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Summary

Early design decisions have a significant influence in the final success of the project. One of the most
important decisions is to determine the system architecture, as it highly impacts the performance of
the system. System architecture optimization can be used to determine the best possible architectures
through the formulation of an optimization problem, allowing to explore the design space without tradi-
tional bias and conservatism.

MDO can be used to evaluate the performance of each architecture, allowing to consider the interac-
tions between the multiple and coupled disciplines involved in the design process. To do this, MDO
platforms have to satisfy multiple requirements, including the automatic readjustment of the MDO prob-
lem for each system architecture. They also have to be adapted to collaborative MDO, so that they can
be used in real industrial cases.

Before this research, there was not MDO platform that satisfied all these requirements, impeding the
integration of system architecture optimization in the industry. The MDO platform consisting on MDAx
and RCE was adapted to collaborative MDO and satisfied all requirements to be used as architecture
evaluator, except the automatic readjustment of the MDO problem. To fill the previous gap, the main
objective of this research has been to extend MDAx backend code to allow the formulation of these
dynamic MDO problems, allowing to use it in the system architecture optimization process.

To achieve this, first the possible modifications that the system architectures can cause in theMDOprob-
lem, called architectural influences, are determined. Then, some possible implementation strategies
MDO platforms can use to deal with these influences are presented. After that, the actual implementa-
tion process used to extend MDAx backend code is widely discussed.

Afterwards, a benchmark problem based on Fourier series is used to verify the implementation. A real
engineering problem, based on the design of a space multistage rocket, is also used as validation to
show the potential tool, and more generally, of the methodology. Finally, some conclusions and possi-
ble future steps are drawn.

In conclusion, this research allows to reduce the existing gap between system architecture optimization
and MDO by obtaining an MDO platform that can be used as an architecture evaluator. Also, the
different requirements identified for the inclusion of architectural influences, as well as the benchmark
problems discussed, are aimed to help developers to extend their MDO platforms to be adapted to
system architecture optimization, reducing the barriers for its implementation in the industry.
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1
Introduction

The decisions taken in the early phases of the design process have a great influence on the final suc-
cess of the project (Wichmann et al., 2015). One of the most important tasks of the early design phase
is to determine the architecture of the system, which can be defined as a description of the different
components of the system and the relationships between them (Crawley et al., 2015), as it has a large
effect on the whole performance of the system (Bussemaker and Boggero, 2022).

The problem is that even with a low number of architectural decisions, a combinational explosion of
alternatives appears (Iacobucci, 2012). This means that it is impossible to create all the architectures
for a given problem and evaluate all of them. What has been done traditionally is to select a small num-
ber of architectures based on the knowledge of experts to enter the conceptual and preliminary design
phase. However, this approach may lead to bias and conservatism (Roelofs and Vos, 2018) and is
becoming more challenging to apply due to the increase of complexity of aerospace projects over the
last decades (DeTurris and Palmer, 2018). Furthermore, it does not allow to completely explore the
design space, leading to solutions far away from the optimum.

System architecture optimization can be applied to overcome these hurdles (figure 1.1). It allows to sys-
tematically explore the design space without having to evaluate all the architectures (Bussemaker and
Ciampa, 2022), taking into account the interactions between the different components of the system.
To carry out system architecture optimization, an architecture evaluator is needed, allowing to provide
quantitative feedback of the performance of each system architecture to the optimizer. To accurately
determine the performance of each architecture, Multidisciplinary Design Optimization (MDO) can be
used (Sobieszczanski-Sobieski et al., 2015), so that the interactions between the different design dis-
ciplines are taken into account.

MDO platforms, defined as pieces of software used to formulate and execute MDO problems, could
be used to evaluate the different architectures using MDO. There are three main challenges that MDO
platform have to deal with when used as evaluators for system architecture optimization. First, they
must be able to deal with mixed-discrete variables. Second, they must implement/be able to integrate
complex optimization algorithms. The third and main one is related with the fact that each architecture
has different components and connections between them. This means that the design variables of
these architectures and the constraints that they have to satisfy will vary from an architecture to an-
other. Furthermore, even the design disciplines involved might change.

As a consequence, to include MDO in system architecture optimization, it is important that MDO plat-
forms support to readjust the MDO problem automatically (changing the disciplines, connections and
design variables of the MDO problem) depending on the architecture that is being evaluated. There
are two approaches MDO platforms can follow to deal with this. The first solution is to generate auto-
matically a different MDO problem for each system architecture. The second approach is to generate
an unique MDO problem that can be readjusted automatically during the execution process, depending

1
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on the system architecture being analysed.

Figure 1.1: Example of the system architecture optimization process. First all the possible architectures are defined. After that,
the optimizer will generate different architectures and evaluate them, deciding the architectures being generated depending on
the quantitative feedback it obtains during the optimization process. Finally, the solution (usually in the form of a Pareto front) is

obtained. Figure taken from Bussemaker and Ciampa, 2022.

When MDO has to be used in real industrial projects, it is common that the tools needed for the MDO
problem execution belong to different departments, or even to different companies. As a consequence,
multiple experts from different fields and backgrounds are needed to be integrated together. To coor-
dinate all these experts, so that the MDO problem can be formulated and executed efficiently, MDO
platforms have to incorporate the methodologies encompassed by collaborative MDO (Ciampa and
Nagel, 2016).

To achieve this, they need to help and guide designers for the formulation of the MDO problem, without
the necessity of knowing beforehand all the variables, disciplines and connections that exist in the prob-
lem. This can be done including some capabilities such as collisions warning and resolution methods,
or through the inclusion of a simple graphical user interface (GUI), which allow designers to propose
and try different problem formulations. From the execution point of view, collaborative MDO also de-
mands some capabilities from MDO platforms, such as the protection of confidential data or the real
time supervision of the problem execution by the different experts (section 2.3.1).

If system architecture optimization is desired to be applied in the industry, it is necessary to obtain
an MDO platform adapted to collaborative MDO, but also capable of dealing with the requirements
needed to be used as an architecture evaluator. There are some platforms that already include the
methodologies encompassed by collaborative MDO, such as the union of KADMOS (van Gent and La
Rocca, 2019), OpenLEGO (de Vries et al., 2017) and OpenMDAO (OpenMDAO, 2019), or the union
of MDAx (Page Risueño et al., 2020) and RCE (Boden et al., 2019). However, at the beginning of
the project there was no MDO platform that could deal with the automatic readjustment of the MDO
problem on its own, existing a gap in the implementation of MDO in system architecture optimization,
specially when applied to industrial cases.
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1.1. Thesis objective and methodology
MDAx is an MDO problem formulation platform specially tailored for collaborative MDO (section 3.3.3).
It guides the problem formulation process though several tools, such as its GUI. It also allows to try mul-
tiple configurations of the MDO problem in a simple manner, thanks to the graphic problem definition
based on Pate et al., 2014. However, MDAx is not able to execute the MDO problem itself, it needs
an additional platform for this task. One of the options is RCE, which allows to execute the problem
according to collaborative MDO principles, such as remote execution or real time supervision (section
3.3.3).

The MDO platform consisting on MDAx and RCE satisfies the first requirement to be used for architec-
ture evaluation, dealing with mixed-discrete variables, as they are based on XML. This platform also
satisfies the second requirement, as RCE already includes complex optimization algorithms able to
deal with system architecture optimization problems. The platform also allows to perform collaborative
MDO.

However, there is still a missing requirement it has to satisfy to be used for system architecture opti-
mization, and it is readjusting the MDO problem automatically for each system architecture. Generating
a different MDO problem for each system architecture is not possible, as once MDAx export to RCE is
done, some manual steps are needed before execution. This means that it is necessary that the MDO
problem generated by MDAx already include all the information regarding possible modifications in the
disciplines, connections and design variables of the MDO problem, so that the MDO problem can be
readjusted during the execution process.

To obtain an MDO platform that can be used for system architecture optimization, and therefore reduce
the existing technological gap, the objective of this thesis will be to adapt MDAx to be used as an
architecture evaluator, by extending its backend code to model and export MDO problems that
can be readjusted automatically during the optimization process, depending on the architecture
being analysed. Achieving this objective would be an important step forward in the inclusion of system
architecture optimization in the industry, accomplished by reducing the gap in the implementation of
MDO in system architecture optimization.

To do so, the following methodology will be used. In the first part of the thesis, the possible modifications
in the MDO problem due to the different system architectures will be determined, as well as some
possible strategies to deal with them. Then multiple requirements will be derived to adapt MDAx to
deal with these modifications. After that, the implementation of all these new features will be tested
using a benchmark problem that includes all the possible modifications. Finally, a realistic case system
architecture optimization problem will be solved to validate the system.

1.2. Thesis structure
This section introduces the different chapters of the thesis, which are:

• Systems engineering and MDO: In this chapter, an introduction to the fields of systems engi-
neering and MDO is provided. An introduction to MBSE and collaborative MDO is included too.
This introductory chapter will help the reader to understand the necessity of using system archi-
tecture optimization in the industry.

• Systems Architecture Optimization: This chapter is aimed to provide a thorough explanation
about system architecture optimization. It starts with a brief introduction of the field, including
some basic definitions of the different elements needed to perform system architecture optimiza-
tion. Then, the architecture generation process is introduced, including the different types of
architectural decisions.

After that, the architecture evaluation process is discussed, including the main challenges that
MDO platform have to deal with when used to formulate and execute MDO problems for system
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architecture optimization. Afterwards, a brief literature review about some of the most popular
MDO platforms is carried out, including a discussion about their adaptability to be used as archi-
tecture evaluators within the system architecture optimization problem. Finally, the technologi-
cal/literature gap is presented.

• Architectural influences: First, the possible modifications that can take place in the MDO prob-
lem formulation/execution due to the different system architectures will be studied, called archi-
tectural influences. These architectural influences will be obtained studying how multiple MDO
problems are modified when the system architecture is not fixed.

The second part of the chapter covers some possible approaches/implementations that MDO
platforms can use to deal with the previous modifications automatically, called strategies.

• MDAx adaptation to system architecture optimization: This will be the main chapter of the
thesis. Multiple requirements are identified to implement each of the different architectural influ-
ences. This chapter provides a wide explanation of how the existing MDAx backend code was
extended to satisfy all these requirements, including the different problems that were found in the
process and how they were tackled.

• Verification & Validation: In this section, to verify that MDAx implementation has been carried
out successfully, a benchmark problem containing all the possible architectural influences will be
formulated and executed using MDAx/RCE. Then a more complex system architecture optimiza-
tion problem based on a real case scenario will be also solved, showing how this platform can be
used to help designers with real architecting engineering design problems.

• Conclusions & Recommendations: This last chapter of the thesis aims to summarize the impor-
tance of this research to reduce the existing gap in the inclusion of MDO in the system architecture
optimization process, specially when used for real industrial cases. After that, some recommen-
dations are given to achieve the inclusion of system architecture optimization in the industry.



2
Systems Engineering and MDO

To understand the goals and the necessity of using system architecture optimization, this chapter intro-
duces first the broader fields of systems engineering and MDO.

2.1. Systems engineering introduction
According to the International Council on Systems Engineering (INCOSE), ” systems engineering is
an interdisciplinary approach and means to enable the realization of successful systems. It focuses
on defining customer needs and required functionality early in the development cycle, documenting
requirements, and then proceeding with design synthesis and system validation while considering the
complete problem: operations, cost and schedule, performance, training and support, test, manufac-
turing, and disposal” (Walden et al., 2015).

Figure 2.1: Increase of complexity (defined as number of parts and source lines of code in the system) in the last years in
multiple engineering fields, including the aerospace sector. Although this description of complexity is not complete, a

relationship can be established between the increase of complexity and the development time. Figure extracted from DeTurris
and Palmer, 2018.
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During the last decades, the number of different disciplines involved at the design is increasing, lead-
ing to an increase of complexity of the systems (DeTurris and Palmer, 2018). Complex systems are
systems where there are numerous elements and multiple connections between them, especially when
these connections change with time (Haberfellner et al., 2019). This increase of complexity is also the
case in the aerospace sector, as observed in figure 2.1.

Systems engineering emerged in order to help engineers dealing with this increase of complexity, al-
lowing to take into account the interactions between the different components and reducing the risk of
the decisions taken at the early stages of the development phase (Haberfellner et al., 2019).

According to a statistical study carried out by the Defense Acquisition University (DAU) about the life
cycle cost of projects in the US department of defence, only 8 percent of the total cost was spent on
conceptual design, although this phase would determine 70 percent of the total cost of the product
(DAU, 1993), as observed in figure 2.2.

Figure 2.2: Committed life cycle cost against time. Although only 8 % of the total cost is spent to conceptual design, this phase
determines 70 percent of the total product development cost. Figure extracted from DAU, 1993.

This confirms that the decisions taken at the early phases of the design process hugely influence its
final success (Wichmann et al., 2015). Systems engineering can be really useful to take these deci-
sions, allowing to consider the multiple relationships existing between the different components of the
system. Traditionally, it has been based on documents. However, this document-based approach has
some disadvantages, such as ambiguity, lack of clarity or poor traceability (Boggero et al., 2021).

The increase of complexity of modern products and the desire of achieving shorter development times
has led to the need of introducing new methodologies for the design, verification and validation of
complex systems (Broy, 2013). This, combined with the disadvantages of the document approach, is
leading to the inclusion of a new methodology inside systems engineering (Chaudemar and de Saqui-
Sannes, 2021), called Model-Based Systems Engineering or MBSE.

2.2. Model-Based Systems Engineering (MBSE)
MBSE has become more important inside the systems engineering field over the last years. Accord-
ing to INCOSE, MBSE can be defined as the ”formalized application of modeling to support system
requirements, design, analysis, verification and validation, beginning in the conceptual design phase
and continuing throughout development and later life cycle phases” (Friedenthal et al., 2007).
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The current trend from a document-based to an MBSE approach in complex engineering fields, such
as the aerospace sector (Caliò et al., 2016), is a consequence of the multiple benefits MBSE provides,
such as its ability to help to understand better the complexity of the system while simplifying the com-
munication inside the development team (Eigner et al., 2015). The introduction of MBSE also leads to
the reduction of both error rates and costs (Obstbaum et al., 2017).

MBSE involves a higher investment at the first stages of the development product, as observed in figure
2.3. This can lead to an overall reduction of costs, as an improvement in the first stages of the product
development is translated into a lower number of corrections at the later stages.

However, the previous reduction of cost is only true when the complexity of the product is high and
when it is expected to have a long life span (Madni and Purohit, 2019), justifying the previous increase
of investment in the first stages of the design.

Figure 2.3: Normalized system life cycle cost versus time. These data are based on a cost statistical analyses of system
engineering projects carried out by DAU. The cost in the earlier stages using MBSE is higher, although the final cost of the
project reduces with respect to the traditional system engineering approach. Figure taken from Madni and Purohit, 2019.

The aeronautical industry is an ideal field for the implementation of MBSE, due to the increase of com-
plexity of aerospace products (DeTurris and Palmer, 2018), combined with the poor integration of the
horizontal and vertical levels of the current aeronautical supply chain (Ciampa et al., 2020) and the high
life span of the product.

Inside the design phase step covered by this methodology (MBSE), the aerospace sector has another
particularity, and it is the usual existence of multiple and highly interrelated design disciplines. To
take into account the interactions they have between each other, so that an optimum solution can be
obtained, Multidisciplinary Design Optimization (MDO) can be used.
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2.3. Multidisciplinary Design Optimization (MDO)
Until recently, if optimization was introduced in the aerospace industry, it was carried out in a sequential
manner, leading to sub-optimal designs (Martins and Ning, 2021). However, most aerospace design
processes are characterized by the existence of multiple and highly coupled disciplines. If a balanced
solution taking into account the contributions of all disciplines at the same time is desired, MDO can be
used.

MDO can be defined as a group of methods, procedures and algorithms that are used to find the best
design in complex systems whose behaviour is governed by multiple disciplines coupled between each
other (Sobieszczanski-Sobieski et al., 2015). The main motivation for using MDO in the aerospace in-
dustry is that the performance of a multidisciplinary system is driven by not only the performance of
the individual disciplines, but also by their interactions (Martins and Lambe, 2013). This means that
the optimized solution of the whole system can only be obtained considering the interactions existing
between the different disciplines.

As an example, consider the case of an aircraft. Multiple disciplines are involved in the design, such
as propulsion, aerodynamics or structures. Any change in a design decision related with any of these
disciplines will affect the others. All of them have to be considered simultaneously to obtain an aircraft
with a good performance, and MDO can be used for that.

The MDO problem formulation is usually represented by its XDSM or eXtended Design Structure Matrix
as it can be observed at figure 2.4. This is an extension of the Design Structure Matrix (DSM), where
the data dependency and process flow are shown at the same time on a single diagram (Lambe and
Martins, 2012). In other words, in this diagram all the variables, disciplines and how they are connected
between each other are represented (data graph). This diagram also includes the execution workflow
(process graph), which is the order in which the different disciplines are executed.
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Figure 2.4: Example of an MDO problem XDSM, in this case of the Sellar problem (Sellar et al., 1996).

In the MDO process, the optimization algorithm proposes a value for each of the different design vari-
ables (this is a design vector). Then after the execution of the different disciplines, the optimizer re-
ceives the value of the objective(s) function(s) which measure quantitatively how ”good” the design
vector was. Usually, some constraints are evaluated too to determine the feasibility of this design vec-
tor. With the previous results, the optimizer can propose new design vectors until an optimized solution
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is obtained.

MDO has already been used in multiple engineering fields (Martins and Ning, 2021). The aerospace
sector is where most examples of MDO can be found, where it has been used for different topics, from
the aerostructural design of fan stages (Pokhrel et al., 2023) to the whole design of drones (Aïello et al.,
2022). However, it has already been introduced in other engineering fields such as the automotive
industry (Crea, 2022), the mining vehicles design (Vidner et al., 2021) or the design of wind turbines
(Hegseth et al., 2020).

MDO has already started to be implemented partially in the aerospace industry. However, some difficul-
ties arise when MDO is desired to be implemented in big industrial aerospace projects. These demand
the participation of multiple experts from different disciplines (Moerland et al., 2020), companies and
with different backgrounds, leading to different national, organizational and human barriers (Baalber-
gen et al., 2022). To tackle these difficulties, collaborative MDO can be used.

2.3.1. Collaborative MDO
Collaborative MDO is a group of technologies and methodologies that aim to facilitate the implementa-
tion of MDO in the aerospace industry (Ciampa and Nagel, 2016). Some of the technologies necessary
to carry out collaborative MDO are:

• Centralized Data Schema (CDS): This is a naming convention of variables where all the tools
share a common language. This allows to reduce theMDO problem formulation time considerably
thanks to the connections made automatically between the different disciplines, just by declaring
their inputs and outputs (van Gent et al., 2017). Also the number of connections is highly reduced.
An example of a CDS in the aerospace sector is CPACS (Alder et al., 2020).

• Remote and protected workflow execution: In big aerospace design projects, multiple com-
panies are involved. These companies usually don´t want to share their software. Therefore, to
carry out MDO in these environments, it is usually necessary to execute tools remotely, while
ensuring that the confidential information of the companies is not broken. To achieve this, tools
like BRICS can be used (Baalbergen et al., 2017).

• Real time supervision: During the execution of the workflow, it is necessary that the MDO plat-
form used provides information in real time about the execution process that can be supervised
by the different experts. This allows to discover errors faster and in an easier manner, allowing
to reduce the time necessary to obtain the solution.

• Guidance in the MDO problem formulation: In these big projects, usually the variables, dis-
ciplines and constraints to consider in the MDO problem formulation are not know beforehand.
Several iterations are usually needed until a definitive MDO problem formulation is achieved.
Therefore, MDO platforms used for collaborative MDO should allow to modify the MDO problem
easily, which can be achieved using a Graphic User Interface (GUI).

Including these methodologies, the desired coordination between the different ”actors” in the design
process can be achieved. This allows to reduce the set-up time of MDO problems by a 40 % (Ciampa
and Nagel, 2020), and therefore facilitates the final implementation of MDO in the aerospace industry.

2.4. System architecture: a link between MBSE and MDO
The product development can be divided in two parts. First, the upstream phase, where the different
needs of the stakeholders are identified and translated into requirements. This is where MBSE can
be used to reduce costs in the product development. The second phase is the product design phase
where different methodologies, such as MDO, can be used to design a product that satisfies the previ-
ous requirements.
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Different methods have been proposed to achieve this link, such as the presented in A.-L. Bruggeman
et al., 2022, where a framework called RVF is used to link requirements to different elements in the
MDO problem. However, to fully achieve this link between MBSE and MDO, it is necessary to include
the system architecture in the process (figure 2.5).

A system architecture can be defined as the group of components of a system and the relationships
between them (Crawley et al., 2015). Some steps have already been taken to fully achieve this link
between MBSE and MDO including system architecture, such as Bussemaker, Boggero, and Ciampa,
2022, where a tool called MultiLinQ is used. This tool allows to join each component or quantity of
interest (QOI) of the system architecture to the corresponding variable in the MDO problem.

Figure 2.5: Both MBSE and MDO implementation in the aircraft industry have been extensively researched during the last
years, for example in the AGILE (Ciampa and Nagel, 2020) and AGILE 4.0 (Ciampa et al., 2020) projects. In AGILE 4.0 an

almost complete link between MBSE and MDO was achieved. Figure taken from (Baalbergen et al., 2022).

What has been done traditionally when trying to implement system architecture in the design process is
to manually select the architectures that are going to be analysed based on experts knowledge (Roelofs
and Vos, 2018). However, this exposes the process to bias and conservatism (Mesmer et al., 2022).

To overcome these hurdles, specially when dealing with novel technologies, a systematic exploration
of the different possible architectures constituting the design space should be carried out. This can be
done using system architecture optimization. Chapter 3 will provide an introduction to system architec-
ture optimization, as well as to the different components needed to carry it out and the main challenges
it involves.



3
System Architecture Optimization

This chapter aims to provide a more detailed explanation of the system architecture optimization pro-
cess. The first section is an introduction. After that, the different components needed to carry it out
will be presented. Finally, the main challenges of including MDO in system architecture optimization
will be discussed, ending with the identification of a gap in the implementation of MDO in the system
architecture optimization process, specially when applied to real industry.

3.1. Introduction to system architecture optimization
During the design process, one of the most difficult decisions to be taken is to determine the architec-
ture of the system. This decision, which is going to hugely influence the final success of the project,
has to be taken at an early stage of the process. However, the number of possible architectures that
could be chosen is significantly high, as it grows exponentially with the number of possible decisions
(Iacobucci, 2012). At this stage it is also exceedingly challenging to predict which is going to be the
influence in the performance of the system of the different architectural decisions.

To overcome these hurdles, system architecture optimization can be used, aiming an unbiased auto-
mated search for the best architectures by defining the design problem as a numerical optimization
problem (Bussemaker et al., 2023). To do so, two main components are needed, which are the archi-
tecture generator and the architecture evaluator.

Figure 3.1: Relationship between architecture generator and architecture evaluator, reproduced from Bussemaker and
Boggero, 2022. The architecture generator is in charge of formalizing the architectural design space (all the possible

architectures of the system). Then the architecture evaluator will provide quantitative feedback for the different architectures,
so that the optimum architectures can be obtained.

11
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The architecture generator will be in charge of formalizing the whole architecture design space (ADS),
which is the group of all the possible architectures of the system. Then the architecture evaluator will
provide quantitative feedback of each of the different architectures being generated, so that the opti-
mization process can be carried out (figure 3.1).

The process is usually as follows. First the optimizer proposes a design vector, which is translated into
an architecture by the architecture generator. After that, the architecture evaluator provides quantita-
tive feedback about that architecture to the optimizer. Then depending on the results, the optimizer will
propose a new design vector until the solution is obtained.

Usually, system architectures have to be designed considering multiple and conflicting objectives. In
this case, the solution is not an unique architecture, it is a Pareto front (figure 3.2). A Pareto front is a
set of design points that share the following condition: it is impossible to find another point in the design
space without making at least one of the objectives worse (Sobieszczanski-Sobieski et al., 2015). All
the system architectures found in the Pareto front are optimized solutions, as it is impossible to find
another architecture that is better at all the objectives at the same time.

Figure 3.2: Schema of an explored design space and the resulting Pareto front. Figure reproduced from Dincer, 2018.

In the next sections, more details will be provided about the different phases necessary to perform
system architecture optimization, with the next section focusing on the formalization of the different
possible architectures of the system.

3.2. Architecture generation
Each system architecture is the result of a combination of architectural decisions. To understand how
the different architectures can be generated, it is necessary to know what are architectural decisions,
and what different types of architectural decisions exist.

Architectural decisions are high-level design decisions that lead to different system architectures, lead-
ing to significant differences in the system performance (Crawley et al., 2015). Examples of architec-
tural decisions in an aircraft could be the type of engine (turbofan or turbojet) or the source of energy
for propulsion (electric or conventional-fuel based).

The impact of architectural decisions on the design and the importance of keeping traceability of each
of them is something well known in the engineering sector (Tyree and Akerman, 2005), being these
decisions the variables optimized in the system architecture optimization problem.
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3.2.1. Types of architectural decisions
To determine what are the possible architectural decisions of the system, and ultimately to be able to
perform system architecture optimization , it is necessary to know what are the different possible types
of architectural decisions. Selva et al., 2016 proposes a set of six different architectural patterns repre-
senting the different types of architectural decisions. These six patterns allow to generate the different
parts (referred as fragments) of an architecture. These are:

• Combining pattern: Given a set of n decisions, and each decision with its own set of discrete
options, an architecture fragment would be the result of the combination of exactly one of the
options for each of the possible decisions. As an example, if there are two decisions which are
the type of engine (turbofan or turbojet) and the source of energy (electric or conventional) an
architecture would be an electric turbofan, or a conventional turbojet. Morphological matrices are
also an example of a combining pattern.

• Assigning pattern: Given two sets , each component of a set has to be linked to certain compo-
nents of the other set. As an example, consider the case of a group of sensors and a group of
computers. Using this pattern, each architecture would be one of the possible ways of connecting
the computers with the sensors (each computer to one sensor, all sensors with all computers,...)

• Partitioning pattern: Given a set with multiple entities, these entities have to be grouped in an
undetermined number of subsets. It is similar to the assigning pattern but no overlap can occur.
Using the previous example, it is necessary to assign the sensors to the computers, but each
sensor can only be attached to a maximum of one computer (multiple sensors could share the
same computer).

(a) Assigning pattern. Each number can be
assigned to one or multiple letters.

(b)Connecting pattern. For each couple of
numbers it has to be determined if they are linked.

(c) Partitioning pattern. A group of numbers has to
be divided into an undetermined number of groups

with no overlapping.

(d) Permutation pattern. Each number has to be
joined to only one letter (and there is no overlap at

any of the two sets).

Figure 3.3: This figure shows four different architectural patterns. Figures taken from Selva et al., 2016.
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• Downselecting pattern: Given a set of entities, it is necessary to determine which entities are
going to be selected and which are not. As an example, consider a case where there are 8 differ-
ent types of instrument to be included in a satellite, but only 5 can be equipped. Each architecture
would be any combination of 5 different instruments.

• Connecting pattern: Given a set of entities, for each couple of entities it has to be determined if
they are connected or not. As an example of this pattern, consider the problem where it is neces-
sary to determine the connections between the main train stations of a country. Each architecture
will be the result of deciding if there is a connection for each couple of train stations.

• Permuting pattern: Given a set of entities, each architecture fragment/architecture is given by a
certain order of these entities. Considering again the case of sensors and computers, this pattern
would exist if the number of sensors and computer is the same, and it is necessary to link exactly
one sensor to only one computer.

According to Selva et al., 2016, all the possible architectures of a system can be obtained as a result of
different architectural decisions that are expressed as a combination of the six previous patterns. As an
example, consider the guidance problem proposed in Apaza and Selva, 2021. The problem consists
on designing a guidance system where it has to be determined how many components are wanted of
each element (computer, sensor, actuator). Then, for each of them, the type has to be chosen from a
catalog, and finally the connections between them have to be determined. The architectural decisions
regarding the number and type of components are example of combining patterns. The connections
can then be modelled using the assigning pattern.

These patterns own a characteristic property, and it is that all of them are exchangeable (although
always one of them is more efficient to model each architectural decision, from a computational point of
view). They allow to obtain a standard and complete formalization of the different types of architectural
decisions. However, these decisions are considerably abstract, making it challenging to systematically
build the whole architectural design space based on them.

3.2.2. Architectural Design Space Graph (ADSG)
The Architectural Design Space Graph or ADSG is a directional graph where all the possible different
components of a system architecture and the relationship between them are represented based on a
functional decomposition approach, with the aim of representing the architectural design space in a
more practical manner (Bussemaker et al., 2020).

In this functional decomposition approach, each architecture is represented by a set of functions that the
system has to fulfill and by a set of components that perform these functions (Bussemaker and Ciampa,
2022).The origin of this decomposition is the boundary function (or boundaries functions), which is/are
the main function(s) that the system has to provide. The boundary function could be provided by one
or different components, and each component will induce additional functions that are needed to be
fulfilled, as shown in figure 3.4.

Figure 3.4: Example of the ADGS of a water pump. The functions to be fulfilled are represented in white (FUN), and the
components fulfilling them are represented in grey (COMP). Additional blocks are added to provide more information about how
a function is fulfilled (Concept, CON) and to decompose a function into smaller functions (decomposition, DE). Figure taken

from Bussemaker and Ciampa, 2022.
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The ADSG is based on two types of architectural decisions, which are the selection choices and the
connection choices. Selection choices are decisions where there are mutually exclusive options, being
directly linked to the combining and the downselecting patterns introduced by Selva et al., 2016. They
can be further divided into two new types of architectural decisions:

• Function fulfillment: Functions specify what the system should do. Each function is fulfilled
by one or multiple components, and each component can demand a new function to be fulfilled.
There are numerous times where the same function can be performed by different components.
Determining which of the possible components performs a certain function is a function fulfillment
architectural decision.

There is an example of this architectural decision in figure 3.5. The systemmust provide a function
which is to provide longitudinal stability to the aircraft, and there are two different components that
can perform this function, the canard or the horizontal stabilizer. This type of architectural decision
can be linked to the combining and the downselecting patterns.

FUN:
Provide Longitudinal Stability

COMP:
Horizontal Tail

COMP:
Canard

fulfilled byfulfilled by

Figure 3.5: Example of a function fulfillment architectural decision. There are two possible components to provide longitudinal
stability, which are the horizontal tail or the canard.

• Component characterization: This architectural decision is found at a component level, provid-
ing additional information about the components being included in a certain system architecture.
This architectural decision is further divided into two architectural decisions.

The first one of these two architectural decisions is the number of instances. When a compo-
nent is included at a certain architecture, it might be necessary that the number of times it is
included can vary. In that case, the number of instantiations of that component is considered to
be an architectural decision.

Figure 3.6: Example of both types of architectural decisions at a component level. First it is necessary to determine how many
turbofan instances are generated (number of instances decision). Then for each turbofan, it has to be determined if it has or

not thrust reverse system (component properties decision). Figure taken from Bussemaker and Ciampa, 2022.
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The second architectural decision at a component level are the component properties. Each
component is defined by a group of different properties, which provide further information and
details about a certain component. For example, in the case of a wing, a property could be if it
has winglets or not. The value of each of these properties for each component is an architectural
decision too. If a component is repeated multiple times, each instantiation of the component could
have different values of the properties. This can be observed in figure 3.6.

To generate the ADSG, connection choices are needed too. These choices cover the decisions re-
garding the possible connections between some sources and targets, being directly linked with the
6 patterns from Selva et al., 2016 (section 3.2.1) . These connections are usually implemented us-
ing ports, where each connection can represent anything, from energy flows to physical connections
between components, as shown in figure 3.7.

Figure 3.7: This figure shows the logic inside the port. In this case, the possible connections between a sensor and a
computer are modelled inside the port (same example as in section 3.2.1). Figure taken from Bussemaker and Ciampa, 2022.

Four types of architectural decisions (function fulfillment, component number of instances, component
properties and component connection choices) have been introduced. These decisions allow to gener-
ate the ADSG using software such as ADORE (Bussemaker, Boggero, and Ciampa, 2022), formalizing
the whole architectural design space. However, to carry out system architecture optimization, it is nec-
essary to provide quantitative feedback about each of the different generated architectures. The next
sections will cover the methodology that can be used to achieve this, as well as the main challenges
that this process arises.

3.3. Architecture evaluation
To compare the different architectures being generated, so that an optimization can be executed, it is
necessary to evaluate quantitatively each of the different architectures being generated without any
user interaction. This quantitative information has to be given to the optimizer, so that it can determine
which architectures are better than others and obtain an optimized solution in the end.

To accurately evaluate each of the different architectures generated, MDO can be used, so that the cou-
plings between the multiple disciplines involved in the design process are taken into account. When
carrying out MDO, information regarding the objectives and the constraints is given to the optimizer for
each architecture evaluated, determining the performance and the feasibility of the system architecture.

In this section, first the requirements MDO platforms desired to be used as architecture evaluators have
to satisfy will be discussed. After that, some of the main MDO platforms are going to be introduced,
paying special attention to their advantages and disadvantages when used as evaluation method for
system architecture optimization, specially when applied to industrial cases. Finally, some conclusions
will be drawn, the gap in the literature and in the existing technology will be identified and the thesis
objective will be formulated.
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3.3.1. Requirements for the implementation of MDO in system architecture opti-
mization

MDO platforms used as architecture evaluators for system architecture optimization have to satisfy
multiple requirements. A total of three different requirements have been identified.

Mixed-discrete variables
A differentiating characteristic of MDO problems used for system architecture optimization is the types
of variables they involve, which are both continuous and discrete (mixed-discrete variables). Con-
tinuous variables are numerical variables defined by a lower and an upper bound, taking any possible
value between bounds. An example of this type of variables could be the aspect ratio or span of a wing.

Discrete variables are defined by a set of possible values, meaning the number of values they can take
is finite. Usually, a further distinction is made between integer variables and categorical variables. In-
teger variables are numerical variables where the order of the values inside the set is important, being
possible for optimizers to use this information for the optimization. Some examples of these variables
could be the number of engines or the number of ribs of a wing. Categorical variables can be of any
type and the order inside the set is irrelevant. Some examples would be the material used for the fuse-
lage or the type of energy used by the propulsion unit.

When performing system architecture optimization, all these types of variables appear in the MDO
problem. One of the main reasons is because architectural decisions are usually treated as discrete
variables in the optimization process (Chepko et al., 2008). As a consequence of all this, any MDO
platform intended to be used as architecture evaluator must be able to deal with mixed-discrete
variables, both as design and state variables.

Optimization algorithms
Architecture evaluators have to provide the optimizer with quantitative feedback of each proposed archi-
tecture. There are two possibilities for this. The first one is to use an optimizer external to the evaluator.
The second one is that the platform used as evaluator also runs the system architecture optimization
problem itself (the optimizer is integrated in the MDO platform too).

In both cases, the optimizer has to be able to deal with multi-objective problems, as usually system ar-
chitectures are built for multiple and conflicting objectives (Hirshorn et al., 2017). Due to the complexity
of system architecture optimization and the consequent usual participation of multiple companies/insti-
tutions in the process, usually tools used in the process are considered to be black-boxes, where only
the outputs for a certain combination of the inputs can be known.

Another problem is that novel architectures usually demand physics-based tools for evaluation. When
using these tools in the MDO problem execution it is common that hidden constraints appear. Hidden
constraints are constraints that are not known by the optimizer until the evaluation has ended (Müller
and Day, 2019). These constraints also mean that the optimizer won´t be able to evaluate that archi-
tecture. Hidden constraints appear in most cases because the simulation used for the evaluation has
crashed (Le Digabel and Wild, 2023). It is key that the optimization algorithm being used is able to deal
with this type of constraints.

Finally, as each architecture is the result of a set of architectural decisions, the variables to be opti-
mized might change depending on the architecture being evaluated. For example, in the design of a
hybrid-electric aircraft propulsion system, depending on the selection of turboshafts or electric motors
to provide mechanical power, the design variables will be different (Bussemaker et al., 2023). An ex-
ample would be the batteries weight, which would only exist in the MDO problem if motors are chosen.
It is necessary that the optimization algorithm used can deal with hierarchical design variables like this.
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It can be concluded that MDO platforms used to as architecture evaluatorsmust include or be able to
connect to algorithms able to deal with mixed-discrete, multi-objective, hierarchical, black-box
optimization problems, so that they can solve the system architecture optimization problem.

Some examples of these algorithms are evolutionary algorithms, such as the Nondominated Sorting
Genetic Algorithm II (NSGA-II) (Deb et al., 2002), or Surrogate Based Optimization (SBO) algorithms
(Bussemaker, Bartoli, et al., 2021).

Automatic readjustment of the MDO problem
Each system architecture is composed of different components. As each component is defined by
different variables, this means that variables included in the MDO problem formulation will change
(Bussemaker, Garg, and Boggero, 2022). Furthermore, the design disciplines, constraints and the
possible connections between them might also change depending on the architecture that is analysed.
As an example to illustrate this, consider the case of an aircraft propulsion system. In the case of an
hybrid architecture, additional disciplines with respect to the conventional architecture (with their cor-
responding inputs and outputs) will be included to size and optimize the electric part of the propulsion
system .

Traditionally, as the possible architectures of the system were manually selected and the number was
not too high, a different MDO problem was formulated for each architecture. However, for the case
of system architecture optimization, the number of possible architectures is excessive to follow this
procedure. As a consequence, any MDO platform used for system architecture optimization must be
able to readjust the MDO problem automatically depending on the architecture being analysed.

There are two approaches to deal with this automatic readjustment of the MDO problem. The first
approach is that the MDO platform formulates and executes a different MDO problem for each archi-
tecture (figure 3.8). The second approach is that the MDO platform formulates just an unique MDO
problem and that during the execution process the necessary modifications are made for each specific
architecture (figure 3.9).

Figure 3.8: This figure shows the first possible approach to adapt the MDO problem automatically, where for each system
architecture (blue) proposed by the optimizer, a different MDO problem is formulated (red) and executed (green).

Figure 3.9: This figure shows the second possible approach to adapt the MDO problem automatically, where a single MDO
problem is formulated and the execution process is adapted automatically for each system architecture.
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The first approach should be more efficient from the computational point of view, as only the elements
necessary to exist in the MDO problem for each system architecture are included. However, there are
some cases where only the second approach is possible as the execution platform might not allow to
change the MDO problem formulation once the execution starts.

It is important to mention that on some occasions the input to the architecture evaluator will be the
optimizer design vector. Nevertheless, there are other cases where it is the actual system architecture
(translated or generated from the optimizer design vector). However, in both cases the MDO problem
is readjusted according to a certain system architecture (directly or indirectly).

3.3.2. Possible MDO platforms for system architecture optimization
The different requirements that an MDO platform has to satisfy to be used as an architecture evaluator
have been introduced. Now the main MDO platforms in the aerospace industry will be introduced,
including a discussion about their suitability to be used as architecture evaluators. Also their suitability
for real industrial projects will be covered through the study of their adaptability to collaborative MDO.

OpenMDAO
OpenMDAO is an open-source optimization framework, but also a platform to build new analyses tools
based on Python (OpenMDAO, 2019), which has been developed by a collaboration of the MDO lab
of the University of Michigan and NASA.

OpenMDAO has multiple advantages that make it a competent MDO platform, although the two distinc-
tive ones are the development of own algorithms for the solution of coupled systems and the develop-
ment of methods for the effective calculation of derivatives (Gray et al., 2019). This allows OpenMDAO
to deal (from the mathematical point of view) with design problems characterized by complex and exten-
sive design spaces, while maintaining a great efficiency, specially when gradient-based optimization
can be used.

OpenMDAO has already been used as part of more complex codes to formulate and execute MDO
problems for system architecture optimization (Bussemaker et al., 2023). It is able to deal with discrete
variables and also owns some of the necessary algorithms to solve these MDO problems. However,
on its own, it cannot readjust the MDO problem automatically for each system architecture. The main
reason for this is that to run the optimization using OpenMDAO as an optimizer, the MDO problem
formulation and execution cannot be changed (figure 3.10).

Figure 3.10: This figure shows that when OpenMDAO is in charge of running the optimization, the model containing the MDO
problem formulation and execution has to be fixed. As a consequence, it cannot solve system architecture optimization

problems by itself.

In the literature, OpenMDAO is used as an architecture evaluator, existing an external optimizer to run
the whole system architecture optimization problem in a higher level. Then, based on the architecture
proposed by this optimizer, a different problem was modelled and executed using OpenMDAO, and
the results were given back to the external optimizer (figure 3.11). However, it is important to remark
that this automatic readjustment of the MDO problem was possible only when there was an external
optimizer, and what is more important, though the addition of additional code by the user (as it is Python
based). Using default OpenMDAO properties it is not possible to use it as an architecture evaluator.
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Regarding collaborative MDO, it is not adapted much to it. It does not own a GUI. As a result, great
quantities of coding are needed in order to formulate the MDO problem, which could take considerable
time depending on the size of the problem and the experience of the designer. This coding also results
in a huge opening barrier, which is a serious problem when performing system architecture optimiza-
tion, due to the numerous amount of experts that are involved in the process and that have different
knowledge levels about MDO and coding.

To formulate the MDO problem, it is necessary to know beforehand all the variables, disciplines and
constraints of the problem, including all the possible connections between them, which is usually not
the case in system architecture optimization. Finally, it is also not very flexible when introducing new
disciplines or connections in the MDO problem.

Figure 3.11: OpenMDAO can be used as an architecture evaluator, but only through the addition of additional code and using
an external optimizer to run the optimization. The external optimizer proposes the different architectures and a different MDO

problem is formulated and executed in OpenMDAO to optimize that specific architectures, giving back the results to the
external optimizer.

GEMSEO
GEMSEO is an open-source MDAO platform developed by the IRT Saint Exupéry consortium (Gallard
et al., 2018), including partners such as Airbus and ISAE-Supaero, which has already been used by
one of the main players in the aerospace industry (Airbus). It works in a similar way to OpenMDAO
as it is also based on Python. It shares all the advantages of OpenMDAO for system architecture op-
timization (mixed-discrete variables and algorithms). However, it shares the same disadvantages as
OpenMDAO too.

It also needs additional code to readjust the MDO problem, and consequently, to be used as an archi-
tecture evaluator. Regarding collaborative MDO, it also lacks a GUI and a great amount of coding is
necessary to formulate the MDO problem, making it difficult to formulate complex system architecture
optimization problems using this platform. It also requires again to know the MDO problem formulation
beforehand and is not flexible to modifications.

RCE
RCE (Remote Component Environment) is an open source software environment that allows to both
generate and execute workflows by integrating different tools into a common network (Boden et al.,
2019). RCE is highly adapted for the execution of complex MDO problems. Each expert can introduce
their tool on the workflow execution and check on real time the value of all the variables. The workflow
can also be executed in a distributed manner, with the tools located on different computers. Intellectual
property can be also protected adding additional software such as BRICS.
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However, formulating the MDO problem in this platform is tedious and time consuming. High loads
of work are necessary to integrate the different tools between each other, including making all the
connections manually. The tool is not really flexible when integrating new disciplines neither, and the
debugging process is time consuming. These are the main reasons why RCE is usually used just as
an execution platform, defining the MDO problem in platforms specially designed for that task, such as
KADMOS.

KADMOS, CMDOWS and OpenLEGO
Knowledge and graph-based Agile Design for Multidisciplinary Optimization System (KADMOS) is an
open-source graph-based MDO problem formulation platform developed by TU Delft (van Gent and
La Rocca, 2019), based on graph-analyses.

KADMOS cannot execute the MDO problem itself. Common MDO Workflow Schema (CMDOWS) is
used to store the MDO problem formulation in an XML file. This file can be later used to execute the
MDO problem in various MDO execution platforms (van Gent et al., 2018). These platforms include
RCE or OpenMDAO. Plugins are need for both cases, such as Open-source Link between AGILE and
OpenMDAO (OpenLEGO, de Vries et al., 2017).

KADMOS owns some characteristics necessary to be used as an architecture evaluator, such as the
ability to deal with continuous and discrete variables. KADMOS and its associated tools allow to for-
mulate and execute MDO problems that satisfy many of the requirements necessary for collaborative
MDO, such as the inclusion of a GUI called VISTOMS (Aigner et al., 2018). A framework has already
been proposed to allow KADMOS to readjust the MDO problem automatically for each system archi-
tecture (A.-L. M. Bruggeman and La Rocca, 2023), and research is being carried out by TU Delft in this
field right now to implement this functionality.

WhatsOpt
Finally, to reduce the opening barrier of both OpenMDAO and GEMSEO, WhatsOpt could be used.
WhatsOpt is a collaborative environment to support MDAO (Lafage et al., 2019) created by ONERA.
Basically, it is a GUI where the MDO problem can be formulated.

WhatsOpt allows to reduce the opening barrier, as now the MDO problem is modelled and not coded,
but it achieves that by reducing the freedom of the user. Also some capabilities of OpenMDAO and
GEMSEO are lost, specially those related with changing dynamically the MDO problem, making it right
now not suitable for system architecture optimization.

3.3.3. MDAO Workflow Design Accelerator (MDAx)
None of the previous platforms satisfy all the requirements necessary to implement MDO in real industry
system architecture optimization process. Another option is going to be studied in this section, which is
MDAx. MDAx is a Python-based MDO workflow modelling environment developed by DLR that allows
to model, inspect and explore workflow components and their relationships, as well as exporting the
workflow configuration for the execution on integration platforms (Page Risueño et al., 2020).

To formulate the MDO problem, MDAx uses a GUI based on the XDSM which allows to drag and con-
nect the different components of the workflow. This aims to solve existing drawbacks of other MDO
platforms related with the MDO problem formulation, such as the difficulty to set up and modify the
workflow.

To study MDAx adaptability to be used as an architecture evaluator as part of the system architecture
optimization problem, the methodology used to formulate the MDO problem will be discussed first. After
that, the workflow execution process through RCE will be presented. Finally, it will be determined how
does MDAx+RCE currently deal with the three different requirements previously discussed, as well as
with collaborative MDO.
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MDO problem formulation
MDAx uses the graph definition of MDO problems introduced by Pate et al., 2014 and further developed
by van Gent, 2019 as a base to formulate the MDO problem. In this methodology, each discipline is
represented by a block, and its inputs and outputs are attached to it as variable nodes. To formulate the
MDO problem, it is necessary to obtain two graphs, which are the data graph and the process graph
(figure 3.12).

The data graph includes all the data connections existing between the different disciplines (which
represent design tools). Then, the process graph includes the information regarding the execution
order of the different disciplines.

Figure 3.12: On the left , example of a problem data graph. On the right, a possible execution graph. Figures taken from
van Gent, 2019.

This graph-based methodology has the great advantage that it is not necessary to know the whole
MDO problem beforehand to formulate the MDO problem (Pate et al., 2014). It allows designers to try
different combinations of tools and to study the connection between them. Then, after some iterations,
a valid MDO problem can be formulated. This process simplifies the MDO problem formulation, allow-
ing to tackle the complex MDO problems needed for system architecture optimization.

Three steps are necessary to formulate the MDO problem in MDAx. These are:

• Load blocks inputs and outputs: Each discipline is defined by its inputs and outputs. To include
a discipline in MDAx, it is necessary to declare its inputs and outputs. This can be done directly
in the GUI, or in a more efficient manner by uploading the inputs and outputs of the discipline in
two different XML files. XML files are used because they use an universal language and data
structure, helping to integrate the different tools used in the execution phase.

These files have a tree structure, consisting of nodes, where each node can store multiple types
of data (such as strings, numbers, arrays,...), or even multiple children nodes . Each node, and
its information, can be accessed through its corresponding xpath, which is just a string specifying
the location of the node inside the XML tree. This xpath expression is built including all the nodes
from the root (the most outer node of the XML file) to the selected node (figure 3.13) .

MDAx includes two particularities with respect to the approach introduced by van Gent, 2019 to
formulate the data graph (Page Risueño et al., 2020). First, tools that don´t have inputs and/or
outputs are allowed, as in many cases tools to visualize the process or the results are needed
in the workflow. Secondly, tools with self-loops (tools that have a variable node with the same
name as input and output) are allowed, assuming that the output is just an updated value of the
input . An example would be a tool that needs an estimation of the MTOW to calculate the real
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MTOW of the aircraft.

1 <aerodynamics>
2 <aircraft>
3 <wing>
4 <span>17</span>
5 <airfoil>NACA0012</airfoil>
6 <root_chord>3</root_chord>
7 <tip_chord>1</tip_chord>
8 <sweep_angle>15</sweep_angle>
9 </wing>
10 </aircraft>
11 <flow>
12 <speed>200</speed>
13 </flow>
14 </aerodynamics>

Figure 3.13: Possible XML used as input of an aerodynamic tool. The wing geometry and the flow conditions are given as
input. The input values necessary for the tool can be obtained specifying the nodes xpaths where the information is stored. For

example, the value of the wing span could be obtained through the xpath ”/aerodynamics/aircraft/wing/span”.

Knowing this, and once all the tools have been uploaded, MDAx will make the connection be-
tween them joining the output variable nodes of disciplines with input variable nodes that share
the same name. This can be done because MDAx assumes that a Central Data Schema is used,
allowing to make connections automatically.

• Resolve collisions: A collision occurs when two different disciplines have an output variable
node with the same name. This is a common scenario, for example in cases where a tool has to
be executed in different parts of the workflow or when two tools provide the same output but with
different levels of fidelity.

MDO problems with collisions are considered still valid, but they won´t be able to be executed.
MDAx allows to identify which variable nodes are causing a collision automatically, and provide
several methods to solve them automatically.

• Resolve feedback: The final step to end the problem formulation is to obtain the process graph,
which indicates the execution order of the workflow. In MDAx, all the different disciplines are
found in the diagonal of the XDSM, where blocks found on the left are executed first.

The user can modify the order easily by dragging the different blocks. Then MDAx will check
if the workflow is executable. This is done by iterating the diagram backwards and determining
if there are uncoverged feedback between disciplines. Unconverged feedback happens when
a discipline demands an input that has not been computed yet. These have to be fixed for the
workflow to be executed.

There are two ways to do this. The first one is to rearrange the disciplines, which will change the
connections and might solve the problem (MDAx included automatic tools to order the disciplines
minimizing feedback connections). Sometimes unconverged feedback cannot be solved just by
reordering the disciplines, so it will be necessary to add convergers.
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When these three steps are executed successfully, a valid and executable MDO problem will have been
formulated. However, MDAx is not a complete MDO platform by itself, as it cannot execute the MDO
problem. There are different options to execute the workflow (OpenMDAO, Optimus,...), although the
most common is RCE.

MDAx export to RCE
When exporting the workflow to RCE, there are three high-level groups of elements that can exist in
the workflow:

• Input provider and Output writer: The input provider is an RCE element that contains all the
necessary inputs necessary to start the workflow. These inputs are given in the form of an XML
file. The data file contains usually a value for all input variable nodes that are unconnected, as
well as an initial value for the design variables (if there is an optimizer). The structure of this data
XML file can be created automatically by MDAx, but it is the user who has to add the initial values
manually. The file must be also selected by the user in RCE to start the optimization.

In the case of the output writer, it is just another RCE element where the final values of the differ-
ent variables are stored in an XML file.

• Converger and Optimizer: These blocks will only exist if they appear in the XDSM. RCE con-
tains already default blocks for both of them. MDAx will set them up automatically depending on
the MDO problem formulation, including the design variables, the optimization algorithm or the
variables used for convergence, among other specifications.

• Tool: Each discipline in MDAx will lead to the creation of at least 5 blocks in the RCE workflow
(figure 3.17). This is because inputs and outputs of tools have to be specially prepared before
and after execution. To show how these components work, consider the case of a discipline that
needs as input two variables (x and y). Then this discipline provides as output z, which is the
addition of both previous variables.

The first block of this discipline is the base splitter. This block will create a copy of the workflow
XML. The first copy goes to the input filter block, which selects from this file those nodes (and the
data they include) that represent input variables of the tool. Then it creates a new XML file only
with them (figure 3.14).

1 <workflow>
2 <x>1</x>
3 <y>1</y>
4 <a>1</a>
5 </workflow>

1 <workflow>
2 <x>1</x>
3 <y>1</y>
4 </workflow>

Figure 3.14: Figure showing the process carried out in the input filter. The figure on the left shows the workflow file before the
discipline. The second figure shows the XML file to be used as input for the tool, where only those variables to be used by the

tool are included.

Then this new file will enter into the tool block. Finally, from the XML file generated by the tool,
only those nodes that represent variables existing in the MDO problem will be included in a new
file created by the output filter block (figure 3.15).

The last step is to merge the second XML copy created by the base splitter and the XML coming
from the output filter into an unique XML file, which is done by a new block denominated merger
block. This block is a script block generated by MDAx (figure 3.16).
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1 <workflow>
2 <z>2</z>
3 <b>1</b>
4 </workflow>

1 <workflow>
2 <z>2</z>
3 </workflow>

Figure 3.15: Figure showing the process carried out in the output filter. The figure on the left shows the XML file generated by
the tool. In this file, variables that are not included in the MDO problem could be found, as b in this case. The output filter will

delete these unnecessary variables from the file, leading to a new file as shown on the picture on the right.

There is an additional important detail to be mentioned, and it is the case of tools executed in
parallel. In this case, additional merger blocks will be needed to be included to ensure that all the
results are included in the workflow file to be used in the next execution step.

1 <workflow>
2 <x>1</x>
3 <y>1</y>
4 <z>2</z>
5 </workflow>

Figure 3.16: The original workflow file and the output filter file are merged in the merger block. An example of the merged file
is shown in this figure.

Finally, an example of an MDAx discipline export in RCE can be found in figure 3.17

Figure 3.17: Example of a discipline generated by MDAx in RCE. First the input filter provides the workflow XML file. The
splitter will generate two copies. The first one goes to the left to the input filter. After preparing the input file for the tool,

executing it and extracting the necessary outputs in the output filter, the generated file will be merged with the second workflow
file generated by the base splitter in the merger block. Finally, the results are stored in the output writer.

MDAx state of the art adaptability to system architecture optimization
Three different requirements were identified to be fulfilled by an MDO platform to be used as an ar-
chitecture evaluator in the system architecture optimization process. The first one was dealing with
mixed-discrete variables. This is not a problem for MDAx and RCE, as they work with XML files, and
nodes inside XML files can store many different types of data. Even more complex data structures,
such as arrays, can be exchanged between disciplines.
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For the case of the optimization algorithms, RCE includes several default algorithms that are able to
deal with mixed-discrete, multi-objective, hierarchical, black-box optimization problems. It also allows
to include custom tools with more advanced optimization algorithms, such as those presented in SBAr-
chOpt (Bussemaker, 2023).

Both MDAx and RCE are fully adapted to collaborative MDO, being the strongest characteristic of the
platform. In the case of MDAx, it includes a GUI that guides user to formulate the MDO problem (figure
3.18). As mentioned before, this simplifies enormously the time required to set up the problem, as the
user does not need to know all the disciplines and their connection beforehand. The GUI also allows to
modify the problem in a much easier and faster manner. MDAx also includes auxiliary tools necessary
to deal with complex MDO problems, such as the option of redo/undo and the automatic detection/res-
olution of collisions, simplifying enormously the formulation of the MDO problem.

RCE is also adapted to collaborative MDO, including the possibility to supervise the results in real time.
Tools can be executed remotely and additional tools such as BRICS can be used to protect confidential
data too. MDAx already exports to RCE a workflow that is almost ready for execution. Before that, two
additional steps are necessary to be done in RCE by the user, which are including the execution tools
(if not detected automatically) and implementing the input file.

The only requirement left to be implemented in MDAx to be used as an architecture evaluator adapted
to collaborative MDO is to model MDO problems that can be readjusted automatically depending on
the architecture analysed. This is going to be the central topic of the following section.

Figure 3.18: MDAx GUI. The XDSM is shown in the main part of the GUI. The toolbar includes several features to modify the
workflow, such as the inclusion of tools, the undo/redo or the inspection of the variables existing in the workflow (variable tree).
Also features characteristics of collaborative MDO, such as automatic detection and resolution of collisions, are included.

3.4. Technological gap
System architecture optimization allows to obtain the optimum architecture of a system by formulating a
numerical optimization problem. To evaluate the different candidates proposed during the optimization,
MDO can be used to take into account the couplings interactions existing between the different design
disciplines.
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To do this, MDO platforms can be used as architecture evaluators, evaluating each architecture pro-
posed by the optimizer through MDO and giving back their performance and feasibility in the form of
objectives and constraints. Three different requirements have been identified that are needed to be
fulfilled by an MDO platform to be used as an evaluator for system architecture optimization. These are:

• It must be able to deal with mixed-discrete variables.
• It must include or be able to connect to algorithms able to deal with mixed-discrete, multi-objective,
hierarchical, black-box optimization problems.

• It must be able to readjust the MDO problem automatically depending on the system architecture
being analized.

If system architecture optimization is desired to be used in the industry, the MDO platform used as eval-
uator also has to be adapted to collaborative MDO. A research has been carried out on some of the
main MDO platforms in the industry, determining that there are some platforms adapted to collaborative
MDO, but there is none that can readjust the MDO problem automatically, existing a gap in the literature.

The platform consisting on MDAx and RCE is able to deal with the two first requirements to be used as
architecture evaluator. It is also adapted to collaborative MDO. To fill this literature/technological gap,
the objective is going to be to adapt MDAx to be used as an architecture evaluator, by extending its
backend code to model and export MDO problems that can be readjusted automatically during
the optimization process, depending on the architecture being analysed.

Every time that MDAx formulates and exports the MDO problem to RCE, some manual modifications
are needed before executing it, as mentioned previously. Also, if tools are executed remotely and cre-
dential are needed, it is before the execution starts that these have to be checked. As a consequence,
to integrate the automatic readjustment of the MDO problem in this platform, the approach consisting
on the automatic readjustment of the execution process has to be used.

Only the back end part will be considered for time reasons, although it is necessary to implement in
the GUI the corresponding modifications in the backend to obtain an MDO platform to be used as an
architectural evaluator and fully adapted to collaborative MDO.

Nevertheless, implementing all the necessary features for the automatic reformulation of the MDO
problem in the backend will be already an important step forward in the integration of MDO in the
system architecture optimization process and in the inclusion of the latest in the industry. To do so, the
first step will be to determine what are possible modifications that the system architectures can cause
in the MDO problem formulation/execution, as well as determining possible strategies to deal with them
from the implementation point of view. This will be the goal of the next chapter.



4
Architectural influences

When performing system architecture optimization, MDO can be used to evaluate the different architec-
tures. MDO platforms used for this function need some special capabilities, including the necessity of
readjusting the MDO problem for each different architecture automatically. Each of the different mod-
ifications in the MDO problem formulation/execution caused by the different system architectures will
be denominated architectural influences.

The possible modifications that an MDO platform needs to deal with to reformulate the MDO problem
for system architecture optimization are the same necessary to model an unique MDO problem whose
execution process is adapted automatically to the different architectures. This is the reason why the
previous definition of architectural influences includes both the formulation and execution.

These architectural influences are the topic of this chapter. First, the methodology used to determine
the different architectural influences will be introduced. Then, an example case of how the methodology
was applied will be discussed. After that, the four architectural influences discovered will be presented,
as well as a couple of verification cases. Finally, the different manners in which MDO platforms can
deal with these architectural influences, from an implementation point of view, will be studied.

4.1. Methodology
Determining the modifications that all different architectures of a system could cause in the MDO prob-
lem formulation/execution might seem as an impossible task, as the number of architectures is usually
excessively high. However, all the possible architectures can be obtained as a combination of only four
different types of architectural decisions (section 3.2.2). Therefore, these modifications or influences
in the MDO problem can ultimately be attached or linked to one of those four architectural decisions.

To determine what are the architectural influences caused by these decisions, the following methodol-
ogy is proposed. First, a sample of MDO problems is collected. These problems will cover different
fields, including multiple problems related with the aerospace sector. Each of these problems is formu-
lated for a certain system architecture, which has been previously fixed.

Then, for each of the problems, different ”thought experiments” will be performed where the original
system architecture is modified using the architectural decisions previously mentioned. The aim is to
observe the modifications that would be caused by the inclusion of the different architectural decisions,
obtaining all the possible architectural influences. To show the procedure, an example application of
this methodology is presented in the next section.
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4.2. MDO Example case: Supersonic Business Jet Problem (SSBJ)
To show how the presented methodology has been used to determine the different types of architec-
tural influences, an example case is widely discussed in this section. The problem chosen is a slightly
modified version of the Supersonic Business Jet Problem. The SSBJ problem is a well-known MDO
aircraft design problem presented by Sobieszczanski-Sobieski et al., 1998, as an adaptation of the
problem proposed by the 1995-1996 AAIA Student Competition.
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Figure 4.1: Data dependency between the different design disciplines of the SSBJ.

The aircraft design process is implemented using four different design disciplines coupled between
each other, which are structures, aerodynamics, propulsion and performance. Each discipline consists
on a set of numerical equations which are valid for the early conceptual design phase. The inputs and
outputs of these disciplines, as well as the coupling variables, are shown in figure 4.1.

The optimization problem can be formulated as:

maximize : R

with respect to : t/c,M, h,AR,Λ, Sref , λ, x, Cf , T

Finally, the XDSM of the SSBJ would look similar to the one shown in figure 4.2.
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Figure 4.2: XDSM of the SSBJ problem.
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Some constraints have been added to check that the design is feasible, as well as some reference
values (scaler) to make the constraints and the objective non dimensional. A convergence loop has
been included to ensure that the solution is compatible with all the different design disciplines. Finally,
an optimizer block is added, being responsible for providing the different design vectors.

Architectural influences in the SSBJ problem
In the SSBJ problem, the geometry of the wing can be determined using five design variables (t/c,Λ,λ,
AR and Sref ). These variables are inputs of design disciplines where the wing geometry is needed.
However, it could be an architectural decision to include winglets to reduce the induced drag gener-
ated by the wing (function fulfillment architectural decision).

In this case, two new variables would be added to define the geometry of the wing, which are the length
of the winglet (lw) and the cant angle (δ), as shown in figure 4.3. As a result, depending on an archi-
tectural decision, these variables would be included or not in the MDO problem formulation/execution.
These variables are going to be called Conditional Variables.

lw

δ

Figure 4.3: If a winglet is included in the architecture, the length of the winglet (lw) and the winglet cant angle (δ) have to be
included when defining the wing geometry.

Sometimes more complex data structures are exchanged between disciplines, being recommendable
that the MDO platform can also deal with modifications in these data content. Consider as an example
a structure discipline which needs as an input an array representing the location in the y axis of the
wing ribs (Y_ribs).

Figure 4.4: The number of ribs is now another design variable of the optimization problem. As a result, the number of y
locations to be optimized will change, modifying the data length to be inputted to the structures discipline. Figure taken from Ali

et al., 2021.

When performing system architecture, the number of ribs (component instance architectural decision)
could be another design variable of the problem (figure 4.4). As a result, the length of this array would
change depending on the architecture, being another more complex case of Conditional Variables MDO
platforms should be able to deal with.
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Connection choices decisions also lead to influences in the MDO problem. This is what happens in
the case of the landing gear location. Suppose there are two structure disciplines, one for the fuselage
and one for the wings. Depending on where the landing gear is located, the landing gear loads will be
an input for the wing or the fuselage structure disciplines. This results in a change in the connections
existing in the MDO problem, as shown in figure 4.5.

Fuselage geometryLanding Gear geometry Wing geometry

Landing Gear loads
1:

Landing Gear Loads

2:
Fuselage Structure

2:
Wing Structure

(a) Landing gear attached to the fuselage

Fuselage geometryLanding Gear geometry Wing geometry

Landing Gear loads
1:

Landing Gear Loads

2:
Fuselage Structure

2:
Wing Structure

(b) Landing gear attached to the wing

Figure 4.5: When the landing gear is attached to the fuselage, the landing gear loads discipline will be connected to the
fuselage structure discipline. When the landing gear is attached to the wing, this connection is deleted and a new one is

generated between the loads discipline and the wing structure one.

Another possible architectural decision that could be allowed to change would be the number of en-
gines. Consider the case where the propulsion discipline also needs as an input the geometry of
the engine. Then, if each engine has different geometrical properties, the propulsion discipline would
be necessary to be repeated a number of times equal to the number of engines (discipline repetition).

The final architectural decision that is going to be included in this example is the fuselage material (com-
ponent property architectural decision), which could be chosen to be metallic or composite. Depending
on which decision is taken, the discipline activated/used for the structure analyses could be different,
leading to two possible structure disciplines, as shown in figure 4.6.

Outputs

1:
Previous part of the workflow

2b:
SSBJ-Structures-Composite

Outputs

InputsInputs

2a:
SSBJ-Structures-Metallic

3:
Continuation of the workflow

Figure 4.6: This figure shows an example of discipline activation. When a metallic material is chosen, the metallic structures
discipline is chosen and the necessary connections are made (dark blue path). In the case of composites, another discipline is
used to perform structural calculations, so new connections are needed (yellow path). When multiple disciplines can be added

or excluded, connections always change, and even variables could be different too.

As it can be observed, using the different types of architectural decisions, four different types of possible
modifications in the MDO problem (influences) were found. All these influences can usually also be
found in the rest of the problems in the sample, as shown in appendix A. In the next section, these
influences are formalized.

4.3. Architectural Influences
Applying the previous methodology to all the sample problems (appendix A) and using as a base the
influences discussed in Bussemaker, Garg, and Boggero, 2022, a total of four different architectural
influences in the MDO problem have been discovered. In this section, each of them will be widely
introduced, including an example where they occur.
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4.3.1. Conditional variables (I1)
Each system architecture is made of different components. Each component is defined by different
variables, and as a result the variables existing in the MDO problem might change depending on the
system architecture that is evaluated. The variables that might or might not exist in the MDO problem
because of an architectural decision are denominated conditional variables.

Apart from the effects it has for the optimizer (discussed in section 3.3.1), the existence of conditional
variables leads to the modification of inputs and outputs of the different disciplines (where disciplines
refer to both design disciplines and constraints). This means that the inputs and outputs of the disci-
plines have to be readjusted or modified depending on the architecture that is analysed.

As an example, consider an engine design disciplines that needs as inputs the variables defining the
geometry of the engine. The diameter of the fan or the number of fan blades will be an input only if a
turbofan architecture is chosen (instead of a turbojet or a turboprop, for example).

When dealing with complex system architecture optimization problems, MDO disciplines usually don´t
exchange variables individually, but in more complex data structures (for example arrays). It could
also happen that because of an architectural decision, part of these data (or all) is included or not in
the MDO problem formulation.

All these complex data could ultimately be modelled as multiple individual variables, and that is why
modifications of this data are not considered a separated architectural influence (and ultimately a re-
quirement for system architecture optimization). However, two special cases have been found that
should be covered by MDO platforms used for complex problems that are worthy to be mentioned.

First, when arrays are used, it could be that an architectural decision causes the length of an array
to change. MDO platforms should be able to deal with dynamic length arrays. An example would be
the case where the location in the y-axis of a wing spars are given as inputs of a discipline, being the
number of wing spars an architectural decision.

The second case is where multiple variables related with the same component are grouped together
under one single instance. For example , two disciplines could exchange all the geometric and aerody-
namic properties of a wing on a single data structure. Big parts of this data structure could be modified
because of an architectural decision. An example would be the configuration of high lift system to be
used. The wing data structure will include multiple different variables depending on the high lift devices
chosen, and the MDO platform should deal with these phenomena too.

4.3.2. Data connection (I2)
In some occasions, the data flow connections between disciplines could be modified as a result of an
architectural decision. This happens when the disciplines exchanging an existing state variable change
because of an architectural decision. MDO platforms used for system architecture optimization must
allow to dynamically reroute the connections between disciplines automatically.

An example of an architectural decision causing this influence is the landing gear placement in an air-
craft (section 4.2). In the previous example, depending on where it is chosen to place the landing gear
(under the wing or under the fuselage), the landing gear loads will be an input to the wing or to the
structure discipline, leading to changes in connections between disciplines.
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4.3.3. Discipline repetition (I3)
There are some cases where a discipline has to be repeated multiple times, being in some cases the
number of repetitions dependant on an architectural decision. This involves that for each repetition of
the discipline, some inputs and outputs will have to be modified. New connections will be needed to be
generated or activated too, depending on the implementation (more information in section 4.5.2).

A simple example could be the case of a design discipline that calculates the performance of an heli-
copter rotor depending on the rotor parameters. If the number of rotors is an architectural decision, and
they have different parameters, the number of times the discipline will be repeated will vary depending
on the architecture being evaluated.

4.3.4. Discipline activation (I4)
Similar to the case of conditional variables, there are some cases where as a result of an architectural
decision, a discipline can be included or not in the MDO problem formulation/execution. This is usually
found in cases where two different technologies are available to perform a certain function, and each
one demands different disciplines (or tools).

An example would be the design of an aircraft propulsion system where the source of energy is an
architectural decision. In the case that an electric architecture is chosen instead of a conventional one,
the discipline(s) and the tools needed to evaluate its performance will be different. The inclusion or
exclusion of the different possible disciplines will lead to the inclusion/exclusion of variables and con-
nections in the MDO problem too.

4.4. System Architecture Optimization Example cases: Aircraft propul-
sion system

Two system architecture optimization problems dealing with aircraft propulsion system design are go-
ing to be presented. The aim is to show that the architectural influences previously discovered are real
modifications that take place when MDO is wanted to be included in system architecture optimization.

4.4.1. Jet engine problem
The first problem is the one presented in Bussemaker, De Smedt, et al., 2021. This problem aims
to design a conventional aircraft propulsion system, existing different possible architectural decisions
such as the inclusion of a fan or the number of compressor stages (figure 4.7).

Figure 4.7: Possible architectural design space of an aircraft jet engine . Figure taken from Bussemaker, De Smedt, et al.,
2021 .
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This problem is characterized by the existence of multiple Conditional Variables (I1). Only if a com-
ponent exists in the architecture, its corresponding variables (such as weight, length or emissions) will
also exist in the MDO problem. An example could be the gearbox. If a gearbox is included in the
architecture, then its associated variables (the weight in this case) will be included in the MDO problem.
If not, those variables will be excluded from the MDO problem formulation/execution (figure 4.8).

Figure 4.8: Data graph of the design disciplines used to evaluate the performance of the different engine architectures. Figure
taken from Bussemaker, De Smedt, et al., 2021 .

4.4.2. Hybrid electric aircraft propulsion system problem
Architectural influences can also be found in the problem presented in Bussemaker et al., 2023. The
aim of this problem was to design the propulsion system of an aircraft considering different possible
sources of energy (hybrid-electric). To do so, it connects an overall aircraft design program called Ope-
nAD (Woehler et al., 2020) and a mission performance analyses tool called OpenConcept (Brelje and
Martins, 2018).

During the optimization process, there is a certain section where the propulsion system thrust is calcu-
lated using as an input (among others) the mechanical power generated either by the turboshaft or the
motor. This process is shown, in a simplified version, in figure 4.9.

Inputs_turboshaft Inputs_batteries

Thrust

Power_motor

Power_batteries

Power_turboshaft Power_turboshaft1:
Turboshaft

1:
Batteries

2:
Motor

3:
Performance

Figure 4.9: Simplified process for the calculation of the aircraft propulsion thrust considering different sources of mechanical
power.
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Each of the different components that can intervene (directly or indirectly) in the generation of mechan-
ical power are modelled as disciplines (Turboshaft, Batteries and Motor). These disciplines will only
exist in the optimization process if their associated component are included in the system architecture
being analysed, and are consequently an example of Discipline activation (I4). Also, the number of
engines is an architectural decision and each engine can have different components, so Discipline
repetition (I3) is also found.

Finally, there are two possibilities where the turboshaft and the motor disciplines are included at the
same time. The first one is when both are used to generate mechanical power (parallel architecture).
The second one is when the power generated by the turboshaft is used to feed the motor (series
architecture). Depending if the mechanical power of the turboshaft is used to generate thrust or is
used to feed the motor (architectural decision), the ”Power_turboshaft” variable will be an input to the
Performance or Motor discipline respectively. This would be an example of Data Connection (I2).

4.5. Strategies to deal with architectural influences
In the previous sections, the different types of architectural influences were discussed. Also some real
system architecture optimization problems with these influences were shown. Now, some of the pos-
sible methods that MDO platforms can implement to deal with these influences (called strategies) will
be presented . To do so, a research has been carried out in the MDO platforms introduced in section
3.3, paying close attention on how they try to deal with each of the different influences.

Of all these different platforms, only OpenMDAO and GEMSEO will be considered for this discussion,
as there are examples where their code was extended by the user to deal with architectural influences.
Apart from this research, multiple conversations with experts on the field have been carried out. This
allowed to obtain more strategies that still have not been implemented, but that should also be consid-
ered. They were also used to confirm the validity of the different strategies.

4.5.1. Conditional Variables (I1)
Two different approaches can be used to implement conditional variables in the MDO platform. The
first approach is to define all possible inputs and outputs of each discipline, and then ignore the com-
ponents that are not necessary, usually by inputting a default value to them such as a zero.

As an example, consider the winglet inclusion case discussed in section 4.2. All the geometric variables
of the winglet (lw and δ) would be included as inputs of the discipline. Then, when a winglet does not ex-
ist, these variables would be given a value of 0. This strategy is not efficient from a computational point
of view, as there are unnecessary values being dragged during the calculations. Also in the case of
using external tools, somemapping might be needed to be used to delete these unnecessary elements.

A different and better approach is to change automatically the inputs and outputs of disciplines depend-
ing on architectural decisions. Therefore, variables that don´t exist in the MDO problem will be deleted
automatically from the inputs and outputs of the different disciplines.

These strategies can also be applied to more complex data structures, such as arrays, assuming that
each component of the array is an individual variable. It could also be applied to group of variables, if
they are allowed as inputs and outputs of disciplines.

4.5.2. Data connection (I2)
To understand the possible strategies to deal with this influence, it is necessary first to understand how
connections between disciplines can be generated. Two different approaches are discussed in van
Gent, 2019, depending on the naming convention used for the problem variables.
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The first one is a decentralised approach. Here, each discipline can have its own naming convention.
As a consequence, every time that a variable has to be exchanged between different elements of the
optimization problem, the user has to manually define the connection. As a result, the user needs to
know and keep track of all possible connections to formalize the optimization problem.

However, this is not needed in a centralised approach (as discussed in section 2.3.1). As all variables
adhere to a common protocol (Common Data Schema), connections between disciplines can be made
automatically, once all inputs and outputs are declared (van Gent et al., 2017). Depending on the
naming convention that is used, the strategy to deal with data connection architectural influence will be
different.

When a decentralized approach is used, data connection is implemented by creating and deleting con-
nections depending on the architectural decision. In the case of the centralized approach, connections
are made automatically depending on the disciplines inputs and outputs. As a result, data connection
is implemented by deactivating disciplines inputs and outputs depending on the architectural decision,
which at the end will deactivate the different connections.

As a summary, in a centralized approach what are included or excluded are the variables determining
the connection between the disciplines, and in the decentralized approach it is the connection itself.

4.5.3. Discipline repetition (I3)
There are two different procedures to implement discipline repetition. The first one is to generate a dif-
ferent discipline for each time that the discipline has to be repeated (parallel configuration), as shown
in figure 4.10.

Engine1_geometry Engine2_geometry Engine3_geometry

Total_weight

Engine3_weight

Engine2_weight

Engine1_weight1:
Propulsion 1

1:
Propulsion 2

1:
Propulsion 3

2:
Weight

Figure 4.10: In the parallel implementation, each time that the discipline has to be repeated, a new discipline block is created.
This method allows to execute the different instances in parallel.

However, there can be another approach where only one discipline instance is used for all the repeti-
tions. This is the series configuration (figure 4.11), where the workflow ”enters” several times into the
same discipline. This approach requires that inputs and outputs are redeclared each time the workflow
enters into the same discipline. It also needs to save the different variables values until the last itera-
tion is finished and they can be passed to the next correspondent elements in the workflow. The great
advantage the series approach has is that it is not needed to know the maximum number of possible
repetitions of the discipline for its implementation.
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Total_weight

1:
Propulsion

2:
Weight

Engine geometry (x3)

x3

Engine weight (x3)

Figure 4.11: In the series implementation, the workflow enters into the same discipline multiple times. In the example, the
engine geometry parameters and the engine weight are going to be different at each iteration. This approach does not allow

parallel execution, although allows to implement repetition without knowing the maximum number of repetitions.

4.5.4. Discipline activation (I4)
To implement discipline activation, the only procedure is to define those disciplines that might or not be
included in the MDO problem together with the condition for their inclusion in the formulation/execution
process. This condition is then used to check certain architectural decisions, and, depending on the
result (True or False), the discipline is included or not.

Including a new discipline involves several additional modifications to the MDO problem. First, new
variables might be needed to be included in the MDO problem. Also, as each discipline has several
inputs and outputs, new connections will be needed to be generated.

It is at this latest step where the only difference between platforms could be found, similar to the case
of data connections. If a centralised naming convention is used for variables, these connections will be
created automatically. In the case of a decentralized convention, these connections have to be stated
manually under the same condition used for the discipline activation.



5
MDAx adaptation to system

architecture optimization

To model an MDO problem that can be readjusted automatically during the execution process to each
system architecture it is necessary to deal with four possible modifications, called architectural influ-
ences. This chapter will focus on how to extend MDAx backend code to deal with each of these four
architectural influences, considering only the case where the workflow is exported to RCE.

The structure of this chapter in the following one. Each architectural influence implementation will be
first divided into smaller requirements that are needed to be satisfied. After that, each of these sub-
requirements will be further explained. Finally, the methodology used to satisfy them will be discussed.

5.1. Discipline activation (I4)
As mentioned in section 3.3.3, somemodifications are needed to be done manually before the workflow
exported by MDAx can be executed in RCE. As a result, there is only a possible strategy to implement
discipline activation in RCE. MDAx must export an unique workflow with all the possible disciplines
that can exist in the MDO problem formulation. Then RCE has to determine during the execution if a
discipline has to be executed or not, depending on the system architecture being analysed.

The methodology proposed is the following. Those tools whose execution depend on an architectural
decision will have attached to them the condition determining their inclusion in the MDO problem execu-
tion (called from this point activation logic assertion). When a tool has one of these assertions attached
in MDAx, in the RCE export it will include an additional script which is executed before the tool. This
script will check if the assertion is satisfied. If it is, the tool will be executed as normal, and if it is not,
the workflow will ”skip” the tool and continue to the next discipline (figure 5.1).

The five steps or requirements needed to implement discipline activation in MDAx are:

1. Create a configuration file
2. Attach the activation logic information to MDAx disciplines
3. Determine and verify activation logic assertions
4. Adapt the collision detection process to activation logic
5. Include activation logic in the RCE export file

38
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The next sections will cover with more detail each of these requirements, including the implementation
process.

Figure 5.1: Schema of the process used in RCE to determine if a discipline is executed or not. At the start of those tools that
can or not be included in the MDO problem execution there will be a script. This script will check if the condition (assertion) for
the inclusion of the tool is satisfied. If it is, the tool will be executed. If not, it will be skipped and the workflow will directly ”jump”

to the next tool.

5.1.1. Creation of a configuration file
To include all the different architectural influences in MDAx, it is necessary to create a new file where
all the information of a tool regarding these architectural influences is stored. This file, called configu-
ration file, is necessary to import any tool related with architectural influences, together with the input
and output files.

This configuration file has been decided to be created in JSON to improve the human readability with
respect to XML. JSON files can store many types of information, from strings or numbers to more com-
plex structures such as arrays. Each piece of information has associated a certain key that identifies
it.

For the implementation of activation logic, a key called ”activationLogic” has been added to store the
condition (assertion) that determines if a tool is included or not in the MDO problem execution. Addi-
tional metadata that might be useful in the future has been added to the configuration file too, such as
the name of the tool, its version or some additional notes. An example of a tool configuration file can
be observed in figure 5.2.

Figure 5.2: Example of a tool configuration logic file. A key called ”activationLogic” is used to store the condition/assertion
determining the inclusion of the tool in the MDO problem execution.

5.1.2. Attachment of activation logic information to MDAx disciplines
Each discipline in MDAx is represented by a Python class called ”function block”, where a class is just
a data structure that represents a certain object (in this case a discipline in the MDO problem). Each
class can contain different characteristics that differentiate each object from another and that are called
attributes. Attributes can be simple variables or arrays, or even more complex data structures such as
another Python class1.

1More information about classes and attributes in Python can be found in https://docs.python.org/3/reference/datamodel.html

https://docs.python.org/3/reference/datamodel.html
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The first step to attach to a tool in MDAx the assertion determining its inclusion in the MDO problem ex-
ecution has been to create a new attribute for the function block class called activation logic. Then, the
import function used by MDAx to create a discipline has been extended to also accept a configuration
file. Finally, all the different keys existing in the configuration file are parsed, and when the ”activation-
Logic” key is found, its information is stored in the corresponding attribute of the tool´s function block.

5.1.3. Determination and verification of activation logic assertions
The next step to implement activation logic in MDAx is to determine the different types of conditions
(assertions) that could be used to assert if a discipline is included in the MDO workflow execution.
These conditions depend on architectural decisions, which can always be expressed as a function of
the information existing in the workflow XML file.

More specifically, these assertions can ultimately be expressed though the existence of certain nodes
in the XML file, or through the information stored inside them. Three big different types of assertions
have been identified, which are:

1. Existence of a node
2. Number of nodes
3. Content of a node

The three different assertion types are going to be introduced, including the different sub cases. Also
an example based on a rocket design will be introduced for each of them, based on the workflow XML
shown in figure 5.3.

1 <rocket>
2 <Propulsion>
3 <Liquid_engine>
4 <VULCAIN></VULCAIN>
5 </Liquid_engine>
6 </Propulsion>
7 <Geometry>
8 <material>aluminium</material>
9 <number_of_fins>4</number_of_fins>
10 </Geometry>
11 </rocket>

Figure 5.3: Workflow XML used as example to show the different types of assertions. It shows some possible
components/attributes of a rocket, such as the number of engines or the material used.

• Existence of a node: On some occasions, the condition determining if a tool is included in the
MDO problem execution is the existence of a component in the system architecture. The exis-
tence of a component in the system architecture usually can be translated in the existence of a
node in the workflow XML file.

An example would be the case of a tool which only exists if a liquid propulsion engine is found in the
system architecture. In this case, the tool would only be included if the node ”’rocket/Propulsion
/Liquid_engine’” exists in the workflow XML file.

• Number of nodes: Sometimes, a component number of instances architectural decision could
cause a certain tool to be included or not in the MDO problem execution. This architectural deci-
sion is usually translated in the workflow XML file through the repetition of the node representing
the component multiple times.
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Three different subcases can be differentiated, depending if it is wanted to be checked if the
number of components is lower, equal or higher than a certain value. Using the rocket design
example, a possible activation condition could be that the number of engines in the system archi-
tecture is less, equal or more than 2. This would be determined checking if the corresponding
node (”’rocket/Propulsion/Liquid_engine/engine’”) is repeated less, equal or more than 2 times
respectively.

• Content of a node: This case can usually be attached to component properties architectural de-
cisions, although all architectural decisions could lead to modifications in the content of a certain
node in the workflow XML tree. Six different subcases can be differentiated.

1. Contain any value
2. Contain an exact string
3. Contain a fragment of a string
4. Contain a value lower than a reference
5. Contain a value equal to a reference
6. Contain a value higher than a reference

The first possible condition would be the existence of any kind of information inside a certain
node. For example, it could be a condition to include a tool that a material has been selected
for the rocket. Then, it would be needed to be checked if the node ”’rocket/Geometry/material’”
contains any data.

The second and third conditions are used when the inclusion of a tool depends on the exis-
tence of an exact string, or a fragment of it, in a node, respectively. As an example of them,
it could be that the condition determining the inclusion of a tool is that the material chosen is
aluminium 6061, or that it is at least any alloy of aluminium. This would mean checking if the
node ”’rocket/Geometry/material’” contains exactly ”aluminium6061” or that it at least contains
the string ”aluminium” respectively.

The three final sub cases are conditions where the number inside a node has to be lower, equal
or higher than a certain reference number. If the condition is that the number of fins is lower,
equal or higher than 3, then it has to be checked if the node ”’rocket/Geometry/number_of_fins’”
contains a value lower, equal or higher than 3.

Different Python classes have been implemented in MDAx to check each of these different assertions.
These can be found in table 5.1, which shows the Python class name and its arguments for checking
each type of assertion. The last column shows an example of how each different type of assertions
has to be indicated in the configuration file, taking the previous rocket design as reference.

Table 5.1: Python classes implemented in MDAx to check activation assertions.

Assertion Class Arguments Example

Existence of a node XPathExists() node xpath XpathExists(’rocket/Propulsion
/Liquid_engine’)

Number of nodes (lower) XPathNLt() node xpath,
reference

XPathNLt(’rocket/Propulsion
/Liquid_engine/engine’,2)

Number of nodes (equal) XPathNEq() node xpath,
reference

XPathNEq(’rocket/Propulsion
/Liquid_engine/engine’ ,2)

Number of nodes (higher) XPathNGt() node xpath,
reference

XPathNGt(’rocket/Propulsion
/Liquid_engine/engine’,2)

Contain value ElHasValue() node xpath ElHasValue(’rocket/Geometry
/material’)
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Contain exact string ElStrEq() node xpath,
string

ElStrEq(’rocket/Geometry
/material’,’aluminium6061’)

Contain fragment of a string ElStrContains() node xpath,
string

ElStrContains(’rocket/Geometry
/material’,’aluminium’)

Contain value lower than reference ElNumLt() node xpath,
reference

ElNumLt(’rocket/Geometry
/number_of_fins’, 3)

Contain value equal than reference ElNumEq() node xpath,
reference

ElNumEq(’rocket/Geometry
/number_of_fins’, 3)

Contain value higher than reference ElNumGt() node xpath,
reference

ElNumGt(’rocket/Geometry
/number_of_fins’, 3)

Finally, it should be remarked that more complex conditions consisting on multiple assertions can also
be used. This is possible thanks to the inclusion of logical operators such as OR (|), negation (∼) and
AND (&). For example, if the condition to include a tool is that it has 2 engines and is made of aluminum,
the assertion included in the configuration file would be ”XPathNEq(’rocket/Propulsion/Liquid_engine/
engine’ ,2) & ElStrEq(’rocket/Geometry/material’,’aluminium’)”.

5.1.4. Adaptation of the collision detection process to activation logic
At this point, MDAx is already able to accept a possible configuration file to define a tool that includes
(among other information) the assertion determining the inclusion of the tool when executing the MDO
problem. It is also capable to attach this assertion to the Function block class defining each discipline.
Python classes to determine if these assertions are true or false have also been created and imple-
mented in MDAx.

However, there is a still a task to be solved regarding the MDO problem formulation, and this is the col-
lisions detection process. When two disciplines provide the same output, then a collision is detected,
impeding to export the workflow. However, when implementing activation logic, it is common that two
disciplines have the same output and that they don´t exist at the same time in the workflow execution.
In this case, MDAx would detect a collision, although it would not be a real collision.

To exclude these cases, the collision detection process has been modified. For each variable causing
a collision, it is checked if the disciplines providing that variable as output include any activation logic
assertion. In the case all of them do, the collision will be ignored. It is assumed that the activation logic
assertions included by the user are exclusive between each other, meaning that those disciplines will
never provide the same output at the same time (as only one of them will be executed in the workflow
for each system architecture).

5.1.5. Inclusion of activation logic in the RCE export file
The last step to include discipline activation in MDAx is to adapt the RCE export to this architectural
influence. In the function used to generate the MDO workflow to be executed in RCE, each discipline
is represented by a Python class (called RCEToolNode). This Python class contains all the different
RCE elements for each discipline (also represented by Python classes), including their inputs, outputs
and the connections between them (section 3.3.3).

Three new elements have to be added to the RCEToolNode class. These are:

• Activation logic script: This element contains all the different assertion classes described pre-
viously, as well as the activation logic assertion of the tool. Taking the XML workflow file as an
input, it will check if the assertion is satisfied. It will provide as output the same XML workflow file,
as well as a boolean variable stating if the assertion was satisfied or not.
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• Switch: This element is based on an existing element with the same name in RCE. To script it,
reverse engineering has been carried out, researching RCE workflows that include switches and
looking how they are scripted. It takes as input the workflow XML file and the boolean given by
the activation logic script. If the boolean is true, then the workflow XML will be passed to the tool
(specifically to the base splitter). If not, the workflow XML will go to the third new element, the
joiner.

• Joiner: This element, also based on an existing one in RCE, takes as input two files. As soon as
it receives one of the files, it will give it as output. Joiner are usually used when only one of the
inputs can exist, which is this specific case. The first input would be the workflow XML file coming
from the switch when the tool is not executed. The second input would be the XML coming from
the merger when the tool is executed. Therefore, independently of executing or not the tool, the
workflow will continue to the next discipline.

Figure 5.4: Example of a tool with activation logic in RCE. First, the workflow XML enters into the activation logic script, which
will check if the activation logic assertion attached to the tool is true or false. If is true, the switch (circle with two arrows) will
pass the workflow XML to the tool and the tool will be executed. If not, the workflow XML will pass directly to the joiner (the

block next to the merger). In both cases, after the joiner the XML workflow file will be passed to the next discipline.

These three new elements will only be included in the RCEToolNode class when the MDAx discipline
has attached an activation logic assertion. Finally, the connections between the different elements
constituting each MDAx discipline in RCE have been also modified to include the activation logic. The
RCE implementation of activation logic according to figure 5.1 can be observed in figure 5.4.

5.2. Discipline repetition (I3)
The methodology that is going to be followed to implement discipline repetition in MDAx is going to be
the serial configuration presented in section 4.5.3. There will be an unique discipline instance where
the workflow will enter multiple times, changing automatically the inputs and outputs on every iteration.

To achieve this, it is important to know that the existence of multiple instances of a component man-
ifests in the workflow XML file by the repetition of the nodes representing the component (and their
properties). Therefore, it will be necessary to select what parts of the workflow XML file will be used to
take the inputs and write the outputs at each iteration, as these will change. These processes will be
carried out by the ”Global to Local” block. The ”Local to Global” block will prepare the tool outputs to be
merged correctly. Finally, a component called ”Iterator” will be used to determine when the repetition
has ended. A schema of this methodology is shown in figure 5.5.
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Figure 5.5: Flowchart of the procedure used to implement discipline repetition in MDAx. The Global to Local component will be
in charge of multiple processes, such as determining the number of iterations, keeping track on the iteration the execution is at
each moment or selecting the inputs/outputs for each iteration. The Local to Global will prepare the tool outputs to be merged in
the correct place in the workflow XML. Finally, the iterator block will determine if the repetition of the discipline has ended or not.

The requirements identified to implement discipline repetition according to the methodology described
before are:

1. Extend the configuration file and the function block attributes to deal with discipline repe-
tition

2. Develop a methodology to determine the number of repetitions
3. Develop a methodology to differentiate the variables to be selected for each iteration
4. Select the correct inputs/outputs for each iteration (Global to Local)
5. Prepare the tool outputs to be merged (Local to Global)
6. Determine the end of the repetition process (Iterator)
7. Adapt the RCE export to discipline repetition

5.2.1. Extension of the configuration file and the function block attributes to deal
with discipline repetition

The configuration file created for discipline activation can be reused to indicate discipline repetition. A
new key has been added for this, called ”repetition” (figure 5.6). This key will contain a number if the
discipline has to be repeated a fixed number of times, or a more complex expression if the number of
repetitions depends on an architectural decision (more information in the next section).

Once the configuration file has been adapted, a new attribute has been created in the function block
where the information regarding discipline repetition included in the configuration file is stored. Finally,
the import function of MDAx has been extended to also read the information of this new key and attach
it to this new attribute of the function block.
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Figure 5.6: Example of a tool configuration file including discipline repetition. A key called ”repetition” is used to express how
many times a discipline has to be repeated. This number can be fixed or depend on an architectural decision.

5.2.2. Determination of the number of repetitions
Two different cases will be allowed in MDAx for repeating a certain discipline. The first one is to select
a fixed number of repetitions for the discipline. The second one is that it depends on the number of
instances of a certain component in the system architecture. To calculate the number of repetitions for
the second case, a new python class (similar to the number of equal nodes assertions of discipline ac-
tivation) has been developed. This python class takes as input a node´s xpath (representing a system
architecture component) and checks how many times it is repeated in the workflow XML.

The expression to be used in the configuration file to indicate this case of discipline repetition will be
”NumberofInstances()”. As an example, if a discipline has to be repeated a number of times equal to
the number of engines in a propulsion system, and the node´s xpath is given by ”aircraft/engine”, then
this condition would be expressed in the configuration file as ”NumberofInstances(’aircraft’,’engine’)”
2(figure 5.6).

5.2.3. Differentiation of the variables for each iteration
If a component of a system architecture has multiple instances, the nodes representing these compo-
nents and their variables in the workflow XML file will usually be repeated multiple times. Consider
the case of a system architecture with two different turboprops. As it can be observed in figure 5.7,
each engine has a different node for each of their properties (number of blades and thrust). The only
exception is the case of the turboshaft model. This is because usually variables with a common value
for all the component instances are not repeated in the workflow XML file.

1 <Propulsion_system>
2 <engine>
3 <number_of_blades>2</number_of_blades>
4 <thrust>17000</thrust>
5 </engine>
6 <engine>
7 <number_of_blades>4</number_of_blades>
8 <thrust>34000</thrust>
9 </engine>
10 <turboshaft>
11 <model>CT7-9</model>
12 </turboshaft>
13 </Propulsion_system>

Figure 5.7: This figure shows how multiple instances of a component translates into multiple nodes in the workflow XML file. If
their properties are different, their corresponding nodes will also be repeated multiple times.

2The node xpath has to be indicated in two different parts, where the first part contains all the parents nodes and the second
one contains the node itself
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Consider now a discipline that takes as inputs the engine properties (number of blades and turboshaft
model) and gives as output the total thrust it produces. To implement discipline repetition, it is neces-
sary that only the first engine properties are taken as input for the first iteration, and the second engine
properties are taken for the second one. For the case of outputs, the tool should write the value of the
calculated thrust in different parts of the tree for each iteration.

The problem is that all the nodes (both inputs and outputs) for the different iterations have the same
xpath. Therefore, right now it would not be possible to determine which specific nodes are wanted to
be selected for each iteration, as all of them are equal. The first step to solve this is to differentiate
explicitly these nodes in the workflow XML file.

This can be done adding an attribute to each of these nodes xpath. An attribute in XML is a tag with
two parts, the key and the element. For example, for the first engine number of blades, the xpath could
be given by ”aircraft/engine[UID = ’engine_1’]/number_of_blades”, where the key is ”UID” and the
element is ”engine_1” (figure 5.8).

1 <Propulsion_system>
2 <engine UID=”engine_1”>
3 <number_of_blades>2</number_of_blades>
4 <thrust>17000</thrust>
5 </engine>
6 <engine UID=”engine_2”>
7 <number_of_blades>4</number_of_blades>
8 <thrust>34000</thrust>
9 </engine>
10 <turboshaft>
11 <model>CT7-9</model>
12 </turboshaft>
13 </Propulsion_system>

Figure 5.8: Possible implementation of attributes to differentiate nodes representing the same variable, but corresponding to
different component instances.

Forcing the designer to use a different attribute for each component instance node, the variables for
each iteration can be differentiated. The only condition will be that all components instances share the
same words for the key and the element, and that the latest include the component instance number
in its definition.

Now nodes corresponding to different iterations can be differentiated, as they have different attributes.
However, there is still no methodology to determine which specific part of the XML should be taken for
each iteration. This is going to be solved in the Global to Local component.

5.2.4. Selection of inputs/outputs for each iteration: Global to Local
The Global to Local component will be a script inside the workflow (similar to activation logic script)
with two different main functions. The first one will be to determine how many times it is necessary
to repeat the discipline. This can be done including inside this component the information stored in
the function block attribute regarding repetition. This information will contain the number of repetitions
directly (with an integer) or indirectly (with an assertion of the type ”NumberofInstances”). In both cases
the number of repetitions will be determined. Then this information will be passed to the iterator, so
that it knows which is the maximum number of iterations.
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The second main function of this component is to select which part of the workflow XML file is go-
ing to be used for the inputs and the outputs at each iteration. It converts global data (workflow
XML file) to local data (tool). First the case of the inputs is going to be considered. To understand the
procedure that is going to be used, it is necessary to explain with more detail the methodology used by
the input filter to determine the inputs of the tool.

The input filter stores the tool´s input file. It reads each of the different xpaths of this file and try to
search them in the workflow XML file. Every time it finds the xpath, it takes this xpath from the workflow
XML file (and the value of the node it represents) and include it in the file to be given as input for the
tool execution.

The problem is that when looking for these xpaths in the workflow file, xpath attributes are not taken into
account if they don´t exist in the tool input file xpaths. This means that the input filter will still take the
nodes for all the iterations at once, instead of taking just the part of the workflow XML corresponding
to that iteration.

To solve this, the following idea was proposed. When repetition is used and a variable is going to have
different values for each iteration, then its node in the tool input file will have an attribute similar to
the ones added in the workflow file, but substituting the component instance by the keyword ”INDEX”
(figure 5.9).

1 <Propulsion_system>
2 <engine UID=”engine_{INDEX}”>
3 <number_of_blades></number_of_blades>
4 </engine>
5 <turboshaft>
6 <model></model>
7 </turboshaft>
8 </Propulsion_system>

Figure 5.9: When a variable is going to take different values for each iteration, it should be indicated in the tool input file with
an attribute in its corresponding node. This attribute must include in the element the keyword ”INDEX” and has to be the same

to the ones used for the workflow file.

Then, a counter could be added that increases an unit per iteration. This counter could be passed to the
input filter, where every time that the INDEX keyword was found in an xpath, it would be substituted by
the iteration counter. As an example of this procedure, for each iteration the ”INDEX” in figure 5.9 would
be substituted by a 1, by a 2,... allowing to select the correct part of the workflow XML for each iteration.

However, there were two problems that lead to small modifications to this approach. The first one is
that the number of iterations has not to be equal to the number of the component instance to be used
as input for the discipline. This is because both activation and repetition can happen at the same time
in a discipline. Consider the case of a workflow XML file with three engines, and that only the first and
the third have to enter to a certain discipline as inputs. For the first iteration, the first engine is needed
(component instance 1). However, the second iteration demands the third engine (component instance
3). As it can be observed, the iteration counter and the instance number have not to be the same.

This problem has been solved introducing two different counters, one for the iteration and another one
for the component instance to be considered for that specific iteration. With this, it is possible to know
which component instance should be considered for each iteration. Nevertheless, there is still a prob-
lem in the previous procedure. This is that the xpaths in the filters have to be fixed during the workflow
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execution.3.

As a consequence and using the previous example, the input filter will always look for engines nodes
that have the keyword INDEX in the attribute, instead of the corresponding component instance number
(1,2,..). To solve this, the Global to Local component will have two different XMLs as output. One for
the merger (equal to the workflow XML file received as input) and another one modified for the input
filter. In this latest file, the component number instance of the specific iteration will be substituted by
the INDEX keyword (figure 5.10). As a result, the input filter will select the correct nodes to be used as
inputs.

1 <Propulsion_system>
2 <engine UID=”engine_1”>
3 <number_of_blades>2</

number_of_blades>
4 <thrust>17000</thrust>
5 </engine>
6 <engine UID=”engine_2”>
7 <number_of_blades>4</

number_of_blades>
8 <thrust>34000</thrust>
9 </engine>
10 <turboshaft>
11 <model>CT7-9</model>
12 </turboshaft>
13 </Propulsion_system>

1 <Propulsion_system>
2 <engine UID=”engine_{INDEX}”>
3 <number_of_blades>2</

number_of_blades>
4 <thrust>17000</thrust>
5 </engine>
6 <engine UID=”engine_2”>
7 <number_of_blades>4</

number_of_blades>
8 <thrust>34000</thrust>
9 </engine>
10 <turboshaft>
11 <model>CT7-9</model>
12 </turboshaft>
13 </Propulsion_system>

Figure 5.10: At each iteration, the attributes of the nodes with the component instance number for that specific iteration will be
modified, so that they include the ”INDEX” keyword. In the figure, it is the first iteration, that is why ”engine_1” is substituted by

”engine_INDEX”.

This solves the problem for the inputs. For the outputs, the procedure is explained in the next section.

5.2.5. Preparation of outputs for merging process: Local to Global
Usually, a tool used in MDAx/RCE gives as output an XML file with no attributes. To merge this file
correctly with the original workflow file in the merger, it is necessary that the attributes corresponding
to that specific iteration are added in the output file. This is done by the Local to Global component .

This file, which is a script similar to the case of the Global to Local, receives as inputs the tool output
file and the nodes attributes necessary to be added for this specific iteration, so that the information is
written in the correct part by the merger (figure 5.11). These attributes and their location (their corre-
sponding nodes) are given by the Global to Local too.

1 <Propulsion_system>
2 <engine>
3 <thrust>17000</thrust>
4 </engine>
5 </Propulsion_system>

1 <Propulsion_system>
2 <engine UID=”engine_1”>
3 <thrust>17000</thrust>
4 </engine>
5 </Propulsion_system>

Figure 5.11: This figure shows an example of the input and output files in the Local to Global component. The attributes of the
nodes for the specific iteration are added, allowing to later merge correctly the tool output file.

3Indeed they could be modified, but this would require to include multiple new files in the workflow. This would increase the
computational time and make the integration more complex, so it has been discarded.
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5.2.6. Determination of the end of the repetition process: Iterator
This is the last main component necessary to include discipline repetition. This component will be lo-
cated after the merger. It will receive as input the workflow XML file and the number of times the tool
has to be repeated. It will provide as output the same workflow XML file and a boolean stating if the
repetitions have ended or not. This boolean is later passed to a switch, which will send the workflow
file again to the Global to Local if a new repetition is needed, or will send it to the next tool if not.

5.2.7. RCE export adaptation to discipline repetition
In this section, the different modifications needed to be implemented in the RCE export regarding disci-
pline repetition will be discussed. This will be carried out using figure 5.12 as reference, which shows
an example of a tool with discipline repetition in RCE.

The first step has been to include the Global to Local block (G/L) and the joiner above it. This joiner
is needed because the workflow XML file used as input for the Global to Local comes from different
blocks depending on the iteration. If it is the first iteration, the file will come from the previous tool (or
from the input provider). If an iteration has already been performed, then the file will come from a switch
at the end of the tool (so that the outputs from previous iterations are saved).

The first function of the Global to Local is to determine the number of repetitions needed, which is
passed to the new Iterator block located after the tool merger. Then, the Global to Local creates a new
workflow XML file for the input filer, where the input nodes attributes are modified so that only the part
of the workflow for each specific iteration is considered.

The Global to Local also determines which are the specific nodes where the tool has to write its output
for each iteration. These nodes xpaths are saved and given to the Local to Global block. Finally, the
Global to Local will also provide the original workflow XML file to the merger. As a consequence of
providing different files for the input and the merger, the base splitter has been deleted.

Figure 5.12: This figure shows the different elements and their connections in RCE of a discipline with repetition.

The next modification was the inclusion of the Local to Global block, to implement the necessary modi-
fications in the tool output file, so that the data is merged correctly. Then the iterator blocked has been
added as well as a new switch element. This switch will read the boolean given by the iterator. If it is
false, the new workflow XML file will be given back to the Global to Local to start a new iteration. If is
true, the workflow XML file will be provided to the next tool.
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There are some cases where discipline activation and repetition take place at the same time. In those
cases, elements from both influences are found in the export, but the connections are different, as
shown in figure 5.13.

Figure 5.13: This figure shows the case of a discipline with activation and repetition in RCE. New connections have to be
added to ensure both influences work together correctly.

The logic is similar, although the locations of some elements are changed, and new connections have
to be made. First it is checked if the tool has to be executed. If not, the workflow XML file is passed from
the first switch to the iterator. Then the iterator indicates that the process has ended and the second
switch passes the XML to the next tool. If the tool has to be executed, the procedure described before
will be followed.

5.3. Data connection (I2)
There are some occasions where the connections between disciplines change because of an architec-
tural decision. This leads to variables being exchanged between different disciplines depending on the
system architecture. As MDAx forces to use a central data schema, this influence can be implemented
by deactivating inputs of disciplines depending on architectural decisions (section 4.5.2).

All possible inputs and outputs are always defined and exported to RCE, meaning that all possible con-
nections between disciplines will exist in the workflow. When a connection is wanted to be deactivated
between two disciplines, it can be done by just deactivating the variable involved in that connection
from the inputs of the second discipline.

To do so, before the second discipline´s tool is executed, the architectural decision that determines if
the variable has to be included or not in the inputs will be checked. In the case it has to be included, the
tool will be executed as normal. If not, this variable will be deleted from the XML workflow file going to
the input filter. This can be achieved by extending the Global to Local block implemented for discipline
repetition.

The following requirements have been identified to implement data connection in MDAx/RCE:

1. Extend the configuration file and the function block attributes to deal with data connection
2. Develop a nomenclature to indicate the condition determining the exclusion of variables

from the tool inputs
3. Extend the Global to Local block to include inputs deactivation
4. Adapt the RCE export to data connection
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5.3.1. Extension of the configuration file and the function block attributes to deal
with data connection

As in the previous architectural influences, the first step has been to extend the configuration file. A
new key called ”input_deactivation” has been added to store variables that might be excluded from the
tool inputs, and the architectural decision causing this effect.

Figure 5.14: Example of a tool configuration file including data connection repetition.

A new attribute with the same name has been added to the function block in MDAx. Finally, the import
function was extended again to read information from this key in the configuration file and store it in the
corresponding attribute of the function block.

5.3.2. Nomenclature for data connection
The next objective is to develop a nomenclature to indicate what variable can be deactivated from the
tool inputs and the corresponding condition originating this effect. To do so, it has been decided to use
a list of dictionaries in the configuration file of the tool, where each dictionary is attached to a certain
variable. This dictionary has two pieces of information.

The first one, which will be included in a key denominated ”Xpath”, contains the node’s xpath corre-
sponding to the variable that might be deactivated. The second key, called ”Architectural decision”,
contains the condition leading to the deactivation of the variable. As in the case of discipline activation,
these conditions are expressed using the activation logic assertions introduced in section 5.1.3.

5.3.3. Extension of the Global to Local block to include inputs deactivation
In the case of repetition, the Global to Local block already had to generate a new workflow XML file
for the input filter. As this is also the case of data connection, it has been decided to reuse this block.
However, all the information regarding discipline repetition (such as the determination of the number
of iterations, or the selection of output xpaths for the Local to Global) won´t be included, except in the
case that data connection and repetition exist simultaneously.

The modifications done to the input file will be different. In this case, the Global to Local will contain
the dictionary extracted from the configuration file stating the nodes to be checked and the conditions
for their exclusion from the input file. Then, it will check the condition for each of these nodes, and if it
is true, the node will be deleted from the input file going to the input filter, as shown in figure 5.15.

Then, when the input filter tries to search for the variable deleted, it will just ignore it as the variable
won´t exist in the file (this will be discussed further in the next section). To evaluate the different con-
ditions, the Python classes used to evaluate activation assertions will be included in this block when
there is data connection.
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1 <Aircraft>
2 <Wing>
3 <Span>10</Span>
4 <t_c>0.15</t_c>
5 <Chord>2</Chord>
6 <Airfoil>NACA2315</Airfoil>
7 </Wing>
8 <Landing_gear>
9 <Placement>Fuselage</Placement>
10 <Loads>10000</Loads>
11 </Landing_gear>
12 </Aircraft>

1 <Aircraft>
2 <Wing>
3 <Span>10</Span>
4 <t_c>0.15</t_c>
5 <Chord>2</Chord>
6 <Airfoil>NACA2315</Airfoil>
7 </Wing>
8 </Aircraft>

Figure 5.15: On the left, this figure shows part of the possible workflow XML file for the modified SSBJ problem. For the case
of the wing structure discipline, the inputs are the wing geometry and the landing gear loads if the landing gear is attached to
the wing. On the right it can be observed the XML file to be used as input for the tool. The landing gear loads have been

deleted from the input file going to the input filter as the landing gear is attached to the fuselage.

Data connection and repetition can exist at the same time. In these cases, all the necessary informa-
tion for repetition and data connection will be included. However, there is an important detail to be
mentioned before discussing the RCE export, and it is that when these two influences happen simul-
taneously, the necessary tasks for repetition will be performed before the data connection ones in the
Global to Local. This ensures that for each iteration of the tool, it can be decided if the input variable is
included or not, as connections for each discipline instance might be different.

5.3.4. RCE export for data connection
For the case of data connections, no new elements have been added to the RCE export. Indeed, apart
from modifying some connections, the main modification has been to also include the Global to Local
component when the data connection influence is included in a tool. In this case, the Global to Local
component only has two outputs instead of four, as there is not a Local to Global or an iterator. An
example in RCE is shown in figure 5.16.

Figure 5.16: This figure shows the different elements and their connections in RCE for a discipline with data connection
architectural influence.

In the case that there is data connection and repetition, the implementation is the same as in figure
5.12, being the only difference the content inside the Global to Local. For the case of activation logic,
the modifications in the export are the same as in the case of repetition (figure 5.17).
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Figure 5.17: RCE discipline with activation and data connection. Data connection adds the Global to Local block. In the case
of activation, first it is checked if the tool has to be executed in the activation logic script (Act). If true, then the tool will be

executed. In the opposite case, the tool will be skipped, as in the previous cases.

5.4. Conditional variables (I1)
Finally, the case of conditional variables is discussed in this section. Two cases are going to be differ-
entiated, depending if the variable that might or might not be included in the optimization problem is
an input or an output for the different disciplines. In the case of inputs, when the input filter of a tool
looks for the xpath of an input node and it does not exist in the workflow XML file, it will just ignore that
node. This behaviour was implemented already in MDAx and means that is able to deal with conditional
variables when they are inputs of disciplines.

Indeed, MDAx can also deal with more complex cases related with conditional variables, such as ar-
rays of different variable length. This is because arrays can be stored in just an unique node, and
MDAx/RCE are indifferent of the data stored inside nodes. It can also deal with big missing parts in
the workflow XML file. An example could be a discipline that needs the wing geometry as input, and
because of an architectural decision there is no winglet. As a result, a considerable part of the workflow
XML tree would be missing (the winglet geometry), but the workflow would still continue to be executed
(figure 5.18)

1 <Wing>
2 <span>4</span>
3 <t_c>0.3</t_c>
4 <chord>2</chord>
5 <airfoil>NACA2315</airfoil>
6 <winglet>
7 <span>0.5</span>
8 <cant_angle>30</cant_angle>
9 </winglet>
10 </Wing>

Figure 5.18: This is an example of a discipline input file. It expects as input the wing geometry (all the information stored inside
the wing nodes). In case there are big missing parts in the tree, such as information regarding the winglet, the workflow

execution will still continue.

The case of the outputs is different. There was no mechanism in MDAx to deal with conditional output
variables. The methodology developed for data connection could be used to ”skip” this type of variables
during the workflow execution. All the disciplines that received this specific conditional variable as input
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could just deactivate the variable from their input files, ignoring the variable.

However, this would be just a provisional solution as the variable would still exist in the workflow XML
file. To deal with this influence correctly, it would be necessary to add the Local to Global block in the
RCE tool. This block would just delete from the tool output this variable when a certain architectural
decision was taken. This is left as a future step.

The four different architectural influences are already implemented in MDAx and the corresponding
RCE exportable workflow. In the next section, two new benchmark problems with all the architectural
influences will be presented and executed in order to verify that MDAx+RCE can deal with all the
aspects concerning the automatic readjustment of the MDO problem necessary for system architecture
optimization.



6
Verification & Validation

To verify that all the architectural influences have been implemented correctly in MDAx, a mathemat-
ical benchmark problem based on Fourier series is solved. This problem contains all the possible
architectural influences and has been designed to be a fast method to check architectural influences
implementation in any MDO platform. Then, for validation, a second problem based on the design of a
multistage rocket is proposed, aiming to show the potential of system architecture optimization when
applied to real engineering design problems.

6.1. Verification: Mathematical benchmark problem
To verify the implementation of architectural influences in MDAx, a system architecture optimization
problem based on Fourier series is proposed. Fourier series are expansion series used to approximate
periodic functions using trigonometric functions. They can be represented by the following formula:

fourier(x) = A0 +

∞∑
n=1

(Ancos(wn ∗ x) +Bnsin(wn ∗ x)) (6.1)

where A0, An and Bn are the Fourier coefficients, and wn are the frequencies multiplied by 2π. The
optimum values for these coefficients (and for the frequencies) is already known and can be calculated
using algebraic expressions.

However, in this benchmark problem, new couplings between the different coefficients are introduced
to include all the architectural influences in the problem formulation. This leads to a new approxima-
tion function where the number of sines and cosines terms is independent. The frequencies are also
allowed to be different for each A and B coefficient (equation 6.1). The objective of the problem is to
determine the best approximation function F(x) to approximate a periodic objective function f(x)

F (x) = A0 +

NA∑
n=1

Nwan∑
j=1

Ancos(wnj ∗ w0 ∗ x) +
NB∑
m=1

Nwbm∑
k=1

Bmsin(wmk ∗ w0 ∗ x)

Figure 6.1: This formula is valid if NA > 0 and NB > 0. In the case one of them is zero, their corresponding terms (cosines or
sines respectively) won´t exist in the approximation function.

To obtain the best possible approximation, the optimizer has control over architectural decisions, such
as the number of terms, and design variables, such as the values of the coefficients or the harmonics
to be included. More information about the objective function, constraints, architectural decisions and
the design variables can be found in the next section.

55
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6.1.1. Problem formulation
In this section, the different design disciplines are going to be introduced. After that, the different ar-
chitectural decisions will be shown. Then, the optimization problem will be presented, including the
objectives, constraints and design variables. Finally, this section will end with the introduction of the
problem´s XDSM.

The approximation function F(x) consists of trigonometric functions (sines and cosines) and a constant
term. In the workflow execution, the first step will be to determine these trigonometric functions. To do
so, two different design disciplines are needed, which are:

• Y: This discipline provides as output the cosine terms (g) of F(x) for a given coefficient An, a refer-
ence w0 (reference frequency multiplied by two π) and the desired harmonics to be used wnj . As
an example, forAn = 3,w0 = 2π ,wn1 = 1 andwn2 = 2 , the output will be g = 3(cos(2πx)+cos(4πx)).
If more than oneAn coefficient is chosen as an architectural decision, this discipline will be needed
to be repeated multiple times.

Finally, this discipline also provides an additional output, which is the value to be used as input for
the constant term calculation (A0). This value (called c) is calculated evaluating the expression
g for a certain x0 (fixed at the problem formulation). Therefore c = g(x0).

• Z: This is a similar discipline as Y, but for sines terms. The inputs will be in this case a certain Bm

coefficient, the same reference w0 and the harmonics wmk. The outputs will be the trigonometric
expression h, and another possible value for the constant term, also named c, calculated with the
same method as before.

It is possible that there are no cosines or no sines in the approximation function (in the case of NA or
NB equal to zero), meaning that sometimes the Y or the Z disciplines might not be executed.

Once the trigonometric functions have been obtained, the only term necessary to define the approxi-
mation function is the constant term A0. This one will be calculated by the C discipline. To do so, it
will take as inputs the function evaluations (c) of Y, Z or both (depending on an architectural decision
called xcon). This is shown in figure 6.3.

Adding all the selected ”c” terms together, it will obtain a new value used as the height and the radius
to define an ”imaginary cone”. The C discipline calculates both the surface and the volume of this cone
(in case that the height or the radius are negative, the volume and the surface will be both set to 0),
and the output to be taken as the constant term A0 (the surface or the volume) depends on another
architectural decision, called xc.

Once all the terms have been obtained, the objective function block will calculate the error between a
periodic function f(x) and F(x). The periodic function f(x) that has been chosen from the literature is
the well known sawtooth wave (figure 6.2). The amplitude of the wave has been set to 1, as well as
the period T (the frequency can be obtained knowing it is the inverse of T). The wave has been also
centralized on the x axis and translated by half unit in the y axis.

The error between both functions is calculated using expression 6.2

error =

∫ 1

−1

[f(x)− F (x)]2dx (6.2)
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Multiple architectural decisions can be found in this optimization problem. First, the number of A and B
coefficients (NA and NB respectively). Then for each An and Bm coefficient, it has to be determined
how many harmonics are wanted (Nwan and Nwbm). The inputs to be taken by the C discipline, in
cases where both Y and Z exist, is also an architectural decision (xcon). The final architectural decision,
called xc, is to select the output from the C discipline to be used as the constant term A0 . The rela-
tionships between all these decisions, and how the architectural design space is built, can be found in
appendix B.

Figure 6.2: Sawtooth wave function to be approximated.

Finally, two constraints have been introduced. First the maximum number of trigonometric terms of F(x)
has been set to 2. Second, it has been set that harmonics cannot be repeated for each A/B subsystem
too. These constraints, as well as the objective function and the variables bounds, are expressed in
the following problem formulation:

minimize : error

with respect to : NA = [0, 1, 2]

NB = [0, 1, 2]

Nwan = [1, 2] n = [0, NA]

Nwbm = [1, 2] m = [0, NB ]

wnj = [1, 2] n = [0, NA], j = [1, Nwan]

wmk = [1, 2] m = [0, NB ], k = [1, Nwbm]

− 1 ≤ An ≤ 1 n = [0, NA]

− 1 ≤ Bm ≤ 1 m = [0, NB ]

xcon = [Y, Z,Both]

xc = [Surface, V olume]

subject to : wn1 ̸= wn2

wm1 ̸= wm2

1 ≤
NA∑
n=0

Nwan +

NB∑
m=0

Nwbm ≤ 2

given : x0 = 0.3

w0 = 2π
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Finally, the XDSM of the problem is shown in figure 6.3. The architectural influences found in the
problem, as well as the new notation added to the XDSM to express them, are discussed in the next
section.

x0,w0 x0,w0

Ai,wnj?

c(xcon)

c(xcon)

Bi,wmk?

error

g

h

0, 4 → 1:
Optimizer
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1:

Z

Y
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C surface?,volume?

3:
Objective

Act: NB>0

Act: NA>0

NB

NA

Figure 6.3: XDSM of the mathematical benchmark problem.

6.1.2. Architectural influences
All the four types of architectural influences can be found in the mathematical benchmark problem. In
this section, it is discussed where they are found, and also the necessary new notation used to show
them in the XDSM.

• Conditional variables (I1): This influence can be found twice in the problem. The first case are
the possible outputs of the C discipline. Depending on an architectural decision (xc), only the vol-
ume or the surface variable will exist in the MDO problem. The second case are wnj and wmk, as
the number of harmonics associated to each An and Bm coefficient depends on an architectural
decision (Nwan and Nwbm respectively). These conditional variables are indicated in the XDSM
with an interrogation mark symbol next to them.

• Data connection (I2): The c variables will always be an output of both Y and Z. However, there
are some cases where only the variable from Y is taken as input for the C discipline. In other occa-
sions, it is the one from Z that is taken. Finally, there are other times where the quantity from both
are used as input. This is determined by the architectural decision labelled as xcon. As a result
from the different values of this variable, there is rerouting of the variable c, and as a consequence
new connections have to be made for each case. This is represented in the XDSM by writing the
c variable in bold and italics, as well as indicating the architectural decision causing this influence.

• Discipline repetition (I3): The number of times that the Y and the Z discipline have to be repeated
depends on an architectural decision (NA and NB). This is expressed in the top right corner of
the discipline, stating the variable whose value determines the number of repetitions.
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• Discipline activation (I4): As mentioned before, there are some cases where there are no
cosines or sines in the approximation function. This means that the Y discipline or the Z discipline
won´t be included in the MDO problem execution, respectively. The condition that determines
their inclusion in the MDO problem is stated in a third line inside the discipline box.

6.1.3. Architectural influences verification
Finally, once the problem has been introduced, MDAx/RCE capability to deal with this automatic read-
justment of the MDO problem is going to be proven. To do so, different architectures are going to be
executed, demonstrating that MDAx/RCE are capable of dealing with the different architectural influ-
ences 1.

Discipline Activation (I4)
To show that discipline activation is implemented correctly, the Y discipline will be executed for two
different cases. In the first case, the approximation function only contains a sine term (figure 6.4). As a
consequence, when executing the workflow, the Y discipline is not executed, it is skipped (as confirmed
by the Y tool execution counter, which is equal to 0).

1 <disciplines>
2 <z UID=”z_1”>
3 <B>0.5</B>
4 <wb>1</wb>
5 </z>
6 <x>0.3</x>
7 <Architecture>
8 <Method>Volume</Method>
9 <Input>z</Input>
10 </Architecture>
11 </disciplines>

Figure 6.4: On the left, a possible workflow XML file for an architecture with only a sine term. As a consequence, it can be
observed on the right that the Y discipline is skipped.

However, when an architecture with a cosine term is analysed (figure 6.5), the tool is executed.

1 <disciplines>
2 <y UID=”y_1”>
3 <A>0.5</A>
4 <wa>1</wa>
5 </y>
6 <x>0.3</x>
7 <Architecture>
8 <Method>Surface</Method>
9 <Input>y</Input>
10 </Architecture>
11 </disciplines>

Figure 6.5: In this case, as there is a cosine term in the approximation function, the Y tool is executed.

1Conditional variables are not included, as this architectural influence was already implemented at MDAx.
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To achieve this, it was necessary to indicate in the Y discipline configuration file that the tool would only
be executed when the number of cosines term was equal or higher than one (figure 6.6). This would
be the case when their corresponding node (”disciplines/y”) exists in the XML workflow file, as shown
by the ”XpathExists” expression.2.

Figure 6.6: Configuration file of the Y discipline. It is indicated that the tool has only to be executed when the ”discipline/y”
node exists, or in other words, when there are cosine terms in the approximation function.

This example shows that MDAx and RCE are now able to deal with discipline activation. MDAx allows
to attach to each tool the condition determining their inclusion in the workflow execution. In these cases,
the RCE export is modified, including new elements for this purpose, such as the activation logic script
(figure 6.7). Finally, depending on the assertion being true or false, the tool will be executed or not.

Figure 6.7: This figure shows part of the code stored in the activation logic script. The information stored in the MDAx Y
discipline regarding discipline activation is automatically passed to the activation logic script. This allows RCE to check if the

tool has to be executed or not.

Discipline repetition (I3)
To show how MDAx and RCE deal with discipline repetition, an architecture with two sines is going to
be used (figure 6.8).

1 <disciplines>
2 <z UID=”z_1”>
3 <B>1.0</B>
4 <wb>1</wb>
5 </z>
6 <z UID=”z_2”>
7 <B>0.5</B>
8 <wb>2</wb>
9 </z>
10 <x>0.3</x>
11 <Architecture>
12 <Method>Volume</Method>
13 <Input>z</Input>
14 </Architecture>
15 </disciplines>

Figure 6.8: Mathematical benchmark problem workflow XML file for an approximation function with two sine terms.

2The rest of activation logic assertions were checked in python using unit tests
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To indicate MDAx that the discipline has to be repeated once for each sine term in the approximation
function, the ”NumberofInstances” assertion is used, as shown in figure 6.9.

Figure 6.9: Configuration file of the Z discipline. It is indicated that the tool has to be repeated once for each sine term in the
approximation function. Each sine term will have its corresponding node in the workflow XML file (”discipline/z)”.

The first step is to determine the number of iterations, which is checked by the Global to Local compo-
nent. Then this block will also select the correct inputs of the workflow for each iteration. This can be
observed in figure 6.10, where the inputs xpath attributes corresponding to each iteration are modified,
indicating to the input filter the inputs to be used.

1 <disciplines>
2 <z UID=”z_{INDEX}”>
3 <B>1.0</B>
4 <wb>1</wb>
5 </z>
6 <z UID=”z_2”>
7 <B>0.5</B>
8 <wb>2</wb>
9 </z>
10 <x>0.3</x>
11 <Architecture>
12 <Method>Volume</Method>
13 <Input>z</Input>
14 </Architecture>
15 </disciplines>

1 <disciplines>
2 <z UID=”z_1”>
3 <B>1.0</B>
4 <wb>1</wb>
5 <output_z>1.0*sin(6.2832*x)</output_z>
6 <c>0.951</c>
7 </z>
8 <z UID=”z_{INDEX}”>
9 <B>0.5</B>
10 <wb>2</wb>
11 </z>
12 <x>0.3</x>
13 <Architecture>
14 <Method>Volume</Method>
15 <Input>z</Input>
16 </Architecture>
17 </disciplines>

Figure 6.10: The INDEX attribute used to indicate the inputs is set in different parts of the workflow XML file on each iteration.
On the left, the first sine components are used. On the right, the second sine components will be the input.

The Global to Local component will also store the original attributes of these xpaths and will pass them
to the Local to Global component. Then this component will add them to the tool output files, allowing
to merge these outputs in the correct part of the workflow XML file (figure 6.11).

1 <disciplines>
2 <z UID=”z_1”>
3 <output_z>1.0*sin(6.2832*x)</

output_z>
4 <c>0.951</c>
5 </z>
6 </disciplines>

1 <disciplines>
2 <z UID=”z_2”>
3 <output_z>0.5*sin(12.5663*x)</

output_z>
4 <c>-0.294</c>
5 </z>
6 </disciplines>

Figure 6.11: The Local to Global adds the necessary attributes to the tool output, so that it is merged correctly. This can be
observed on the different attributes (UIDs) added on each iteration.



6.1. Verification: Mathematical benchmark problem 62

Finally, the iterator will keep track of the number of iterations, ending the loop when the number of
repetitions stated in the configuration file is achieved (figure 6.12).

Figure 6.12: The Z tool is executed twice, as there are only 2 sines terms in the approximation function.

1 <disciplines>
2 <z UID=”z_1”>
3 <B>1.0</B>
4 <wb>1</wb>
5 <output_z>1.0*sin(6.2832*x)</output_z>
6 <c>0.951</c>
7 </z>
8 <z UID=”z_2”>
9 <B>0.5</B>
10 <wb>2</wb>
11 <output_z>0.5*sin(12.5663*x)</output_z>
12 <c>-0.294</c>
13 </z>
14 <x>0.3</x>
15 <Architecture>
16 <Method>Volume</Method>
17 <Input>z</Input>
18 </Architecture>
19 </disciplines>

Figure 6.13: Merged XML given by the Z discipline. Different parts of the workflow were selected automatically for the inputs.
The outputs location was also readjusted automatically.

Data connection (I2)
To demonstrate the successful implementation of data connection, the automatic rerouting of the vari-
able c (used as input of the C discipline) will be shown. Two architectures will be used. Both of them
have a cosine and a sine term. However, the discipline providing the input for the C discipline will be
different on each case. In the first scenario, it will come from the Y discipline. In the second case, from
the Z discipline (figure 6.14).
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1 <disciplines>
2 <y UID=”y_1”>
3 <A>1.0</A>
4 <wb>1</wb>
5 </y>
6 <z UID=”z_1”>
7 <B>1.0</B>
8 <wb>1</wb>
9 </z>
10 <x>0.3</x>
11 <Architecture>
12 <Method>Surface</Method>
13 <Input>y</Input>
14 </Architecture>
15 </disciplines>

1 <disciplines>
2 <y UID=”y_1”>
3 <A>1.0</A>
4 <wb>1</wb>
5 </y>
6 <z UID=”z_1”>
7 <B>1.0</B>
8 <wb>1</wb>
9 </z>
10 <x>0.3</x>
11 <Architecture>
12 <Method>Surface</Method>
13 <Input>z</Input>
14 </Architecture>
15 </disciplines>

Figure 6.14: Workflow XML files to be used for the data connection demonstration. On the left, the c variable coming from the
Y discipline is taken as input. On the right, it is the one coming from the Z discipline.

On each case, the Global to Local component will delete from the input filter XML file certain nodes,
leading to the deactivation of specific connections. The nodes to be deleted , and the condition deter-
mining their suppression, is stated in the configuration file (figure 6.15).

Figure 6.15: Configuration file of the C discipline. The inputs to be deactivates, as well as the condition for the deactivation,
are stated in the ”input deactivation” key.

In the first case, as it is only wanted to take the c variable coming from the Y discipline, the node
representing the c variable of the Z discipline has to be deleted. This allows to suppress the existing
connection between the Z and the C discipline. In the second scenario, it will be the connection between
the Y and the C discipline the one deleted (figure 6.16).

1 <disciplines>
2 <y UID=”y_1”>
3 <c>-0.309</c>
4 </y>
5 </disciplines>

1 <disciplines>
2 <z UID=”z_1”>
3 <c>0.951</c>
4 </z>
5 </disciplines>

Figure 6.16: Input files of the C discipline for both cases. The input comes from the Y or the Z discipline, depending on the
architectural decision.
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6.1.4. Mathematical problem results
Finally, the results of the optimization problem are going to be presented. A surrogate based optimiza-
tion algorithm has been used, with a total of 1400 evaluations. The value of the design vector obtained
is:

NA = 0, NB = 2, Nwb1 = 1, Nwb2 = 1, w11 = 1, w21 = 2, B1 = 0.6275, B2 − 0.3246, xc = V olume

As it can be observed in figure 6.17, the result is similar to the best possible approximation of the
original function using only two trigonometric terms (given by Fourier coefficients theoretical solution).
Although it is not exactly the same (as how the problem is formulated, the Fourier coefficients would
give an A0 that slightly increases the error), the value of the objective function only differs 0.25 percent
with respect to the ideal Fourier solution, concluding that the optimizer was able to find a solution at
least close to the optimum.

Figure 6.17: This figure shows the optimum solution found by the optimizer. The approximation is close to the optimum value
of Fourier series.

The Fourier problem satisfies many of the requirements needed to be used as a system architecture
optimization benchmark problem. It is simple , easy to implement and includes all the architectural
influences. However, its main drawback is that it is not a real engineering problem, no real system
architectures are used. This is the topic of next section.
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6.2. Validation: Space benchmark problem
To show the potential of system architecture optimization in a real case design problem, a new and
more complex benchmark problem is going to be proposed. The objective of this problem will be to
design a multistage rocket that maximizes the mass of payload that can be lifted to a circular orbit of
400 km while minimizing the cost.

To achieve this, the optimizer will have control over different architectural decisions (head shape, num-
ber of stages, type of engines,...) and conventional design variables (length of each stage, length to
diameter ratio, etc..). Also some constraints will be added to ensure that the design is feasible, such
as the maximum dynamic pressure that the vehicle can stand. In the next section, all these disciplines
and constraints, as well as the interaction between them, are widely introduced.

Figure 6.18: Examples of different possible rocket architectures. Some architectural choices can be observed, including the
type of propellant (blue=liquid and red = solid), the number of stages, the type of head or the number of engines per stage.

6.2.1. Problem formulation
Multiple disciplines/constraints are necessary to be taken into account when designing a space rocket.
In this benchmark problem, seven different design disciplines and two constraints have been consid-
ered. In this section these disciplines/constraints, and their corresponding variables, will be introduced.
Then the architectural decisions of the problem will be presented. Finally, the mathematical problem
formulation will be added, including the problem XDSM.

Propulsion
The first two design disciplines are related with propulsion, using a different discipline depending on
the type of propellant. For the propulsion calculations, it is assumed that each stage can only consist
on liquid or solid propellant (not hybrid). It is also assumed that the engines used for each stage are
always the same. With these assumptions, the following disciplines are proposed:

• Solid propulsion: This discipline will be included when solid propulsion is used for at least one
of the stages of the rocket. Three different types of engines will be allowed to be chosen, based
on the characteristics of real solid propulsion engines. The engines used for reference are the
SRB (used in the space shuttle), the P80 (used by ESA in the Vega rocket) and the GEM60 (used
in the DELTA IV, among other rockets).
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This discipline takes as input a list with the engines used for a certain stage. The number of
engine nozzles is a design variable, and to indicate how many nozzles there are, the name of
the chosen engine has to be repeated a number of times equal to the number of nozzles. For
example, if a SRB with two nozzles is wanted, the input would be: Engines = [SRB,SRB].

Then, depending on the engines chosen and using the characteristic shown in tables 6.1 and 6.2,
this discipline will provide as an output the maximum thrust of that stage and the corresponding
mass flow rate (ṁ) for that specific thrust.

Table 6.1: Thrust of reference solid engines.

Engine Thrust (MN)
SRB 12.45 (Kanner et al., 2011)
P80 2.1 (ESA, 2002)

GEM60 1.245 (ATK, 2020)

Table 6.2: Mass flow rate of reference solid engines.

Engine Mass flow (kg/s)
SRB 5290 (Borghi and Spinozzi, 2017)
P80 764 (ESA, 2002)

GEM60 814.19 (Grumman, 2023)

• Liquid propulsion: This is the analogous propulsion discipline for the case of liquid propellant.
The inputs and the outputs are going to be exactly the same, except for an additional output, which
is the nozzle expansion ratio (Ae/Ag). This is defined as the ratio between the nozzle exhaust
area and the nozzle throat area.

As in the case of solid propulsion, three real engines that have been already used in rocket design
are going to be used as reference. These are the Vulcain (used by ESA for the Arianne family),
the RS68 (used for the space shuttle too) and the S-IVB engine (used for the last stage of Saturn
V). The data used for the thrust, the mass flow and the expansion ratio is presented in tables 6.3,
6.4 and 6.5.

Table 6.3: Thrust of reference liquid engines.

Engine Thrust (MN)
Vulcain 0.8 (Chemeurope, 2005)
RS68 2.891 (Sumrall and McArthur, 2007)
S-IVB 0.486 (Astronautix, 1997)

Table 6.4: Mass flow rate of reference liquid engines.

Engine Mass flow (kg/s)
Vulcain 188.33 (Chemeurope, 2005)
RS68 807.39 (University, 1998)
S-IVB 247 (Astronautix, 1997)

Table 6.5: Expansion ratio of reference liquid engines.

Engine Expansion ratio
Vulcain 45 (Chemeurope, 2005)
RS68 21.5 (Creech et al., 2008)
S-IVB 28 (Astronautix, 1997)

These tools only accept as input the engines used for a certain stage. Therefore, if multiple stages of
the same type of propellant are chosen, these disciplines will have to be repeated multiple times.

Geometry
The next discipline in the workflow is a geometry calculator. The first geometrical properties given as
output of this discipline are the total rocket length (Lt) and the total diameter (Dt). To calculate them,
the length of each stage (li) and the length to diameter ratio (Lt_Dt) are given as inputs. Once these
properties have been calculated, the volume for each stage (Vs) is calculated, assuming that it has a
cylindrical shape
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Another output of this discipline is the calculation of the surface and the volume of the rocket head,
which are later used by different design disciplines. There are three different types of heads, which are
elliptical, semi-spherical and conical (figure 6.19 ). The discipline knows the head shape depending on
the inputs that it receives, which depend on an architectural decision (Hs). If a conical head is wanted,
the cone angle (ϵ) will be given as an input. If a semi-elliptical head is chosen, the ratio between its
length (Le) and the total length of the rocket will be given (Re = Le/Lt). If none of these design vari-
ables are inputs to the discipline, it will assume that a semi-spherical head has been chosen for the
architecture.

ε Le

Figure 6.19: Possible head shapes of the rocket. These are conical, semi-spherical and semi-elliptical.

The formulas for the surface and the volume calculations used for each head shape are provided in the
next table:

Table 6.6: Geometric formulas for the head surface/volume calculations.

Shape Surface Volume

Cone πRg
1

3
πR2h(ϵ)

Semi-sphere 2πR2 2

3
πR3

Semi-elliptical πL2
e +

πR2

ν
ln[(1 + ν)/(1− ν)]

2

2

3
πR2Le

where:
h(ϵ) = R/tan(ϵ) (6.3)

g =
√

R2 + h(ϵ)2 (6.4)

ν =

√
L2
e −R2

Le
(6.5)

Finally, the engines used for each stage are given as input. If liquid fuel engines are used, the geometry
calculator will provide four additional outputs for that stage. These are the surface/volume for the fuel
tank (StF and V tF ) and for the oxidizer tank (StO and V tO).

All the reference liquid engines useH2 as fuel and LOX as oxidizer. It will be assumed that the oxidizer
to fuel mass ratio is equal to 7.937 (Gordon and McBride, 1959). Assuming that the addition of the tank
volumes of a certain stage is equal to the stage total internal volume , the following formulas can be
used for the volumes:

V tF =
VS

7.937ρH2

ρLOX
+ 1

(6.6)

V tO = Vs − V tF (6.7)

where the density values are ρH2 = 71kg/m3 and ρLOX = 1140kg/m3. Assuming that the tanks have
cylindrical shapes (as the stage), the surfaces can be calculated too.
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Rocket mass
With the geometric values already calculated, the next step is to determine the masses of the different
rocket stages. To do so, two disciplines are used and repeated for each stage. First the propellant
mass discipline, which takes as an input the engines of a certain stage (as each engine has an asso-
ciated propellant) and gives as an output the propellant mass (mp) in the case of a solid propulsion
stage, or the fuel and oxidizer masses (mF and mO) for a liquid propulsion stage.

For solid propulsion, it is assumed that the whole stage inner volume is filled with propellant. This is
not true for the case of liquid propulsion, where it is necessary to leave some free volume in the tanks
(called ullage) for pressurization, boil-off... This volume will be assumed to be equal to 6 % (Hedayat
et al., 1998). Knowing these assumptions, the inner volume of each stage, and the densities shown in
table 6.7 , the different propellant masses can be calculated.

Table 6.7: Propellant densities used for each reference engine.

Engine Propellant Density (kg/m3)

SRB PBAN 1715 (Braeunig, 1996)

P80 HTPB1912 1810 (Wingborg et al., 2017)

GEM60 HTPB-APCP 1650 (Thomas, 2018)

Liquid H2/LOX 71/1140 (Verfondern et al., 2021)/(Sakaki et al., 2017)

For the calculation of each stage mass, a discipline called structural mass is used. The components
contributing to the total mass of a rocket stage highly differ depending on the source of propulsion,
leading to a different number of outputs of this discipline. The masses of these components will be
calculated using simple numerical equations taken from Akin, 2016.

The first component that can contribute to a stage mass (if it the last stage) is the head structure mass
(Ms). To calculate it, it is necessary as input the head surface. Then, assuming a constant thickness of
0.005 m (SpaceX, 2021) and that the material used for all this structure is aluminium 2024 (commonly
used in aerospace industry) with a density of 2780 kg/m3, the total mass of the rocket head structure
is given by:

Ms = 2780 ∗ 0.005 ∗Head_surface (6.8)

For the case of solid propulsion, only one component contribute to the structural mass of the stage.
This component is the engine casing used to contain the combustion chemical reaction. The mass of
the casing (Mcasing) can be calculated when the propellant mass is given as an input using the following
equation:

Mcasing = 0.135 ∗mp (6.9)

For the case of liquid propulsion, three outputs are provided. These are the tanks mass (Mtanks), the
tanks insulation mass (Minsulation) and the pumps mass (Mpumps) necessary to pump both the fuel
and the oxidizer. For the case of the tanks mass, it is obtained using the graph shown in figure 6.20,
where tank volumes are the only necessary inputs.
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Figure 6.20: Regression data used to calculate tanks mass as a function of the tanks volume. Figure taken from Akin, 2016.

The insulation mass of both the fuel and the oxidizer is calculated with numerical equations using the
tanks surfaces as inputs (given by the geometry calculator).

Minsulation,H2 = 2.88StF (6.10)

Minsulation,LOX = 1.123StO (6.11)

For the case of the pumps, it is necessary as input the thrust and the expansion ratio calculated by the
propulsion discipline. Assuming a combustion chamber for each nozzle, the total weight of the pumps
for each combustion chamber is given by:

Mpump = 7.81e−4Ti + 3.37e−5

√
Ae

Ag
+ 59 (6.12)

where Ti is the thrust of only one engine. The total pumps mass (Mpumps) of a stage will be given by
the product between the previous result and the number of engines.

Trajectory
This discipline performs all the necessary calculations regarding the rocket trajectory. The first step
necessary to perform these calculations it to determine the rocket drag coefficient (CD). It is going to
be assumed at this conceptual design phase that the vehicle drag coefficient is determined only by the
head shape drag coefficient.

For the case of a semi spherical shape, the theoretical value of the CD is known an equal to 0.42
(Hoerner, 1965). For the case of a cone, the CD depends on the cone angle, as shown in figure 6.21.
Using that graph as reference, the following numerical approximation can be used to calculate the cone
drag coefficient:

CD = 0.0112ϵ+ 0.162 (6.13)

For the case of the semi-elliptical head shape, it is supposed that the drag coefficient depends only on
the ratio between the semi-ellipse length and the rocket total length. The following linear interpolation
has been built, based on the experimental data shown in Fedaravičius et al., 2012:

CD = 0.305− Re − 0.1

1500
(6.14)
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Figure 6.21: Drag coefficient of a 3D cone as a function of the cone angle ϵ. Figure taken from Hoerner, 1965.

With the data proceeding from the other disciplines and the drag coefficient, it is possible to calculate
the rocket maximum circular orbit for a certain payload mass. To do so, it is assumed that the trajectory
can be divided into three different segments. The first segment is going to be vertical flight. The equa-
tion of movement, assuming a zero angle of attack, is determined by the following differential equation:

∂2x

∂t2
=

T − 0.5ρ(h)SV 2CD

(m0 +mpay)− ṁ ∗ t
(6.15)

where T is the rocket thrust , CD is the drag coefficient, mpay is the payload mass, S is the rocket
frontal surface, ρ(h) is the density 3 and m0 is the rocket initial mass without considering the payload
(the addition of the propellant and structure mass outputs). This equation can be solved numerically
assuming a certain payload mass , allowing to obtain the rocket speed for each altitude with the initial
conditions h0 = 0 and v0 = 0.

This first segment of vertical flight is used to get rid of atmospheric drag as fast as possible. It usually
lasts until the maximum dynamic pressure point (or max Q) is achieved, which is the point in the whole
mission where the rocket experiences the maximum structural loads. The altitude of this point varies
depending of the rocket. A value of 10 km of altitude is going to be assumed, using this point for an
instantaneous transition to the next trajectory stage, the turn maneuver.

To enter into orbit, the rocket needs to gain horizontal speed with respect to the Earth. This is why dur-
ing this second trajectory stage the rocket gradually starts to change its initial vertical flight (γ = 90◦)
to an horizontal flight (γ = 180◦), where γ is the flight angle, defined with respect to the horizontal.

To simplify the calculations, it is going to be assumed that the rocket climbs at a constant angle of 135
degrees4. With this assumption, and assuming that the lift forces are negligible, the rocket movement
according to flight dynamics (Yaylali, 2018) is given by:

∂2x

∂t2
=

Tcos(α)− 0.5ρSV 2CD

(m0 +mpay)− ṁ ∗ t
− gsin(γ) (6.16)

3ICAO international atmospheric model is used to estimate the density for each altitude.
4The rocket will tend to vary its flight angle naturally, so it assumed that some complementary technology allows to fix the

flight angle, such as thrust vectoring.
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with the initial conditions h0 = 10000m and v0 = v1, where v1 is the rocket velocity at 10 km of altitude.
An angle of attack (α) of 5 degrees will be assumed too for the calculations.

Figure 6.22: Forces actuating on a rocket climbing at a flight angle γ.

This trajectory phase will be maintained until the rocket arrives to the Karman line (100 kilometers
of altitude) with a certain speed v2, and an horizontal speed equal to half the previous velocity. If
the rocket still has propellant left, it can further increase its velocity. Assuming that the flight angle
transitions instantly from 135 degrees to an horizontal orientation, the maximum speed that the rocket
could gain with respect its original horizontal speed (v2/2) would be governed by :

∂2x

∂t2
=

T

(m0 +mpay)− ṁ ∗ t
(6.17)

This equation can be solved numerically with initial conditions v0 = v2/2 until the rocket runs out of
propellant, obtaining a certain final maximum velocity (v3). Then, knowing that each circular orbit of a
height horbit is attached to a certain minimum speed ∆V (equation 6.18), it can be determined if the
rocket is able to arrive to the desired orbit of 400 km or not for the supposed payload mass.

∆V =

√
µ

horbit +REarth
(6.18)

It is important to take into account when solving numerically the trajectory equations that the rocket
could have multiple stages. To implement this, at the end of each trajectory phase it is necessary to
check if the stage propellant had finished before that trajectory phase ended. If this is the case, the
same trajectory phase will be solved again, but taking as initial condition the point where the stage
propellant ended and subtracting the mass of the previous stage which already ended.

As a summary, the trajectory discipline will iterate the payload mass until it finds the maximum payload
that can be lifted by the rocket to an orbit of 400 km. Apart from the payload mass, the trajectory
discipline also provides as output two vectors containing all the altitude and velocity points of the first
and second phases of the trajectory (hvector and vvector).

Cost
This discipline calculates the second objective of the optimization problem, which is the total cost of the
rocket. As in the previous disciplines, simple numerical expressions will be used to estimate the cost,
which is valid for a conceptual design. Three different components are assumed to contribute to the
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total cost, which are the engines, the rocket head structure and the propellant.

In the case of the rocket head structure cost, it is obtained calculating the total cost of the material
used for its manufacturing. This can be done multiplying its mass (Ms) by the price for aluminium 2024.
assumed to be of 2.45 dollars per kilogram (Jagdishmetalindia, 2023). A similar procedure is followed
for the case of propellants. Using the mass of propellant calculated before and using the price per
kilograms shown in table 6.8, the propellant cost can be calculated.

Table 6.8: Propellants cost (Urban, 2023b).

Propellant Cost ($/kg)

Solid 5

LOX 0.27

H2 6.1

The third component, which is the engine cost, is calculated using the TRANSCOST model (Koelle,
2007). The expressions used to calculate it depends on the type of propellant:

Costengine,solid = 2.3(Mcasing +Mp)
0.399 (6.19)

Costengine,liquid = 5.16(Mtanks +Minsulation +Mpumps)
0.45 (6.20)

These equations were obtained from the statistical data shown in figure 6.23.

Figure 6.23: Statistical analyses use to estimate the engine production cost for solid and liquid propulsion engines. Figures
taken from Koelle, 2007.

It is important to remark that the production cost will be multiplied by the number of engines presented
(both for liquid and solid engines). Also, these graphs show the cost for producing the first engine, but
this cost is reduced when multiple engines are built during the year. A reducing factor of 0.85 (taken
from Koelle, 2007) will be considered.

The cost in all these previous expressions is calculated in an unit introduced in the TRANSCOST
model called Man Year Cost (Myr). This was done to avoid the data to be modified because of inflation.
However, a conversion can be done to the actual dollar assuming that 1Myr = 366518$
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Constraints
Two different constraints have been added to the optimization problem to ensure that the design is
feasible. These are:

• Structural constraint: This constraint checks if the loads during the trajectory exceeded at any
point the maximum load capacity of the rocket (assumed to be 50 KPa, Frank et al., 2016). To
do so, it receives as inputs the velocity as each altitude (hvector and vvector), and it calculates
the dynamic pressure (q) at each altitude. Then the highest value is taken, it is subtracted the
maximum load capacity (50 kPa) and is given as an output (Structural_difference). The constraint
will be considered to be satisfied if the previous result is negative.

• Payload constraint: This constraint ensures that the payload mass calculated by the trajectory
discipline fits inside the rocked head. To do so, it receives as input the head volume and the mass
of payload. Then, assuming that the payload is mainly made of aluminium (with a density of 2.81
kg/m3), it can be calculated the volume that the payload occupies. Finally, the payload volume is
subtracted the head volume and given as output (Payload_difference). The constraint is satisfied
if the result is negative.

Architectural decisions
All the disciplines and the connections between them have already been introduced. Before showing
the mathematical formulation of the problem, the different architectural decisions are introduced. The
first one, which is going to hugely influence the whole performance of the rocket, is the number of
stages (Ns). Then for each stage there are two additional architectural decisions, which are the type of
engines and the number of nozzles (NE,i), which are combined into one array called Enginesi. Finally,
for the last stage there is an architectural decision determining the head shape (Hs). As in the case
of the mathematical problem, the architectural design space for this problem can be observed in more
detail in appendix C.

Mathematical formulation and XDSM
This section includes the system architecture optimization problem formulation for the multistage rocket
design. The XDSM is also included in the next page.

minimize : cost

maximize : mpay

with respect to : Ns = [1, 2, 3]

Hs = [Semi_sphere, Cone,Elliptical]

Enginesi = [SRB(NE,i), P80(NE,i), GEM60(NE,i),

V ULCAIN(NE,i), RS68(NE,i), SIV B(NE,i)] i = [1, Ns]

NE,i = [1, 2, 3] i = [1, Ns]

0 ≤ li ≤ 20 i = [1, Ns]

10 ≤ Lt_Dt ≤ 20

15 ≤ ϵ ≤ 30

0.1 ≤ Re ≤ 0.25

subject to : Structural_difference ≤ 0

Payload_difference ≤ 0

given : horbit = 400km

maxQ = 50kPa

ρpay = 2.81kg/m3

With these architectural decisions, the possible number of system architectures (only considering dis-
crete variables) would be of 18522. However, the real number of possible rocket designs (called later
design points) would be much higher, as each architecture has additional numerical continuous design
variables attached that the optimizer can control.
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6.2.2. Architectural influences
The four different architectural influences can be also found in the space benchmark problem. Condi-
tional variables (I1) are found everywhere in the problem, mainly attached to the type of propellant
used at each stage. An example could be the mass of the tanks (Mtanks). Also the case of variable
length arrays is included in the ”Enginei” variable, where the number of components depends on an
architectural decision (NE,i).

Data connection (I2) is found between the Propellant and the Structure mass disciplines. The propel-
lant mass (mp) will only be exchanged between both disciplines when solid propulsion is used. These
disciplines also include Discipline repetition (I3), as they are repeated for each stage of the rocket.
Finally, Activation logic (I4) can be found in the propulsion disciplines.

6.2.3. Space problem results
In this section, the results obtained for the multistage rocket design problem are going to be showed and
briefly analysed. To solve the problem, NSGA-II algorithm was used. A population of 150 points was
chosen, with a total of 30 generations, leading to a total of 4500 design points. With these optimization
parameters, the results shown in figure 6.25 were obtained.

Figure 6.25: This figure shows the feasible design space of the space benchmark problem (blue) and the Pareto front (red).
Each of them has associated a certain maximum payload mass (y-axis), and a cost (x-axis). The Ariane V data is in yellow.

More details about these results can be found in table 6.9. These results first confirm the importance
of considering all the different design disciplines at the same time, as only then feasible design can be
obtained. It also shows that it is possible to obtain optimized results without the necessity of exploring
all the possible system architectures of the system. These results are also in the order of magnitude
of existing rockets, such as the Ariane V. This has a payload mass capacity for LEO in the range of 21
tonnes, and an estimated cost of 178 million dollars (Urban, 2023a).

Table 6.9: Results space benchmark problem.

Number of possible architectures 18522
Number of architectures analysed 1031 (5.56 %)

Design points analysed 4500
Feasible design points 763 (18 %)

Pareto front design points 32
Pareto front architectures 10
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Multiple different architectures can be found in the Pareto front. For example, regarding the number of
stages, rockets with only one stage are found on the bottom left of the Pareto front. Of course, they
are the cheapest, but the amount of payload they can lift to the orbit is low. If heavier quantities are
wanted to be lifted, more stages will be needed, but the cost will be increased (figure 6.26)

Figure 6.26: When the number of stages increases, the rocket payload mass capability increases, but the cost increases too.

Regarding the rocked head shape, the results obtained were also expected. Usually, with low pay-
load masses, semispherical heads are being chosen. The semisphere is the shape from the possible
sources that maximizes the amount of volume for a given surface (and therefore for a given cost).
However, the semisphere is the worst shape according to aerodynamics, as it has the highest drag
coefficient. When heavier payloads have to be lifted, aerodynamics plays a more important role, and
that justifies why elliptical head shapes are being chosen, although they are usually the most expen-
sive ones. In the intermediate cases, usually conical heads appear, as they are a compromise solution
between aerodynamics and cost.

Figure 6.27: Different architectures found in the Pareto front according to the head shape.
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It is also interesting to take a look at the type of propellant chosen for the first stage of feasible design
points. As it can be observed in figure 6.28, there are two distinctive parts in the Pareto front. Solid
propellant is chosen for the right part of the Pareto, while liquid propellant is chosen when lower pay-
load masses are wanted to be lifted. The reason for this are the two key differences between these
propellants.

Figure 6.28: This figure shows the propellant type (solid or liquid) for the rockets first stages. As it can be observed, there are
two clear clusters inside the Pareto front.

Solid propellant allows to generate more power (and more acceleration). However, their density is
higher compared to liquid propellants. Therefore, solid propellant rockets are really powerful, but also
have a low working time (as they have usually attached a higher mass flow rate) and the propellant
mass associated is also much higher. Usually, liquid propellant is chosen for medium size rockets, as
they are really effective, as well as lighter. When the payload mass wanted to be lifted is higher, and a
bigger rocket is needed, solid propellant is chosen usually for the first stage. This allows to generate
the necessary power to lift the rocket in the first moment of the flight and getting rid of the atmospheric
drag as soon as possible, as bigger rockets suffer more the effects of drag. All this can be observed in
figure 6.29.

Figure 6.29: This figure shows the two Pareto fronts collision for the rocket propellant first stage.
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Finally, it has also been obtained that for multistage rockets found in the Pareto front, all architec-
tures prefer liquid propellant for the second and third stages. This confirms the previous explanations
regarding the propellant type and also corresponds to the examples found in existing launcher designs.

6.2.4. Comparison to traditional approach
As mentioned in this research, there were already some examples of system architecture optimization
problems using MDO for the evaluation. In most of these problems, Python code was used to formu-
late and execute these MDO problems. In this section a comparison is going to be made between this
previous approach and the methodology adapted to collaborative MDO that has been presented in this
research. To do so, an adaptation of the space benchmark problem in Python 5 will be used as a base.

The first difference is the amount of coding. Right now, the only coding needed in MDAx is mainly to
import the inputs and outputs of the tools and to call the exporter function to RCE. However, in a close
future no coding will be necessary at all due to the soon inclusion of architectural influences in the GUI.
In the case of the Python implementation, all the problem has to be coded (including the workflow),
demanding hundreds of coding lines. This problem is even worse when elements like convergers are
needed, as it makes the code really complex. Another disadvantage of this traditional approach is that
it has an important opening barrier. The user has to be familiar with the coding language being used.
This, linked to the extensive coding needed, also leads to considerably longer times to formulate the
MDO problem.

Another main problem of this approach is related with the MDO problem implementation. The tra-
ditional method follows an imperative approach, opposite to the declarative approach of this new
methodology. This means that the user has to describe/determine how the process has to be per-
formed, including all necessary instructions. In the declarative approach, the user just states what is
wanted to be achieved, but not how it has to be done. This leads to important differences.

First, regarding the inclusion of modifications in the MDO problem. Usually, the final MDO problem
is formulated after some iterations. This will involve trying different MDO architectures or including/ex-
cluding different disciplines in the problem (and their respective connections). This in MDAx can be
achieved immediately. However, this is not true for the traditional imperative approach, as the user has
to change manually the code for any possible tried formulation. This shows one of the main reasons
of why the traditional approach should not be used for collaborative MDO, as it makes this process
tedious and time consuming.

Another remarkable difference, also related with the imperative/declarative approach, is the genera-
tion of connections between the different disciplines. In MDAx, once inputs and outputs are defined,
connection are made automatically thanks to the CDS. However, in this traditional approach the de-
signer has to keep track of all possible connections existing in the MDO problem and implement them
manually, which is not desired specially for problems with a high number of connections.

Apart from the higher difficulty and set up time that this traditional coding approach involves, it also has
another main downside, and it is the reusability. As an example, consider the architectural influences.
Custom Python code has been added to implement influences like discipline activation (if statements)
or discipline repetition (for loops). However, if a new problem is wanted to be formulated, only part of
this implementation process might be reusable. This is a great difference with MDAx, where all the
methodology necessary to deal with architectural influences is already coded and the user just has to
indicate the conditions for each of them (declarative over imperative).

There are also differences in this new methodology regarding the declaration of inputs and outputs.
In MDAx, XML files given by tools developers are usually used to define inputs and outputs for each
discipline. In the traditional approach, all this definition has to be done in a manual manner, again

5https://github.com/jbussemaker/SBArchOpt/blob/dev/sb_arch_opt/problems/rocket_eval.py

https://github.com/jbussemaker/SBArchOpt/blob/dev/sb_arch_opt/problems/rocket_eval.py
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increasing considerable the implementation time. Finally, this coding approach does not include usual
tools necessary to formulate complex MDO problems, such as collision detection/resolution, auto-
matic ordering of disciplines, etc...

As a conclusion, the coding approach can be used when there are not many participants in the project,
these participants have experience with the coding language and know all the possible elements in the
MDO problem. However, even in that case, the setup time would be much longer due to considerably
additional coding needed and the lack of tools to detect errors in the formulation. Also most part of the
developed methodology could not be easily reused for other problems.



7
Conclusions & Recommendations

This last chapter provides the main conclusions and outputs from this research. Then some recom-
mendations are given to achieve the desired implementation of system architecture optimization in the
industry.

7.1. Conclusions
Determining the architecture of the system is one of the key steps of the design process, as it hugely
influences its performance, and consequently the project success. Traditionally, several possible ar-
chitectural candidates were chosen manually based on experts knowledge, leading to bias and con-
servatism. System architecture optimization allows to objectively look for the best architectures by
formalizing and solving an optimization problem. To do so, first an architecture generator is used to for-
malize the architectural design space. Then, an architecture evaluator is needed to provide numerical
feedback to the optimizer for each architecture being proposed.

For this latest task, MDO could be used in the aerospace industry, as it considers the couplings existing
between the multiple design disciplines. If it is desired to implement MDO in real industry system ar-
chitecture optimization problems, the MDO platform used to formulate and execute the MDO problem
has to be adapted to the methodologies encompassed by collaborative MDO, allowing to coordinate
the different experts necessary in the process.

The MDO platform used has to satisfy some additional requirements too, such as dealing with mixed-
discrete variables or incorporating/being able to connect to complex optimization algorithms to solve
these problems. However, the main challenge is readjusting the MDO problem automatically for each
system architecture, as the variables, connections and disciplines vary for each one.

When performing the literature study, it was determined that there was not any MDO platform able to
deal with the previous requirements while adapted to collaborative MDO. The MDO platform based on
the joining of MDAx and RCE to formulate and execute the MDO problem (respectively) was already
adapted to collaborative MDO. It also satisfied all the previous requirements except the automatic read-
justment of the MDO problem. To fill the existing technological gap, the objective of the thesis was to
adapt MDAx to be used as an architecture evaluator, by extending its backend code to model and exe-
cute MDO problems that can be readjusted automatically during the optimization process, depending
on the architecture being analysed.

To achieve this, the first step was to determine the possible modifications that the different system archi-
tectures can produce in the MDO problem formulation/execution, called architectural influences. A total
of four different architectural influences have been discovered (conditional variables, data connection,
discipline repetition and discipline activation). These architectural influences are the first outcome of
this research, as there was no formal study about the impact system architecture optimization has in

80
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the MDO problem formulation/execution.

Once the different architectural influences were determined, the next step was to extend MDAx back-
end code to deal with them. By achieving this, a platform for evaluating system architectures using
MDO has been obtained, allowing to include all the benefits of MDO in the system architecture opti-
mization process.

Another main outcome of this thesis has been the development of a guide for the design of tools
adapted to system architecture optimization. Tools to be used for system architecture optimization
should own several properties. These include the possibility of receiving different inputs depending on
the system architecture, being able to deal with complex data structures (such as arrays) or following
standardized schema for the variables. All these requirements have been discussed in this research,
specially regarding architectural influences, including also an example of the implementation process.

An additional outcome of this research, related with this implementation process, is the numerical opti-
mization problem based on Fourier series. This is a simple problem that contains all the architectural
influences and that can be used by developers to verify the implementation of architectural influences
in any MDO platform. Finally, a space multistage rocket design problem has been solved using
system architecture optimization. This problem has shown the utility of this methodology to obtain the
best possible architectures of a system by exploring automatically the design space.

Regarding the benchmark problems, it has been identified the necessity of developing an standardized
notation for MDO problems with architectural influences. This notation should be able to indicate
in a simple manner the different architectural influences in the XDSM. It should also be adapted for a
representation of the problem in physical media, such as paper. A first possible notation has been
suggested in this research.

To contribute to the promotion of system architecture optimization, a repository has been created
on Github 12 for each of the benchmark problems, so that any researcher/student can execute in RCE
(which is open source) some possible architectures, observing the effects of the different architectural
influences in the problem. This is aimed to expand the concept of architectural influences and the im-
portance of dealing with them to use system architecture optimization.

As a summary, this research has allowed to reduce the existing gap between MDO and system ar-
chitecture optimization , being a forward step in the ultimate goal of including system architecture
optimization in real engineering design processes. However, there are still important steps to be
taken to finally close this gap, such as the development of a methodology to translate the architectures
given by the architecture generator into inputs that can be understood by the tools or the formalization
of the nomenclature suggested previously. Also new functionalities should be included, such as the
possibility to modify the order of execution of the MDO problem disciplines depending on the system
architecture.

7.2. Recommendations
This section includes multiple recommendations to achieve the inclusion of system architecture opti-
mization in the industry. First, regarding the specific case of MDAx, it is recommended:

• Incorporation of architectural influences to the GUI: Right now, the only way to formulate
MDO problems including architectural influences in MDAx is through the back end. If MDAx
is desired to be used for real engineering cases with architectural influences, all the new code
implementations regarding architectural influences have to be extended to the front end (the GUI).

1https://github.com/raul7gs/Fourier-benchmark-problem
2https://github.com/raul7gs/Space_launcher_benchmark_problem

https://github.com/raul7gs/Fourier-benchmark-problem
https://github.com/raul7gs/Space_launcher_benchmark_problem
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• Simplification of RCE export: Right now, multiple blocks are necessary to be exported to RCE
for each discipline. Although this allows to differentiate the different steps during each tool exe-
cution, it can lead to really complex workflows when multiple tools are included. It can also make
it difficult to handle them and to make the necessary modifications for the workflow execution.

The original idea was to include only one block before and after the tool block, so that all the pro-
cedures regarding inputs and outputs (including architectural influences) were gathered together.
This idea was discarded because of time reasons, as it would involve modifying a great part of
the code. However, the RCE export should be simplified in the future in order to be used for real
design cases.

• Implementation of architectural influences for tool groups: It is common in complex MDO
problems to be used for system architecture optimization that several disciplines/tools share a
common architectural influence. Therefore, allowing to attach a certain architectural influence
to multiple disciplines at the same time, without repeating it for each of them individually, would
reduce the problem formulation time.

• Extension of CMDOWS to deal with architectural influences: Right now, if architectural influ-
ences are found in the problem, only the RCE export is available in MDAx. It is suggested to adapt
CMDOWs to deal with the different architectural influences. Then, by adapting MDAx export to
CMDOWs, it would be possible to generate executable workflows for other MDO platforms, such
as OpenMDAO.

Then, regarding system architecture optimization in a more generic manner, the following steps are
recommended:

• Promotion of system architecture optimization: The idea of system architecture optimization
is still not widely spread in the industry. To enjoy its benefits in real case engineering design
problems, first it is necessary to promote this methodology. To do so, more system architecture
optimization problems should be solved, so that the potential of this methodology is shown. Also
workshops should be organized for this purpose. The development of open source platforms able
to formulate and execute MDO problems for system architecture optimization would also be an
important boost for the promotion of system architecture optimization.

• Formulation and execution of a complex system architecture optimization problem: Most
of the existing system architecture optimization problems are focused on a specific subsystem
(such as the propulsion system of an aircraft). More complex problems regarding systems of
systems should be developed, with hundreds of variables and multiple architectural influences.
There are two reasons for this.

First, it would show to the different experts that system architecture optimization can be used for
real complex design problems, allowing to further promote this methodology. The second reason
is that it would also serve as a test for all the different tools used in the optimization process (from
the optimizer to the evaluator, passing through the generator), as they have not been tested with
complex real case scenarios yet.

This research has discussed how MDO platforms can be adapted to be used for system architecture
optimization. The different requirements to be satisfied, as well as possible validation problems, have
been discussed. It is aimed that this research allows to promote the potential of system architecture
optimization and serves as a step forward in the inclusion of this methodology in the industry.
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Mathematical problem ADSG

This appendix shows a possible architectural design space graph implemented in ADORE for the math-
ematical benchmark problem (figure B.1). All the design variables (including architectural) can be found
in the ADSG. Although in this case there is not a real system, architectures can still be modelled from
an abstract point of view. The boundary function is to approximate the objective function f(x). To de-
termine how close the architecture chosen is from the objective, a quantity of interest (QOI) called
”Approximation error” is used, which is wanted to be minimized .

To approximate the boundary function, an approximation based on fourier series is used, being nec-
essary three functions to determine its terms. First, in the middle, it is determined what are going to
be the trigonometric terms. The first step to do this is to decide what type of functions are going to be
used (cosines, sines or both) or what is the same, if NA and NB are going to be higher than 0. Then,
if they are, the actual number of each term is chosen. For each instance it is determined the value
of the coefficient (Ai and Bi) and the correspondent harmonics (w). All this is done in the big grey
subsystems blocks.

The next step is to determine the constant term A0. The architectural decisions determining the calcu-
lation method for this term are found on the left of the ADORE model. First it is decided if the volume or
the surface output of the C disciplines is going to be considered (xc). Then, the terms that are going to
be included for the calculation in case there are both sines and cosines is determined in the port called
”Constant term connections” (xcon).

Finally, on the right, there is a port called ”Number of terms” which ensures that the number of trigono-
metric terms in the architecture is always lower or equal to two.
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QOI [OBJ]:
Aproximation Error ↓

QOI [INP]:
x0 = 0.3

FUN:
Approximate objective function

FUN:
Determine Constant term

FUN:
Determine Trigonometric Functions

FUN:
Determine Fourier terms

FUN:
Determine X terms

FUN:
Determine Output

FUN:
Determine Geometry

FUN:
A term to be determined

FUN:
B term to be determined

FUN:
Contraint number of terms

COMP:
Fourier series

COMP:
Constant term

COMP:
Cosine

COMP:
Sine

COMP:
Volume

COMP:
Surface

COMP:
Constant

COMP:
Number of terms

DE:
Decomposes

DE:
Decomposes

MULTI:
Both

PORT:
Constant tems connections

PORT:
Number of terms

FUN:
Frequencies

COMP:
A

COMP:
Omega 1

COMP:
Omega 2

MULTI:
Both

needs

fulfilled by

includes

fulfilled by

includes

fulfilled by

SYS:
A

FUN:
Frequencies

COMP:
B

COMP:
Omega 1

COMP:
Omega 2

MULTI:
Both

needs

fulfilled by

includes

fulfilled by

includes

fulfilled by

SYS:
B

fulfilled by

needs

fulfilled by

needs needs

fulfilled by

includes

needs

fulfilled by

includes

needs

fulfilled by fulfilled by fulfilled by

fulfilled by

emerges from
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zooms into
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outputs to
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to input
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to input
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Figure B.1: Mathematical benchmark problem ADSG implemented in ADORE.
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Space problem ADSG

This appendix includes a possible implementation in ADORE of the rocket architectural design space
graph (figure C.1). The boundary function of the system is to carry payload to space. Two objectives
are modelled as QOIs to measure the rocket performance. These are the maximum payload mass
(wanted to be maximized) and the rocket cost (wanted to be minimized).

QOI [OBJ]:
Payload mass ↑

QOI [OBJ]:
Cost ↓

FUN:
Carry payload to space

FUN:
Provide aerodynamic efficiency

FUN:
Carry Loads

FUN:
Provide propulsion

COMP:
Rocket launcher

COMP:
Cone

COMP:
Semi-sphere

COMP:
Elliptical

COMP:
Fuselage

COMP:
Solid Engine

COMP:
Liquid Engine

SYS:
Rocket stages

fulfilled by

needs needs needs

fulfilled by fulfilled by fulfilled by fulfilled by fulfilled by fulfilled by

Figure C.1: Space benchmark problem ADSG implemented in ADORE.

Three main functions have to be performed by the rocket to achieve its mission. The first one is to be
aerodynamically efficient. This is achieved adding an aerodynamic head (Hs), existing three different
possible shapes. The second function is to carry structural loads, performed by the fuselage. Finally,
it is necessary to provide propulsion for each stage (Ns), existing two types of possible propellant, and
three possible engines for each of them (Enginei).

Figure C.2 shows the implementation of all the problem inputs and constraints, which are modelled in
the rocket launcher component. The same methodology is carried out with design variables regarding
the possible head shapes, the fuselage or the possible engines to be chosen.
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FUN:
Carry payload to space

FUN:
Provide aerodynamic efficiency

FUN:
Carry Loads

FUN:
Provide propulsion

COMP:
Rocket launcher

fulfilled by

needs

needs

needs

INST

QOI [DV]:
L to D ratio = [10, 20]

QOI [INP]:
Max q = 50000

QOI [CON]:
Structural constraint ≤ 0

QOI [CON]:
Volume constraint ≤ 0

QOI [INP]:
Payload density = 2810

1

Figure C.2: Space benchmark problem constraints and fixed inputs modelled at the rocket launcher component level. Also the
length to diameter variable is included.


	 Preface
	 Summary
	 Nomenclature
	 Introduction 
	Thesis objective and methodology
	Thesis structure

	 Systems Engineering and MDO
	Systems engineering introduction
	Model-Based Systems Engineering (MBSE)
	Multidisciplinary Design Optimization (MDO)
	Collaborative MDO

	System architecture: a link between MBSE and MDO

	 System Architecture Optimization
	Introduction to system architecture optimization
	Architecture generation
	Types of architectural decisions
	Architectural Design Space Graph (ADSG)

	Architecture evaluation
	Requirements for the implementation of MDO in system architecture optimization
	Possible MDO platforms for system architecture optimization
	MDAO Workflow Design Accelerator (MDAx)

	Technological gap

	Architectural influences
	Methodology
	MDO Example case: Supersonic Business Jet Problem (SSBJ)
	Architectural Influences
	Conditional variables (I1)
	Data connection (I2)
	Discipline repetition (I3)
	Discipline activation (I4)

	System Architecture Optimization Example cases: Aircraft propulsion system 
	Jet engine problem
	Hybrid electric aircraft propulsion system problem

	Strategies to deal with architectural influences
	Conditional Variables (I1)
	Data connection (I2)
	Discipline repetition (I3)
	Discipline activation (I4)


	 MDAx adaptation to system architecture optimization
	Discipline activation (I4)
	Creation of a configuration file
	Attachment of activation logic information to MDAx disciplines
	Determination and verification of activation logic assertions
	Adaptation of the collision detection process to activation logic
	Inclusion of activation logic in the RCE export file

	Discipline repetition (I3)
	Extension of the configuration file and the function block attributes to deal with discipline repetition
	Determination of the number of repetitions
	Differentiation of the variables for each iteration
	Selection of inputs/outputs for each iteration: Global to Local
	Preparation of outputs for merging process: Local to Global
	Determination of the end of the repetition process: Iterator
	RCE export adaptation to discipline repetition

	Data connection (I2)
	Extension of the configuration file and the function block attributes to deal with data connection
	Nomenclature for data connection
	Extension of the Global to Local block to include inputs deactivation
	RCE export for data connection

	Conditional variables (I1)

	 Verification & Validation
	Verification: Mathematical benchmark problem
	Problem formulation
	Architectural influences
	Architectural influences verification
	Mathematical problem results

	Validation: Space benchmark problem
	Problem formulation
	Architectural influences
	Space problem results
	Comparison to traditional approach


	Conclusions & Recommendations
	Conclusions
	Recommendations

	References
	 Architectural influences in the sample MDO problems
	 Mathematical problem ADSG
	Space problem ADSG

