presented in Chapter 2. This index is 

used, first, to compensate for the underestimation of forest height in dense stands, and second to 

adapt the height-to-biomass allometry. The ability of the available GEDI sampling to parameterize 

this (adaptive) relationship is evaluated as well. TanDEM-X and GEDI data over the Lopé test 

site in Gabon have been processed in the experimental analysis. LVIS data have been used to 

validate the results. 

Chapter 4 “Large Scale Forest Height Mapping by Combining TanDEM-X and GEDI data” 

answers Q5 and Q6. This Chapter addresses the potential of the GEDI-TanDEM-X combination 

for large scale high-resolution forest height mapping. The factors affecting the height estimation 

performance are discussed in the context of the combination, and proper performance criteria are 

used to ensure a certain estimation quality thoughout the large scale inversion. A way to 

compensate for the height estimation bias is also proposed using the vertical wavenumber – height 

product. The experimental analysis has been carried out over the forests of Tasmania, and the 

height estimation performance is quantitatively assessed by comparison with discrete-return lidar 

height measurements. 

Finally, Chapter 5 draws the conclusions of this thesis by summarizing the answers to the 

research questions. Possible future research directions originated by the work presented in this 

thesis are also discussed. 
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Abstract 

 

Allometric relations that link forest above ground biomass to top forest (i.e. canopy) 

height are of particular significance in the context of lidar and interferometric synthetic 

aperture radar remote sensing, as both techniques allow accurate height measurements 

at ecologically relevant spatial scales. Besides the often unknown allometry itself, its 

spatial variation in heterogenous forest environments restricts the performance when 

using a single fixed height-to-biomass allometric relation. This paper addresses how 

forest structure information derived from interferometric TanDEM-X data can be used 

to locally adapt the height-to-biomass allometry in heterogeneous forests, and to 

improve biomass estimation performance. The analysis is carried out using TanDEM-X 

interferometric measurements in three tropical forest test sites in Gabon. A structure 

index expressing forest density is derived from the TanDEM-X data. Then, a continuous 

relationship between the structure index and the allometric level that defines the forest 

height-to-biomass allometry is reconstructed from the available lidar data, and used to 

vary the height-to-biomass relationship. Finally, the potential of the derived structure 

index to support an allometric relationship common to all sites is evaluated. The 

experimental results show the appropriateness of TanDEM-X data for characterizing 

structure and in this way improving the biomass estimation performance. 

2.1 INTRODUCTION 

Biomass has a direct relationship to carbon content and is a measure of forest and ecosystem 

productivity. Estimation of biomass is very inaccurate at local, regional and supra-regional scales. 

Ground measurements of biomass in natural forests often exhibit errors much greater than 20%. 

Particularly large are the deviations in tropical and natural forests due to their spatial 

heterogeneity. Dynamic changes of biomass and their spatial distribution are a direct measure of 

the exchange of carbon between the terrestrial ecosystem and the atmosphere [1]. At the same 

time, they characterize the variation of forest growth and productivity induced by water or climate 

stress [2].  
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The above ground biomass (AGB) 𝐵𝑇 of a single tree can be expressed as the product of the 

tree volume 𝑉 with its (species specific) wood density 𝜌 [3], [4]. Different adequate standards of 

tree volume can be chosen depending on the individual application. In forestry, the focus on the 

dominant stem contribution suggests the use of stem volume that leads to 

 

𝐵𝑇 = 𝑉 ⋅ 𝜌 = 𝐹 ⋅ (
𝜋𝐷2

4
) ⋅ 𝐻 ⋅ 𝜌            (2.1) 

 

where 𝐷 is the stem diameter at breast height (also known as DBH), 𝐻 is the tree height, and 𝐹 is 

a factor that accounts for the shape of the stem [3], [4]. Accounting for the total tree volume 

including its leaves and branches is more common for ecological applications and carbon stock 

estimates.  

However, the use of (2.1) in the context of remote sensing is rather limited to high resolution 

airborne implementations because the spatial resolution of conventional and especially 

spaceborne configurations does not allow us to measure single tree parameters. With a typical 

spatial resolution on the order of few to ten meters, such configurations can provide forest 

parameter estimates at some tenths of meters, representative of patches of trees or forest stands 

rather than of single trees. However, the transition of (2.1) from a single tree to a stand biomass 

relation by replacing the individual tree parameters with the stand means (e.g., mean forest height, 

mean diameter or alternatively basal area, and mean wood density) is not straightforward and 

strongly depends on the stand density and heterogeneity in terms of species and age composition 

[5], [6]. 

The potential of either spaceborne lidar or interferometric synthetic aperture radar (InSAR) 

configurations to measure forest height at spatial scales of 1 hectare (ha) or even below motivated 

the use of the so-called forest height-to-biomass allometry at stand level. The AGB 𝐵 is expressed 

in terms of (top) height by means of an exponential relationship [4–8] 

 

𝐵 = 𝛼0 ⋅ 𝐻
𝛽0            (2.2) 

 

where 𝐻 is the maximum height within the stand area equivalent to the top canopy height, and 

(𝛼0, 𝛽0), are the so-called allometric factor and reference (allometric) exponent, respectively. The 

reference exponent 𝛽0  defines the underlying allometric relation accounting for species 

composition and growing conditions of a certain stand. The allometric factor accounts then for 

(anthropogenic and natural) density variations across stands of the same composition. When the 

reference exponent 𝛽0 is fixed, 𝛼0 is also known as the allometric level as it scales a set of height-

to-biomass relations with the same reference exponent accounting for different stand densities 

(e.g., different basal areas at a given age) or stand ages. A successful implementation requires the 

two allometric parameters to be either a priori known or estimated from reference (for example 

inventory) measurements. Indeed, allometric relationships in form of (2.2) have been successfully 

used to derive biomass estimates from height estimates [6–11], however for rather homogeneous 

stand and forest conditions. 
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However, the spatial variability in stand density and/or structure reduces the performance of a 

single height-to-biomass relation with fixed 𝛼0 and 𝛽0. Accordingly, in spatially heterogenous (in 

terms of density and structure) forests a fixed height-to-biomass allometry leads to a poor 

performance or even breaks down [4–6], [9]. To visualize this insufficiency three stands with the 

same 𝐻 are depicted in Fig. 2.1. The tree density decreases from left to right with the stand 

biomass decreasing accordingly. In this particular case, if only height is used and (𝛼0, 𝛽0) are 

fixed, the same biomass is estimated across the three stands. Using allometric parameters (𝛼0, 𝛽0) 

fitting the denser stand will overestimate the biomass in the sparser stand, and vice versa.  

 

 

 

Fig. 2.1.  The three depicted forest stands have the same top height 𝐻. Their horizontal density decreases 

from left to right. The height axis is referred to the ground, which is located in its origin (0 m). 

 

 

Summarizing, two main factors limit the use of the height-to-biomass allometry in a wide 

context: (i) the large uncertainty in the knowledge of the allometric parameters (𝛼0, 𝛽0) for the 

individual forest conditions (arising from the insufficiency or complete lack of appropriate 

reference measurements), and (ii) the inability to adapt (𝛼0, 𝛽0) to the spatial variability of forests.  

However, today both limitations appear less restrictive making a revisit of the height-to-

biomass allometry attractive. Terrestrial lidar scanning (TLS) techniques have the potential to 

make plot inventory measurements more accurate and faster [12]. At the same time, spaceborne 

waveform lidar configurations sample forest height in a more or less dense grid, and provide a set 

of waveform metrics that allow us to estimate AGB (using empirically derived models) [13], [14]. 

TLS and/or spaceborne waveform lidars are able to provide enough forest height and biomass 

measurements to define a general height-to-biomass allometry at regional or even finer scales. 

Hence, they resolve, at least to a large extent, the first limitation. On the other hand, the spatial 

variability of allometry can be accounted with remote sensing configurations able to estimate not 

only forest height, but also forest structure information with a subhectare spatial resolution. 

Indeed, SAR interferometry [15–21] and especially SAR tomography have been proven to be able 

to characterize physical forest structure, the latter relying on the reconstruction of the three-

dimensional (3-D) radar reflectivity [22–25]. 

The open question is how far the knowledge of forest structure can be used to adapt (and 

improve) the general height-to-biomass allometry to local scales. This paper addresses this 



2.1. Introduction 

 

27 

question in the context of TanDEM-X (i.e., bistatic interferometric acquisitions at X-band) and 

waveform lidar measurements. Height and biomass estimates from the waveform lidar 

measurements are used to establish a general height-to-biomass allometry. Then, the horizontal 

structure index HS as defined in [24] is reconstructed from TanDEM-X measurements and used 

to account for the spatial variability (by means of the allometric level) of the height-to-biomass 

allometry within the test site

 

𝐵 = 𝛼(HS) ⋅ 𝐻
𝛽0.       (2.3) 

 

There are two arguments for using HS to adapt α: first, its relation to the well-established stand 

density index [26] (and thus to basal area) as discussed and demonstrated in [24], and second, the 

ability to obtain HS estimates from TanDEM-X data.  

Accordingly, in the following Sections, the estimation of H and HS from TanDEM-X data, 

the performance of conventional height-to-biomass allometry and the use of HS to improve the 

height-to-biomass allometry performance for different tropical forest types and conditions are 

discussed. 

2.2 TEST SITES AND DATASET 

2.2.1 TEST SITES 

The AfriSAR campaign was carried out over tropical forest sites in Gabon in 2015 and 2016 

[27], [28]. The objective of the campaign was to acquire air- and space-borne polarimetric SAR 

interferometric and tomographic data sets complemented by airborne waveform lidar [28] and 

field measurements [29] for the development and validation of forest height, structure and biomass 

estimation algorithms. Three of the AfriSAR sites are considered in this article: Lopé; Mabounie; 

and Mondah. Their locations are shown in Fig. 2.2.  

The Lopé site is located within the Lopé National Park near the geographic center of Gabon. 

The site consists of a variety of structure types ranging from open savannas to undisturbed tall 

(sometimes exceeding 50 m) dense forest stands. Colonizing forest (sparse forest stands mixed up 

with savanna) or monodominant Okoume (dense, monolayered, tall and dense forest stands) are 

two particular cases [29]–[31]. Biomass ranges between 10 t/ha in savanna areas and 600 t/ha in 

dense forest areas. The terrain is hilly with many local slopes steeper than 20°.  

The Mabounie site is part of the “Maboumine” mining project started in 2005. The site is 

covered by mature stands with canopy heights between 40 to 60 m and biomass levels up to 400 

t/ha, but is signed by local degradation caused by roads, buildings, and other infrastructure. The 

site includes also partially flooded areas containing swamp mixed forest [28]. 

Finally, Mondah is a partially flooded area containing mangrove and mahogany woodlands in 

northwest Gabon. The western part is a primary forest taller than 50 m, with dense and 
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homogenous stands while the eastern part is secondary forest [28]. The topography is fairly flat 

within the site. 

 

 

Fig. 2.2.  Locations of the three selected AfriSAR test sites (red stars) and TanDEM-X acquisitions (blue 

rectangles) in Gabon (central Africa). 

 

2.2.2 LIDAR ACQUISITIONS 

Waveform lidar data were acquired by NASA’s land and vegetation and ice sensor (LVIS) in 

February and March 2016 [28], [32], [33]. During AfriSAR, LVIS was operated at a nominal 

flight altitude of 24,000 ft (equivalent to 7315 m), and acquired data with partially overlapping 

footprints on ground with an average diameter around 22 m [28].  

For each test site, the digital terrain model (DTM) and relative height (RH) metrics were 

derived from the waveforms [33]. Each RH metric expresses the height above ground at which a 

certain percentage of the total waveform energy is received [14]. For instance, the RH100 

represents to the height above the ground in which the total energy is received. RH metrics have 

been used to estimate biomass and to describe the canopy vertical structure [13], [14].  

In the following, the RH100 is considered as the top canopy height within a footprint, and is 

used as a reference for the validation of the heights estimated from TanDEM-X coherences. 

Consistently with the formulation in Section 2.1, the LVIS top height 𝐻LVIS has been calculated 

by taking the maximum RH100 for every 1 ha resolution cell on ground.  

Similarly, the waveform-derived AGB estimates 𝐵LVIS and their uncertainty at 1 ha resolution, 

estimated by means of an allometric relationship linking height and RH metrics to the LVIS AGB 

and parameterized by using the available field inventory plots, have been used as reference [28], 

[34]. An overall root mean square error around 70 t/ha across all inventory plots was documented 

[28], [34]. LVIS RH and biomass data sets are ideal for the experiments in this article as they 
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cover large areas allowing to appreciate structure gradients, and provide a statistically (very) large 

number of samples for comparison at the desired 1 ha resolution. 

Fig. 2.3 shows the maps of 𝐻LVIS and 𝐵LVIS for the three selected sites. The largest continuous 

LVIS coverage is over Lopé. 𝐻LVIS is larger than 50 m in the northwestern part and lower in the 

southeastern part, but overall without relevant spatial gradients. At the same time, 𝐵LVIS varies 

significantly stronger suggesting a likewise significant structure dependency. In Mabounie, many 

footprints are lost because of cloud coverage. In Mondah, the short stands (𝐻LVIS< 30 m) in the 

central part of the scene have a low biomass (𝐵LVIS < 100 t/ha). In contrast, in the western part 

𝐵LVIS can reach up to 700 t/ha for the taller primary stands (𝐻LVIS around 50 m). 

 

 

 

(a) 

 

(b) 
 

Fig. 2.3. (a) LVIS RH100 maps in meters (m), and (b) AGB maps in tons per hectare (t/ha) for Lopé, 

Mabounie, and Mondah. All maps are in UTM coordinates and their resolution is 100 m by 100 m in 

easting and northing direction. The coverage in Lopé is around 19 km by 19 km, in Mabounie is 15 km by 

13 km, and in Mondah is 16 km by 8 km. 

 

2.2.3 TANDEM-X ACQUISITIONS 

Single-polarimetric stripmap bistatic TanDEM-X data were acquired close in time to the LVIS 

flights. The relevant acquisition parameters are given in Table 2.1. For every data set the InSAR 

complex coherence has been calculated as 
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𝛾(𝜅𝑧) =
<𝑆1∙𝑆2

∗>

√<𝑆1∙𝑆1
∗>  <𝑆2∙𝑆2

∗>
        (2.4) 

 

where 𝑆1 and 𝑆2 are single-look complex amplitudes of the two images, and (·)∗ and 〈·〉 denote 

the complex conjugation and the spatial averaging operators. For forest height estimation, the 

spatial averaging has been performed using cells measuring 25 m × 25 m (corresponding to ∼150 

independent looks) in ground range – azimuth, respectively. For the estimation of the horizontal 

structure index (see Section 2.4.1) a finer resolution of 10 m × 10 m (corresponding to 25 

independent looks) has been chosen. Finally, biomass, horizontal structure index and top height 

have been calculated at the scale of 1 ha (100 m × 100 m), consistent to the reference lidar data.  
 

 

TABLE 2.1 

Summary of TanDEM-X Acquisitions Parameters 

 

Test Site Lopé Mabounie Mondah 

Acquisition Date Jan. 25, 2016 Oct. 5, 2015 Nov. 11, 2015 

         Frequency             X-band 

        Polarization                HH 

Ground resolution 

(Range / Azimuth) 
1.95 m / 1.99 m 2.26 m / 2.05 m 1.84 m / 1.87 m 

Vert. wavenumber ~ 0.10 m-1 ~ 0.078 m-1 ~ 0.062 m-1 

HoA ~ 62.8 m ~ 80.5 m ~ 101.3 m 

Incidence angle ~ 44.5° ~ 37.1° ~ 47.7° 

 

 

In (2.4), 𝜅𝑧  represents the vertical wavenumber, which expresses the sensitivity (i.e., the 

derivative) of the InSAR phase difference with respect to (vertical) height [35], [36]. For the 

bistatic mode  

 

𝜅𝑧 =
2𝜋

HoA
≅

2𝜋

𝜆

𝐵⊥

𝑅 sin𝜃𝑖
          (2.5) 

 

where HoA is the InSAR Height Of Ambiguity, 𝐵⊥ is the perpendicular InSAR baseline, 𝜆 is the 

radar wavelength, and 𝑅 is the slant range distance. 𝜃𝑖  is the slope-corrected incidence angle, 

which corresponds to the difference between the incidence angle and the local terrain slope in 

range direction. The terrain slopes have been calculated using the TanDEM-X digital elevation 

model (DEM). The vertical wavenumber characterizes also the performance of parameter 

inversion from InSAR coherence measurements. In the case of forest height estimation, one single 

𝜅𝑧 allows unbiased and accurate inversion only for a limited range of forest heights [36]. In Lopé 

a mean 𝜅𝑧 of 0.1 rad/m leads to an optimum performance range of 15 to 40 m appropriate to cover 

most of the forest height in the scene, however with some (significant) loss of performance for 
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the tallest stands with height close to the HoA (around 62 m), far above the optimum performance 

range. For Mabounie and Mondah, the 𝜅𝑧  values are lower, increasing further the HoA and 

shifting the optimum performance range to larger heights.  

For bistatic acquisitions, the absence of temporal decorrelation leaves signal-to-noise ratio 

(SNR) decorrelation 𝛾𝑆𝑁𝑅, range (spectral) decorrelation 𝛾𝑟𝑔(𝜅𝑧), quantization decorrelation 𝛾𝑄 

and volume decorrelation 𝛾𝑉𝑜𝑙(𝜅𝑧) as the remaining decorrelation contributions [35] 

 

𝛾(𝜅𝑧) = 𝛾𝑆𝑁𝑅 ⋅ 𝛾𝑟𝑔(𝜅𝑧) ⋅ 𝛾𝑄 ⋅ 𝛾𝑉𝑜𝑙(𝜅𝑧).                (2.6)

 

Height is estimated from 𝛾𝑉𝑜𝑙(𝜅𝑧)  obtained from 𝛾(𝜅𝑧)  after compensating all the other 

contributions. 𝛾𝑆𝑁𝑅  and 𝛾𝑟𝑔(𝜅𝑧)  have been calculated and compensated using the procedure 

described in [35]. A fixed value of 0.97 was assumed for 𝛾𝑄 according to the analysis in [37]. 

2.3 FOREST BIOMASS ESTIMATION FROM TANDEM-X HEIGHT 

2.3.1 FOREST HEIGHT INVERSION 

After coherence calibration (see Section 2.2.3), the vertical reflectivity function (i.e., the 

vertical distribution of scatterers) underlying 𝛾𝑉𝑜𝑙(𝜅𝑧) is usually represented by a two-layer model 

accounting for the ground and volume (back-) scattering contributions. However, at X-band and 

for dense(r) forest conditions, the ground contribution is often neglected so that [35], [36], [38] 

 

𝛾𝑉𝑜𝑙(𝜅𝑧) = exp(𝑖𝜙0) ⋅ 𝛾𝑉(𝜅𝑧) .                 (2.7) 

 

The phase term 𝜑0 = 𝜅𝑧𝑧0 is the InSAR phase corresponding to the ground height 𝑧0 and 

 

𝛾𝑉(𝜅𝑧) =  
∫ 𝑓𝑉(𝑧) exp(𝑖𝜅𝑍𝑧) 𝑑𝑧

ℎ𝑉
0

∫ 𝑓𝑉(𝑧) 𝑑𝑧
ℎ𝑉
0

                   (2.8) 

 

where 𝑓𝑉(𝑧) is the volume-only vertical reflectivity function and ℎ𝑉 is the top volume (i.e., forest) 

height with respect to the ground topography. For 𝑓𝑉(𝑧) an exponential distribution of scatterers 

is widely used [35], [36], [38] 

 

𝑓𝑉(𝑧) = exp [
2𝜎𝑧

cos (𝜃𝑖)
]                  (2.9) 

 

where 𝜎 is a coefficient defining the shape of the reflectivity function, interpreted as a mean 

extinction value. 

The inversion of (2.7) with (2.8) and (2.9) using a single baseline is an underdetermined 

problem as the number of unknowns (𝜑0, ℎ𝑉 , 𝜎) exceeds the number of measurements (𝛾𝑉𝑜𝑙(𝜅𝑧)). 
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In this sense the use of an external DTM for calculating 𝜑0 has two advantages. First, it allows a 

balanced inversion. Second, it allows an unbiased estimation of ℎ𝑉 even if there is no penetration 

until the ground [35]. On the other hand, any offset (e.g., arising from residual TanDEM-X orbit 

errors) between 𝜑0 and 𝛾𝑉𝑜𝑙(𝜅𝑧) on surfaces must be compensated before the inversion [35].  

The desired ℎ𝑉 is then obtained as the solution of [35] 

 

min
ℎ𝑉,𝜎

  ‖𝛾𝑉𝑜𝑙(𝜅𝑧) − exp(𝑖𝜙0) ⋅ 𝛾𝑉(𝜅𝑧; ℎ𝑉 , 𝜎)‖.         (2.10) 

 

Finally, similarly to the calculation of 𝐻LVIS, the top height 𝐻TDX is obtained by taking the 

maximum ℎ𝑉 for every 1 ha resolution cell on ground. 

The inversion (2.10) was implemented and applied over the three sites using the LVIS DTMs 

to calculate 𝜑0. The inversion was carried out only for |𝛾𝑉𝑜𝑙(𝜅𝑧)| > 0.25 with 𝜅𝑧 < 0.12 rad/m 

(HoA > 55 m) corresponding to 85% of the forested areas in Lopé, 90% in Mabounie and 100% 

in Mondah. The obtained maps of 𝐻TDX and the 2-D histograms validating 𝐻TDX against 𝐻LVIS 

are shown in Fig. 2.4. The overall RMSE amounts to 3.5, 3.5, and 4.1 m, and the bias amounts to 

−1.9, −0.1, and −2.9 m in Lopé, Mabounie, and Mondah, respectively. For all the sites, 𝐻TDX 

covers the same height range of 𝐻LVIS, and the two height maps are well correlated. The lower 

coherence level in taller stands especially in Lopé and Mabounie increases the standard deviation 

of 𝐻TDX. 𝐻TDX is clearly underestimated (i.e., has a negative bias) for 𝐻LVIS < 30 m in Lopé and 

even more in Mondah probably as a result of an actually present ground scattering contribution, 

constituting a model mismatch in (2.10), as these values are found in the more open canopy areas 

(e.g., colonizing forest) [7], [35], [36]. In Lopé, heights are slightly underestimated also for 𝐻LVIS 

> 50 m with a bias around −3 m. This is the effect of the relatively high 𝜅𝑧  that limits the 

sensitivity of the inversion for taller stands. 

2.3.2 AGB ESTIMATION USING HEIGHT 

Here, the estimation of AGB by means of the height-to-biomass allometry is discussed. Using 

the LVIS height and biomass estimates the allometric level 𝛼0 and the reference exponent 𝛽0 of a 

height-to-biomass allometric relation with the form of (2.2) have been estimated by means of an 

ordinary least square regression 

  

min
𝛼0,𝛽0

‖𝐛𝐿𝑉𝐼𝑆 − 𝛼0𝐡𝐿𝑉𝐼𝑆
𝛽0 ‖

2

,          (2.11)

 

where 𝐛𝐿𝑉𝐼𝑆  is a vector containing the biomass values 𝑏𝐿𝑉𝐼𝑆  and 𝐡𝐿𝑉𝐼𝑆 contains the associated 

ℎ𝐿𝑉𝐼𝑆 values. For each site, the regression has been performed individually accounting for the fact 

that certain height ranges may be insufficiently represented leading to 𝛼0  =  0.473,  1.25,  3.4  ×

 10−5  and 𝛽0  =  1.72, 1.44, 4.73  for Lopé, Mabounie, and Mondah, respectively. While the 

allometric exponents in Lopé and Mabounie are similar, both of them differ significantly from the 



2.3. Forest Biomass Estimation from TanDEM-X Height 

 

33 

one in Mondah. This probably reflects the large structural heterogeneity and presence of 

secondary and disturbed (open) forest stands in Mondah in contrast to the other two test sites.  

 

 

(a) 

 

(b) 

 

Fig. 2.4.  (a) TanDEM-X top height maps at 1 ha resolution, and (b) 2D validation histograms against LVIS 

top heights for Lopé, Mabounie, and Mondah. The Pearson coefficient (R), bias, and RMSE are reported 

for each test sites. 

 

After the definition of the height-to-biomass allometry, forest height estimates, either 𝐻TDX or 

𝐻LVIS  can be transformed to AGB estimates. The obtained AGB maps at 1 ha resolution are 

shown in Fig. 2.5. For all three sites the estimated AGB range is smaller than the LVIS AGB 

range: high AGB levels are consistently underestimated (by 100 t/ha or even more), especially in 

Lopé and Mondah. In contrast, low AGB levels tend to be overestimated, especially in Lopé and 

Mabounie. This behavior is common whether TanDEM-X or LVIS heights are used. 

The insufficiency of a single allometric relation to describe accurately the height to biomass 

relationship even within a single site becomes apparent in the 2-D histograms of 𝐵LVIS against 

𝐻𝐿𝑉𝐼𝑆 plotted for each site in Fig. 2.6. The middle one of the three dotted lines indicates the height-

to-biomass allometry as obtained from (2.11). In Lopé the AGB ranges from 350 up to 500 t/ha 

at a height of 50 m. A single height-to-biomass relationship cannot describe this spread. Two 

additional forest height-to-biomass allometries are plotted defined by the same reference 

allometric exponent and an allometric level increased (or decreased) by 30% with respect to the 

original one. It becomes clear that a smaller 𝛼0 is able to compensate the overestimation of lower 
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biomass levels (e.g., for sparse(r) stands) seen in Fig. 2.5. A larger 𝛼0 fits better the higher AGB 

levels [e.g., for dense(r) stands] compensating their underestimation seen in Fig. 2.5. In 

conclusion, a single value of 𝛼0 is not sufficient for an accurate biomass estimation. To account 

for this the use of a variable allometric level is attempted next. 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Fig. 2.5.  (a) AGB maps (1 ha resolution) estimated from TanDEM-X top heights, and 2D validation 

histograms of the biomass estimates against the reference biomass using (b) LVIS top heights (𝐻 LVIS) and 

(c) TanDEM-X top heights (𝐻TDX) for Lopé, Mabounie, and Mondah. The overall estimation RMSE is 

reported. 
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Fig. 2.6.  2D histograms relating the LVIS top height and reference biomass at 1 ha resolution. Each dashed 

line represents a different height-biomass allometric relationship. The estimated allometric coefficients are 

reported.

 

2.4 FOREST BIOMASS ESTIMATION FROM TANDEM-X HEIGHT AND HORIZONTAL 

STRUCTURE 

2.4.1 DERIVATION OF HS FROM TANDEM-X 

The basic idea behind the structure estimation framework proposed in [23] and [24] is to 

quantify the variability in height of the top canopy “surface” from tomographically reconstructed 

3-D reflectivity. In the case of TanDEM-X, where usually only one single-pass interferometric 

acquisition is available (with an appropriate vertical wavenumber), the reconstruction of a vertical 

reflectivity profile is not possible; at least not in a conventional tomographic way. However, the 

histogram of the interferometric phases (or alternatively of the converted phase center height) 

over a large enough area provides in many cases an approximation of the vertical reflectivity 

profiles [39]–[41]. Such profiles will be referred in the following as canopy height profiles 

(CHPs). Note that because of the different resolutions, the CHP can deviate significantly from the 

vertical reflectivity underlying the interferometric coherence. Nevertheless, the high attenuation 

at X-band combined with the high spatial resolution of the TanDEM-X interferograms support 

the correlation of phase center height variation to (top) canopy height variation allowing the use 

of the derived CHP to extract relevant horizontal structure information [41]. 

Interferometric coherences have been estimated with about 25 looks on a 10 m × 10 m ground 

range-azimuth cell (see Section 2.2). The LVIS DTM is converted to phase (by multiplying with 

the local vertical wavenumber) and subtracted from the interferometric phase in order to 

compensate any terrain-induced phase center variations. The obtained phase is then converted to 

phase center height (by dividing by the local vertical wavenumber). In this way, only the height 

variations induced by the canopy variability are relevant. Finally, vertical scattering profiles have 

been obtained within a 25 m × 25 m cell. An example of such CHPs along a 1 km transect across 

the Lopé site is shown in Fig. 2.7 and compared with the corresponding LVIS waveforms along 
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the same transect. The peaks of the CHP are distributed closer to the canopy top, while the 

waveform peaks are distributed much wider between canopy top and the ground. Despite this 

difference, it is apparent that just based on the top canopy variability, the CHPs allow us to 

distinguish a sparser area (marked as “Area 1”) from a denser one (marked as “Area 2”). 

 

 

  

(a)                                                                              (b) 

 

Fig. 2.7. Representative transects in Lopé at a constant northing coordinate: (a) LVIS waveforms, (b) 

TanDEM-X CHPs. Each profile is normalized by its maximum. The height axis is referred to the ground, 

which is located in its origin (0 m). 

 

 

With reference to Fig. 2.8, the calculation of the horizontal structure index HS proposed in 

[24] is based on “counting” the number of profile (i.e., reflectivity) peaks (associated with 

scattering contributions) located within a predefined top layer in a structure resolution cell. In 

practice, considering only the top layer allows us to separate the top canopy height variations from 

the (vertical) variations induced by volume scattering contributions [24]. As each CHP typically 

contributes with no more than a couple of peaks, the larger the number of peaks close to the 

canopy top, the more homogeneous is the forest height, and the higher is the local forest density. 

Referring the height of the highest peak in the structure resolution cell with 𝐻𝑃, the top height 

layer is defined as the fraction Δ · 𝐻𝑃 below 𝐻𝑃. The horizontal structure index is then calculated 

as [24] 

 

𝐻𝑆 = 1 −
𝑁𝑃

𝑁𝑃,𝑚𝑎𝑥
          (2.12) 

 

where 𝑁𝑃 is the number of CHP peaks in the top layer within the structure resolution cell, and 

𝑁𝑃,𝑚𝑎𝑥 is a reference maximum often assumed as the maximum 𝑁𝑃 within the site / scene. 𝐻𝑆 

equals 0 in dense structure resolution cells, and 1 in sparse structure resolution cells corresponding 

to the cases illustrated in Fig. 2.8. The obtained HS value depends on the top layer extent: wider 

top layers contain more CHP peaks than thinner ones. As a consequence, the choice of an 

appropriate Δ is crucial for the ability of the index to reflect the physical structure (density) and 

its local variation. 

 



2.4. Forest Biomass Estimation from TanDEM-X Height and Horizontal Stucture 

 

37 

 

Fig. 2.8.  Conceptual sketch related to the calculation of the horizontal structure index used in this paper 

depicted on the three stands of Fig. 2.1.  

 

 

Horizontal structure indices have been derived from the TanDEM-X CHPs and the LVIS 

waveforms (using the same waveform maxima counting procedure and same top layer as with the 

CHPs) denoted as HSTDX  and HSLVIS , respectively. The CHPs have been additionally 

“multilooked” in height by means of a 10 m Gaussian-shaped moving window in order to suppress 

peaks caused by the (interferometric phase) noise. A (sliding) 1 ha structure resolution cell has 

been used to aggregate a statistically relevant number of CHP’s (or waveforms). Each structure 

resolution cell then contains 16 (4 × 4) profiles corresponding to non-overlapping areas on ground. 

A top layer extent Δ = 0.35 has been chosen. This choice is rather empirical, although motivated 

by the analysis in [24]. However, both indices appear widely robust against the choice of the top 

layer extent: HSTDX and HSLVIS do not change significantly for Δ changing within 0.3 and 0.45, 

in accordance with the results reported in [41]. The derived HSTDX and HSLVIS maps for the three 

test sites are shown in Fig. 2.9 and reveal very similar structure patterns. In Lopé both indices 

distinguish the denser southeastern part from the sparser colonizing forest stands at the border to 

the savannah [30]. In Mabounie the mature forest stands are characterized as dense by both 

indices. Finally, Mondah’s disturbed open forest stands in the central part of the scene (indicated 

as sparse) are clearly distinguished from the older tall stands in the western part (indicated as 

dense) by both indices. 

Fig. 2.10 shows the 2-D scatterplots of 𝐵LVIS against 𝐻LVIS for each site. The color of each 

point corresponds to its HSLVIS value. Despite the dispersion, the dependency of the height-to-

biomass allometry on the horizontal structure index HSLVIS becomes clearly visible: for a given 

height level 𝐵LVIS  increases with decreasing HSLVIS  (i.e., with increasing forest density) or 

degreases with increasing HSLVIS (i.e., with decreasing forest density). Interestingly, tall stands 

with top heights of about 40 m appear to have very low biomass levels (< 100 t/ha). Recalling the 

maps in Fig. 2.9, these stands are composed by few isolated tall trees and shorter vegetation, like 

for example the colonizing forest stands in Lopé or the sparse forest stands in the center of the 

Mondah site. This agrees with Fig. 2.6, and supports the idea of using the horizontal structure 

index to adapt 𝛼0 on local stand conditions. 
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(a) 

 

 

(b) 

 

Fig. 2.9.  Horizontal structure maps at 1 ha resolution (a) from LVIS waveforms and (b) from TanDEM-X 

CHPs for Lopé, Mabounie, and Mondah. Sparse forest stands appears in red; dense stands appear in blue.  

 

 

 

 

Fig. 2.10.  Scatterplots between the reference LVIS top height and AGB for the three test sites. The color 

indicates the value of the LVIS horizontal structure index (HSLVIS).  
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2.4.2 BIOMASS ESTIMATION FROM TANDEM-X FOREST HEIGHT AND HORIZONTAL 

STRUCTURE  

In this Section, the improvement of the height-to-biomass allometry by exploring the 

dependency of the allometric level on the horizontal structure index is addressed. To define the 

relation of the allometric level 𝛼0  with the horizontal structure index HS the LVIS estimates 

𝐵LVIS, 𝐻LVIS, and HSLVIS are used. In the range from 0 to 1 HSLVIS has been segmented into 𝑁𝛼 

nonoverlapping and uniformly distributed intervals centered around the structure values 

{HSLVIS,i}𝑖=1

𝑁𝛼
. For each of these intervals the allometric level {𝛼0(HSLVIS,i)}𝑖=1

𝑁𝛼
 and a common 

reference allometric exponent 𝛽0 are jointly estimated by means of a least squares optimization, 

similarly to (2.11) 

 

min
{𝛼(HS𝐿𝑉𝐼𝑆,𝑖)}𝑖=1

𝑁𝛼
,𝛽0
̅̅̅̅ ‖

‖

[
 
 
 
 
𝐛𝐿𝑉𝐼𝑆,1

⋮
𝐛𝐿𝑉𝐼𝑆,𝑖

⋮
𝐛𝐿𝑉𝐼𝑆,𝑁𝛼]

 
 
 
 

−

[
 
 
 
 
 𝛼0(HSLVIS,1)𝐡𝐿𝑉𝐼𝑆,1

𝛽0

⋮

𝛼0(HSLVIS,i)𝐡𝐿𝑉𝐼𝑆,𝑖
𝛽0

⋮

𝛼0(HSLVIS,Nα
)𝐡𝐿𝑉𝐼𝑆,𝑁𝛼

𝛽0
]
 
 
 
 
 

‖

‖

2

           (2.13) 

 

where 𝐛𝐿𝑉𝐼𝑆,𝑖 and 𝐡𝐿𝑉𝐼𝑆,𝑖 are the vectors containing the (reference) 𝐵LVIS and 𝐻LVIS values, for the 

generic 𝑖-th HSLVIS interval centered at HSLVIS,i. The obtained allometric exponents for the three 

test sites Lopé, Mabounie and Mondah, are 𝛽0 = 1.8, 1.3 and 2.5 respectively. Note that the 

obtained reference allometric exponent 𝛽0 are very similar (at least in Lopé and Mabounie), but 

not identical to the ones obtained from (2.11) as the two optimisation problems are different.  

The general behavior of 𝛼0(HSLVIS) is obtained from (2.2) by 

 

𝛼0(HSLVIS) =  
𝐵𝐿𝑉𝐼𝑆

𝐻𝐿𝑉𝐼𝑆
𝛽0

                       (2.14) 

 

and is visualized by means of a 2-D histogram in Fig. 2.11 (a) for the Lopé site. The 𝛼0(HSLVIS) 

obtained from (2.14) is indicated by the white dotted line. For all three sites a decreasing trend of 

𝛼0(HSLVIS)for increasing HSLVIS is obtained. This agrees with Figs. 2.6 and 2.10, and confirms 

the relevance of the structure index for adjusting the allometric level. The distribution becomes 

wider for large HSLVIS values (0.75 in Lopé, 0.9 in Mabounie and 0.75 in Mondah). At larger 

HSLVIS  levels, α0(HSLVIS) jumps suddenly to very small values, and its distribution becomes 

asymmetrical. If HSTDX is used instead of HSLVIS, the distribution of α0(HSTDX) [see Fig. 2.11 

(b)] becomes slightly wider, but its behavior does not change significantly. 

AGB could be estimated by using 𝐻𝑇𝐷𝑋  and 𝛼0(HSTDX)  in (2.3). The validation of the 

obtained AGB against the LVIS AGB are shown in Fig. 2.12. It becomes clear that the use of 

𝛼0(HSTDX) successfully compensates for the density and/or structure induced variation of the 

single allometry with fixed allometric level. Indeed, the estimation performance increases 

drastically: the RMSE decreases down to 15 - 25% while the correlation coefficient increases to 
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up to 0.7 - 0.9 for the different sites. The strong overestimation especially for low biomass values 

in Fig. 2.5 is widely compensated. The remaining residual overestimation, especially in Lopé, is 

a result of the ambiguity to relate 𝛼0 to a single value of HSTDX at large HS values (see Fig. 2.11). 

The optimization of (2.13) is equivalent to a minimization of the mean square error, including 

both the estimation bias and the standard deviation. Choosing 𝛼0(HS) as the one minimizing the 

bias between the estimates and LVIS AGB compensates almost completely the bias in the low 

biomass regions at the cost of an overall increase of the RMSE by 10%. However, AGB can still 

be underestimated in the high biomass region as a result of the underestimation of forest height. 

 

 

      

                                                   (a)                                                         (b)                              

 

Fig. 2.11.  2D histograms relating 𝛼0 and horizontal structure from (a) LVIS waveforms (HSLVIS), and (b) 

TanDEM-X CHPs (HSTDXS) in Lopé with 𝛽0  =  1.8. The white dashed line represents the horizontal 

structure function 𝛼(HS) estimated from the reference biomass and height maps.  

 

2.4.3 COMMON HEIGHT AND STRUCTURE-TO-BIOMASS ALLOMETRY ACROSS TEST SITES 

The generalization of the height-to-biomass allometry across the three sites requires the 

estimation of a common (constant) 𝛽0𝐶 and a common 𝛼0𝐶(HSTDX) relation for all sites. For this, 

the procedure outlined in Section 2.4.2 has been applied to 50,000 𝐵LVIS , 𝐻LVIS  and 

HSLVIS samples from all three sites. The samples are randomly selected and in order to equally 

represent each site. In this way, an allometric exponent of 𝛽0𝐶 = 1.7 and the 𝛼0𝐶(HSTDX) 

relationship shown in Fig. 2.13 (a) are obtained. The behavior of 𝛼0𝐶(HSTDX) is consistent to the 

single-site relations obtained in the following Section. The AGB estimates obtained from the 

common allometry and its comparison with the reference AGB is shown in Fig. 2.13 (b). The 

overall RMSE is about 79 t/ha while the correlation is larger than 0.8. An underestimation of 

about 50 t/ha appears at around 300 t/ha. The overall performance is however convincing, keeping 

in mind the very different characteristics of the three sites. 
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(a) 

 

 

(b) 

 

Fig. 2.12. (a) AGB maps from TanDEM-X top height and structure, and (b) 2D validation histograms of 

the TanDEM-X AGB estimates against the reference biomass for Lopé, Mabounie, and Mondah. The 

overall estimation RMSE is reported for each test sites. 

 

 

 

      

              (a)                                                         (b)  

 

Fig. 2.13. Common height and structure-to-biomass allometry across test sites: (a) Horizontal structure 

function 𝛼0𝐶(𝐻𝑆) with 𝛽0𝐶  =  1.7, and (b) 2D validation histogram of the TanDEM-X AGB estimates 

against reference biomass. 

 



2. Improving Forest Height-to-Biomass Allometry with Structure Information: A TanDEM-X Study 

 

42 

2.4.4 EFFECT OF REDUCED PENETRATION ON STRUCTURE CALCULATION  

TanDEM-X forest height estimation is limited by the insufficient penetration capability at X-

band due to the high attenuation rates especially in tall/dense/wet forest conditions. This limitation 

no longer exists if the ground topography is known (e.g., an external DTM is available). In this 

sense, the lack of a DTM becomes critical for forest height estimation in tall/dense/wet forest 

conditions. Different height estimation algorithms can be followed [42]. Any additional height 

estimation inaccuracy resulting from this is directly reflected into an additional inaccuracy of 

𝐵TDX. By differentiating (2.3), it is readily found that the sensitivity of a biomass estimation error 

is directly proportional to 𝛼0(HS). From Figs. 2.11 or 2.13, it is apparent that a height error 

induces a larger biomass error for smaller HSTDX (i.e., denser forest stands) for a fixed allometric 

exponent. 

With respect to the horizontal structure index, the high attenuation rates become an advantage 

increasing the sensitivity to the top-canopy height variations. Therefore, it is expected that the 

unavailability of an external DTM is less critical for its estimation [15], [41]. The external DTM 

allows us to separate the top-canopy height variations from the topographic induced height 

variations. However, as the two contributions are expected to occur at different spatial scales this 

may allows us to separate them from each other. As reported in an earlier study a low resolution 

TanDEM-X DEM can be used to compensate topographic induced height variations with 

sufficient accuracy [43]. A spatial resolution in the order of 100 m appears optimum [15], [43]. 

After DEM phase compensation both the CHP and the HSTDX are estimated as described. 

 

 

 

Fig. 2.14.  2D histograms relating HSTDX across test sites obtained using the LVIS DTM (horizontal axis) 

and the TanDEM-X low resolution DEM (vertical axis) as references for the phase center heights. 

 

 

In order to test the validity of these expectations HSTDX calculated with and without DTM are 

compared in Fig. 2.14. In order to increase the significance of this comparison the same top layer 

width has been used. The good agreement obtained in all sites confirms that the reduced 

penetration is the key feature for the retrieval of structure information. The availability of a DTM 
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plays only a secondary role. However, it can still lead to a loss of performance especially in areas 

characterized by small-scale topographic variations as it has been seen in Lopé and Mabounie. 

It is worth remarking that in the used structure estimation framework an error in the top layer 

width becomes an (relative) error in HSTDX. HSTDX increases for an underestimated width as the 

top layer includes more CHP peaks, and vice versa. In this sense, compared to the knowledge of 

the ground topography, the misidentification of the top layer can cause a larger performance 

degradation. However, as discussed above, the performance remains comparable even for 

significant variations (50%) of the selected top layer. 

2.5 CONCLUSION 

The potential of using forest structure information to adapt a general height-to-biomass 

allometry to local stand conditions for improving biomass estimation performance is investigated. 

It is addressed in terms of forest height and structure indices derived from remote sensing 

measurements particularly in the TanDEM-X context.  

The discussed concepts have been demonstrated and validated with TanDEM-X data acquired 

in 2015–2016 over three different test sites in Gabon in the frame of the AfriSAR campaign. 

Reference forest height and biomass data as well as (horizontal) forest structure indices have been 

derived from airborne (LVIS) full waveform data acquired almost at the same time as the 

TanDEM-X data. TanDEM-X forest height, structure index and biomass estimates have been 

derived at a spatial scale of 1 ha and compared against the lidar reference data. The general height-

to-biomass allometry used to transform forest height estimates to biomass has been established 

using the lidar height and biomass estimates. The lidar (LVIS) DTM has been used to compensate 

for the interferometric phase component induced by the terrain topography supporting in this way 

both the forest height inversion and the estimation of the horizontal structure index from 

TanDEM-X data. 

Forest top height has been estimated with an RMSE well within 20%. In contrast, the biomass 

values obtained from a single height-to-biomass allometry is affected by large biases 

independently of the height estimation error. A continuous relationship between the allometric 

level and the horizontal structure index was derived by means of a least squares minimization of 

the biomass RMSE. The achieved results indicate that the horizontal structure index is able to 

adapt a more general height-to-biomass relation to local forest (density) conditions by changing 

the allometric level. The estimation biases appearing in the conventional single height-to-biomass 

allometry are widely compensated improving the overall biomass RMSE up to 30%. In addition, 

the ability to establish a common height-to-biomass allometry supported by the horizontal 

structure index for all three sites with a reasonable performance is an important result. The 

identification of the top canopy layer in which the height variability is evaluated remains a critical 

choice in the estimation of the horizontal structure index. 

Regarding the role of the lidar data, they are indispensable for the definition of the forest 

height-to-biomass allometry. However, their role in the estimation of forest height and the 

horizontal structure index is less critical as both can be performed even in the absence of any lidar 
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measurements. More affected from the lack of lidar measurements is the estimation of forest 

height in tall/dense/wet forest conditions due to the high attenuation at X-band [42], rather than 

the estimation of the horizontal structure index itself. 

There are three important features that make TanDEM-X especially appropriate for the 

quantitative characterization of the horizontal forest structure: the high attenuation rates at X-band 

and the associated limited penetration into the forest volume that maximize the sensitivity of the 

TanDEM-X (complex) coherence to the spatial variability of the top canopy layer; the high 

interferometric accuracy of TanDEM-X (driven by the single-pass implementation) that allows us 

to capture the structure induced (complex) coherence variation; and the high spatial resolution of 

the TanDEM-X (complex) coherence measurements and its continuous measurement nature 

allows the estimation of structure induced variations at spatial scales relevant for the 

characterization of the horizontal forest structure. 
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Abstract 

 

This article addresses the implementation of an above ground biomass (AGB) estimation 

scheme relying on the height-to-biomass allometry at stand level in the context of the 

synergistic use of continuous TanDEM-X (bistatic) interferometric synthetic aperture 

radar acquisitions and spatial discrete GEDI waveform lidar measurements. The 

estimation of forest height and horizontal forest structure from TanDEM-X data in the 

absence of a digital terrain model (DTM) is discussed. The possibility of estimating (top) 

canopy height variations independent of topographic height variations is discussed using 

wavelet-based scale analysis. This understanding is then exploited to define a structure 

index expressing the (top) canopy-only height variations in the absence of a DTM. The 

potential of using the derived structure information to account for the spatial variability 

of height-to-biomass allometry derived from the GEDI measurements is addressed. The 

performance of the conventional height-to-biomass allometry and the one achieved by 

the locally adapted implementation are compared against reference lidar measurements 

and discussed. The analysis is carried out using GEDI and TanDEM-X interferometric 

measurements and validated by using LVIS lidar measurements over the Lopé National 

Park, a diverse tropical forest test site in Gabon.  

3.1 INTRODUCTION 

The potential of spaceborne LiDAR or interferometric synthetic aperture radar (InSAR) 

configurations to measure forest height at spatial scales of about or below 1 hectare (ha) motivates 

the use of the so-called forest height-to-biomass allometry at stand level. Accordingly, the above 

ground biomass (AGB) B of a stand is expressed in terms of an exponential allometric relationship 

as a function of its top canopy height H [1]-[5]:  

 

B = α0 ⋅ H
β0          (3.1) 

 

where α0 is the allometric level and β0 is the allometric exponent. The allometric exponent β0 

defines the underlying allometric relationship defined by species composition, growth conditions, 
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and development stage. The allometric level α0  accounts for anthropogenic or natural variations 

in stand density resulting from differences in basal area, age composition, thinning operations, 

and/or different disturbance effects.  

Obviously, any practical application of (3.1) requires knowledge of the two allometric 

parameters α0 and β0 and of their spatial variability in addition to accurate measurements of top 

canopy height. And while the allometric exponent can remain constant over larger scales, the 

allometric level may vary locally at much smaller scales.  

This article addresses the implementation of an AGB estimation scheme relying on a stand-

level height-to-biomass allometry as defined in (3.1), in the context of a synergistic combination 

of data provided by two different Earth observation missions: the DLR's InSAR TanDEM-X 

mission [6] and the NASA's waveform Lidar GEDI mission [7]. GEDI samples forest structure 

by means of lidar waveforms in a more or less dense grid and provides forest height measurements 

and a set of waveform metrics that allow to estimate AGB [7], [8]. Complementarily, TanDEM-

X provides a continuous high spatial resolution InSAR data set with inherent sensitivity to 

(vertical) forest structure.  In the context of (1), spatially continuous forest height estimates 

derived from the interferometric TanDEM-X data can be used to obtain spatially continuous AGB 

estimates as long as (α0, β0) are known. While the GEDI forest height and biomass measurements 

can be used to estimate the allometric exponent β0 and to define the general height-to-biomass 

allometry at regional or even finer scales, they may be not able to derive the faster varying 

allometric level α0. The question is therefore if, and if so, how accurate the spatial variability of 

α0 can be derived (or tracked) from TanDEM-X InSAR data. 

Indeed, the partial or even complete reconstruction of the 3D radar reflectivity from InSAR or 

tomographic SAR data and the derivation of a number of (more or less physical) structure indices 

related to the horizontal and/or vertical forest structure have been demonstrated in several studies 

[9]-[18]. In [18], a horizontal forest structure index HS derived from InSAR TanDEM-X data has 

been successfully used to account for the spatial variability of the allometric level in 

heterogeneous forests: 

 

B = α(HS) ⋅ H
β0.         (3.2)

 

and to improve biomass estimation performance. HS quantifies the height variability of the top 

canopy “surface.” An increase in HS indicates a more heterogeneous canopy surface in the 

horizontal direction and is interpreted as a sparser forest stand. There are two arguments in favor 

of using HS: its close correlation with the well-established stand density index [19] and thus with 

basal area [16] and the fact that it can be derived from InSAR TanDEM-X data. However, the 

estimation of HS in [18] requires the availability of a digital terrain model (DTM). The lack of 

appropriate DTMs for most of the forested regions limits the application of (2) for biomass 

estimation.  

In this article, the relationship in (3.2) is applied to a very general case where only a single 

polarisation TanDEM-X interferogram and a set of spatially discrete GEDI waveform 

measurements are available, but no DTM is provided. The intention is to develop a methodologic 

https://ieeexplore.ieee.org/abstract/document/#deqn1
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concept under the perspective of forest biomass inversion on a large scale rather than discussing 

the optimization of performance on a local scale. 

Forest height is derived from TanDEM-X data. Many different ways to invert forest height 

from TanDEM-X data have been discussed in the literature [20-24]. In the case of TanDEM-X 

data acquired in the global digital elevation model (DEM) mode [6], the availability of a single 

polarisation interferogram allows only a highly simplified inversion implementation. This can be 

only done on the basis of very simplified inversion models, which often need to be supported by 

additional information, e.g., by using parameters derived from lidar measurements and/or an 

external DTM [24], [25]. Here, the methodology proposed in [24] and [25] which inverts height 

from TanDEM-X interferometric coherence using the available GEDI waveforms has been used. 

The advantage of the proposed approach is that it allows unbiased height estimates over large 

scales in the absence of a DTM. The price for this is a high(er) variance when compared to other 

approaches. 

The allometric level α0 and exponent β0 are derived from the GEDI footprint measurements. 

The dependency of the allometric level on the forest structure index α(HS) is no longer possible 

to be established in the absence of a DTM in the context of [18]. Instead of using a DTM for 

removing the topographic variation in the estimation of HS, the low-pass filtered TanDEM-X 

DEM is used. Even though this approach is well established in interferometric data processing, 

here it has to be evaluated to what extent and on which spatial scales the phase variations induced 

by the terrain can be separated from the phase variations induced by the vegetation and to what 

extent it affects the performance of the HS estimation. 

The rest of this article is organized as follows. Section 3.2 describes the selected forest site for 

the experiments, i.e., the Lopé National Park in Gabon, the experimental data (TanDEM-X and 

GEDI), and the reference height and biomass measurements available. Section 3.3 addresses the 

estimation of a horizontal structure index from TanDEM-X data in the absence of a DTM. In 

Section 3.4, the forest height estimation from TanDEM-X data is reviewed. The use of the derived 

horizontal structure information to improve forest height estimation performance is proposed. 

Section 3.5 addresses the derivation of the forest height-to-biomass allometry from the GEDI 

measurements. In Section 3.6, the biomass estimation using the height, structure, and GEDI 

derived height-to-biomass relations is performed and assessed. Finally, Section 3.7, concludes 

this article. 

3.2 TEST SITES AND DATA SETS  

The experiments in this study focus on an area within the Lopé National Park in Gabon 

covered during the AfriSAR campaign in 2016 [26], [27]. The site consists of a variety of forest 

structure types ranging from open savannas to undisturbed tall (sometimes exceeding 50 m) and 

dense forest stands. Colonizing forest (sparse forest stands mixed up with savanna) or 

monodominant Okoume (dense, mono-layered, tall, and dense forest stands) are two particular 

cases [28-32]. Biomass ranges between around 10 t/ha in savanna areas and ∼600 t/ha in the dense 

forest areas. The terrain is hilly with many local slopes steeper than 20°. The available lidar and 
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radar data are described in the following and summarized with their resolution in 

Tables 3.1 and 3.2. 

 

TABLE 3.1 

SUMMARY OF LIDAR DATA AND TANDEM-X PRODUCTS 
 

 

 

 

TABLE 3.2 

Summary of TanDEM-X Acquisitions Parameters 

 

Test Site Lopé 

Acquisition Date Jan. 25, 2016 

Frequency X-band 

Polarization HH 

Ground resolution 

(Range / Azimuth) 
1.95 m / 1.99 m 

Vert. wavenumber ~ 0.10 m-1 

HoA ~ 62.8 m 

Incidence angle ~ 44.5° 

 

 

 

Data Product Symbol / Acronym Resolution Grid sampling

Small-footprint lidar Digital terrain model / digital canopy model DTM / CHM 1 m × 1 m 1 m × 1 m

LVIS

RH100 at footprint level 22 m (footprint diameter)

20 m × 20 m

Mean RH100

50 m × 50 m

100 m × 100 m

Above ground biomass

50 m × 50 m

100 m × 100 m

GEDI

Level 2A RH100

25 m (footprint diameter)

Level 4A AGB

TanDEM-X

“Few-looks” phase center heights 5 m × 5 m

5 m × 5 m

Digital elevation model (DEM) DEM 120 m × 120 m

Canopy height profiles (CHP) CHP 25 m × 25 m

20 m × 20 m

Top peak height 25 m × 25 m

Horizontal structure index 100 m × 100 m

Forest height

25 m × 25 m

100 m × 100 m

Above ground biomass AGB 100 m × 100 m
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Lidar full-waveform data were collected by NASA's Land and Vegetation and Ice Sensor 

(LVIS) in February 2016 [27]. LVIS footprints have a mean diameter of about 22 m and overlap 

partially on ground [27]. At each footprint, the RH100 (the height above ground at which 100% 

of the full-waveform energy is cumulated) is estimated from the waveform. The RH100 heights 

have been projected in geographic UTM coordinates and resampled at a 20 m grid. These 

resampled RH100 heights, denoted in the following as HLVIS, are shown in Fig. 3.1(a) and are 

used as a reference for the validation of the TanDEM-X height estimates. The reference LVIS 

heights 𝐻LVIS are further averaged to a 50 m × 50 m and a 100 m × 100 m resolution. The obtained 

heights are referred as HLVIS50 and HLVIS100, respectively. Furthermore, two AGB maps at 50 m 

× 50 m (referred as BLVIS50) and 100 m × 100 m (referred as BLVIS100) resolution, both estimated 

from the LVIS waveforms, are used as biomass reference.  These AGB maps have been obtained 

by means of a relationship formally equivalent to the one in (2). The RH98 is used to calculate 

the top forest height, while RH90, canopy cover, and regional values of wood specific gravity are 

used to calculate the allometric level. The relationships are further parameterized by using the 

field inventory plots [28], [29]. The DTM and the canopy height model (CHM) resampled at 1 m 

× 1 m resolution have been used as well. Both of them were derived from small-footprint (10 cm) 

discrete-return lidar data acquired in July 2015 covering part of the Lopé site [32]. 

The TanDEM-X dataset was selected to be acquired close in time to the LVIS flights. The 

relevant acquisition parameters are summarized in Table 3.2. The mean height of ambiguity 

(HoA) of about 65 m allows optimum forest height estimates in the range between 15 and 45 

m [25], [33]. For shorter and taller heights, the forest height estimation performance is expected 

to be more or less compromised [33]. 

The GEDI data over Lopé available for this study have been acquired in the first 18 months of 

the mission between April 2018 and October 2019. For each International Space Station pass, the 

three GEDI lasers collected data along eight tracks separated by about 600 m in the across-track 

direction. Along each track, waveforms with a footprint of approximately 25 m diameter are 

measured every 60 m. In Lopé, this results into 12 000 footprints distributed as shown in 

Fig. 3.1(b) corresponding to only 0.6% of the LVIS coverage. The GEDI waveforms, the Level 

2A RH100 values (referred as HGEDI) [34], as well as the derived Level 4A AGB values (referred 

as BGEDI) [35] have been used to initialize the height estimation from TanDEM-X coherences and 

to define the height-to-biomass relationship(s). 
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   (a)                                                                               (b) 
 

Fig. 3.1. Lopé site: (a) LVIS RH100 HLVIS map in meters (m), (b) footprint positions of the available GEDI 

measurements. Both maps are in UTM coordinates, with spacing (20 m × 20 m) in easting and northing 

direction, and they cover around 19 km by 19 km. The black line in (a) indicates a representative transect 

used for the wavelet analysis in Fig. 3.2.

 

3.3 HORIZONTAL STRUCTURE INDEX ESTIMATION  

Originally, the estimation of the horizontal forest structure index was proposed either from 

tomographically reconstructed radar reflectivity profiles at L-band or from lidar 

waveforms [16], [17]. In [18], a similar—yet simplified—horizontal structure index has been 

derived from CHPs, i.e., the histograms of the InSAR “few-look” phase center 

heights [23], [36], [37] within a certain resolution cell. In particular, the variation of top canopy 

height reflected by the CHPs after the compensation of the terrain-induced (height) variations by 

using an available DTM was used to derive the horizontal structure index. However, in the 

absence of a DTM, this approach is not possible for sites with relevant topographic variations. To 

circumvent this rather serious limitation, the question of the existence of spatial scales at which 

top canopy height variations are independent or at least less affected by topographic height 

variations becomes important. This question is addressed in this Section. 

3.3.1 WAVELET VARIANCE ANALYSIS 

To evaluate the effects of both top canopy and topographic height variations on the TanDEM-

X InSAR few-look phase at different spatial scales, a wavelet decomposition analysis is 

employed, similar to the one proposed and performed in [10] and [38]. For this, the wavelet 

spectrum of the TanDEM-X few-look phase center heights (as obtained by dividing the 

unwrapped InSAR phase by the local terrain-corrected vertical wavenumber κz [33], [39]) are 
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compared with the available CHM spectrum (representing the top canopy height variations) and 

the DTM spectrum (representing the topographic height variations), both derived from the small-

footprint lidar data. 

For the sake of simplicity, all the height maps were projected in geographic UTM coordinates 

and resampled on the same 1 m grid in both easting (x) and northing (y) directions. Before 

transforming to UTM, the TanDEM-X few-look phase center heights have been obtained from a 

multilooking operation with resolution 5 m × 5 m (corresponding to six independent looks, two 

in range, and three in azimuth) in order to reduce the phase variance induced by the interferometric 

decorrelation. 

For each height map f(x,y), the wavelet spectrum has been calculated as a function of the 

(horizontal) scale parameter s as [10], [38], [40] 

 

WSs = 〈cx,s
2 + cy,s

2 〉.       (3.3) 

 

where 〈⋅〉 indicates a moving average operator within 100 × 100 m cells introduced to reduce local 

fluctuations. As indicated by their subscripts, all quantities in (3) are 2D in (x,y) and depend 

on s, cx,s and cy,s are the coefficients along the x and y directions associated with the chosen 1D 

mother wavelet, respectively. Each value of s corresponds to a dilation of the mother wavelet, 

which is used to generate the impulse response of a filter. Its application to the input height maps 

along x and y provides cs,x and cy,s [38]. If the mother wavelet is a symmetric and odd function 

of the spatial variable, the corresponding filter resembles a differential operator producing a 

(mean) height difference between points at a distance corresponding to the scale [38], [40], i.e., 

 

〈cx,s
2〉 ≅ 〈[f(x + Δx, y) − f(x, y)]2〉              

〈cy,s
2〉 ≅ 〈[f(x + Δy, y) − f(x, y)]2〉             (3.4) 

 

with Δx and Δy proportional to s. In this way, WSs reflects directly 2D variations of the input 

heights as a function of s [10], [31]. For the wavelet decomposition the PyWavelets Python 

package [34] has been used with the biorthogonal 1.3 function as mother wavelet for a reliable 

approximation of (3.4). 

Fig. 3.2 illustrates the behavior of the three (TanDEM-X few-look phase center heights, and 

lidar CHM and DTM) WSs as a function of the scale parameter s averaged along a representative 

7-km long north–south transect in Lopé [see Fig. 3.1(a)] covered by dense forest stands and with 

a significant topographic variation. The relative effect of top canopy and topographic height 

variations on the TanDEM-X few-look phase center height at the different spatial scales becomes 

clearly visible: while at smaller scales (up to 10 m), the TanDEM-X phase center height (green 

line) is highly correlated with the CHM (blue line) and widely independent of the DTM (red line), 

at larger scales (>30 m) it correlates with the DTM while its dependency on the CHM decreases 

fast with increasing scale. 

The plot makes clear that the estimation of top canopy height variations (and consequently the 

estimation of the horizontal structure index) by means of the CHPs without compensating for the 
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terrain-induced height variations is problematic at scales larger than 30 m as both top canopy and 

terrain height variations are relevant. In order to reflect only the top canopy height variations, the 

TanDEM-X few-look phase center height variation should be estimated at a 10 m scale (or finer). 

This becomes difficult due to the phase center height (i.e., phase) variance induced by 

interferometric decorrelation. 

To compensate for the effect of terrain variations, the TanDEM-X few-look phase center 

heights are corrected once by using the DTM and once with a low-pass filtered (up to a spatial 

resolution of 120 m) version of its own. The use of a low-pass filtered DEM for removing the 

topographic variation is an established technique in interferometric SAR 

processing [23], [37], [42], [43]. However, the question here is to find at what scale this is best 

possible and how much it compromises the HS estimation performance. The value of 120 m has 

been chosen with reference to the behavior of TanDEM-X phase center heights in Fig. 3.2: at this 

scale, the top canopy height variations are attenuated (with respect to its maximum) while the 

topographic ones are maximized. As expected, the DTM corrected TanDEM-X few-look phase 

center heights (orange line) in Fig. 3.2 follow closely the CHM behavior at all scales. The self-

corrected TanDEM-X few-look phase center heights (cyan line) behave similarly and follow the 

CHM heights across the whole range of scales as well. 

 

 

 

 

 

Fig. 3.2.  Lopé site: wavelet variance WS as a function of the scale s for the small-footprint lidar heights 

(DTM and CHM) and TanDEM-X “few-look” phase center heights averaged along the representative 

transect shown in Fig. 3.1(a). 

3.3.2 STRUCTURE INDEX DEFINITION  

Based on the analysis above, the horizontal structure estimation framework defined in [18] is 

now adapted to the self-corrected TanDEM-X few-look phase center heights. The CHPs are 

calculated as the histograms of the self-corrected heights, followed by smoothing with a Gaussian 
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window of 3 m width. The zero height of each CHP is now a local reference height provided by 

the low-pass filtered TanDEM-X phase center heights. As the real ground height is unknown, the 

determination of the top layer in which the significant canopy height variations occur is not 

straightforward [18]. This requires the definition of a structure index by means of a relative height. 

For this, only the peak at the highest height with a value above threshold, called “top” peak in the 

following, of each CHP in a structure cell is retained in a set Ζtop.  The threshold is set at 10% of 

the absolute maximum value reached by each CHP. This thresholding operation, together with the 

histogram smoothing, aims at reducing the impact of using a small number of looks in the 

calculation of the phase center heights and to avoid the creation of insignificant peaks which may 

bias the structure quantification. The horizontal structure index employed here is defined as [44] 

 

𝜎top = √var{Ζtop}      (3.5) 

 

where var{⋅} indicates the variance of the set. A high σtop indicates large top canopy height 

variations (i.e., large canopy roughness) as in the case of a sparse forest, while a low σtop indicates 

smaller variations (i.e., low canopy roughness) as in the case of a dense(r) forest. The use of the 

CHPs allows to maximize the sensitivity to the top canopy variations as it accounts only for the 

behavior of the “top” peak. Examples of CHPs for two relevant transects in dense and sparse 

forests are shown in Fig. 3.3, and the “top” peak is marked for each of them. It is apparent that in 

the sparse forest case, the “top” peak heights vary in a larger height interval than in the dense 

forest case, leading to a larger 𝜎top. 

With reference to the spatial grid samplings and resolutions in Table 3.1, 𝜎top is derived by 

means of (3.5) at 100 m resolution (i.e., for 100 my× 100 m structure cells) as follows. 
 

 

1. The single look complex TanDEM-X phase center height is multilooked to 5 m × 5 m cells 

(6 looks). 

2. The terrain-induced height variations are compensated by subtracting a low-pass filtered 

(to a spatial resolution of 120 m) version of its own. 

3. The CHPs are calculated at 25 m resolution (i.e., 25 m × 25 m cells) from 25 phase center 

height samples and for each CHP Ζtop is derived. 

4. The variance of Ζtop within a 100 m × 100 m structure cells, i.e., across 25 Ζtop samples 

(equivalent to 16 independent samples), is estimated and used in (3.5) to calculate 𝜎top. 
 

 

The obtained map of Fig. 3.4 shows sparse forest areas (𝜎top > 5 m) surrounded by denser 

ones (𝜎top < 5 m) in the southeastern part of the site, while they are distributed along the slopes 

in the northwestern one. 
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Fig. 3.3.  Examples of consecutive CHPs extracted along two transects in dense and sparse forest stands 

(areas A and B in the following). Each CHP corresponds to a 25 m × 25 m cell on ground. The zero of the 

vertical axis represents the low-pass filtered TanDEM-X DEM height in the location of each CHP. The 

average ground height is reported (horizontal black dashed lines). For each CHP, the peak at the maximum 

height with a value above the threshold indicated by the vertical blue dashed line is retained in Ζtop. The 

extracted peaks are denoted with a black dot. 
 

 

Although the proposed horizontal structural index is able to distinguish dense from sparse 

forest stands, even to some extent, 𝜎top  becomes ambiguous at forest nonforest transitions, 

misinterpreting the step-like height change as increased top canopy variations, and often 

classifying the transition zone as sparse forest. Such border areas can be identified by using a 

forest/non-forest mask [45]. When forest and non-forest attributed samples are present within a 

100 m estimation cell, the cell is set as a border area. In this way, the 3% of the forested area in 

the site is classified as a border area and excluded. In order to exclude an additional error factor 

from the interferometric phase, hilly areas (i.e., slopes larger than 15°) corresponding to ∼10% of 

the forested area were masked as well, resulting in the exclusion of low coherence areas 

characterized by higher phase noise. 

 

 
 

Fig. 3.4.  Lopé site, same area as in Fig. 3.1. Map of 𝜎top at 100 m  100 m resolution. 
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3.4 FOREST HEIGHT ESTIMATION FROM TANDEM-X COHERENCE MAGNITUDE  

3.4.1 METHODOLOGY  

For a bistatic single-polarization TanDEM-X acquisition, the InSAR complex coherence can 

be factorized as [39], [46]: 

 

γ̃(κz) = γSNR ⋅ γrg(κz) ⋅ γQ ⋅ γ̃V(κz)                 (3.6) 

 

where γSNR is the additive noise (SNR) decorrelation, γrg(κz) is the range spectral decorrelation, 

and γQ  is the quantization decorrelation. Forest height (HV ) is estimated from the volume 

decorrelation contribution γV(κz): 

   

γ̃V(κz) = exp (iκzz0)
∫ F(z) exp(iκz z)dz

HV
0

∫ F(z,w⃗⃗⃗ ) dz
HV
0

              (3.7) 

 

where F(z) is the vertical distribution of scatterers, HV  is the forest (top canopy) height [that 

defines the upper boundary of F(z) ) and z0  a reference height corresponding to the lower 

boundary of F(z) . κz  is the vertical (interferometric) wavenumber defined for bistatic 

interferometers as: 

 

κz =
2π 

λ

 ∆θ

sin(θ0−a)
                  (3.8) 

 

where λ  is the wavelength, ∆θ  is the change of the incidence angle induced by the spatial 

baseline, θ0 is the nominal incidence angle, and a is the range terrain slope. The terrain slopes can 

be obtained from an available DEM, and for this, the TanDEM-X DEM has been used. 

Following the approach proposed in [25] the available GEDI waveforms are used to derive a 

“mean” vertical reflectivity profile over a whole TanDEM-X scene. For this, first, the so-called 

profile matrix [P] is formed with columns of the GEDI waveforms Pi(z) in the scene normalized 

to unit height (and resampled to a common number of height samples). Accordingly, the number 

of rows of [P] is given by the number of height samples and the number of columns by the number 

of available GEDI waveforms. From the profile matrix, a covariance matrix [R] is formed: 

 

[R] =  [P] [P]T            (3.9) 

 

where [∙]T indicates the transpose operation, and then diagonalised: 

 

[R] =  [U] [Λ] [U]T           (3.10) 
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where [Λ]  contains the (positive) eigenvalues ai  and [U]  the eigenvectors P̅i(z)  of [R] . The 

eigenvectors P̅i(z) of [R] are then used to compose the mean reflectivity profile: 

 

Pmean(z) =  ∑ aiP̅i(z)
M
i=1                    (3.11) 

 

where M represents the number of eigenvectors used to compose Pmean(z). In the following, only 

the first eigenfunction Pmean(z) = P̅1(z)  has been used for defining the mean reflectivity profile. 

The low-frequency profile component given by the first eigenvector is more appropriate for 

describing forest reflectivity over larger spatial scales, since the higher order profile components 

may locally mismatch with the actual reflectivity due to the natural spatial heterogeneity of the 

forest structure. In terms of the achieved estimation performance, the low-frequency profile 

component is sufficient because the effect of the vertical reflectivity on the volume decorrelation 

is smaller compared to the effect of the forest height. 

The use of the the mean reflectivity profile Pmean(z) instead of the vertical distribution of 

scatterers F(z) in (3.7) leads to a determined inversion problem of two unknowns, i.e. HV and z0 

that can be inverted by a single complex observation γ̃V(κz). It can be further simplified to a single 

dimensional inversion problem (with a single unknown HV) by accounting only the absolute 

values of (3.7).   

The forest height inversion was performed using a coherence estimation window of 25 m × 25 

m (corresponding to about 150 independent looks), compensating for non-volumetric 

decorrelation contributions (γSNR, γrg and γQ [46]), deriving the mean profile Pmean(z) using all 

available GEDI waveforms in the scene by means of (3.11) and using both the volume coherence 

and the mean profile in (7). Samples with |γV(κz)| < 0.25 and heights higher than 52 m (i.e., the 

expected maximum top height for the actual vertical wavenumber) were discarded. In a final step, 

the available GEDI RH100 heights, HGEDI, were used, as proposed in [25], to compensate any 

residual global bias affecting the vertical wavenumber – height product κzHV . The obtained 

heights were projected in geographic UTM coordinates and resampled in a 20 m grid, and are 

indicated with HTX in the following.  

Fig. 3.5 (a)-(b) shows the TanDEM-X height estimates and their validation against the LVIS 

heights (HLVIS) by means of a 2D histogram. The performance is consistent with what was already 

reported in [25], confirming the robustness of the inversion with respect to the number of available 

waveforms. The considerable underestimation of a number of stands with heights above 40 m is 

partly due to the large vertical wavenumber and partly due to the limited X-band penetration in 

the dense(r) stands. The underestimation introduced by a too large vertical wavenumber is well 

known and has been discussed for the actual TanDEM- X / GEDI case in [25]. 

It is clear that the adapted forest height inversion approach relies on a number of critical 

assumptions and compromises. The use of a single “mean” vertical reflectivity profile over a 

whole TanDEM-X scene makes an adaptation to the spatial forest structure heterogeneity. At the 

same time, there are inherent differences between the nadir lidar waveforms and the side-looking 

X-band reflectivity. However, such assumptions and compromises are necessary for obtaining 
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forest height from single-pol single-baseline TanDEM-X data. A detailed performance analysis 

of the implemented forest height inversion can be found in [25]. 

 

 

 

        (a)                                   (b) 
 

Fig. 3.5. Lopé site, same area as in Fig. 3.1: (a) TanDEM-X forest height HTX  in meters (m);  

(b) comparison (2D histogram) between HTX and HLVIS. The height estimation performance in the areas 

(A) and (B) indicated in (a) is further investigated in Fig. 3.5.  
 

3.4.2 STRUCTURE DEPENDENCY OF THE HEIGHT ESTIMATION BIAS  

While the height underestimation due to too large vertical wavenumbers can be avoided by 

using a smaller spatial baseline, the underestimation due to limited penetration is a fundamental 

limitation that cannot be easily overcome, if not at all. Nevertheless, a first-order correction is 

attempted, based on the assumption that even in dense stands there may be points where the X-

band pulses penetrate to the ground and allow undistorted height inversion. 

To explore this, 25 HTX samples, equivalent to 16 independent estimates with 25 m resolution 

(see Table 3.1), are aggregated to a height estimate HTX100 at 100 m resolution 

 

HTX100 =
1

N
∑ HTX

N
n=1 .      (3.12) 

 

For sparse stands, the mean of the N=25 HTX height samples are taken, while for dense stands 

only the mean of the tallest N=5 HTX samples are taken. To discriminate between sparse and dense 

stands, the horizontal structure index 𝜎top is used. 

The effect of this approach is demonstrated using two representative forest areas shown in 

Fig. 3.6, a dense one (A) and a sparse(r) one (B) [see Fig. 3.6 (b)], each about 300 m × 300 m. In 

area (A), the CHM, shown in the top row, varies about 10 m around a mean height of 45 m, 

indicating a rather dense forest. The estimated HTX heights at 25 m resolution are shown in the 
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second row. From the comparison between the histogram of the estimated heights and that of the 

RH100 LVIS heights (HLVIS) of the same area an underestimation of about 20 m is evident. 

Differently, in area (B), the CHM indicates a sparse forest. Here the histograms 

of HTX and HLVIS are very similar, except for heights lower than 15 m which appear overestimated 

in HTX. For the rest, the histograms indicate an unbiased inversion performance, supported by a 

qualitative comparison between the CHM heights and the TanDEM-X heights in the first and 

second rows, respectively. In the third, fourth, and fifth rows, the aggregated forest height maps 

[in the sense of (3.12)] of the two areas and the associated height histograms corresponding to a 

100 m resolution (e.g., 100 m × 100 m) are shown. For the maps shown in the third row, only the 

tallest of the 25 available height estimates HTX is used, in the fourth row, the mean of the tallest 5 

estimates, while in the fifth row, the mean of all 25 height estimates. With respect to HLVIS100, 

comparing the two areas becomes obvious that while using the tallest height estimate compensates 

for the underestimation in the dense area (A), the sparse area (B) is heavily overestimated. The 

opposite is the case when using the mean of all estimated heights: in the dense area (A), the 100 

m resolution heights still underestimate the reference heights, while in the sparse area (B), the 100 

m resolution heights appear unbiased. 
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(a) 
 

 

(b) 
 

Fig. 3.6. Lopé site. (a) Height estimates and related errors for representative dense (area A) and sparse 

(area B) areas. The locations of areas A and B are illustrated in Fig. 3.5(a). First row: small-footprint lidar 

CHM. Second row: TanDEM-X HTX  (25 m resolution). Third, fourth, and fifth rows: height 

errors HTX100−HLVIS100  (100 m resolution) for N=1, 5, 25, respectively, as in (3.12) on the left; and 

histograms of HTX and HLVIS (25 m resolution) on the right. (b) Maps of 𝜎top over areas A and B. In the 

maps in (a) and (b) the black dashed lines separate nonoverlapping height resolution cells measuring 100 

m × 100 m. 

(A) (B)
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The final performance is shown in Fig. 3.7 in terms of a 2D histogram comparing HTX100 and 

HLVIS100. As expected, N=5 corrects the height estimation bias in the tall/dense stands between 

40 and 50 m. The residual (positive) bias of around 5 m in this height interval occurs in 

correspondence with the sparse stands, for which N=5 is not optimal. In contrast, N=25 minimizes 

the bias in the short(er)/sparse(r) stands. Notice that, in this case, a residual bias between 5 and 10 

m persists especially for mean heights between 10 and 20 m and cannot be corrected further by 

(3.12). The result does not change significantly when taking the 3 or 7 tallest heights: 5 are 

selected because they correspond to the H100 metric that refers to the 100 tallest trees in a hectare. 

As single trees are not seen, the corresponding 20% of height estimates are used. Regarding the 

𝜎top threshold for separating between sparse and dense stands, its selection is rather uncritical. 

Here, a value of 6 m was used. In principle, the threshold has to differentiate between very open 

and closed canopy forest. For a closed canopy forest, the H100 metric applied by using the average 

of the tallest 5 heights of the 25 samples does not change when the lower heights are 

underestimated. For open canopy forests, the top canopy height is becoming less and less 

appropriate with decreasing tree density. In this case, the mean of all heights is more 

representative. 

As final remark, it was verified that if an optimal N is employed for each cell in the scene, the 

same conclusion on the residual bias would apply and the RMSE would improve from 6.8 to only 

6.3 m. This confirms that the suboptimality of the processing has only minor effects on the final 

performance. 

 

 

      

    (a)                                                                               (b) 

 

Fig. 3.7.  Lopé site, same area as in Fig. 3.1: (a) TanDEM-X forest height HTX100  in meters (m);  

(b) comparison (2D histogram) between HTX100 and HLVIS100. 
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3.5 DERIVATION OF FOOTPRINT-LEVEL LIDAR ALLOMETRY  

3.5.1 SAMPLING EFFECT 

According to (3.1), the AGB is an exponential function of top canopy height H with constant 

allometric exponent β0  over larger scales. For the case where also the allometric factor α is 

assumed to be constant over the whole site, the resulting allometric parameters α = α0 and β0 can 

be directly derived from the available forest height and AGB measurements, collected in the 

vectors 𝐡lid and 𝐛lid, through a least-squares regression as 

 

min
α0,β0

‖𝐛lid − α0𝐡lid
β0 ‖

2

.      (3.13) 

 

The dependence of forest height-biomass allometry on local stand conditions [3]-[5], 

particularly their density, can be accounted for by the dependence of the allometric level α =

α(𝜎top) on the horizontal structure index. In this sense, (3.13) can be modified to consider Nα 

uniformly distributed and non-overlapping structure intervals centered at {𝜎topi
}
i=1

Nα

 in the range 

of values of 𝜎top. For each of these intervals, the allometric levels {α (𝜎topi
)}

i=1

Nα

 and a reference 

allometric exponent β0 are jointly estimated as: 
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     (3.14) 

 

where 𝐛lid,i and 𝐡lid,i are the vectors containing the lidar AGB and height values, respectively, for 

the generic i-th stop interval centered at 𝜎topi
. 

Accordingly, the height-to-biomass relationship and the dependence of the allometric 

level α = α(𝜎top) on the horizontal structure index are derived from the available set of forest 

height and AGB measurements. In all the considered cases, the optimization (3.14) was carried 

out using Nα =50 for σtop varying between 0 and 10 m. In the case of GEDI, a more or less sparse 

(depending on latitude and cloud cover) sampling of forest height and AGB measurements at 

footprint level is available. In order to evaluate how much the available measurements are 

sufficient to derive allometric relations, four different scenarios are considered: the full data set 

scenario using all available LVIS forest height (HLVIS100) and AGB (BLVIS100) measurements and 

three thinned scenarios derived by randomly reducing the full LVIS data set along simulated 

GEDI ground tracks according to three different cloud cover rates (50%, 75%, and 90%). Each of 
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the three thinned scenarios has been generated 200 times (trials), each time by removing a 

different set of measurements. The number of lidar height and biomass measurements available 

in each 𝜎top interval varies between 50 and 400 in the full data set, but it can be reduced to around 

10 in the most challenging sampling scenario.  

The top row of Fig. 3.8 shows the obtained allometries derived according to (3.13) for the case 

of constant α = α0. In the reference full data set case, the 2D histogram shows the distribution of 

BLVIS100 as a function of HLVIS100, while the white dashed lines represent the allometry for the 

fitted α0 (central line) and for the cases in which α0 is increased/decreased by 30%. In the other 

three plots, the blue dashed lines represent the allometries obtained in each of the 200 trials. The 

allometric relationship results are very stable with respect to the number of available samples, 

even in the case where only 10% of the samples are available (e.g., 90% cloud cover). 

 

 

 

 
 

Fig. 3.8.  Lopé site, same area as in Fig. 3.1. Top row: (a) 2D histogram relating HLVIS100 and BLVIS100 

in correspondence of all the GEDI sampling positions in Fig. 3.1(b); the central white dashed line 

represents the height-to-biomass relationship with constant α = α0 obtained using (3.13), while the 

upper/lower dashed lines represent the cases in which the fitted α0 is increased/decreased by the 30%. 

Panels (b)–(d): the blue dashed lines represent the allometric relationships for α = α0 obtained using (3.13) 

in each trial of the simulated 50%, 75%, and 90% cloud covers, respectively. The same relationship 

obtained in the full-sampling case [as in panel (a)] is reported in red for reference. Bottom row: (e) 2D 

histogram relating the allometric factor α and σtop using HLVIS100, BLVIS100 and β0=1.8 in correspondence 

with all the GEDI sampling positions in Fig. 3.1(b); the white dashed line represents α(𝜎top) obtained 

using (3.14). Panels (f)–(h): the blue dashed lines represent the relationships represents α(𝜎top) obtained 

using (3.14) in each trial of the simulated 50%, 75%, and 90% cloud covers. The same relationship obtained 

in the full-sampling case [as in panel (e)] is reported in red for reference. 
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The bottom row of Fig. 3.8 shows the obtained allometries derived according to (3.14) for the 

case of a variable allometric level α = α(𝜎top) . In the reference full data set case, the 2D 

histograms show the distribution of α=BLVIS100/HLVIS100
β0  at the sampling locations with β0 =

1.8. It is apparent that the obtained allometry is less stable than with α = α0 when the number of 

available samples decreases because (3.14) demands more samples to define every allometric 

parameter in each interval. This is especially true with increasing forest heterogeneity. While for 

the cases of 50% and 75% of cloud cover α = α(𝜎top) can be reconstructed, in the case of 90% 

cloud cover the α = α(𝜎top) relationship cannot be established any longer. 

In the case of limited samples, one possible tradeoff is to increase the intervals used to fit 

the α = α(𝜎top) relationship [see (3.14)] and so doing to reduce their number Nα. In this case, a 

more robust allometric relationship could be obtained at the cost of a low(er) structure resolution. 

However, the (real) GEDI samples available over Lopé correspond to almost 50% cloud cover 

case making the reconstruction of both allometries possible. 

3.5.2 SCALE EFFECT 

After investigating the effect of available samples on the reconstructed allometry, the next 

question to face concerns the spatial scales on which the allometry is addressed. While GEDI 

provides measurements (forest height and AGB) at the footprint level of approximately 25 m 

diameter, the structure index 𝜎top used to refine the allometry is estimated at a 100 m resolution. 

A lower resolution of 𝜎top would not include a statistically relevant number of CHPs, thus not 

providing a significant structure description. 

In order to investigate the effect of this scale discrepancy on the parameterization of the height-

to-biomass relationship, the allometric exponent and the (structure-dependent) allometric level 

are derived at two different spatial resolutions, 50 and 100 m using the reference LVIS biomass 

estimates and compared with the ones obtained by using the 25 m GEDI estimates HGEDI and 

BGEDI. The obtained allometries are shown in Fig. 3.9. For each resolution, the regression has 

been performed individually. For the case of a constant allometric coefficient in all three 

resolutions, a very similar parameterization has been obtained:  α0 = 0.454  and β0 = 1.76  at  

25 m, α0 = 0.392 and β0 = 1.83 at 50 m, and α0 = 0.383 and β0 = 1.85 at 100 m, respectively. 

The color of each point in the scatterplot corresponds to a different value of 𝜎top. As expected, 

for the same height, the allometric factor decreases with increasing 𝜎top as a consequence of a 

decrease in (forest) density. This demonstrates the potential of using 𝜎top to adapt the height-to-

biomass allometry to the local forest conditions. The adaptation is more effective toward the 

extremes of the σtop range where the correlation between 𝜎top and the allometric factor is higher. 

At the 25 m scale, the adaptation appears less effective as 𝜎top appears less correlated to the 

allometric factor. This can be a result of the large-scale difference between the GEDI samples 
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and 𝜎top. At the same time, the rather low geolocation accuracy of the GEDI footprints of about 

10 m at 1 sigma [47] is not supportive. 

 

 

 

             (a)                                                     (b)                                                     (c) 

 

Fig. 3.9.  Lopé site, same area as in Fig. 3.1. Scatterplots between (a) HGEDI and BGEDI, (b) HLVIS50 and 

BLVIS50, and (c) HLVIS100 and BLVIS100. The points in the scatterplot correspond to a spatially homogenous 

subset of the acquired GEDI footprint coverage. The color of each point corresponds to a different value 

of 𝜎top (expressed in meters) with the same color map as in Fig. 3.4. The continuous black line represents 

the height-to-biomass allometry parameterized by α = α0. The dashed colored lines represent the case α =

α(𝜎top) for three value of 𝜎top (blue: 2 m, green: 5 m, red: 9 m). 

 

3.6 FOREST BIOMASS ESTIMATION AND VALIDATION 

The performance of the height-to-biomass allometry at 100 m resolution is now addressed by 

exploring the established dependency of the allometric factor 𝜎 on the horizontal structure index 

σtop. 

In order to assess the improvement obtained by using the adaptive allometric relation assuming 

no uncertainty in the forest height, first the LVIS heights HLVIS100 are used in the constant (with 

𝛼 = 𝛼0) and in the adaptive [with α = α(𝜎top)] allometric relations derived using HGEDI  and 

BGEDI. In the latter case, the relationship between the allometric factor and 𝜎top is shown in Fig. 

3.10 (white dashed line). The optimization (3.14) was carried out using Nα = 50  for σtop varying 

between 0 and 10 m. The obtained AGB maps for both cases are shown on the top row (left and 

middle respectively) of Fig. 3.11. At the right, the reference BLVIS100 derived at 100 m 

resolution is shown. The validation plots of the obtained AGB maps against the reference AGB 

are shown on the top row of Fig. 3.12. The constant 𝛼 = 𝛼0 allometry already provides sensitive 

results, but the high AGB levels are consistently underestimated and low AGB levels tend to be 

overestimated. Both effects are compensated when applying the adaptive α = α(𝜎top) allometry 

that provides almost unbiased estimates. 
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Fig. 3.10. Lopé site, same area as in Fig. 3.1. 2D histograms relating 𝛼0 and 𝜎top using HGEDI and BGEDI. 

The white dashed lines represent the relationship 𝛼(𝜎top) obtaine using (3.14). 

 

 

(a) 

 

   

(b) 

 

Fig. 3.11. Lopé site, same area as in Fig. 3.1. AGB maps obtained from allometric relationships derived 

using HGEDI and BGEDI, and using (a) HLVIS100 with α = α0 (right), HLVIS100 with α =α(𝜎top) (middle), 

and reference BLVIS100 (left); and (b) HTX100 with fixed α = α0 (left), and with α = α(𝜎top).
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The same procedure is now repeated using instead of the LVIS heights HLVIS100 the TanDEM-

X heights HTX100. The obtained AGM maps are shown on the bottom row of Fig. 3.11, while the 

corresponding validation plots on the bottom row of Fig. 3.12. The forest height uncertainty 

dominates the obtained performance. Nevertheless, the adaptive allometry successfully 

compensates for the overestimation of the lower AGB range as well as the underestimation of the 

upper AGB range of the constant allometry, allowing for practically unbiased estimates. 

 

 

(a) 

 

 

(b) 

 

Fig. 3.12.  Comparison (2D histograms) between the reference BLVIS100 and the estimated AGB values 

using (a) HLVIS100  and (b) HTX100. In both (a) and (b), α = α0 is used in the left panel, and a variable 

allometric factor α = α(𝜎top) is used in the right panel. 

 

3.7 CONCLUSION 

The use of the forest height-to-biomass allometry, as addressed in (3.1), in the context of 

continuous TanDEM-X InSAR measurements and discrete height and biomass GEDI 

measurements over a diverse tropical test site, the Lopé National Park in Gabon, is discussed. 

Important points are the importance of forest structure and the possibility of deriving and using a 

forest structure index from TanDEM-X data in the absence of a DTM.  
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Two points are particularly critical to the success of such an approach: 1) the knowledge of 

the allometric parameters α0 and β0 that define the height-to-biomass allometry and their spatial 

variation in heterogeneous forests; and 2) the ability of TanDEM-X interferometric measurements 

to provide unbiased forest height estimates in dense forest conditions. In both cases, forest 

structure and its spatial variability play a decisive role. The proposed methodology illustrates how 

the sensitivity of the TanDEM-X interferometric measurements of horizontal forest structure, 

given by the high spatial resolution and the high attenuation at X-band, can be used to account for 

the forest heterogeneity and support this way both points. 

For this purpose, a horizontal structure index was proposed, similar to the one in [18], but 

modified to be derived from relative height variations and thus not requiring a DTM. The height 

variations induced by the topography were compensated by using a low-pass filtered version of 

the interferogram to access the spatial variations of the top canopy layer. However, as the 

proposed structural index only takes into account relative height variations, it cannot reliably 

recognise whether the height changes occur in the upper tree canopy or within the volume. To 

maximise the sensitivity to the top canopy variations, CHPs are used. The horizontal structure 

index is then given by the spatial variance of the CHP “top” peaks within a structure cell. 

Accordingly, a large variance resulting from large canopy height variations is associated with a 

large canopy roughness and interpreted as “sparse forest.” On the other hand, a low variance 

resulting from low canopy height variations is associated with low canopy roughness and is 

interpreted as a close canopy, e.g., a “denser forest.” 

The derived horizontal structure index is used to improve both the forest height estimation and 

the forest height-to-biomass allometry performance. 

The main limitation in forest height estimation is the underestimation of dense stands caused 

by the limited penetration at X-band that leads to biased (underestimated) heights. Assuming that 

even in dense stands there may be points where the X-band pulses penetrate to the ground, an 

unbiased estimation can be attempted at the expense of spatial resolution. For this, the derived 

horizontal structure index is used to distinguish between “sparse” and “dense” forests: for the 

“sparse” forest stands a 100 m height estimate is obtained by averaging 25 height estimates at 25 

m, for the “dense” forest stands only the mean of the highest 5 estimates is considered. 

Looking on the forest height-to-biomass allometry now, the underlying allometry can be 

derived from the GEDI footprint measurements, i.e., the RH100 heights and the associated AGB 

values. The simulation of scenarios with different sampling densities shows that the derived 

underlying allometry is robust to the number of available footprint measurements used to define 

it, as long as the samples remain representative of forest conditions. This does not appear to be a 

critical limitation as the underlying allometry, which is primarily dependent on large scale forest 

attributes (as species composition and the site growth conditions), remains at larger scales. 

However, this underlying allometry in Lopé underestimates high AGB levels as the spatial forest 

heterogeneity cannot be represented by a single allometric relation. 

The horizontal structure index is here used to adapt the underlying height-to-biomass 

allometry to the spatial (stand density) heterogeneity for improving biomass estimation 

performance. This has been attempted by expressing the allometric level as a function of the 
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derived horizontal structure index and using the GEDI footprint measurements, i.e., the RH100 

heights, and the associated AGB values to reconstruct this dependency. The obtained monotonous 

decreasing dependence of the allometric level on the horizontal structural index points to the 

presence of a real(istic) correlation. This reflects on the achieved biomass estimation performance 

improvement, when compared to the use of a single allometry. This improvement has been 

obtained even if the horizontal structure index cannot distinguish vertical variations of density 

along height. The largest remaining uncertainty contribution in terms of bias and/or variance has 

been seen to be attributable to the propagation of the height estimation uncertainty. 

Even if a single test site has been investigated, the intention of this article is to develop a 

methodological concept under the perspective of forest biomass inversion on a large scale rather 

than discussing the optimization of performance on local scales. Nevertheless, the same concept 

applied within the same test site, but with different acquisition configurations in terms of 

incidence angles and vertical wavenumber, leads to the same conclusions. Surely, in the future 

some local optimization may improve the final performance. The extension of this analysis to 

other test sites is, however, complicated by the availability of large-scale continuous data for 

validation, especially in terms of biomass. 

The results characterize the potential and the limitations of TanDEM-X interferometry for 

characterizing forest conditions. On the one hand, the high attenuation rates at X-band and the 

resulting limited penetration into the forest volume maximize the interferometric sensitivity to the 

spatial variations of the top canopy layer and make it especially appropriate for the 

characterization of the horizontal forest structure. At the same time, the high spatial resolution of 

the TanDEM-X interferograms and its continuous measurement nature allows the estimation of 

forest structure variations at spatial scales relevant for the characterization of the horizontal forest 

structure. On the other hand, the same limited penetration into the forest volume, which favors 

the horizontal forest structure characterisation, limits the height estimation performance and 

makes the characterisation of the vertical forest structure at reasonable scales almost impossible. 

Finally, the proposed methodology and the obtained results demonstrate the synergetic 

potential of the continuous TanDEM-X and the discrete GEDI measurements. This is because 

both measurements 1) are at the same time similar enough due to the high sensitivity to the 

geometrical architecture of the canopy and the high spatial resolution common to both 

configurations, facilitating a common interpretation and) are different enough because of the 

different acquisition geometries and measurement approaches to carry independent information. 
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Abstract 

 

The present study addresses the development, implementation, and validation of a forest 

height mapping scheme based on the combination of TanDEM-X interferometric 

coherence and GEDI waveform measurements. The very general case where only a 

single polarisation TanDEM-X interferogram, a set of spatially discrete GEDI waveform 

measurements, and no DTM are available is assumed. The use of GEDI waveforms to 

invert the TanDEM-X interferometric measurements is described together with a set of 

performance criteria implemented to ensure a certain performance quality. The emphasis 

is set on developing a methodology able to invert forest height at large scales. 

Combining 595 TanDEM-X scenes and about 15 million GEDI waveforms, a spatially 

continuous 25-m resolution forest height map covering the whole of Tasmania Island is 

achieved. The derived forest height map is validated against an airborne lidar-derived 

canopy height map available across the whole island. 

  

4.1 INTRODUCTION 

Accurate forest height measurements at subhectare scales are critical for characterizing the 

successional state of forests and/or their disturbance regime. At the same time, forest height can 

be related to forest biomass through allometric models, so used to initialize (or constrain) model 

estimates of above-ground biomass [1-4]. Despite their importance for forest inventory and 

modeling, forest height measurements on the ground remain difficult, so the generation of 

accurate high spatial resolution forest height maps over large areas remains a remote sensing 

challenge.  

The introduction of polarimetric synthetic aperture radar (SAR) interferometry (Pol-InSAR) 

at the end of the 90s was a decisive step toward measuring forest height accurately at large scales 

[5-10]. Relying on the inherent sensitivity of the interferometric coherence to the vertical structure 

of volume scatterers, Pol-InSAR techniques have been established alongside lidar measurement 
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techniques for accurate estimation of forest height in the context of airborne and spaceborne 

applications [11-14]. From the proposed Pol-InSAR estimation algorithms, model-based ones 

have in general proved more robust and with a better performance. Such estimation algorithms 

model the vertical reflectivity in the forest by means of a two-layer model (accounting for 

vegetation and a ground scattering contribution) [5], [15], and forest height is then obtained by 

inverting the established model using interferometric measurements at different polarizations or 

vertical wavenumbers (e.g., spatial baselines) [10], [16]. 

Launched in 2010, TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) 

introduced a new era in spaceborne radar remote sensing allowing single-pass interferometric 

measurements from space in a bistatic configuration [17-18]. The sensitivity of the interferometric 

TanDEM-X coherence to the vertical forest structure and especially to forest height initiated a 

large number of studies on forest height estimation from TanDEM-X SAR interferometry 

(InSAR) data across all possible forest types and conditions [15],[19-24]. However, since the 

conventional TanDEM-X global digital elevation model (DEM) observation mode is limited to a 

single polarization interferometric acquisition, only a highly simplified implementation of a 

single-layer model is possible, which often requires additional external information, such as an 

external digital terrain model (DTM), for its inversion [16], [25]. The achieved performance is, in 

general, remarkably good as long as the forest conditions allow sufficient penetration to ensure 

the “visibility” of the whole (vertical) forest extent, and the forest (and terrain) heterogeneity can 

be matched by the simplified single-layer parameterization of the vertical reflectivity. While the 

limited penetration is physical and must be accepted as long as the underlying topography is 

unknown, the limited ability of the inversion model to adapt to the local forest and terrain 

conditions can be addressed if a larger observation space is available [16]. 

The wide availability of airborne lidar data triggered several attempts to use lidar 

measurements to compensate for the underdetermination of the forest height inversion problem 

when addressed in terms of single-polarimetric TanDEM-X acquisitions. Besides using the lidar-

derived DTM to directly enable the forest height inversion [22-23], [25-27], lidar data have also 

been used to constrain individual model parameters reducing, in this way, the dimensionality of 

the forest height inversion problem [28-33]. More recently, the direct use of lidar waveforms to 

define the full X-band vertical reflectivity profile has been proposed [34]. This allows, depending 

on the spatial density of the available waveform measurements, adaptation to local forest and 

terrain conditions and improved performance, especially in spatially heterogeneous forest 

conditions. 

The launch in late 2018 and subsequent operation of NASA's Global Ecosystem Dynamics 

Investigation (GEDI) Mission, has been a critical development for large-area forest height 

estimation [35-36]. GEDI provides dense and well-distributed lidar waveform measurements 

across Earth's tropical and temperate forests and defines an ideal framework to explore the 

synergetic use of waveform lidar and interferometric X-band SAR measurements at local to global 

scales. Indeed, the synergies between TanDEM-X and waveform lidar data [34] have been 

confirmed by several studies using the TanDEM-X/GEDI framework [30-31], [37-38]. 
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This study investigates the potential of this synergy for large-scale forest height mapping for 

the case where only a single polarisation TanDEM-X interferogram, a set of spatially discrete 

GEDI waveform measurements, and no DTM are available. The emphasis is set on developing a 

methodology able to invert forest height at large scales. Accordingly, decisions and tradeoffs are 

taken in favor of optimizing the data handling and processing flow and the overall inversion 

performance accounting for minimizing the effect of systematic errors. This is done accepting that 

the performance achieved may be locally inferior compared to more sophisticated, but also more 

complex, inversion approaches. Section 4.2 describes the selected forest site for the experiments, 

i.e., Tasmania in Australia, the experimental data (TanDEM-X and GEDI), and the reference 

height measurements available. Section 4.3 addresses the estimation of forest height based on the 

combination of TanDEM-X and GEDI data. In Section 4.4, the forest height estimation 

performance is addressed. A performance model is introduced and used to define the optimum 

height inversion range. Section 4.5 describes the actual processing and main results over the test 

site. Finally, in Section 4.6, the key findings are summarized and the conclusions are drawn. 

 

4.2 TEST SITES AND DATASETS 

4.2.1 TASMANIA 

The Tasmanian island, located in the south of Australia, is about 68401 km2 large with an 

extent of about 350 km in longitude and 330 km in latitude. The island is predominantly forested 

by temperate rain forests and has mountainous as well as flat regions. The forested area is very 

dynamic with fire events, logging activities and re-growth, which makes the test site atractive for 

evaluating different forest conditions. 

4.2.2 LIDAR CANOPY HEIGHT MODEL 

From 2008 to 2019 the Government of Tasmania performed several airborne laser scanning 

campaigns to map a large part of the island. One of the products of these campaigns was a Canopy 

Height Model (CHM) of 2 m spatial resolution [39]. The CHM data, mosaicked together to a 

single raster dataset are shown in Fig. 4.1 (a) together with a map that indicates the acquisition 

year for each area in Fig. 4.1 (b). Although the CHM model results from data acquired over a 

period of about 10 years, the availability of such a large and continuous forest height dataset 

allows the evaluation of the proposed methodology not only at a local but also at larger (country-

wide) scales. 

For the validation of the TanDEM-X heights associated with the upper canopy height, the 

H100 height [16] (corresponding to the mean height of the 100 tallest trees within a hectare or 

equivalent to the mean of the 6 tallest trees within a 25 m × 25 m window) was derived from the 

CHM as the mean of the tallest 3 CHM values (accounting for their 2 m spatial resolution) within 
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a 25 m × 25 m window. The obtained H100 values correspond well to GEDI's RH98 heights, as 

shown in Fig. 4.2. 

 

 

       

                                            (a)                                                                            (b)          

      

(c)                                                                           (d) 

 

Fig. 4.1.  Tasmania: (a) 25 m resolution CHM (H100) map from lidar in meters (m). (b) Date of each lidar 

acquisition. (c) Footprints of TanDEM-X acquisitions. The color represents the number of available images 

at each location. (d) GEDI RH98 map in meters over footprint positions of the available GEDI 

measurements. All maps are in geographic coordinates, with spacing (about 100 m × 100 m) in longitude 

and latitude direction. 

 

4.2.3 FOREST / NON-FOREST MAP 

To avoid inconsistent heights over areas where the (inversion) model is not applicable, the 

TanDEM-X-derived forest/non-forest (FNF) map was used to mask water and urban areas [40]. 

For all remaining areas, forested and non-forested height estimates are computed and accounted 

for in the validation. 
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4.2.4 TANDEM-X DATASET 

In this study, 595 conventional Coregistered Single look Slant range Complex (CoSSC) data 

products acquired and processed in an HH polarized strip map mode during the global 

DEM [18] and change DEM [41]. TanDEM-X mission phases between 2011 and 2019 have been 

used. The dataset includes ascending and descending acquisitions with a typical resolution of 

about 3 m in range and azimuth and with vertical wavenumbers ranging from 0.05 to 0.15 rad/m 

(with a median of about 0.1 rad/m). Their coverage map is shown in Fig. 4.1 (c). 

4.2.5 GEDI DATASET 

The GEDI instrument consists of three lasers (operating with a wavelength of 1064 nm) that 

are split into 4 beams and dithered along-track to produce a total of eight parallel acquisition 

tracks, spaced approximately 600 m apart on the Earth's surface in the cross-track direction. Along 

each acquisition transect, waveforms with approximately 25-m footprints are spaced every 60 m 

along the track. About 15 million GEDI footprints acquired in the 18 first months of the mission 

between April 2018 and October 2019 are used in this study. Their spatial distribution is shown 

in Fig. 4.1 (d), covering an area of less than 1% of the whole island. 

From the available GEDI footprints, only those with a signal-to-noise ratio sufficient to 

penetrate through the forest with up to 95% canopy cover have been used [42]. The geolocation 

accuracy of the footprint data has been improved to ∼10 m at 1-sigma in Version 2 [43]. The 

GEDI waveforms and the Level 2A RH98 values [36] have been used to initialize the height 

estimation from the TanDEM-X coherences. 

   

 

 

 

Fig. 4.2.  Comparison (2-D histogram) between airborne lidar H100 measurement and GEDI RH98 

measurement. 
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4.3 FOREST HEIGHT INVERSION  

This Section introduces the forest height estimation methodology based on the combination 

of TanDEM-X and GEDI data. 

4.3.1 TANDEM-X COHERENCE ESTIMATION 

The (complex) interferometric coherence γ̃Obs is obtained from the interferometric image pair 

s1 and s2 as  

 

γ̃Obs =
<s1s2

∗>

√<s1s1
∗><s2s2

∗>
       (4.1) 

 

where <∙> denotes the expectation value. In the TanDEM-X global DEM and change DEM 

mission phases, s1 and s2 are acquired in a bistatic interferometric strip map mode where one of 

the two satellites transmit (in H polarisation) and both satellites receive the scattered signal quasi 

simultaneously (in H polarisation). In the absence of temporal decorrelation γ̃Obs comprises two 

main decorrelation contributions 

 

γ̃Obs = γ̃Sysγ̃Scat.                  (4.2) 

 

The first term, γ̃Sys , includes the decorrelation effects includes the decorrelation effects 

induced by the nonideal SAR system. The most prominent system decorrelation contribution is 

the (additive) noise decorrelation γSNR. Modelling the received signal to be composed by the 

scattering amplitude a and the noise amplitude n, i.e. s = a + n, γSNR can be written as [25] 

 

γSNR =
1

1+SNR−1 =
A

A+N
=

A

P
          (4.3) 

 

where SNR = A/N is the signal-to-noise ratio, with P= A + N the received power, A=|a|2  the 

scattered power and N = |n|2 the noise power.  

A second contribution to the system decorrelation γ̃Sys is γQuan, which is caused by the lossy 

raw data compression process [44-45]. In the case of TanDEM-X, the received backscattered 

signal is first digitized by an 8-b analog-to-digital converter and then further compressed by a 

block adaptive quantizer with a compression rate of 8:3 (or 8:4). This is associated with a 

coherence loss of about 3.5% (or 1%) [45-46].  

The second term, γ̃Scat, reflects the phase stability of the scatterer under the different incidence 

angles induced by the interferometric baseline. After range and azimuth spectral filtering [5] γ̃Scat 

reduces to the volume decorrelation contribution γ̃Vol [5-6] 

 

γ̃Vol(κz) =
∫ F(z) exp(iκZ z)dz

z0+hV
z0

∫ F(z) dz
z0+hV
z0

      (4.4) 
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with F(z) is the vertical reflectivity function (also referred to as the vertical reflectivity profile) 

expressing the vertical distribution of scatterers seen by the interferometer. The vertical direction 

is expressed by z and z0  indicates the position of the underlying ground. Accordingly, F(z) 

depends on the frequency and polarisation of the interferometer as well as on the interferometric 

acquisition geometry. The upper bound of F(z) is given by z0 + hV which in the case of a forest 

scatterer corresponds to the (top) forest height. The lower bound of F(z) is given by z0. For the 

bistatic TanDEM-X acquisition the vertical (interferometric) wavenumber  κz is defined as [47] 

 

κz =
2π 

λ

 ∆θ

sin(θ)
=

2π 

λ

 ∆θ

sin(θ0−α)
               (4.5) 

 

where θ is the local incidence angle given as the difference between the (nominal) incidence angle 

 θ0  and the terrain slope angle in the range direction α, λ the wavelength, and ∆θ the change of 

the incidence angle induced by the spatial baseline (i.e., the spatial separation of the two satellites). 

The vertical wavenumber is often expressed by the so-called height of ambiguity HOA = 2π/κz,  

i.e., the height that corresponds to the interferometric phase of 2π. The local incidence angle is 

estimated using the terrain slope angle in the range direction α derived from theTanDEM-X DEM. 

Before using the interferometric coherences for inversion, γSNR  and γQuan  need to be 

compensated. The compensation of γSNR is performed using the Noise Equivalent Sigma Zero 

(NESZ) patterns along range provided for each of the two SLC (Single Look Complex) images 

(i.e., TSX and TDX) in the CoSSC data product [16]. Accordingly, the SNR for each of the two 

SLCs is calculated from the NESZ pattern, and the individual backscattering coefficient sigma 

nought σ0 

 

SNRTSX =
σ0

TSX−NESZTSX

NESZTSX   and  SNRTDX =
σ0

TDX−NESZTDX

NESZTDX    (4.6) 

 

and the SNR induced decorrelation is then obtained as [16] 

 

γSNR =
1

√(1+
1

SNRTSX)(1+
1

SNRTDX)
           (4.7) 

 

Using the γSNR values obtained from (4.7) and assuming the γQuan accounts constantly 3.5% 

of the decorrelation (γQuan = 0.965), the volume decorrelation contribution γ̃Vol is obtained as 

 

γ̃Vol(κz) = γ̃Obs(κz)/(γSNR ∙ γQuan)             (4.8) 

 

After calibration, the interferometric coherences are ready to be used for inversion. Any 

volume decorrelation values greater than 1 (due to the inherent standard deviation of 

interferometric coherence) are set to 1. 
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4.3.2 THE MEAN VERTICAL REFLECTIVITY PROFILE 

Following the approach proposed in [34], the GEDI waveforms Pi(z)  are used to approximate 

the vertical reflectivity profile F(z)  in (4.4). Because GEDI's waveform measurements are 

spatially discrete a mean reflectivity profile, a representative for a larger area, has to be used. The 

generation of such a mean reflectivity profile from the available GEDI waveforms follows the 

approach proposed in [34]. First, the available waveforms Pi(z) normalized to unit height and 

resampled to a common number of height samples are used as columns of the so-called profile 

matrix [P]. Accordingly, the number of rows of [P]  is given by the sampling in the height 

dimension and the number of columns is the number of available GEDI waveforms n. 

From the profile matrix [P], a covariance matrix [R] is formed 

 

[R] =  [P] [P]T              (4.9) 

 

(where [∙]T indicates the transpose operator) and diagonalized 

 

[R] =  [U] [Λ] [U]T            (4.10) 

 

where [Λ]  contains the positive eigenvalues ai  (sorted in descending order) and [U]  the 

eigenvectors P̅i(z) of [R] where i={1, … M} and M equals the number of the GEDI waveforms 

used to form the profile matrix [P]). P̅i(z) are then used to compose the mean reflectivity profile 

 

Fm(z) =
1 

N
∑ aiP̅i(z)

N
i=1                (4.11) 

 

where N < M represents the number of eigenvectors used to compose Fm(z).  In the following 

N=1 is used so that Fm(z) = P̅1(z).  Considering only the dominant profile component and 

omitting higher order eigenvectors corresponds to an attempt to represent all forest states within 

the scene by a common low-frequency structural component. This can be justified by the fact that 

higher order structural components play often a secondary role as the structure dependency of the 

volume coherence is weaker compared to its dependency on height.   Finally, the use of Fm(z) in 

(4.4) allows the estimation of forest height hV for each γ̃Vol(κz) sample.   

However, there is a number of points that have to be considered. The mean reflectivity profile 

is estimated for each TanDEM-X scene individually using all available GEDI waveform within 

the scene. Fig. 4.3 (a) shows an example of a mean reflectivity profile Fm(z) representative for a 

whole TanDEM-X scene obtained by combining the more than 5000 GEDI waveforms located 

within the scene. Due to the height normalisation and the subsequent resampling of the GEDI 

waveforms when forming profile matrix [P], the mean reflectivity profile becomes a long “tail” 

i.e. an asymptotic behavior towards higher heights, especially when the scene is dominated by 

short(er) forest stands. This, if not accounted, biases the obtained forest height estimates later. To 

avoid this, the mean reflectivity profile is limited by an intensity threshold: the profile is cut at the 

height where the (profile) intensity decreases below a given (arbitrary) threshold (3 dB in the 
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following) with respect to the highest located reflectivity maximum. After this, the profile is re-

normalized between 0 and 1 (i.e. from 0 to 1) to obtain the final  Fm(z) (see Fig. 4.3 (b)). 

Furthermore, the use of a single Fm(z) for all (forest) samples within the scene implies an 

intrinsic error depending on how well Fm(z) represents the underlying reflectivity profile F(z) 

and its spatial variability within the scene. One way to address this problem is to reduce the area 

in which Fm(z) is estimated. In this sense, one can segment a TanDEM-X scene in multiple areas 

estimating for each a mean reflectivity profile. However, there is a trade-off between number of 

GEDI waveforms available and the size of the area to be represent by the mean reflectivity profile: 

with decreasing area size, the number of GEDI waveforms within the area decreases making the 

estimation of the mean profile less robust. On the other hand, the fact that the mean reflectivity 

profile is estimated and used on a TanDEM-X scene basis can lead to inverting the same sample 

in different scenes with different mean reflectivity profiles. This can be the case for partially 

overlapping TanDEM-X scenes. 

4.3.3 MODIFICATION OF PROFILE WITH HEIGHT 

The high attenuation at lidar and X-band radar frequencies implies for both GEDI and 

TanDEM-X measurements a high sensitivity to the “visible” geometric architecture of the forest 

volume. This, together with the comparable spatial resolutions of the two measurements, makes 

the GEDI waveforms P(z)  and the X-band vertical reflectivity profiles F(z) for many forest types 

similar. And it is this similarity that justifies the use of P(z) as an approximation for the vertical 

reflection profile F(z). However, it is also clear that GEDI waveforms and the X-band vertical 

reflectivity profiles are not equal. The differences are induced primarily by the different 

acquisition geometries the two configurations operate. 

The nadir-looking GEDI geometry causes a stronger ground contribution - especially in open 

canopy forest conditions – than in the TanDEM-X reflectivity, where the side-looking geometry 

results in a larger path through the canopy and thus a stronger attenuation of the ground 

contribution. This leads to an overrepresentation of the ground contribution in the mean 

reflectivity profile that can bias the obtained height estimates. 

The overrepresentation of the ground contribution can be clearly seen in the Fig. 4.3 (b) where 

the mean reflectivity profile has a much stronger ground than canopy contribution. While in open 

canopy forest conditions the ground contribution is overrepresented, in denser and/or closed 

canopy forest conditions the ground contribution in the GEDI waveforms is weaker than the one 

expected at X-band (vertical) reflectivity. In this case the ground contribution in the mean 

reflectivity profile is underrepresented. This makes the direct use of the mean profile Fm(z) as 

derived from the GEDI waveforms sub-optimum. Equally sub-optimum, in terms of performance, 

is also the use of the same profile for the whole height range, i.e. the assumption of the same 

distribution of scatterers for all forest heights (from 5 m to 70 m). 
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(a) 

 

 

(b) 

 

(c) 

 

Fig. 4.3 (a) Example of a mean reflectivity profile obtained by using all GEDI waveforms within a single 

TanDEM-X scene. The mean reflectivity profile is normalized by its height and the intensity is normalized 

by its maximum power. (b) Final mean profile after long tail removal in (a). (c) Set of profiles was 

calculated from the mean reflectivity profile in (b) after the height-dependent attenuation correction of 

(4.12). 
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In order to account for both effects, the overrepresentation of the ground contribution and the 

variation of the distribution of scatterers with forest height, an empirical height dependent 

attenuation correction on Fm(z) is performed 

 

Fmh(z) =  Fm(z)  ∙ e−ε(𝑧)/cos (θ)                         (4.12) 

 

where ε(z) is a height dependent attenuation factor 

 

ε(𝑧) = ε0(hRef − z).              (4.13) 

 

Accordingly, contributions below a certain reference height hRef  are attenuated (stronger with 

decreasing height) while contributions above hRef are amplified. The reference height hRef is set 

by the mean of all GEDI RH98 heights within the scene. The constant attenuation factor ε0 

expresses the difference in the effective attenuations of the side-looking X-band and the nadir-

looking lidar propagation and is universally fixed at 0.1 dB/m for all scenes. This is, of course, a 

strong claim that cannot be confirmed by any theoretical or experimental means. However, the 

main function here is to attenuate the overrepresented ground scattering contribution in the mean 

profile Fm(z) derived from the GEDI waveforms, especially for smaller stands, rather than to 

provide an accurate model. In this sense, any similarly chosen attenuation value would have a 

very similar effect.  

One should note here that the difference between the two profiles, the TanDEM-X and the 

GEDI one, is more a question of forest density than of forest height. However, the absence of any 

large-scale structure or density information makes it impossible to account for this. On the other 

hand, the significant errors introduced by the overrepresented ground contribution make its 

generic attenuation (as performed by (4.12) and (4.13)) in terms of overall performance more 

effective even if for a number of cases this general correction leads to worse estimates. 

Once the attenuation factor ε0 and the reference height hRef are defined, (4.12) provides for 

each mean reflectivity profile Fm(z) a set of profiles Fmh(z), one for each height. Fig. 4.3 (c) 

shows an example of a set of 70 profiles each associated to a forest height from 1 m up to 70 m).  

The use of Fmh(z) in (4.4) allows now the estimation of forest height hV for each γ̃Vol(κz) 

sample. The inversion can be implemented by means of a simple look-up table (LUT) that maps 

the absolute value of the volume decorrelation to a forest height accounting for the actual (local) 

vertical wavenumber κz. Fig. 4.4 (a) shows an example of such a volume decorrelation – forest 

height LUT for different vertical wavenumbers κz. 

4.4 HEIGHT INVERSION PERFORMANCE ANALYSIS 

In order to evaluate the quality of the obtained forest height estimates on a sample basis a set 

of performance criteria are introduced that allow to mask sub-optimum height estimates and to 

compensate systematic (height) offsets. 
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4.4.1 LOWER COHERENCE LEVEL 

Lower coherence values are associated to a higher (amplitude and phase) variance that 

propagates into the height estimates. To avoid such estimates, a coherence threshold has been 

introduced to mask out the heights obtained from samples with a lower (absolute) coherence. A 

threshold value of 0.3 has proven to be appropriate and is used throughout the following. 

 

 

 

Fig. 4.4. (a) Look-up tables for the same set of profiles in Fig. 4.3 (c) for different vertical wavenumbers. 

(b) Derivatives of the look-up tables. 

 

4.4.2 VERTICAL WAVENUMBER PERFORMANCE 

Knowledge of the reflectivity profile allows a simplified forest height inversion performance 

evaluation accounting for two key performance effects: 1) inversion biases induced by a residual 

nonvolumetric decorrelation contribution affecting primarily the lower height ranges; and 2) the 

reduced sensitivity (or even saturation) to higher heights induced by too large or too small vertical 

wavenumbers. 

For a given forest height hV  and reflectivity profile  Fmh(z) the expected interferometric 

volume coherence γ̃Vol(κz) can be estimated using (4.4). The effect of residual (non-volumetric) 

decorrelation contributions can be addressed by applying a residual decorrelation contribution 

γRes to the volume decorrelation γ̃Vol(κz) and by inverting the distorted coherence γRes ∙ γ̃Vol(κz) 

(instead of γ̃Vol(κz)). The height estimates obtained for the whole height range are then compared 

to the original ones to estimate the height-dependent bias induced by γRes. This estimation bias 

can be visualized by plotting the estimated heights against the reference heights as shown in Fig. 

4.5 for three different vertical wavenumbers. The dotted red line indicates the 1:1 line, the black 

line estimated heights and the blue line the estimation bias as a percentage. The three plots, each 

for the same set of reflectivity profiles Fmh(z) but different vertical wavenumbers ((a) κz =0.05 

rad/m, (b) κz =0.1 rad/m and (c) κz =0.15 rad/m) clearly indicate the over estimation in the lower 

height range and how it decreases with increasing vertical wavenumber and/or increasing height. 
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The obtained estimation bias can be used to define the optimum forest height performance 

range by means of an upper and lower limit for each individual height estimate using the 

reflectivity profiles Fmh(z) and the associated vertical wavenumber κz . The upper and lower 

limits of the optimum forest height performance range are defined by means of a performance 

threshold that can be the same or different for the upper and lower case. For example, in Fig. 4.5, 

a 20% error threshold for the lower heights is indicated by the vertical dark green line, and a 10% 

error threshold for the higher heights is indicated by the vertical light green line. According to the 

plots for a vertical wavenumber κz ≈ 0.1 rad/m (middle), this leads to a lower height limit of about 

12m and an upper height limit of about 58m. 

The reduced sensitivity at higher heights induced by too large vertical wavenumbers is 

accounted for means of the height derivative ∂|γ̃Vol(κz, hV, Fmh(z))| / ∂hV for a given vertical 

wavenumber κz.  The height derivatives for the profile assumed in Fig. 4.3 (c) are plotted on Fig. 

4.4 (b) clearly demonstrating the loss of sensitivity with increasing height and/or vertical 

wavenumber. The associated loss of performance can be accounted by introducing a threshold on 

the derivative. A sensitive (yet conservative) way to do this is to accept height estimates only up 

to the height that corresponds to the minimum of the ∂|γ̃Vol(κz, hV, Fmh(z))| / ∂hV derivative. This 

height limit is indicated by the light blue vertical line in the performance plots of Fig. 4.5 (b). For 

a vertical wavenumber of κz  ≈ 0.1 rad/m, this leads to an upper height limit of about 40 m. This 

is the height above that the inherent sensitivity of the observation configuration (expressed by the 

vertical wavenumber) degrades. Estimates above are rejected. 

For defining the upper height limit of the validity range, the most restrictive height limit of the 

two performance criteria is selected. Of course, there is always a trade-off between applying less 

restrictive thresholds to allow more valid pixels at the price of potentially higher height errors. 

Accordingly, for this case only height estimates between 15 m and 40 m are accepted. 

 

 

 
 

(a) 
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(b) 

 
 

 
 

(c) 
 

 

Fig. 4.5. Performance plots for the same set of profiles Fmh(z) at different vertical wavenumbers ((a) 

κz=0.05 rad/m, (b) κz=0.1 rad/m, (c) κz=0.15 rad/m). The dotted red line indicates the 1-1 line, the black 

line estimated heights using a residual decorrelation of 0.97 and the blue line the estimation bias in percent. 

 

4.4.3 GLOBAL BIAS CORRECTION 

The proposed performance model accounts for biases induced by residual non-volumetric 

decorrelation contributions and/or sub-optimal vertical wavenumbers assuming the validity of the 

vertical reflectivity profile(s) Fmh(z) . The bias (and the inaccuracy) induced by the profile 

mismatch remain unaccounted. These can be significant where the assumed vertical reflectivity 

profile Fmh(z) is very different from the (actual) underlying reflectivity. 
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In order to compensate for the height bias arising from a systematic profile mismatch across 

the whole data set the GEDI RH98 heights are employed. Fig. 4.6 (a) shows on the top the 

interferometric volume coherence |γ̃Vol(κz)| plotted vs. the product of the estimated forest height 

hVwith the local vertical wavenumber κz, i.e. hVκz at the locations of the GEDI footprints. In Fig 

4.6 (b), the same plot is shown, but this time the interferometric volume coherence |γ̃Vol(κz)| is 

plotted vs. the product of the GEDI RH98 height hRH98 with the local vertical wavenumber  κz , 

i.e. hRH98κz . The difference in the two plots (Fig. 4.6 (a) & (b)) reflects a systematic bias – 

independent of the local vertical wavenumber – primarily due to the profile mismatch and residual 

non-volumetric decorrelation contributions. This bias can be compensated by means of ordinary 

least square bisector (OLS) fitting 

 

hRH98κz = a1(hVκz) + a0       (4.14) 

 

 

where a0 and a1 are the fitting coefficients. Fig. 4.6 (c) shows the interferometric volume 

coherence |γ̃Vol(κz)| plotted vs. the product of the corrected (by means of (4.14)) forest height 

estimate hV after with the local vertical wavenumber κz, i.e. hVκz. 

 

 

 

(a)                                               (b)                                                    (c) 

 

Fig. 4.6. comparison (2D histogram) between TDX interferometric coherence magnitude and (a) hVκz 

before correction (b) hRH98κz (c) hVκz after correction. The gray dashed line in (b) indicates TDX height 

inversion model before and after linear regression based on hRH98κz. 

 

 

4.5 DATA PROCESSING AND RESULTS 

The proposed processing flow and their main outputs, as described in Sections 4.3 and 4.4, are 

shown in Fig. 4.7. For each of the 595 TanDEM-X scenes (CoSSC data products) first the volume 

decorrelation contribution γ̃Vol and the terrain-corrected vertical wavenumber κz are estimated, 

as described in Section III.A. For each scene, the available GEDI waveforms are used to calculate 
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the mean profile following the procedure outlined in Section 4.3.B. The attenuation correction, 

discussed in Section 4.3.C, is applied to the mean profile to derive a set of reflectivity profiles that 

are used to estimate forest height from each volume decorrelation sample. For each obtained 

height estimate, the estimation bias is calculated using the set of profiles and the terrain-corrected 

vertical wavenumber as described in Section 4.4.B. A 20% height bias threshold (for the lower 

heights) and a (upper) height threshold associated to the minimum of the ∂|γ̃Vol(κz, hV, Fmh(z))| 

/ ∂hV derivative is used to derive the validity map to mask out sub-optimum performance samples. 

Similarly, samples with a (absolute) coherence lower than 0.3 are discarded (Section 4.4.A). In 

total, about 2% of forest areas are excluded. After processing and inverting each of the TanDEM-

X scenes, the forest height estimates along with an estimate of the height bias and the validity 

masks for the entire island are available and are georeferenced. 

 

 

 

 

Fig. 4.7. Flow chart of the implemented forest height scheme.  
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After processing and inverting each of the 595 TanDEM-X scenes, the forest height estimates 

along with an estimate of the height bias error and the validity masks for the entire island are 

available and are georeferenced. The next step is to mosaic the individual maps into 1 degree × 1 

degree (latitude, longitude) non-overlapping tiles. A single location (within a tile) may be covered 

by multiple TanDEM-X scenes and it may be associated with several forest height estimates. In 

such a case, and in order to obtain a single height estimate, either the available estimates can be 

combined (for example on the basis of their individual estimation biases or by forming their 

median value) or a single one is selected in order to fulfill certain vertical wavenumber, acquisition 

timing or performance selection criteria. Each of these approaches has its own pros and cons and 

can lead under certain circumstances to outliers. In the following the approach of using the “mean 

κz” (select the closest κz to mean κz value of all candidates) height value of the valid height 

estimates at each location is followed. The next step is the global bias correction that is performed 

once as described (4.14) in Section 4.4. Finally, water and settlement bodies are masked by using 

the forest / non- forest map. 

Fig. 4.8 (a) shows the final forest height map at 25 m resolution for the complete island of 

Tasmania. The heights are validated against the reference CHM. Fig. 4.8 (b) shows the difference 

between the obtained forest heights and the reference CHM across the whole island. The majority 

of the samples have an error of ± 5 meters with mean value of -0.08 meters. While over large parts 

of the island the height difference is very homogenous, locally spatial patterns of over- and under-

estimation are clearly visible. The reason for these patterns is manifold. Many of these areas can 

be attributed to the extensive wildfires occurring in the years between the lidar and the TanDEM-

X acquisition, while the underestimation on the western part may be due to the dense forest 

conditions there. The overestimation of the eastern part is partially due to the forest change and 

partially due to the mismatch of the derived reflectivity profiles and the real underlying 

reflectivity. Finally, Fig. 4.8 (c) shows the validation of the estimated forest heights against the 

CHM accounting only the valid height estimates with an RMSE of 7.3 m with a Pearson 

coefficient of 0.66. 

 

 

 



4.5. Data Processing and Restuls 

 

97 

 

 

(a) 

 

 

 

 

(b)
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(c) 
 

Fig. 4.8.  Tasmania: (a) Forest height maps obtained from TDX interferometric coherences and GEDI 

waveforms at 25 m resolution. (b) Forest height difference map (TDX – lidar CHM) (c) comparison 

between TDX forest height and lidar CHM / GEDI RH98. 

 

4.6 PERFORMANCE DISCUSSION AND CONCLUSION 

The proposed inversion scheme overcomes the limitations in large scale forest height 

estimation caused by the limited dimensionality of TanDEM-X observations with single 

polarisation by using the waveform and height measurements from GEDI. 

Besides the compensation of all non-volumetric decorrelation contributions (by means of 

(4.8)) and the terrain correction of the vertical wavenumber (by means of (4.5)), the forest height 

inversion performance critically depends on the ability of the derived set of reflectivity profiles 

to match the real underlying reflectivity. Even if the effect of the reflectivity profile on the 

interferometric coherence is, when compared to the effect of the height itself, only secondary, it 

remains significant enough to have a decisive impact on the achieved performance. A mismatch 

between the assumed and the underlying reflectivity introduces a (positive or negative) bias on 

the estimated forest height. In contrast, a well matching reflectivity profile is able to correctly 

interpret (4.4) for a wide range of vertical wavenumbers and provide the "same" height estimates 

for different vertical wavenumbers – of course, under the performance constraints imposed by the 

actual vertical wavenumber (as discussed in Section 4.4). In this sense, in order to test how well 

the derived reflectivity profiles, match the real underlying reflectivity, forest height estimation 

performance and its consistency for different vertical wavenumbers are compared. Fig. 4.9 

provides a representative overview of such a performance comparison on the basis of a single 

TanDEM-X scene. In Fig. 4.9 (a) the reference CHM is shown for an area of 50 × 50 km located 

the northern part of the island while in Fig. 4.9 (b) the GEDI RH 98 heights are shown. The forest 

height map (at 25 m resolution) obtained from a TanDEM-X scene acquired on 19th Jun 2011 with 

a (mean) vertical wavenumber of κz=0.125 (HoA=50m) along a descending orbit is in Fig. 4.9 

(c). The validation plot against the CHM is shown in Fig. 4.10 (a) with a performance described 

by an RMSE of 6.6 m and a Pearson coefficient of 0.63. A second forest height map from a 

TanDEM-X scene acquired also along a descending orbit on 23rd Dec 2011 with an approx. 40% 
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smaller (mean) vertical wavenumber of κz=0.0757 (HoA=83m) is shown in Fig. 4.9 (d). The 

corresponding validation plot against the CHM is shown in Fig. 4.10 (b) with a very similar 

performance described by an RMSE of 7.2 m and a Pearson coefficient of 0.65. The correlation 

plot of the two derived height maps is shown in Fig. 4.11 (a) confirming their relatively good 

agreement. 

However, even if the derived set of reflectivity profiles is up to a degree able to describe the 

mean underlying reflectivity, the single set of profiles used for the entire extent of a TanDEM-X 

scene is not able to capture the spatial variability of the underlying reflectivity within the scene. 

For an (spatially) uncorrelated mismatch between the assumed and the underlying reflectivity, the 

effect of the local height biases will appear across the whole scene in form of an increased height 

variance. However, when the mismatch between the assumed and the underlying reflectivity 

becomes spatially correlated, as for example when the underlying reflectivity changes locally 

because of the (local) incidence, the height estimates will be (locally) biased. This can be the case 

in the presence of (positive or negative) terrain slopes or when scenes acquired along ascending 

and descending orbits are combined. In order to obtain an impression about the magnitude of this 

effect forest height obtained from TanDEM-X scenes acquired along ascending and descending 

orbits are compared. 

 

 

 

(a)     (c)           (e) 

 

(b)   (d)                                                    (f) 

 

Fig. 4.9.  Tasmania: forest height maps from lidar, GEDI, and four different TDX images. All maps are in 

geographic coordinates, with spacing about 20 m × 20 m in longitude and latitude direction, and they cover 

around 50 km by 50 km;  
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               (a)                       (b)                  (c)        (d) 

 

Fig. 4.10. Comparison between lidar CHM and TDX forest heights acquired on (a) 2011/06/19, (b) 

2011/12/23, (c) 2019/02/05, and (d) 2014/01/03. 

 
 

   

(a)                                      (b)                                      (c) 

 

Fig. 4.11. Comparison between TDX forest heights. (a) With different heights of ambiguity or vertical 

wavenumber in descending orbit. (b) With different heights of ambiguity or vertical wavenumber in 

ascending orbit. (c) With different orbit directions, i.e., ascending and descending. 
 

 

The forest height map obtained from a TanDEM-X scene acquired on 5th Feb 2019 with a 

(mean) vertical wavenumber of κz=0.133 (HoA = 47m) along an ascending orbit is shown in Fig. 

4.9 (e). The validation plot against the CHM is shown in Fig. 4.10 (c) indicating an RMSE of 7.8 

m and a correlation 0.59. Finally, in Fig. 4.9 (f), the forest height map obtained from a second 

TanDEM-X scene acquired along an ascending orbit on 3rd Jan 2014 with a (mean) vertical 

wavenumber of κz=0.0938 (HoA=67m) that overlaps significantly with the scene shown in Fig. 

4.9 (d) (acquired about two years earlier along a descending orbit with a very similar vertical mean 

wavenumber). The validation plot against the CHM is shown in Fig. 4.10 (d) indicating a similar 

performance with an RMSE of 7.4 m and a correlation of 0.65. While the agreement between the 

height estimates from the ascending orbits is similar to the correlation between the height 

estimates from the descending orbits, the agreement between the ascending and descending orbits 

is (as expected) somehow lower with an RMSE of about 5.9 m and 7.3 m and correlation values 

of 0.82 and 0.61 (Fig 4.11 (b) & (c)). It is important to remark here that the lidar derived CHM is 

by itself associated to a certain uncertainty as well as those the different imaging geometries may 

cause an additional error when comparing the CHM with the radar derived height maps at sample 

level.  
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Finally, the performance on terrain slopes is shown in Fig. 4.12. In Fig. 4.12 (a), the TanDEM-

X 90 m DEM of the site is shown while Fig 4.12 (b) & (c) the height validity maps for the two 

acquisitions on 23rd Dec 2011 (descending orbit) and 3rd Jan 2014 (ascending orbit). 20% and 

13% of the forested areas respectively are masked out because of performance criteria 

respectively. For both data sets, most of the positive slope areas are excluded. Most of height 

estimates on slopes are on negative slope allowing to obtain valid estimates on 98% of the samples 

when combining both orbits. The common valid, gentle sloped areas, are characterized by a 

stronger height deviation due to the mismatch of the assumed and the underlying reflectivity 

profile.   

Of course, the proposed combination of GEDI and TanDEM-X data, cannot avoid significant 

absolute height errors, arising from fundamental limitations, such as the limited penetration at X-

band. In this case, the interferometric volume coherence no longer represents the full vertical 

extent of the forest, and, regardless of the assumed vertical reflectivity profile, leads to 

underestimated forest heights. Accordingly, underestimation of high and/or dense stands because 

of insufficient X-band penetration cannot be avoided and, more importantly, it is very difficult if 

not impossible to be detected without additional information (as for example the availability of a 

DTM). Nevertheless, the achieved overall performance demonstrates the potential of combining 

lidar and interferometric SAR measurements for large scale forest structure mapping. 

 

 

 

(a)                                                    (b)                                                    (c) 

 

Fig. 4.12.  Tasmania: (a) TanDEM-X DEM, height validity maps for TanDEM-X images acquired in (a) 

2011/12/23 and (c) 2014/01/03, respectively. All maps are in geographic coordinates, with spacing about 

20 m × 20 m in longitude and latitude direction, and they cover around 50 km by 50 km. 
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5 CONCLUSIONS 
 

This Section summarizes the whole work, and synthesizes the outcomes and open issues. The 

main findings, as well as the key points investigated for each Section, are reported in Section 5.1, 

and the research questions raised in Section 1.3 are answered. Moreover, the implications of this 

work on future investigations are discussed in Section 5.2. 

5.1 SUMMARY 

5.1.1 GENERAL CONCLUSIONS ON THE ROLE OF GEDI AND TANDEM-X DATA IN THE 

COMBINATION 

The development of the algorithms within the combination framework proposed in this thesis, 

and the related experimental analysis, have led to a few conclusions concerning the role of GEDI 

lidar data and of TanDEM-X InSAR data in the combination. The developed algorithms and 

obtained results show an optimum combination and a great synergy potential of the discrete GEDI 

and the continuous TanDEM-X measurements. This is because both measurements are at the same 

time similar enough due to the high sensitivity to the geometrical architecture of the canopy and 

the high spatial resolution common to both configurations, and are different enough because of 

the different acquisition geometries and measurement approaches to carry independent 

information. 

GEDI lidar data are indispensable for the definition of the forest height-to-biomass allometry. 

However, their role in the estimation of forest height from TanDEM-X data might seem less 

critical as it can be performed even in the absence of any lidar measurements. But the lack of lidar 

measurements affects the estimation of forest height in tall / dense / wet forest conditions due to 

the high attenuation at X-band.  

In contrast, the horizontal structure index can be derived from TanDEM-X data alone. 

TanDEM-X data have been demonstrated especially appropriate for the quantitative 

characterization of the horizontal forest structure in terms of the spatial variability of the top 

canopy (phase center) height because of:  

 

(i) the high attenuation of X-band waves into forest volume, limiting in turn the 

penetration, and maximizing the sensitivity of the TanDEM-X coherence to the top 

canopy layer. This is the same low penetration that limits the height estimation 

performance and makes the characterization of the vertical forest structure almost 

impossible (at reasonable scales); 

(ii) the high interferometric accuracy of TanDEM-X as a consequence of the single-pass 

implementation, allowing to access the structure-induced coherence variation;  
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(iii) the high spatial resolution of the TanDEM-X coherence measurements and their 

spatial continuity (which GEDI cannot supply), allowing the estimation of structure-

induced variations at spatial scales relevant for the characterization of the horizontal 

forest structure. 

5.1.2 ANSWERS TO THE RESEARCH QUESTIONS 

Q1. How far can a horizontal forest structure index derived from TanDEM-X data be used to 

locally adapt the height-to-biomass allometry in heterogeneous forests, and improve biomass 

estimation performance?  

 

The horizontal structure index considered in this thesis expresses top canopy height variations. 

A large index value is interpreted as a large top canopy height variation and is associated with a 

large canopy roughness as in the case of a sparse forest, while a low index value is interpreted as 

a low top canopy height variation and associated with a low canopy roughness as in a dense(r) 

forest. The index proposed in [1] considers vertical reflectivity profiles, and cannot be applied 

directly to the TanDEM-X case, as no reflectivity profiles can be reconstructed from a single 

InSAR coherence. The use of TanDEM-X canopy height profiles (CHP) calculated as the 

histograms of the InSAR phase center heights as an approximation of the reflectivity profiles at a 

resolution of 25 m × 25 m has been proposed instead. A critical requirement is the compensation 

of the terrain height variations from the phase center heights, so that they can express only canopy 

variations. After the calculation of the structure index, the lidar height and biomass data are used 

to derive a continuous relationship between the allometric factor and the structure index.  

In Chapter 2, this concept is demonstrated in three forest test sites (Lopé, Mabounie and 

Mondah) in Gabon covered within the AfriSAR 2015-2016 campaign [2] in which airborne LVIS 

lidar height (DTM and RH100) and biomass data are available. In this analysis, the (continuous) 

lidar DTM is compensated from the TanDEM-X coherences. The horizontal structure index is 

derived at a resolution (here 100 m × 100 m) coarser than the CHP resolution. Within each 

structure resolution cell, the index is calculated as the number of peaks of all the TanDEM-X 

CHPs contained in a height interval extending for a fraction of the maximum height above ground. 

The results achieved for each test site indicate that, indeed, this index is able to adapt a more 

general height-to-biomass allometry (100 m × 100 m resolution) to local forest (density) 

conditions by changing the allometric factor. The estimation biases appearing in the conventional 

single height-to-biomass allometry are widely compensated improving the overall biomass RMSE 

up to 30%. Importantly, the ability to establish a single height-to-biomass allometry common to 

the three sites supported by the horizontal structure index has been demonstrated. This result 

indicates the potential of generalizing the height-to-biomass allometry at large(r) scale where the 

structure index is provided. 

Chapter 3 addresses the GEDI–TanDEM-X case in which the direct compensation of a DTM 

is not possible. Due to the sparsity of the lidar footprint, even an interpolation of the measured 

terrain height may not provide the required accuracy for a reliable compensation. Then, a 
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methodology has been devised to compensate a “relative” terrain height variation, and a new 

horizontal structure index from the resulting CHP has been defined (see the answer to Q2). The 

real data analysis over the Lopé site shows a monotonically decreasing relationship between the 

allometric factor and the structure index, as one would reasonably expect. Accordingly, the 

biomass estimation performance improves when compared to the use of a single allometry. The 

largest remaining uncertainty contribution (in terms of bias and / or variance) is attributed to the 

propagation of the height estimation uncertainty. 

 

Q2. In which way can a horizontal forest structure index be estimated from TanDEM-X data 

in the absence of a DTM? 

 

This question has been addressed in Chapter 3. A wavelet analysis has been carried out to 

understand at which scale the canopy height variations are independent, or at least less affected 

by the terrain height variations. In the Lopé site, it has been found that the TanDEM-X phase 

center height variations are not affected by the terrain height variations at a scale of 10 m (or even 

finer). In order to reduce the degradation of the phase center height due to phase noise variance, 

coarser structure resolutions should be employed. In this case, in order to reflect only the top 

canopy height variations, and in absence of a DTM, the TanDEM-X phase center heights 

calculated with a resolution of 5 m × 5 m are corrected by a filtered version of its own at a low 

resolution of 120 m × 120 m. This resolution corresponds to a wavelet scale maximizing the 

terrain height variations and minimizing the canopy ones. 

The definition of the structure index must be adapted accordingly. The CHPs are now 

calculated with the self-corrected phase centers, but in this case the definition of a top layer is not 

straightforward. Thus, the structure index is now defined only as the statistical variance of the 

heights of the top peaks of all CHP within the structure resolution cell, here set again to 100 m × 

100 m. The larger the variance, the larger the corresponding top canopy height variation, and the 

sparser the forest.  

The experimental analysis over the Lopé site showed that the proposed horizontal structural 

index is able to distinguish dense from sparse forest stands, as the index in Chapter 2 does. 

However, in absence of a DTM the structure index becomes ambiguous at forest / non-forest 

transitions, misinterpreting the step-like height change as increased top canopy variations and 

classifying the transition zone as dense forest. A forest/non-forest mask allows to identify these 

ambiguous areas and to exclude them from subsequent analyses. 

 

Q3. What is the role of a horizontal forest structure index in compensating the forest height 

estimation bias in dense (tropical) forests in the absence of a DTM? 

 

This question has been addressed in Chapter 3. The basic assumption is that even in dense 

stands there might be some small areas in which the X-band waves penetrate until the ground and 

provide unbiased height estimates. If so, the estimation bias can be corrected even in absence of 

a DTM at the cost of spatial resolution.  
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Starting from high resolution (25 m × 25 m) height estimates, the horizontal structure index is 

thresholded to identify dense and sparse stands. Based on this classification, heights are 

aggregated in different ways within each final height resolution (100 m × 100 m) cell. Following 

an optimization process, in dense stands the highest three estimates are averaged, while in sparse 

stands the average is extended to all the estimates. A noticeable improvement (bias reduction) of 

the estimation performance (evaluated against GEDI heights) has been found, although a full bias 

compensation is not possible. 

 

Q4. Which is the ability of the GEDI waveform sampling in the parameterization of a height-

to-biomass allometry as a function of sampling density and resolution? 

 

This question has been addressed in Chapter 3. The ability of the GEDI waveform sampling 

in parameterizing the height-to-biomass allometry has been evaluated with respect to (i) the 

sampling density, and (ii) resolution effects. 

The Monte Carlo simulation of scenarios with different sampling density has indicated that 

the derivation of the allometric coefficients for a single allometry is very robust against the 

decrease of the available number of waveform samples, as long as they continue to represent the 

forest conditions in the scene. This does not appear to be a critical limitation, as the underlying 

allometry, depending primarily on the species composition and the site growth conditions, 

remains valid at larger scales. However, the performance of this underlying allometry on Lopé 

has been seen to be insufficient to provide accurate biomass estimates as the heterogeneous forest 

stand conditions in the site cannot be represented by a single allometric relation. The obtained 

allometry parameterized by the structure index is less stable at the decrease of the available 

samples. For instance, for a very extended cloud cover affecting the 90% of the samples the 

structure-dependent allometric factor cannot be reconstructed anymore.  

Resolution effects arise from the fact that GEDI provides height and biomass measurements 

at footprint level (25 m diameter), while the horizontal structure index used to refine the height-

to-biomass allometry is at coarser resolution (100 m × 100 m). The effect of this discrepancy has 

been analyzed in this case by estimating the (structure-dependent) allometric coefficient by means 

of LVIS gridded height and biomass measurements at 50 and 100 m resolutions in Lopé, and by 

comparing the obtained allometry with the one obtained by using GEDI data at 25 m resolution. 

In the last case, the adaptation of the allometry to structure appears less effective than in the other 

two, maybe indeed due to the large difference of resolution. However, the geolocation error of the 

GEDI footprints might have played a role in this case. 

 

Q5. In which way can GEDI waveforms and heights initialize and/or correct TanDEM-X 

forest height inversion in the absence of a DTM?  

 

This question has been addressed in Chapter 4. In general, the initialization of TanDEM-X 

height inversion at fine resolution by means of GEDI waveforms is motivated by a common 

sensitivity to the canopy geometry induced by a similar attenuation at such short wavelengths. 
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But GEDI waveforms and X-band vertical reflectivity profiles are not the same due to the different 

acquisition geometries in which the two configurations operate, causing a likely stronger ground 

contribution in the GEDI waveforms than in the TanDEM-X reflectivity induced by the nadir-

looking geometry.  

Additionally, since only a limited number of GEDI waveforms are available for a TanDEM-

X scene, the inversion could be initialized by using a “mean” GEDI waveform for all the 

TanDEM-X pixels. This strategy does not account for the instrinsic spatial variability of structure 

across the scene. One single profile may not be suitable to represent this variability, as a 

consequence an empirical correction of the lidar attenuation as a function of the candidate height 

in the inversion has been proposed and applied. In this, the mean GEDI height within a scene is 

used to identify the height at which no correction is performed. 

After the height-dependent attenuation correction, the bias and the inaccuracy induced by a 

residual profile mismatch remain still unaccounted. These can be significant where the assumed 

TanDEM-X vertical reflectivity profile is very different from the actual situation. In order to 

compensate for the height bias arising from a systematic profile mismatch across the whole data 

set, the GEDI RH98 heights are employed. An ordinary linear square bisector (OLS) fitting of the 

product of the estimated vertical wavenumber – height (𝜅𝑧ℎ𝑉 ) at the locations of the GEDI 

footprints successfully corrected the bias and mismatch. 

 

Q6. Which performance can be achieved in height estimation by the implemented GEDI-

TanDEM-X combination for wide areas (e.g. country-wide) applications?

 

This question has been addressed in Chapter 4 considering large scale height inversion results 

over Tasmania. It is remarkable that the proposed approach (including height inversion from the 

corrected “mean” GEDI profile, selection of the reliable estimates by filtering out low coherence 

values and inappropriate vertical wavenumber values for the expected height range, and global 

bias correction accounting for a residual profile mismatch) can circumvent the constrains imposed 

by one single-pol TanDEM-X acquisition on their ability to reconstruct forest heights on large 

scales by using GEDI’s waveform and height measurements. The accuracy of the obtained forest 

height maps with a spatial resolution of 25 m appears to be enough (in an absolute and/or relative 

context) to be significant in forest mapping applications.  

In the analysed Tasmania case, even though the height difference over the most parts of the 

test site is very homogenous and robust, the proposed combination of GEDI and TanDEM-X data 

cannot avoid significant absolute height errors (7 m of RMSE and 0.66 of Pearson coefficient 

against lidar CHM) at local scale. These discrepancies arise from fundamental limitations, such 

as a local variability of GEDI–TanDEM-X profile mismatch, and limited penetration at X-band, 

that can lead to relevant underestimation of forest height in tall and/or dense stands.  

The forest height inversion performance critically depends on the ability of the derived set of 

reflectivity profiles to match the real underlying reflectivity. In contrast, with no mismatch, the 

assumed reflectivity profile can interpret the variation of the InSAR coherence for a wide range 

of vertical wavenumbers, providing consistent height estimates for different vertical 
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wavenumbers (obviously under the performance constraints imposed by the actual vertical 

wavenumber). The experimental results point to this conclusion. Spatially correlated mismatches 

can appear for instance in presence of slopes, or for images acquired in ascending and descending 

orbits combined together. 

5.2 OUTLOOK 

The conclusions of this Thesis summarized in Section 5.1 highlight also some open issues to 

be faced and additional research questions to be answered from which it is possible to identify 

future research directions. 

A large scale (country-wide) implementation of the forest height mapping through the GEDI 

– TanDEM-X combination has been presented. To improve the estimation performance, strategies 

to derive locally-variable approximations of the X-band reflectivity profiles should be 

investigated further. Maybe the horizontal structure index could play a role in it. Certainly, the 

availability of height, structure and biomass maps at (sub-)hectar resolution is important not only 

for monitoring purposes, but also for initializing forest models towards the quantitative 

characterization of other parameters (e.g. gross primary productivity and net ecosystem exchange 

[3].), disturbance, carbon fluxes, or even to constrain dynamic models (like FORMIND [4]) to 

elaborate predictions in time. In this regard, experiments have already been started regarding the 

implementation of both large scale structure and biomass mapping through the calculation of the 

proposed horizontal structure index and height-to-biomass allometry, respectively. First results 

are reported in Fig. 5.1 and 5.2. Fig. 5.1 shows the global distribution of horizontal structure as 

measured by TanDEM-X phase variations and Fig. 5.2 shows the global distribution of forest 

AGB as estimated by horizontal structure index and height-to-biomass allometry at 100 m 

resolution. GEDI RH98 and AGB data were used to initialize the allometry. 

A thorough performance evaluation of these large scale structure and biomass products is 

currently in progress, which is expected to end up in an analysis of still unexplored trade-offs 

especially when it comes to the definition of the height-to-biomass allometry and the relationship 

between the allometric factor and the structure index. Indeed, the experiments in Chapter 2 have 

shown the potential of generalizing the height-to-biomass allometry at large scale, however three 

aspects should be further evaluated in this context: (i) the difference of resolution between the 

GEDI samples and the structure index, (ii) the representativeness of the lidar sampling in the 

parameterization of the allometric factor by means of the structure index, and (iii) the ambiguities 

of the horizontal structure index in this process.  

It has already been noted in Chapter 3 of this thesis that the difference of resolution between 

the GEDI footprint-level biomass and the TanDEM-X structure index reduces the adaptation of 

the allometry. In this regard, it could be worth investigating if it is possible to obtain (sparse) 

biomass estimates with the same (hectar) resolution of the structure index, for instance at the 

crossings of the GEDI orbits. However, the possible improvement brought by the recovered 

resolution difference is to be traded-off with the lower number of GEDI aggregated biomass 

estimates available for the relationship derivations, and at the same time the representativeness of 
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the structural heterogeneity induced by their spatial distribution. Notice that such investigation 

would not be possible at a test site level as it would lead to an irrelevant quantity of aggregated 

biomass estimates.  

 

 

 

Fig. 5.1. TanDEM-X forest structure map over Brazilian Amazon forest. The map is in geographic lat-lon 

coordinates, with resolution of 100 m × 100 m. The acquisition period is between 2010 and 2020. 

 

 

 

Fig. 5.2. TanDEM-X AGB map over the Brazilian Amazon forest. The map is in geographic lat-lon 

coordinates, with resolution of 100 m × 100 m. The acquisition period is between 2010 and 2020. 
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The limit in the number of lidar samples and its consequential under-representativeness of 

some structure levels can be counteracted by reducing the structure resolution of the allometric 

factor. The trade-off between the structure resolution needed to achieve a robust allometry and 

the possible loss in biomass estimation performance due to a less detailed allometry should be 

characterized.  

In Chapter 2 it has also been concluded that the structure index can reconstruct a decreasing 

allometric factor for increasing sparsity, as it is reasonable to expect, even in absence of a DTM 

at a test-site scale. Although this trend seems to be confirmed at large scale by the first experiments 

above, some more attention should be paid to the dispersion of the allometric factor for each 

structure index value. Its characterization could lead to improved and more appropriate definitions 

of the structure index. The availability of continuous and extended (possibly small footprint) 

airborne lidar acquisitions with some physical understanding brought by ground measurements is 

a critical requirement to advance the interpretation of the structure index. It should be remembered 

that the structure index as defined now is a single number that actually should represent and 

distinguish among a wide range of structure types. In this sense, more significant definitions may 

also better explore the resolution of the TanDEM-X data, and evaluate structure by means of 

multi-scale representations. A wavelet analysis may provide an appropriate framework. 

An attractive opportunity offered by the TanDEM-X mission is the possibility to retrieve forest 

changes. Indeed, up to now, all land surfaces were covered several times, although more or less 

dense and/or long time series have been realized over a few test sites. In particular, two global 

forest coverages with a reasonable time differences (2010-2013 and 2018-2020) and appropriate 

interferometric sensitivity are available [5]. The GEDI–TanDEM-X combination framework 

could then be extended towards the characterization of height, structure and biomass changes. 

However, it is understood that a change should not be evaluated by means of a mere difference of 

estimates, but rather by means of a differential procedure in the InSAR coherence domain to 

maximize accuracy and sensitivity even to the smaller changes. More importantly, the change 

framework should be able to differentiate between geometric structural changes (induced by 

growth, management, logging, mortality, disturbance etc.) and dielectric changes (induced by 

change of water content induced by seasonality, rainfalls, droughts, etc). Both of them define the 

change of the underlying vertical reflectivity function, resulting into a change of InSAR 

coherence. Past investigations [6] have already reported the effect of seasonal dielectric changes 

on the estimation of forest height from TanDEM-X data. In contrast, the horizontal structure index 

might be more robust to dielectric changes [1] since it focuses on spatial (phase center) height 

variations, rather than absolute measurements, thus being more sensitive to geometric changes. 

Being sensitive to the geometric canopy architecture, lidar waveform measurements could be used 

to constrain one temporal end of the geometric change component, and to allow the estimation of 

the dielectric one. The resulting characterization of the dielectric change effects would bring the 

combination of lidar and SAR measurements to a new scientific and application perspective. This 

direction of investigation is very challenging and ambitious, and has not been explored yet.  

Finally, in the very near future the ESA BIOMASS mission will be launched with the objective 

of mapping forest height and biomass of tropical forests globally [7]. It is a SAR mission operating 
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at P-band (wavelength around 70 cm) that will provide tomographic, interferometric and 

polarimetric data. The chosen wavelength maximizes penetration until the ground even for the 

densest stands, however international regulations only allow a small bandwidth at P-band for 

signals transmitted from space, which in turn results into a low spatial resolution. For this reason, 

the BIOMASS mission will provide height and biomass at a resolution of 200 m. A 

multifrequency synergistic combination framework could then be established including GEDI, 

TanDEM-X and BIOMASS measurements in which the unique complementary capabilities of 

each sensor could be exploited. For instance, the use of BIOMASS derived forest height estimates 

with a TanDEM-X derived horizontal structure index (calculated using the BIOMASS ground 

topography) and a reference height-to-biomass allometry derived from GEDI data could be 

investigated. The P-band BIOMASS measurements are used to overcome the X-band penetration 

issues in forest height estimation, but also in the horizontal structure index calculation; the 

TanDEM-X measurement resolution is critical for the derivation of the index at the scales relevant 

for characterizing horizontal structure in contrast to the low resolution of the BIOMASS data; the 

GEDI measurements continue to be indispensable for the definition of the allometry. A critical 

condition to realize this combination is the ability to transfer the different measurements and 

products across scales. A successful development of such combination framework would pave the 

way to the definition of a new generation of physical products for monitoring forests from space.
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