
  

Answering Temporal Conjunctive Queries over
Description Logic Ontologies for Situation

Recognition in Complex Operational Domains⋆

Abstract. For developing safe automated systems, recognizing safety-
critical situations in data from their complex operational domain is im-
perative. This capability is, for example, essential when evaluating the
system’s conformance to specified requirements in test run data. The
requirements involve a temporal dimension, as the system operates over
time. Moreover, the generated data are usually relational and require
additional background knowledge about the domain for correctly recog-
nizing the situation. This fact makes propositional temporal logics, an
established tool, unsuitable for the task. We address this issue by de-
veloping a tailored temporal logic to query for situations in relational
data over complex domains. Our language combines mission-time lin-
ear temporal logic with conjunctive queries to access time-stamped data
with background knowledge formulated in an expressive description logic.
Currently, however, no tools exist for answering queries in such settings.
We hence also contribute an implementation in the logic reasoner Open-
llet, leveraging the efficacy of well-established conjunctive query an-
swering. Moreover, we present a benchmark generator in the setting of
automated driving and demonstrate that our tool performs well when
tasked with recognizing safety-critical situations in road traffic.

Keywords: Temporal Conjunctive Queries · Description Logics · Tem-
poral Logics.
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1 Introduction

Recent technological advances in, e.g., sensors and computer vision, gave up-
draft to the development of automated systems performing safety-critical tasks
in complex domains. These systems are expected to safely operate without hu-
man intervention in these contexts. Consider, for example, automated driving
systems (ADSs), where the responsibility of safely navigating the environment
lies fully with the system [35]. The combination of their safety-critical nature
and the complex operational domain makes it hard to guarantee the absence
of unreasonable risk before public release, which is, however, required by many
homologation authorities. Alas, correct-by-design techniques are rendered in-
applicable by the high system complexity. Thus, manufactures must resort to
empirically assessing the system’s risk prior to deployment. As automated sys-
tems interact with their environment over time, a promising approach for risk
assessment is to decompose the complex operational domain into finite-time se-
quences (’scenarios’) [34]. Safety requirements – aiming to mitigate unreasonable
risks – are then specified for these scenarios. Hence, a formal specification of the
actors’ temporal behavior becomes essential. An exemplary requirement reads
as follows: ’In situations where the absence of pedestrians is not guaranteed,
adapt the speed appropriately.’ Note that this rule consists of a premise (the
situation) and a consequence (the behavior). The number of situations to write
requirements for can be enormous, e.g., occlusions [42], violating the safety dis-
tance [43], and maneuvers such as passing parking vehicles [11]. Due to their
large number, testing the most widely used option for verification, i.e., to check
the system’s conformance with requirements. For this, data of test runs of the
system operating within its environment are recorded. Adherence to the require-
ments is then evaluated by recognizing the situation (’no guaranteed absence of
pedestrians’) and testing for the implied behavior (’adapted speed’). We argue
that this approach has three requirements:

Relational and Temporal Domain Formally modelling traffic situations in-
herently requires a relational language since they refer to individuals and
their relationships, e.g., drives. Moreover, the number of individuals is not
fixed beforehand. Finally, scenarios over such situations involve the descrip-
tion of temporal aspects. A typical example is the process of overtaking.

Rich Background Knowledge We do not assume that the data is complete
in the sense that we can observe all facts about all individuals. Instead,
we assume to have rich knowledge about the relations used in the situation
descriptions. Examples for this are:
– a Driver is equivalent to a Human which drives some Vehicle, or
– a Driver is never a Pedestrian.

Such knowledge must be included since otherwise situations may not be
correctly recognized in the data and test evaluation produces false results.

Formal Specifications of Properties It is established that specifying and
testing requirements benefits greatly from formal approaches. Standard re-
quirement formalization languages, like linear temporal logic, are however
propositional and thus unsuitable for our purposes.
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An established way to address the first two aspects is to model situations via tem-
poral knowledge bases K = (O,D) which consist of a domain ontology O that de-
scribes the background knowledge and a temporal database D that describes the
evolution of the situation over time. Formally, D is a sequence D = (D0, . . . ,Dn)
of time-stamped databases. Note that, in using temporal knowledge bases, we
adopt the open world assumption (OWA), which intuitively says that the true
facts are not only those in D but those that are entailed by O and D.

As to address the third aspect above, i.e., to formally specify properties, we
use a suitable extension of linear temporal logic (LTL). Recall that LTL is a
language for describing properties over a set of propositions by using modalities
such as ♢φ (φ holds eventually), □φ (φ holds globally), φ1 Uφ2 (φ1 holds until
φ2), and φ (φ holds in the next step). Unfortunately, this does not suffice when
working over relational data. A natural option to extend LTL in the required way
is to replace propositions by queries. In this work, we use conjunctive queries
(CQs). CQs are one of the most common query language for databases and
expressively equivalent to the SELECT-FROM-WHERE fragment of SQL. For
example, we can ask for all drivers d of a vehicle by the CQ ∃v.Vehicle(v) ∧
drives(d, v) with one existentially quantified variable v and one answer variable
d. In terms of the temporal expressivity, our application further requires that

(1) we operate on finite traces whose length is bounded by the length of the
temporal database D specified in the temporal knowledge base,

(2) as duration constraints are used in specifications, e.g., to distinguish maneu-
vers of certain lengths, we incorporate metric operators, and

(3) we analyze the data a-posteriori. Hence we are not in a run-time verification
setting and require only future time operators.

We term the resulting language metric temporal conjunctive queries (MTCQs),
which features both unbounded and bounded future time operators over finite
traces and uses CQs in its atoms and is based on Mission-Time LTL (MLTL) [29].
MTCQs can, for example, express properties like Φex

0 (x) = ♢¬Pedestrian(x),
asking for all individuals x that are eventually not a pedestrian. A more involved
MTCQ asking for all x that move past a parking vehicle y on a two-lane road is

Φex
1 (x, y) = □

(
∃r.Vehicle(x) ∧ 2_Lane_Road(r) ∧ intersects(r, x)∧

Parking_Vehicle(y)) ∧ ♢
(
in_front_of(y, x) ∧(

(in_proximity(x, y) ∧ to_the_side_of(y, x))Ubehind(y, x)
))
.

Recognizing such a situation for checking a requirement translates to the task
of evaluating an MTCQ Φ(x⃗) with answer variables x⃗ over a temporal knowledge
base K. Informally, if we want to verify that a tuple of individuals a⃗ conforms
to some specification Φ(x⃗) in a situation K = (O,D), we have to check whether
the entailment (O,D) |= Φ(⃗a) is true, cf. Section 3 for precise definitions.

This task obviously depends on the chosen ontology language. For this, we
use description logics (DLs), an established knowledge representation formalism,
which offers a good compromise between complexity and expressivity [10]. Our
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approach works up to the SRIQ(D) fragment of DLs. It is close to the formalism
behind the Web Ontology Language (OWL) 2, an expressive and widespread DL
language. The mentioned task of entailment has been studied for DL temporal
knowledge bases and a different yet related extension of LTL [8], cf. Section 2.

We now illustrate this setup by means of a simple example. A DL ontology
O is a set of concept inclusions C ⊑ D for concept descriptions C and D. We also
write C ≡ D to denote concept equivalence. DLs allow for arbitrary names as
basic concepts. We have special names for nothing (⊥) and all things (⊤). Besides
concepts, DLs also allow so-called roles (relations) between concepts. From these,
we can inductively build new concepts. For an example ontology Oex , we might
state that every driver is a human by Driver ⊑ Human ∈ Oex . As to illustrate the
combination of roles and concepts we define drivers as the intersection (using the
⊓-operator) of all humans and all things that drive some (using the ∃-operator)
vehicle, written as Driver ≡ Human⊓∃drives.Vehicle ∈ Oex . We can use ⊥ to
express that pedestrians and drivers are disjoint: Driver ⊓ Pedestrian ⊑ ⊥ ∈
Oex .

These operators may be enough for simple domains. However, knowledge
about relations in complex domains is often involved, in which case even more
expressive operators can be allowed. For example, the MTCQ Φex

1 requires recog-
nizing situations of passing parking vehicles. Here, expressive DLs allow modeling
two-lane roads to have exactly two lanes (by the concept =2 has_lane.Lane)
and be a road (by the concept Road ⊓ =2 has_lane.Lane). Moreover, parking
vehicles are standing (with a speed of the datatype literal 0.0) dynamical objects
on a parking spot. This is expressed by the following DL ontology:

– 2_Lane_Road ≡ Road ⊓=2 has_lane.Lane
– Vehicle⊓ Standing_Dynamical_Object⊓∃intersects.Parking_Spot ⊑

Parking_Vehicle
– Parking_Spot ≡ Parking_Lane ⊔ Walkway
– Standing_Dynamical_Object ≡ Dynamical_Object ⊓ ∃has_speed.{0.0}

Let us now use the simple example to give an intuition on the semantics of
MTCQs over DL ontologies. First, we create an exemplary database with facts
over so-called individuals (concrete objects that are perceived). For example, we
can assert for the first time point that the individual h is a human driving the
individual v, a vehicle, by writing the facts as Dex

0 = {Human(h), drives(h, v),
Vehicle(v)}. Next, we may perceive Dex

1 = ∅, i.e., no information at all. Together
with the ontology, it forms a temporal knowledge base Kex = (Oex , (Dex

0 ,Dex
1 )).

If we query Kex w.r.t. Φex
0 (x) = ♢¬Pedestrian(x), we get h as the only answer,

as h is a driver in Dex
0 and the ontology states that drivers can never be pedestri-

ans. However, if we change the query to Φex
2 = □¬Pedestrian(x), no individual

satisfies the constraint, since Dex
1 asserts nothing – it can very well be possible

that h has become a pedestrian (due to the OWA).
This example highlights that languages like MTCQs are important for testing

requirements on systems in complex domains. However, up to now, only the
theoretical work by Baader et al. examines a related but hard-to-implement
setting over infinite traces for complexity-theoretic analyses [8]. No language
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has yet been defined that is practically suitable for implementation and has the
required expressiveness. Moreover, there currently is no tooling for any temporal
query language over expressive DLs. Our work on MTCQs addresses this gap.

For this, we first introduce the formal foundation of MTCQs in Section 3.
We implement the framework in an answering engine for a large and practically
relevant subclass of MTCQs in Section 4, closing the identified research gap. To
evaluate its efficacy, we present a benchmark generator for temporal knowledge
bases, as described in Section 5. We show the efficacy of our tool in this practical
setting in Section 6. To summarize, the main contributions of our work are

1. MTCQs as a practically implementable and expressive temporal query lan-
guage and the first tool for answering such queries up to the DL SRIQ(D),

2. a benchmark generator for the evaluation of inference tasks on temporal
knowledge bases, and

3. an application of the tool in our motivational setting of situation recognition
for urban automated driving.

2 Related Work

We previously claimed that for our motivational domain of ADS development
the usefulness of temporal logics (TLs) and related mechanisms – e.g., regular ex-
pressions – for scenario extraction has been recognized, which is supported by the
literature [26, 31, 18, 16]. More specifically, work exists in specifying behavioral
requirements, e.g., based on traffic rules, using TLs [1, 33, 19]. However, none of
these approaches formally incorporate an ontology. In general, the importance of
ontologies in automated driving is recognized, see, e.g., ASAM OpenXOntology
[7] for an international standardization project as well as Westhofen et al. [42]
and Zipfl et al. [44] for non-systematic reviews. Some ontological approaches
are in fact based on DLs [27]. However, we are not aware of work within the
automotive domain that uses DLs and TLs for analyzing temporal traffic data.

On the theoretical side, a plethora of temporal DLs have been introduced [2,
32, 5], also on finite traces [6]. These classical combinations were not conceived in
a query answering context, so more recently, several frameworks for addressing
that have been introduced [3]. We mention the most important ones here. There
is work on ontologies formulated in the lightweight (i.e., comparatively inexpres-
sive) DLs DL-Lite [12, 38] and EL [13, 22]. For expressive DLs, an important
line of work theoretically examines answering temporal conjunctive queries – es-
sentially infinite-time LTL over conjunctive queries – over temporal knowledge
bases with the ontology language ranging from ALC [8] to SHQ [30, 9]. Related,
but orthogonal to combinations of DLs with TLs, are combinations of Datalog
with TLs. This line of research started around 1990 with Datalog1S [15], and
lead to other combinations [14, 39] for which also tools exist [40].
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3 Formal Foundations

We introduce the formal foundations of the relevant DLs and their temporal
extension. For the sake of simplicity, we focus on the ontology language ALC,
which is a prototypical language in the class of expressive DLs. However, our
approach generalizes to (and is actually implemented for) the more expressive
logic SRIQ(D), cf. Horrocks et al. for further reference on this DL fragment [24].

We start with an introduction to non-temporal knowledge bases which we
later use as a foundation for defining the temporal case. As sketched in Section 1,
in ALC we can describe the relationship of roles and concepts in an ontology O
and assert individuals to these concepts and roles in a database D. Any knowl-
edge base is thus a tuple (O,D) and relies upon concept, role, and individual
names. For the remainder, we fix countably infinite supplies NC,NR,NI of con-
cept, role, and individual names, respectively. An ALC-concept description C is
formed according to C ::= A | ¬C | C ⊓ C | C ⊔ C | ∀r.C | ∃r.C where A ranges over
NC and r ranges over NR. We can thus compose new concepts using negation,
intersection, and union. For a role r, we moreover allow for universal (enforcing a
concept to only have r-successors in C) and existential quantification (enforcing a
concept to have an r-successor in C). Section 1 already introduced an example of
an existentially quantified role using ∃drives.Vehicle – the concept of all things
driving some vehicle. An ontology is a set of concept inclusions C ⊑ D for ALC-
concepts C and D, denoting subsumption of the concept C to the concept D. We
write C ≡ D (concept equivalence) for C ⊑ D and D ⊑ C. Again, the introduction
used Human⊓∃drives.Vehicle ≡ Driver as an example for concept equivalence.
The data is a set of facts of the form A(a) and r(a, b) for a, b ∈ NI, r ∈ NR, and
A ∈ NC, hence assigning individuals to concepts and roles. We denote the set of
individuals that occur in D by Ind(D). The introductory example of Section 1
used the set of individuals {h, v} and asserted the role drives(h, v).

The semantics of ontologies and data is defined via interpretations I =
(∆I , ·I) of a domain ∆I and a mapping ·I that assigns a set AI ⊆ ∆I to
every A ∈ NC, a binary relation rI ⊆ ∆I × ∆I to every role name r ∈ NR,
and an element aI ∈ ∆I to every a ∈ NI [10, Chapter 2.2]. As to incorporate
ALC-concept descriptions, the interpretation function is inductively defined as:

(¬C)I := ∆I \ CI

(C ⊓ D)I := CI ∩ DI

(C ⊔ D)I := CI ∪ DI

(∀r.C)I := {c ∈ ∆I | ∀d ∈ ∆I . (c, d) ∈ RI → d ∈ CI}
(∃r.C)I := {c ∈ ∆I | ∃d ∈ ∆I . (c, d) ∈ RI ∧ d ∈ CI}

Then, we say I |= C ⊑ D if CI ⊆ DI , I |= A(a) if aI ∈ AI , and I |= r(a, b) if
(aI , bI) ∈ rI . As to lift these definitions to ontologies and data, we write I |= O
and I |= D if O resp. D satisfy all concept inclusions in O resp. assertions in
D. Finally, for a complete knowledge base, we define I |= (O,D) if I |= O and
I |= D. More details on the semantics of DLs are given by Baader et al. [10].
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We now extend this definition of non-temporal knowledge bases to the tempo-
ral case, where a knowledge base consists of an ontology O and a finite sequence
of assertions that describe the databases over time.

Definition 1 (Temporal Knowledge Base). A temporal knowledge base
(KB) is a tuple K = (O, (Di)i∈{0,...,n}) where O is an ontology and each Di
is a database.

Their semantics is defined by temporal interpretations using the non-temporal
case as its basis.

Definition 2 (Temporal Interpretation). A temporal interpretation I is a
finite sequence I = (Ii)i∈{0,...,m} of interpretations over a fixed domain ∆ such
that aIi = aIj , for all a ∈ NI and 0 ≤ i, j ≤ m. We call I a model of the temporal
KB (O, (Di)i∈{0,...,n}), written I |= K, if m = n and Ii |= Di and Ii |= O, for
all i ∈ {0, . . . , n}.

The assumption that all interpretations share a common domain is called con-
stant domain assumption. We define next the language MTCQ that we use to
query temporal KBs. It is a combination of standard conjunctive queries with
temporal operators inspired by MLTL [29].

Definition 3 (Syntax of MTCQs). Let NV be a countably infinite set of vari-
able names. A conjunctive query (CQ) φ is an expression of the form φ(x⃗) =
∃y⃗.ψ(x⃗, y⃗) where x⃗, y⃗ are tuples of variables from NV and ψ is a conjunction of
concept atoms A(t) and role atoms r(t, t′) with A ∈ NC, r ∈ NR, and t, t′ ∈
x⃗∪ y⃗ ∪NI. Metric temporal conjunctive queries (MTCQs) Φ are built from CQs
using negation ¬Φ, conjunction Φ ∧ Φ′, and two versions of until, ΦUΦ′ and
ΦU[a,b]Φ

′ for a, b ∈ N. We denote with Ind(Φ) the set of individuals and Var(Φ)
the set of variables in an MTCQ Φ.

Note that we extend MLTL by borrowing the unconstrained until operator from
LTL, because it is a frequent operator in practice. Additionally, it allows for
a more direct translation to finite automata in our system presented later on.
We call the variables x⃗ the answer variables and y⃗ the quantified variables. An
MTCQ is Boolean if it does not have answer variables. The semantics of Boolean
CQs is defined in terms of matches into interpretations.

Definition 4 (Semantics of Boolean CQs). For a Boolean conjunctive query
φ and an interpretation I, I |= φ iff there exists a function π : Var(φ)∪Ind(φ) →
∆I with 1. π(a) = aI for all a ∈ Ind(φ), 2. π(t) ∈ CI for all C(t) in φ, and
3. (π(t), π(t′)) ∈ rI for all r(t, t′) in φ.

Hence, an interpretation satisfies a Boolean CQ if the interpretation can respect
its constraints. Boolean CQs form the basis for the semantics of Boolean MTCQs.

Definition 5 (Semantics of Boolean MTCQs). Let I = (Ii)i∈{0,...,m} be a
temporal interpretation and i ∈ {0, . . . ,m}. The semantics of Boolean MTCQs
is given by structural induction:

– I, i |= Φ iff Ii |= Φ, if Φ is a Boolean CQ;
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– I, i |= ¬Φ iff I, i ̸|= Φ;
– I, i |= Φ1 ∧ Φ2 iff I, i |= Φ1 and I, i |= Φ2;
– I, i |= Φ1 U[a,b]Φ2 iff there is a k ∈ [a, b] with i+k ≤ m such that I, i+k |= Φ2

and I, i+ j |= Φ1, for all j ∈ [a, k);
– I, i |= Φ1 UΦ2 iff there is a k ∈ [i,m] such that I, k |= Φ2 and I, j |= Φ1, for

all j ∈ [i, i+ k).

We allow the typical abbreviations Φ ∨ Φ′ for ¬(¬Φ ∧ ¬Φ′), false for ∃x.A(x) ∧
¬∃x.A(x) for some A ∈ NC, true for ¬false, ♢[a,b]Φ for trueU[a,b]Φ, ♢Φ for trueUΦ,
□[a,b]Φ for ¬♢[a,b]¬Φ, and □Φ for ¬♢¬Φ. The strong next-operator is defined as
Φ ≡ ♢[1,1]Φ and weak next as Φ ≡ □[1,1]Φ. Note that finite trace semantics

exhibit some non-obvious behaviors, e.g., ♢□Φ is equivalent to □♢Φ [17].
A central problem over Boolean MTCQs is entailment : For a temporal KB

K and an MTCQ Φ, we say K |= Φ if for all temporal interpretations I with
I |= K also I, 0 |= Φ holds. For example, for Kex from Section 1, it holds that
Kex |= ♢¬Pedestrian(h) as for any temporal interpretation I = (I0, I1) with
I0 |= Oex and I0 |= Dex

0 , it must also hold that hI0 ∈ (¬Pedestrian)I0 due to
the fact that h is inferred to be a driver and thus cannot be a pedestrian.

We remark that this semantics is closely related to the one over temporal
conjunctive queries (TCQs) introduced by Baader et al. [8] to query temporal
KBs over arbitrary models, i.e., not restricted to mission time. In fact, it is not
difficult to see that entailment K |= Φ for Boolean MTCQs Φ can be reduced to
deciding whether K entails Φ̂ in the sense of Baader et al. [8] for some TCQ Φ̂
that can be computed in polynomial time from Φ; we denote the latter entailment
relation with K |=BBL Φ̂. In the mentioned paper it is also shown that the latter
entailment problem is in ExpTime. Together with the ExpTime-lower bound for
subsumption in ALC this shows that MTCQ entailment is ExpTime-complete.
Of course, the complexity is potentially higher for ontology languages beyond
ALC. Finally, if in place of CQs in MTCQs we allow for ALC-concepts, the
resulting language can be embedded into the metric temporal DLs discussed by
Gutiérrez-Basulto et al. [23].

While Boolean MTCQ entailment is the natural problem to consider for com-
plexity analysis, a practical system needs support for answering non-Boolean
MTCQs, which is defined based on entailment. Let K = (O, (Di)i∈{0,...,n}) be a
temporal KB, Φ(x⃗) an MTCQ with answer variables x⃗, and a⃗ a tuple of indi-
viduals from K, i.e., a⃗ ⊆ Ind(K) :−

⋃
i=0,...,n Ind(Di). We call a⃗ a certain answer

to Φ(x⃗) over K if K |= Φ(⃗a). Here, Φ(⃗a) is the uniform replacement of the vari-
ables in x⃗ by the individual names in a⃗, leading to a Boolean MTCQ. Our main
reasoning task is to compute the set certK(Φ) of certain answers of Φ over K.
Section 1 gives an example for this set: certKex (♢¬Pedestrian(x)) = {h}.

4 Computing Certain Answers in Practice

We start with noting that to compute certK(Φ), it is not sufficient to answer all
of Φ’s CQs at time i and combine them inductively according to the semantics
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due to the presence of disjunction in our query language. An example is the
MTCQ Φ∨(x) := B(x) ∨ C(x) over the temporal KB K∨ := (A ⊑ B ⊔ C, (A(a))),
where certK∨(Φ∨) = {(a)}. A separate check of B(x) and C(x) returns no answer,
and inductive combination falsely yields no answer as well. This issue explains
the restriction to conjunctions in existing CQ answering implementations over
expressive DLs, as complexity is reduced and various optimizations can be em-
ployed. Therefore, and in contrast to both LTLf over propositional atoms and
CQ answering, we require a more involved procedure for checking MTCQs.

The correct but naïve way to compute certK(Φ) is to enumerate all candidate
answers a⃗ ⊆ Ind(K) and decide whether K |=BBL Φ̂(⃗a) via the algorithms pro-
vided by Baader et al. [8] (for the temporal aspects) and Horrocks and Tessaris
[25] (for answering disjunctions of conjunctive queries). This, however, suffers
from several problems. First, there are potentially many answer candidates since
the number of relevant tuples is exponential in the arity of the query Φ. Sec-
ond, while the mentioned algorithm for deciding |=BBL is useful for a complexity
analysis, it does not lend itself to a direct implementation. Finally, the algo-
rithm of Baader et al. works over unrestricted models and is thus more difficult
to implement. This section provides the foundations for the algorithm that we
implemented in our tool and the central improvements needed to make it work
in practice.

As MTCQs are closed under negation, entailment is just the complement of
satisfiability : a Boolean MTCQ Φ is satisfiable w.r.t. a temporal KB K if there
is a model I of K with I, 0 |= Φ. As K |= Φ iff ¬Φ is unsatisfiable w.r.t. K, we
can, for the sake of convenience, focus on satisfiability in the following.

We need some preliminary notions. Given an MTCQ Φ (possibly with answer
variables), we denote with CQ(Φ) the set of all CQs in Φ. The propositional ab-
straction PA(Φ) of Φ is the replacement of each φ ∈ CQ(Φ) with a propositional
variable pφ. Note that the propositional abstraction of an MTCQ is an MLTL
formula potentially with an unconstrained until, which is the underlying tempo-
ral formalism. This TL is interpreted over finite words P0 · · ·Pn where each Pi
specifies the propositional variables that are satisfied at time point i. Boolean
operators are interpreted as usual and temporal operators U and U[a,b] are inter-
preted in line with Definition 5. The following characterization of satisfiability
is easy to prove from the definitions.

Lemma 1. For a Boolean MTCQ Φ and a temporal KB K = (O, (Di)i∈{0,...,n}),
Φ is satisfiable w.r.t. K iff there is a sequence X0, . . . , Xn of subsets of CQ(Φ)
such that:

1. there are interpretations I0, . . . , In over the same domain such that, for all
i ∈ {0, . . . , n}, we have Ii |= O, Ii |= Di, and Ii |= φ for every φ ∈ Xi, and
Ii ̸|= φ for every φ ∈ CQ(Φ) \Xi, and

2. ({pφ | φ ∈ Xi})i∈{0,...,n} satisfies PA(Φ).

Intuitively, Lemma 1 splits the problem of deciding MTCQ satisfiability into sep-
arate DL and TL tasks which are only connected by the sets of CQs X0, . . . , Xn.
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Lemma 1 can be further refined as follows. The requirement that all inter-
pretations I0, . . . , In be over the same domain can be dropped without com-
promising correctness. Indeed, we can combine I0, . . . , In witnessing Point 1 in
Lemma 1 but with potentially different domains into I ′

0, . . . , I ′
n with the same

domain using a standard argument, cf. the proof of Theorem 5.21 by Lippmann
[30]: Since ALC cannot enforce finite models, we can assume that each Ii is infi-
nite. By the downward Löwenheim-Skolem-Theorem, we can assume that the Ii
are countably infinite and thus have the same domain. It remains to identify the
interpretation of the individual names. Note that the argument goes through for
more expressive logics such as SRIQ(D).

Lemma 2. Lemma 1 remains valid when “over the same domain” is dropped
from Point 1.

Hence, the checks at each time in (the modified) Point 1 are independent. It
remains to show how we can implement the check of Point 1, which includes
negated CQs. By the natural connection between satisfiability and entailment, we
can leverage an engine for answering disjunctions of CQs over non-temporal ALC
KBs for this, i.e., computing certK(Φ) for K = (O,D) and Φ a disjunction of CQs.
For doing so, we associate with every Boolean CQ φ its canonical database Dφ
which is just the set of all conjuncts that occur in φ. (For the sake of simplicity,
we allow variable names from φ as individual names in Dφ.) We then exploit the
following observation.

Observation 1 Let X be a set of Boolean CQs, let O be an ALC-ontology and
D the data. Then the following are equivalent for every subset Z ⊆ X:

(a) There is a model I of O and D such that I |= φ for every φ ∈ Z, and I ̸|= φ
for every φ ∈ X \ Z.

(b) (O,D′) ̸|=
∨
φ∈X\Z φ where D′ is the union of D with Dφ for each φ ∈ Z

(with variables across different Dφ suitably renamed).

Thus, to check the modified Point 1 for some time point (a condition of shape (a)
in the above Lemma), we can check its reformulation as (b) using a (non-
temporal) query engine for disjunctions of CQs. As demonstrated by the exem-
plary query Φ∨(x), this is, however, more involved than answering each disjunc-
tion separately, a problem already known to the DL community. For correctly
answering such disjunctions of CQs, we require a reformulation in of the disjunc-
tion into conjunctive normal form, and then answer each conjunct separately as
described by Horrocks et al. [25]. For P ⊆ {pφ | φ ∈ CQ(Φ)}, we define VALiΦ(P )
as true iff. O,D := Di, Z := {φ | pφ ∈ P}, X := CQ(Φ) pass the test in Point (b),
and thus the modified Point 1.

To implement Point 2, we exploit that for each MLTL formula χ over some
set of propositions Σ, one can compute an equivalent LTLf (LTL over finite
traces) formula χ′ over Σ [29] which in turn can be transformed into a finite
automaton (FA) Aχ over 2Σ which recognizes precisely the models of χ′ and
thus of χ [17]. Both these transformations are not polynomial and there is, in
general, no efficient conversion of an MLTL formula to an FA. However, since
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q0 q1 q2

pA(x) ∧ ¬pr(x,y)

pA(x) ∧ pr(x,y)

¬pA(x)

pA(x)

¬pA(x)

true

Fig. 1. FA for PA(¬(□A(x) ∧ ♢r(x, y))).

Algorithm 1 Computing certain answers to MTCQs.
Input: MTCQ Φ(x⃗), temporal KB K = (O, (D)i∈{0,...,n})
Output: certK(Φ).
1: D := Construct_FA(PA(¬Φ));
2: // states Q, initial state q0, final states F , transitions ∆
3: C := ind(D)k where k = |x⃗|
4: Initialize S(⃗a, 0) := {q0} for all a⃗ ∈ C
5: for i := 1 to n+ 1 do
6: for a⃗ ∈ C do
7: S(⃗a, i) := ∅
8: for q ∈ S(⃗a, i− 1) do
9: S(⃗a, i) := S(⃗a, i) ∪ {q′ | (q,X, q′) ∈ ∆,VALi−1

¬Φ(a⃗)(X)}
10: end for
11: end for
12: end for
13: return {a⃗ ∈ C | S(⃗a, n+ 1) ∩ F = ∅};

queries are often small in practice, this is still feasible. For example, the minimal
FA for p1 U≤a♢≤bp2 has a + b + 3 states. Figure 1 shows the FA for answering
the simple MTCQ Φex (x, y) = □A(x) ∧ ♢r(x, y). Note that the transitions are
labeled with Boolean formulas over the propositions indicating a transition for
each model of the formula, which can be exponentially more succinct.

What was said so far suggests the basic procedure for computing certK(Φ)
that is depicted in Algorithm 1. It considers for each answer candidate a⃗ all pos-
sible ’runs’ X0, . . . , Xn in a step-by-step fashion and checks (modified) Points 1
and 2 after each step; the set S(⃗a, i) contains all states the FA corresponding to
¬Φ(⃗a) can reach after i steps. The central test happens in Line 7 and is given
here for the direct encoding of the transitions; it can easily be adapted for the
mentioned succinct encoding. The algorithm returns all a⃗ for which no final state
is reachable after n+1 steps. Applied to the example FA in Figure 1 and a can-
didate answer (a, b) this means that the FA ends up in state q1 in all possible
runs, according to the temporal KB. The only way to achieve this is for the FA
to not stay in q0 or q2. For this, it has to eventually change from q0 to q1 by
having neither A(a) ∧ ¬r(a, b) nor ¬A(a) but A(a) ∧ r(a, b) satisfiable. The FA
shall then stay solely in q1 with only A(a) satisfiable for the remainder. Clearly,
in this case (a, b) is a certain answer.
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4.1 Improvements

Some standard improvements over Algorithm 1 are applicable, e.g., to work
directly on a minimal FA. However, this does not yet address the problem of
the many answer candidates to consider, of which, in practice, only few will be
entailed. Algorithm 1 considers each candidate individually, which is inefficient
since similar tasks are repeatedly executed. We instead leverage existing systems
that implement efficient algorithms specifically tailored towards answering CQs
over standard (non-temporal) KBs. As an example, consider again the FA in
Figure 1. Observe that q2 ∈ S(⃗a, i) for all a⃗, i for which (O,Di−1) ̸|= A(⃗a).
Indeed, ¬A(⃗a) is satisfiable w.r.t. (O,Di−1), for those a⃗, i. Since q2 is a sink, this
allows us to instantly reject all non-answers to A(x). We now generalize this to
extract certain (non-)answers by answering the CQs occurring in the edges.

The main idea is to perform an under-approximating traversal of the FA
prior to Algorithm 1. More concretely, we use CQ answering to construct sets
R(⃗a, i) ⊆ S(⃗a, i) and U (⃗a, i) ⊆ Q \ S(⃗a, i) that under-approximate the reachable
and unreachable states, respectively, for a candidate a⃗ at time i. This serves two
purposes. First, we can already extract some certain answers from U and some
certain non-answers from R, namely the sets {a⃗ ∈ C | U (⃗a, n + 1) ⊇ F} and
{a⃗ ∈ C | R(⃗a, n + 1) ⊆ F}, respectively. These candidates are not considered
anymore during the run of Algorithm 1. Second, we are able to re-use cached
answers to CQs in the first traversal during Algorithm 1.

We now describe how to construct the sets R and U during FA traversal.
R(⃗a, 0) is initialized as {q0} and U (⃗a, 0) is initialized as Q\{q0}, for all a⃗. For the
update step with i > 0, we assume for all states qk, ql to have succinctly encoded
edges αk,l :=

∧
pφ∈P0

¬pφ ∧
∧
pφ∈P1

pφ for some sets P0, P1 ⊆ P , as already used
in Figure 1. When examining such an edge in the FA at time i, we use a CQ engine
on Ki := (O,Di) to compute certKi(φ) for all φ ∈ {ψ | pψ ∈ P0} ∪ {

∧
pψ∈P1

ψ}.
From these sets, we are able to extract information on the relevant queries:

1. for all a⃗ ̸∈ certKi(φ): ¬φ(⃗a) is satisfiable w.r.t. Ki;
2. for all a⃗ ∈ certKi(φ): φ(⃗a) is satisfiable and ¬φ(⃗a) is unsatisfiable w.r.t. Ki.

We transfer this knowledge about the (un-)satisfiability of φ(⃗a) and ¬φ(⃗a) to
the edges αk,l. Satisfiability knowledge is transferable if qk ∈ R(⃗a, i − 1) and
αk,l = pφ resp. αk,l = ¬pφ. We then add ql to R(⃗a, i). Unsatisfiability knowledge
on ¬φ(⃗a) is transferable if αk,l contains ¬pφ. Adding unsatisfiability knowledge
to U requires adaptations. Firstly, we can only add ql to U (⃗a, i) if all other
edges αj,l to ql also agree on unsatisfiability of a⃗ at time i, i.e., they contain
some ¬pφ′ for which φ′(⃗a) is known to be unsatisfiable or qj ∈ U (⃗a, i − 1).
Secondly, unsatisfiability generates new satisfiability information: for a state qk
with successors ql1 , . . . , qlh we know that {ql1 , . . . , qlh−1

} ⊆ U (⃗a, i) implies qlh ∈
R(⃗a, i). Together with the described acceptance condition, the sets R(⃗a, n + 1)
and U (⃗a, n+ 1) deliver an under-approximation of the certain (non-)answers.
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4.2 Our System

We implemented this approach as a module in the DL reasoner Openllet [37].
The implementation is available at https://github.com/lu-w/topllet. Our
module does not support full MTCQs yet. Instead of allowing arbitrary CQs as
atoms, we allow the subclass tCQ of CQ which consists of all CQs φ s.t. in the
graph Gφ = (V,E) with V = Var(φ) ∪ Ind(φ) and E = {(t, r, t′) | r(t, t′) ∈ φ}
each vertex has at most one incoming edge and, if interpreted undirectedly, G
is acyclic, i.e., the query graph is tree-shaped4.

We denote with tMTCQ the subclass of MTCQ where each CQ is in fact a
tCQ. The reasons for considering this query class are two-fold. First, most queries
that occur in practice are tMTCQs. Second, tCQ answering can be implemented
by a straightforward procedure of ’rolling-up’ the query graph [25]. Therefore,
Openllet already provides an tCQ-answering engine over SROIQ(D) KBs,
implementing many optimizations [36]. Moreover, the procedure can be adapted
to answering disjunctions of tCQs as described by Horrocks and Tessaris [25],
which required for our algorithm, cf. Point (b) in Observation 1.

As a first necessary step, we thus extended Openllet to being able to an-
swer disjunctions of tCQs. For the construction of the FA, we implemented the
conversion of MLTL to LTLf described by Li et al. [29]: essentially, the intervals
in U[a,b] are encoded using sequences of the next-operator of length a and b,
respectively. We then rely on Lydia, which converts LTLf formulas to equivalent
deterministic FA [20]. We extend and use the AutomataLib [28] to access the
resulting FA. We provide a test suite for our system to highlight correctness of
the implemented algorithms.

5 Benchmarks

Our CQ answering approach motivates the need for empirical evaluation, for
which ideally controlled real-world data is used. In fact, for one experiment, we
obtained drone data from an intersection in Germany. These data turned out to
be insufficient for a thorough evaluation, as they are proprietary and not scalable.
This calls for synthetic yet realistic benchmark data that can be randomized,
scaled in size, and are freely available for replicability. However, we are currently
not aware of any public benchmark data on querying temporal KBs. The same
was noted by the developers of MeTeoR, where data of the Lehigh University
Benchmark [21] are extended with random intervals to enable an evaluation on
the OWL RL fragment of LUBM. Unfortunately, a random extension of a non-
temporal benchmark might not reflect actual temporal data, e.g., in continuity of
concepts over time, and thus might not transfer to real-world applications. As our
final contribution, we hence present the Traffic Ontology Benchmark (TOBM), a
benchmark generator for scenarios of automated driving applications that mimics
4 This constraint allows us to perform the rolling-up procedure on the BCQs of the

FA. However, it is actually just a sufficient condition for rolling-up. More precisely,
we require the FA to contain only BCQs where each negated query is a tCQ.
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Fig. 2. A scene of the T-crossing scenario sampled from TOBM.

real-world data and enables to evaluate tools on temporal KBs, including MTCQ
answering. The tool is available at https://github.com/lu-w/tobm.

For the ontology we rely on the publicly available Automotive Urban Traffic
Ontology (A.U.T.O.) [42, Section 5]. It is a conglomerate of SRIQ(D) ontologies
for the traffic domain and related fields, and currently consists of 1449 axioms
over 676 concepts and 213 roles. A.U.T.O. was already successfully used for
analyzing real-world traffic data from drone recordings [42, Section 8].

The benchmark generator creates temporal data for A.U.T.O. with individu-
als scaling linear to some N > 0. A seed S can be used for pseudo-randomization.
From both parameters, it generates scenarios of a certain length (by default, 20
seconds). These can be sampled from two settings:

1. A T-crossing setup with parking vehicles, a pedestrian crossing, bikeway
lanes, pedestrians, bicyclists, and passenger cars (cf. Figure 2). It has 8·N+22
individuals.

2. An X-crossing of two urban roads with traffic signs and dysfunctional traffic
lights. Compared to the T-crossing, there are no bicyclists and 5 · N + 69
individuals.

The scenarios are created based on behavior models for pedestrians, bicy-
clists, and passenger cars. Passenger cars and bicyclists drive up to a speed limit
if their front area is free, otherwise they use a following mode. Vehicles yield on a
predicted intersecting path. Moreover, a random successor lane is selected when
turning at intersections, giving a turning signal with a probability of 3% each
time point. Pedestrians follow their walkway, but can randomly initiate road
crossing with a probability of 0.7%. We give a visualization of two exemplary
scenarios can be found in the linked repository.

Our implementation models temporal KBs as a list of OWL2-files for the
data, each importing a shared ontology. Geometrical data are abstracted to
spatial predicates (e.g., is_in_front_of) in a pre-processing step. For S = 0,
N = 3, and 20 seconds sampled with 10 Hertz on the T-crossing setting, this
results in a data sequence with 46 individuals and 647 847 assertions in total
(approx. 3 239 per time point) with constant assertions only counted once.
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6 Evaluation

We now examine practical feasibility of our system by an evaluation on TOBM,
answering the following questions:

1. Is the approach applicable to practical, a-posteriori situation recognition
tasks (such as evaluating test data) with larger numbers of assertions?

2. What is the impact of our improvement of leveraging CQ answering on
overall applicability?

3. In practical settings, how much satisfiability knowledge can be generated by
CQ answering?

As inputs, we sampled TOBM with S = 0 and N ∈ {1, . . . , 5} for both the
X- and T-crossing. We fix a 20 second duration with ten Hertz, as our algorithm
performs linear in N . The supplementary artifact provides both the benchmarks
and a wrapper around TOBM for reproducible re-generation. We used four
queries (given in the supplementary artifact) asking for: intersecting paths with
VRUs (Φ1), passing of parking vehicles on two-lane roads (Φ2), vehicles turning
right (Φ3), and vehicles changing lanes without signals (Φ4), where Φ1, Φ2, and
Φ3 have two and Φ4 has three answer variables. The corresponding FAs have 8
(Φ1), 4 (Φ2, Φ4), and 3 (Φ3) states. Our tool is executed once per benchmark
and query combination, as deviations are not be expected due to determinism,
on an Intel Core i9-13900K with 64 GB RAM and a time limit of ten hours per
run, using a Windows Subsystem for Linux 1 on a Windows 10 host. The input
files and tool, with the exact version and configuration used for benchmarking,
are available online [41].
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Fig. 3. Wall clock running times of benchmark queries Φi, i ∈ {1, . . . , 4} and the T-
(t) resp. X-crossing (x) of size N .

For the first question, we show wall clock running times of our improved
algorithm in Figure 3. We exclude parsing and loading of queries and KBs as
we aim to only evaluate our algorithm. Running times indicate an exponential
dependency on the data size. There are also dependencies on the benchmark
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type, e.g., for Φ2, where the non-existence of parking vehicles on the X-crossing
improves performance, and Φ4, where more lanes on the X-crossing increases
running time. This answers the first question positively, as our approach termi-
nates in minutes to hours, with the lowest being 25.54 seconds for Φ1 on the
20 second T-crossing scenario. However, the timeout was reached for Φ4 on the
X-crossing and N ≥ 2 for reasons to be discussed later.

101 102 103 104 105 106

Φ1

Φ2

Φ3

Φ4

s

w.o. CQ ans. w. CQ ans. (t1) w. CQ ans. (t2)

Fig. 4. Log-scaled running times with and without the CQ answering optimization
enabled for the TOBM T-crossing S = 0, N = 3. Running times without the opti-
mization are extrapolated after one hour.

The second question is addressed by comparing the running time of the im-
proved algorithm to the basic algorithm from Algorithm 1. The results in Figure 4
show that the naïve approach fails for real-world data, even for two answer vari-
ables. Moreover, most of the time is still spent using the expensive, full semantics
check despite iterating only through a fraction of all candidates (cf. Table 1).
Hence, leveraging the CQ engine makes MTCQ answering practically feasible.
However, some queries may trigger special cases in the optimizations of the CQ
engine, leading to higher running times, e.g., role inclusion axioms for Φ3.

The strong effect of leveraging CQ answering motivates deeper examination.
For this final question, we show wall clock times of both the CQ answering run t1
(’first run’) and the full-semantics run t2 (’second run’) in Figure 4. The effect
of CQ answering can be twofold: Firstly, a set of candidates can be excluded
globally. Secondly, even if a candidate was not globally excluded, it generates
’local’ (non-)answers that can be cached for subsequent checks of Point 1 of
Lemma 1. We thus report both exclusions, averaged over all time points and
checked edges at each time point, in Table 1. Moreover, one can ask whether the
second run is actually worthwhile. Table 1 reports how many certain answers
(certK) were already found in the first run (cert1K).

Our results show CQ answering to aid mainly by excluding candidates glob-
ally in a highly-optimized fashion, as it can resort to techniques like binary
instance retrieval, and often avoids consistency checks [36]. Local exclusion has
minor but non-negligible effects, e.g., avoiding on average 42 additional candi-
dates for Φ3. Moreover, all certain answers were already found in the first run,
indicating suitability of using only the incomplete first run.
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Table 1. Effects of CQ answering on MTCQ answering for the TOBM T-crossing
S = 0, N = 3.

Query Φ1 Φ2 Φ3 Φ4

Globally excluded candidates (%) 97.88 99.29 97.88 99.71
Globally and locally excluded candidates (%) 98.73 99.55 99.54 99.80
|cert1K|/|certK| 1 1 1 1

However, leveraging CQ answering has its limitations. For Φ4 on the X-
crossing and N = 2, the first run excluded 99.83% of all candidates after 2.38
minutes, leaving 960 candidates for the second run. However, this is no small
task: for 200 time points in the data this leaves 180 seconds per time point to
finish within 10 hours. Hence, each candidate must not take up more than 0.1875
seconds per time point on average, which entails checking multiple edges in mul-
tiple states. Experiments indicate each edge check to take a two-digit millisecond
duration. Thus, to efficiently handle large candidate sets in the second run, we
require further optimizations.

7 Conclusion

In this work, we introduced MTCQs as a suitable tool for situation recognition
when testing requirements in complex operational domains, as illustrated by ur-
ban automated driving. Our tool, based on Openllet, brings MTCQ answering
into practice by leveraging efficient CQ answering algorithms. Our custom bench-
marks on safety-critical traffic situations show feasibility of our implementation
for test evaluation settings and a potential to use our tool in other domains.
These include risk assessments of other automated transportation systems, e.g.,
trams, maritime vessels, or delivery robots, and big-data analyses, e.g., process
mining in business applications over intricate real-world structures.

As future work, we plan to investigate both practical optimizations and the-
oretical adaptations for increasing performance. For the former, it is interesting
to (i) study how one can reuse query answers in consecutive time points given
that potentially only small portions of the data change, (ii) identify fragments
of MTCQs that can be answered more efficiently in practice (e.g., for runtime
verification), and (iii) treat the spatial information more efficiently. On the the-
oretical side, it is interesting to study rewriting approaches, where the idea is to
reduce the computation of certain answers to query evaluation in a target logic
such as first-order logic (possibly with +, <) or DatalogMTL [39]. The bene-
fit of such rewriting approaches is that one can leverage existing systems for
evaluation in the target language. First-order rewritings have been studied in
the context of more lightweight ontology and query languages [4]. While query
rewritings need not exist in general (for complexity reasons), they might be very
fruitful for practically occurring queries and ontologies.
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