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A B S T R A C T

Determining the timing of landslide occurrence is crucial for establishing an accurate, comprehensive and
systematic landslide inventory while assessing the potential for reducing landslide risk. Unfortunately, many
existing landslide inventories lack temporal information such as the precise time of landslide events. Optical
and Synthetic Aperture Radar (SAR) sensors are the most commonly used remote sensing technologies for
landslide detection. Unlike optical sensors, SAR sensors are not affected by cloudy conditions and provide
valuable imagery regardless of sunlight availability. Therefore, SAR-derived parameters, i.e., SAR amplitude,
interferometric coherence, and polarimetric features (alpha and entropy), offer a higher temporal resolution
for detecting landslide occurrence times compared to optical data. Despite the advantages, there is currently
no universally accepted automatic method for determining the time of landslide events using SAR data. This
is due to the lack of anomaly labels and the high time-series volatility in detecting landslide occurrence times.
Despite advances in deep-learning methods for anomaly detection in time-series, only a few of them can
address these challenges in our case. In this paper, we propose an unsupervised multivariate transformed-based
deep-learning model to automatically and efficiently estimate landslide occurrence times using multivariate
SAR-derived parameters time-series analysis. The designed gated relative position can increase robustness
and temporal context information, by learning global temporal trends in the time-series. Subsequently, the
time-series of the anomaly score derived from the proposed Transformer model is analyzed using an adaptive
thresholding strategy to dynamically and automatically mark anomalies related to the landslide occurrence. Our
research focuses on collapsed landslides characterized by dramatic changes in ground surface topography, with
a particular attention for the need of a prior knowledge about landslide boundaries. We assess the performance
of the proposed methodology for several collapsed landslides including the July 21, 2020 Shaziba and 23 July,
2019 Shuicheng landslides in China, March 19, 2019 Takht landslide in Iran, June 15, 2018 Jalgyz-Jangak
and May 25, 2018 Kugart landslides in Kyrgyzstan, July 7, 2018 Hitardalur landslide in Iceland, and January
25, 2019 Brumadinho landslide in Brazil. In comparison to commonly used neural networks like the LSTM
algorithm, our proposed framework leads to a more accurate estimate for the time of landslide failure using
time-series of SAR-derived parameters. Furthermore, our results suggest the great potential of SAR data to
narrow the time period detected from optical data when used in conjunction with them.
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1. Introduction

Landslides are among the most devastating natural disasters on
Earth (Brabb, 1991; Kilburn and Petley, 2003), causing massive loss of
life and damages worldwide. However, there are currently no partic-
ularly effective defense techniques to protect vulnerable communities
from landslide hazards, except for evacuation warnings based on spatial
and temporal risk assessments (Kilburn and Petley, 2003). High-quality
landslide inventories, which record among others location, magnitude,
date, and potential triggering factors (Guzzetti et al., 2012) are crucial
for the landslide risk assessment (Froude and Petley, 2018), and early
warning (Van Westen et al., 2008; Pardeshi et al., 2013). However,
the majority of existing landslide inventories primarily include point
locations, triggers and scales, but do not include the exact date of
landslide occurrence, a shortcoming that contributes to the uncertainty
of susceptibility and risk assessment (Van Westen et al., 2008). As a
result, it is a challenge to apply the incomplete landslide inventories
to have a proper evaluation of landslide risk at local and regional
scales (Zhou et al., 2022b; Du et al., 2020)

The failure time of landslides can be detected in various ways
including continuous GNSS, field investigation, airborne and space-
borne remote sensing (Colesanti and Wasowski, 2006; Delacourt et al.,
2007; Zhou et al., 2022a). MT-InSAR (Multi-temporal Interferometric
Synthetic Aperture Radar) technology has demonstrated its capability
in detecting slow-moving landslides (Lu et al., 2019a) and identifying
precursors before the occurrence of catastrophic slope failures. How-
ever, for detecting catastrophic failures within our specified scope in
this study, the use of this technology is impractical due to coherence
loss (Crosetto et al., 2016). Long time-series of satellite observations
acquired by a variety of remote sensing techniques, such as optical
and synthetic aperture radar (SAR), provide opportunities for landslide
occurrence time detection. For example, scholars exploited time-series
of changes in NDVI (Normalized Difference Vegetation Index) derived
from optical imagery to automatically determine a time window for
landslide occurrence (Behling et al., 2014, 2016; Fu et al., 2023).
However, results from this approach suffer from large uncertainty in
determining the exact time period of landslide occurrence. Landslide-
prone areas are usually exposed to rainfall and often covered by clouds
during catastrophic failures while optical data are dependent on day-
light and vulnerable to cloud cover. Therefore cloud-free images may
not be easily available at the times needed to precisely detect the time
of catastrophic failure (Plank et al., 2016; Fu et al., 2023).

Due to their cloud penetration and all-weather operational capa-
bility, the use of Synthetic Aperture Radar (SAR) techniques offers
new opportunities to investigate instability processes related to land-
slides (Motagh et al., 2013; Xia et al., 2023; Wang et al., 2023; Xia et al.,
2022) and for a more precise temporal characterization of landslide
occurrence on a regional scale (Mondini et al., 2021). SAR, as an
active remote sensing system, alternatively sends electromagnetic mi-
crowaves to ground targets and then receives corresponding backscat-
tering echoes from the Earth. Time series analysis of SAR-derived
parameters such as alpha, entropy, amplitude, and interferometric
coherence can be utilized to detect any temporal trends or anomalies
in backscattering related to landslide failure (Jacquemart and Tiampo,
2021; Jung et al., 2016; Mondini et al., 2019; Plank et al., 2016).
For example, interferometric coherence is a measure of the similarity
between two SAR images. Except for the influence from long spa-
tial/temporal baselines, a reduction in interferometric coherence gen-
erally suggests that the scattering properties of the ground target have
changed (Zebker et al., 1992; Jacquemart and Tiampo, 2021). So, this
information can be exploited to identify the landslide in vegetated areas
where the loss of coherence is more significant after the failure due
to loss of vegetation (Jung et al., 2016). Similarly, the difference be-
tween pre and post-SAR amplitude images, indicating that the ground
target and its scattering properties have changed, can be exploited for
2

landslide detection (Mondini et al., 2019). When SAR systems with
dual or full polarimetry channels are available, polarimetric features
such as alpha and entropy, can be exploited to analyze changes in
backscattering components (e.g., surface, volume, and double-bounce)
and detect the areal extent of landslides (Plank et al., 2016).

Deijns et al. (2022) employed a binary segmentation change de-
tection approach to identify the most significant change point in the
time-series of amplitude and coherence and took this point for land-
slide dating. However, other than landslides, a number of unavoidable
factors can disrupt and alter the surface backscattering mechanism
in a SAR imagery, resulting in significant changes in the time-series
of SAR parameters and false detection. These factors include changes
in soil moisture, vegetation, rainfall, snowfall, anthropogenic activi-
ties, geometric layover and shadow (Lee et al., 1994; Czuchlewski
et al., 2003; Oliver and Quegan, 2004; Mondini et al., 2021). The
combined time-series of all SAR-derived parameters that are able to
detect landslides may help tackle some of the problems related to
false alarms in landslide detection arising from a single parameter
time-series analysis (Czuchlewski et al., 2003; Shimada et al., 2014;
Niu et al., 2021). For example, alpha and amplitude are sensitive to
roughness and dielectric properties (Cloude and Pottier, 1997; Hajnsek
et al., 2003; Verhoest et al., 2008; Zhu et al., 2019), while entropy
and coherence are more sensitive to contribution ratios of various
scatterings (Cloude and Pottier, 1997) and vegetation (Jin et al., 2014;
Villarroya-Carpio et al., 2022), respectively.

This study explores the use of a deep-learning algorithm to accu-
rately detect the landslide occurrence time using time-series of SAR
parameters derived from dual-pol Sentinel-1 data. Here we mainly
focus on landslides that have occurred in mountainous areas covered
with vegetation. Our hypothesis is that such slopes are dominated by
volume scattering before the failure due to the presence of vegetation,
whereas the scattering mechanism changes to surface scattering as
bare soil is exposed after the failure (Shibayama et al., 2015). To be
noticed is that subsets of the landslide body are also sufficient for this
assumption. In this case, SAR parameters characterizing various scatter-
ing mechanisms, such as interferometric coherence, polarimetric alpha,
entropy, and amplitude from SAR data, can be exploited for landslide
detection (Yonezawa et al., 2012; Uemoto et al., 2019; Burrows et al.,
2020; Jung and Yun, 2020).

The anomalies in the time-series of SAR data due to landslides can
be detected using various methods including statistical methods (Ra-
maswamy et al., 2000), probabilistic models (Shyu et al., 2003) , linear
models (Tang et al., 2002), proximity-based models (He et al., 2003),
and Artificial Neural Networks (Malhotra et al., 2015). Owing to the in-
creasing number of SAR sensors and advances in computing resources,
a trend in using machine learning and deep learning methods has
emerged for SAR and InSAR time-series analysis. Here we introduced a
gated relative position bias to the Transformer model (Vaswani et al.,
2017), applied to detect outliers related to landslides in time-series of
multi-band (coherence, alpha, entropy and amplitude) SAR parameters
from Sentinel-1 data. In our improved model, multivariate inputs are
processed globally rather than locally like step-by-step in chronological
order to overcome the ‘‘forget’’ issue in popular methods like Long
Short-Term Memory (LSTM) networks. Moreover, the combination of
multi-head attention and a gated relative positional embedding can
better capture the temporal relationship between data in the time-
series. In addition, the weights for each of the four SAR parameters
are dynamically adjusted using the attention weights matrix derived
from the Transformer model, so that greater weights are given to those
parameters, reflecting the evolution of the landslide surface.

2. Study areas and data

2.1. Study areas

In this study, seven large landslide failures were selected including

the Takht landslide in Iran, Jalgyz-Jangak and Kugart landslides in
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Table 1
Details information of study cases.

Name Country Location Date
(dd/mm/yyyy)

Triggers Type

Shaziba China 𝐸109◦29′85′′

𝑁30◦36′05′′
21/07/2020 rainfall deep-seated

landslide
Shuicehng China 𝐸104◦40′24′′

𝑁26◦15′27′′
23/07/2019 rainfall deep-seated landslide

Takht Iran 𝐸55◦26′40′′

𝑁30◦07′02′′
19/03/2019 rainfall shallow landslide

Jalgyz-Jangak Kyrgyzstan 𝐸41◦04′11′′

𝑁73◦12′05′′
15/06/2018 rainfall shallow landslide

Kugart Kyrgyzstan 𝐸41◦05′11′′

𝑁73◦25′44′′
25/05/2018 rainfall deep-seated landslide

Hitardalur Iceland 𝑊 22◦06′21′′

𝑁64◦47′02′′
07/07/2018 rainfall deep-seated landslide

Brumadinho Brazil 𝑊 44◦05′00′′

𝑁20◦04′02′′
25/01/2019 rainfall

dam
collapse

deep-seated landslide
a
T
r
s
t
i

Table 2
Details of the Sentinel–1 data used.

Case Data
type

Orbit Time intervals
(dd/mm/yyyy)

Number of
images

Shaziba SLC
GRD

Ascending
-

29/03/2018-
14/11/2021

219
-

Shuicheng SLC
GRD

Ascending
-

12/02/2017-
28/07/2022

165
-

Takht SLC
GRD

Ascending
Descending

15/11/2016-
23/07/2022

164
164

Jalgyz-Jangak SLC
GRD

Ascending
Descending

27/02/2015-
1/08/2022

161
161

Kugart SLC
GRD

Ascending
Descending

27/02/2015-
1/08/2022

161
161

Hitardalur SLC
GRD

Ascending
Descending

27/02/2018-
22/12/2021

363
363

Brumadinho SLC
GRD

Ascending
Descending

01/05/2015-
13/12/2021

193
193

Kyrgyzstan, Shaziba and Shuicheng landslides in China, the Hitardalur
landslide in Iceland, and the Brumadinho landslide in Brazil. Table 1
lists all the information for the location and date of failure of these
landslides extracted from previous studies and news reports (Table 1).
In March 2019, the Takht landslide occurred in a forested region in
northern Iran, 1 km from the Takht village, with a total affected area
of 0.2 km2. The Shuicheng landslide happened on 23 July 2019 in
the Pingdi village of Shuicheng County in Guizhou Province, China.
The sudden, high-speed debris movement caused severe damage to the
village infrastructure with more than 20 houses buried and about 42
fatalities. The Shaziba landslide, which occurred on 21 July 2020 in
Mazhe County, Hubei Province, China, destroyed more than 60 houses
and some 8000 people had to be evacuated amid fears of further
landslides. The Brumadinho landslide occurred on 25 January 2019
at the Córrego do Feijão iron ore mine, 9 km east of Brumadinho,
Minas Gerais in Brazil causing 270 fatalities. The Hitardalur landslide
occurred in Fagraskógarfjall mountain in Hítardalur Valley, Iceland,
and is considered among the largest landslides in historical time in West
Iceland. The Kugart landslide is located 1 km south of the Kyzylsu River
in the Dshalal Abad region of Southern Kyrgyzstan and occurred as a
reactivation of an older landslide on 25 May 2018. There are no reports
claiming casualties for this event. The Jalgyz-Jangak landslide occurred
on 15 June 2018 and is located in northwest-southeast direction around
1 km away from Jalgyz-Jangak village in the Dshalal-Abad region of
Southern Kyrgyzstan. The runout zone of the landslide covered a road,
fortunately, there were no casualties.

2.2. Data

In this study, time series of Sentinel-1 data are used which were ob-
tained for each landslide case in both ground range detected (GRD) and
3
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single look complex (SLC) formats. Sentinel-1 in SLC format was used
to calculate time-series of coherence, alpha, and entropy parameters,
while Sentinel-1 GRD data were used to derive time-series of amplitude.
Table 2 shows the details of the used Sentinel-1 data.

3. Methodology

The overall methodology developed in this study is illustrated in
Fig. 1. A pre-processing step (I) is performed first to extract SAR
parameters from Sentinel-1 data. The results are combined into multi-
band time-series (step (II)) and then in the step (III) are used as inputs
to an improved Transformer model. This section describes how four
parameters derived from SAR data enable the detection of landslides,
and thus how the improved model is built and detects anomalies related
to landslide occurrence in the time-series of multi-variant SAR-derived
parameters. The graphical representation of the methodological steps
is depicted in Fig. 1.

3.1. SAR pre-processing

Sentinel–1 pre-processing was carried out automatically using the
command line graph processing tool (GPT) of the open-source ESA Sen-
tinel application platform (SNAP) software. Four GPT graphs, including
all steps of the SLC and GRD processing, were applied in batch to the
time series of data for each landslide using Linux bash scripts. The
details of the four parameters are explained in the following.

3.1.1. Amplitude
Amplitude is the strength of the radar signal backscattered to the

sensor, which is widely used for surface change detection. Amplitude
can be calculated by combining real (Q) and imaginary (I) parts of the
complex radar signal as below (Lee et al., 1994).

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
√

(

𝐼2 +𝑄2
)

(1)

In this study, 𝜎0 (sigma nought) transformed from amplitude is selected
to detect landslides. The 𝜎◦ from amplitude is defined as below (Lee
et al., 1994).

𝜎0 = 10∗ log10
(

DN2) (2)

where DN is the image pixel digital number measured in the SAR
amplitude image. 𝜎0 is dependent on the ground surface roughness
nd dielectric constant (Choker et al., 2017; Santangelo et al., 2022).
he higher values usually represent bare soil, while the lower values
epresent vegetated areas (Santangelo et al., 2022). Landslides can
ignificantly alter the original surface roughness by removing vege-
ation, deforming ground, and accumulating debris. Therefore, SAR
mages taken of the same area before and after a landslide failure show
eaningful differences in amplitude images (Santangelo et al., 2022).
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Fig. 1. Methodology framework developed for detection of landslide occurrence time.
As the hypothesis of this study, dominated scattering patterns
change from volume scattering to surface scattering after failure. If the
exposed soil dries rapidly after failure, landslides will allow volume
scattering phenomena due to higher roughness and lower dielectric
constant associated with the reduced soil moisture. In this case, the
amplitude cannot reliably detect landslides.

3.1.2. Interferometric coherence
Interferometric coherence is a measure of the correlation or sim-

ilarity between two or more SAR images acquired at different times
over the same area (Moreira et al., 2013; Zebker et al., 1992). Interfer-
ometric coherence can be applied to identify the landslide areas where
the loss of coherence is more significant than before the failure, due to
the motion of vegetation elements and dielectric changes in vegetation
and ground (Jung et al., 2016). The following formula describes the
interferometric coherence estimation (Zebker et al., 1992; Touzi et al.,
1999) which has been used in this study:

𝛾(𝑥) ∶=
∑𝑁

𝑖=1 𝑧1(𝑖) ⋅ 𝑧
∗
2(𝑖)

√

(

∑𝑁
𝑖=1

|

|

𝑧1(𝑖)||
2
)

⋅
(

∑𝑁
𝑖=1

|

|

𝑧2(𝑖)||
2
)

(3)

where 𝑁 is the size of the square sliding window, 𝑥 represents the
center pixel of the sliding window, 𝑧1 and 𝑧2 denote the complex signals
of the first and second image, and ∗ is complex conjugation. The bare
ground is often characterized by high coherence values compared to ar-
eas covered by vegetation (Plank, 2014). For catastrophic landslides in
vegetated areas, the interferometric coherence value initially decreases
due to the loss of vegetation caused by the landslide. Subsequently, it
increases and maintains a higher value over time, attributed to bare
soil. Therefore, the time of the landslide can be detected by identifying
changes between the pre- and post-failure interferometric coherence.
The challenges, however, are that other factors such as rainfall, snow-
fall, and anthropogenic activities can cause temporal decorrelation,
leading to false positive detection.

3.1.3. H/A decomposition in the dual polarization mode
𝐻∕𝐴 decomposition in the Dual Polarization mode was proposed

by Cloude and Pottier (Cloude and Pottier, 1997). For a dual polariza-
tion SAR image, each pixel is represented by a 2∗2 coherency matrix
𝑇dual , which is nonnegative definite and Hermitian. The eigenvalue
decomposition of 𝑇 is defined as:
4

dual
𝑇dual =
[

𝑇11 𝑇12
𝑇 ∗
12 𝑇22

]

= 𝑈
[

𝜆1
𝜆2

]

𝑈𝐻 (4)

The eigenvector matrix U is parameterized as:

𝑈 =
[

𝑒𝑗𝜙𝑖 cos 𝛼1 sin 𝛼1 𝑒𝑗𝜙𝑖 cos 𝛼2 sin 𝛼2
𝑒𝑗𝜙𝑖 cos 𝛼1 sin 𝛼1 𝑒𝑗𝜙𝑖 cos 𝛼2 sin 𝛼2

]

(5)

Eigenvectors help describe the different scattering processes and the
eigenvalues indicate their relative magnitudes. 𝐻 − 𝛼 decomposition is
based on the eigenvector and eigenvalue. The polarimetric entropy 𝐻
and the scattering angle 𝛼 are defined as:

𝐻 =
2
∑

𝑖=1
−𝑃𝑖 log2 𝑃𝑖, 0 ≤ 𝐻 ≤ 1 and 𝛼 =

2
∑

𝑖=1
𝑃𝑖 cos−1

(

|

|

𝑢1𝑖||
)

, 0 ≤ 𝛼 ≤ 90

(6)

where, 𝑃𝑖 = 𝜆∕
∑2

𝑗=1 𝜆𝑗 , 𝑖 = 1, 2.
The randomness of scattering is represented by Entropy (𝐻) in the

range of 0 to 1, where 𝐻 = 0 represents a single scattering (isotropic
scattering) and 𝐻 = 1 indicates a random mixture of scattering mech-
anisms (depolarizing target). 𝐻(0 < 𝐻 < 1) represents the degree of
dominance of one particular scatter. The alpha (𝛼) angle that indicates
the average or dominant scattering mechanism is based on the eigen-
vectors. The lower values of alpha (𝛼 = 0) represent surface scattering;
dipole or volume scattering gives intermediate values (𝛼 = 45) and
higher values of alpha are given by dihedral reflectors (Cloude and
Pottier, 1997). Therefore, alpha and entropy can identify the landslide,
since the amounts and proportion of various scatterers would alter
before and after the failure in the landslide regions.

However, the effectiveness of alpha and entropy may be limited in
some cases such as when single scattering dominates before and after
failure. In this case, entropy 𝐻 is incapable of detecting landslide .
When the bare soil after failure dries rapidly, it may enhance the sur-
face roughness and reduce the dielectric constant (Bindlish and Barros,
2000). This process could potentially lead to a transition from surface
scattering to volume scattering (De Jeu et al., 2008; Morrison and
Wagner, 2019). In such cases, alpha proves ineffective in identifying
the landslide.

In summary, each SAR-derived parameter can be exploited to detect
landslides; however, each faces unique challenges in implementation
due to varying factors such as rainfall, snowfall, vegetation, and anthro-
pogenic activities. The combination of all the SAR-derived parameters
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Fig. 2. Model architecture.
offers a comprehensive approach to overcome these challenges. (Lee
et al., 1994; Czuchlewski et al., 2003; Oliver and Quegan, 2004;
Shimada et al., 2014; Mondini et al., 2021).

3.2. Multi-band combination

Here all SAR parameters that are calculated from Sentinel-1 data are
cropped to the known landslide boundary from the existing archives or
extracted from the optical images. Advanced methods have been devel-
oped for accurately detecting landslide boundaries from remote sensing
data (Behling et al., 2014; Lu et al., 2019b). Shaziba, Shuicehng,
Takht, Hitardalur and Brumadinho landslide boundaries were manually
extracted based on Google Map images. The Jalgyz-Jangak and Kugart’s
boundaries were acquired from a remote sensing-based landslide inven-
tory map for Southern Kyrgyzstan compiled using RapidEye satellite
imagery (Behling et al., 2014). Next, an average value is calculated for
all pixels within the landslide boundary. In other words, each SAR pa-
rameter within the landslide boundary is ultimately represented by only
a single mean value. Using other statistics including median, mode, 3
sigma limits, and quartile provided similar results as the average except
for the mode (See Supplementary Material). Then, the time-series of all
SAR parameters using the corresponding multi-temporal mean value
was generated. Finally, four SAR parameters were combined into a
multi-band as the input to our developed Transformer model.

3.3. Multivariate transformer with gated relative position

This section describes the complete architecture of our developed
model layer-by-layer. Our model architecture uses the Transformer
model as the backbone. The overall model architecture is presented in
Fig. 2, which contains a convolutional feature encoder and a Trans-
former encoder.
5

3.3.1. Improved transformer model architecture
The input multivariate time-series 𝑿 = {𝒙1,𝒙2,𝒙3,… ,𝒙𝑛} is a

sequence of multivariate SAR parameters (Amplitude, Alpha, Coher-
ence, and Entropy), and 𝑛 denotes the length of the sequence. A CNN
embedding layer is employed to transform this multivariate time-series
into a sequence of low-dimensional dense vector 𝑪 = {𝒄1, 𝒄2, 𝒄3,… , 𝒄𝑛}.
The convolutional outputs denote 𝒄𝑖, which are then used as input
into the Transformer model. The Transformer (Vaswani et al., 2017)
is a neural network architecture that has been used in various natural
language and vision processing tasks (Li et al., 2023), which mainly
consists of multi-head self-attention (MHSA) and position-wise fully
connected feed-forward networks. To further increase the temporal
context information, a gated relative position bias is introduced to
MHSA. MHSA is used to compute the attention weights between each
position in the input sequence. The attention weights with a gated
relative position bias are computed using the following equation:

Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊𝑇
√

𝑑𝑘
+ 𝒑

)

𝐕 (7)

Here, 𝐐, 𝐊, and 𝐕 are the query, key, and value matrices, re-
spectively. The 𝒑 is the gated relative position bias matrix that we
designed. The

√

𝒅𝑘 represents the dimension of the 𝐊 matrix. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
is the softmax function that normalizes the attention weights. Softmax
ensures that the attention weights sum up to 1 and represents a valid
probability distribution over the tokens. The 𝐐 matrix represents the
information that the model is seeking or querying from the input
sequence. The 𝐊 matrix represents the information about other tokens
in the input sequence, i.e., parts that the current model does not want to
pay attention to. The 𝐕 matrix holds the actual information or content
at each position in the input sequence.

The 𝒑 is the gated relative position bias added to the attention logits,
which is encoded based on the offset between 𝐐 and 𝐊. The 𝒑 matrix
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Fig. 3. Schematic of UCA method. The black line represents the simulated time-series data, and the red circles are the up-crossing points. The red crosses are the frequency of
up-crossing points for each threshold level.
is computed by the following equation.

𝒑 = 𝒅 + ℎ(update) 𝒅 +
(

1 − ℎ(update) ) �̃� (8)

where ℎ(update), ℎ(reset), and �̃� can be calculated as follows.

ℎ(update) , ℎ(reset) = 𝜎 (𝐐 ⋅ 𝒖) , 𝜎 (𝐐 ⋅𝒘)

�̃� = 𝑤ℎ(reset) 𝒅
(9)

where 𝒅 is a learnable scalar relative position bias, the vectors 𝑢, 𝑤
are learnable parameters, 𝜎 is a sigmoid function, and 𝑤 is a learnable
value. The attention mechanism here can dynamically capture the
differences between tokens indirectly through the dot product similar-
ity computation, i.e., deviations. Tokens that are semantically similar
or have strong relationships will have higher dot product scores and
consequently higher attention weights, allowing the model to focus
more on those tokens during processing.

The attention weights matrix output of the MHSA with a gated
relative position bias is passed through a position-wise feed-forward
network, which consists of two linear transformations with a non-linear
ReLU activation function applied in between. Compared to traditional
feed-forward neural networks, the Transformer itself introduces more
complex dependencies and computations in gradient calculation and
weight updates. What is especially important is that the gated relative
position bias introduced allows the Transformer model to capture
relative position information of time-series and directly contribute to
the gradient computation and weight update process. The output 𝑌 =
{𝒚1, 𝒚2, 𝒚3,… , 𝒚𝑛} from the feed-forward networks carries the refined
and enriched information for each position in the input sequence. Our
model is composed of a stack of 12 Transformer encoder layers. Here,
only the encoder is used exclusively for time series problems because
it efficiently captures temporal dependencies and reduces the compu-
tational complexity compared to the full model with both encoder and
decoder.

The model utilizes 1024-dimensional hidden states and employs
12 attention heads. To prevent a significant increase in parameters
such as weights and biases, we uniformly share relative position em-
beddings across all layers. We employ the Adam optimizer with a
tri-stage learning rate schedule. Training is performed on a single GPU,
utilizing a batch size of 32 and the LayerDrop rate is set to 0.05.
For implementation, we utilized the PyTorch framework running on
an NVIDIA 3090 GPU. Besides, we did not manually adjust the model
parameters for each of the seven landslides in this study.

3.3.2. Anomaly score
Root Mean Squared Error (𝑅𝑀𝑆𝐸) between the true data and the

predicted value is commonly used to assess the loss function related to
6

prediction error.

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2 (10)

where 𝑛 is the number of timestamps of the given time-series, �̂�𝑖 is
the predicted outputs and 𝑦𝑖 is the real observation. In this study, the
anomaly score defined as the normalized 𝑅𝑀𝑆𝐸 was considered for
anomaly detection. It ranges from 0 to 1, with the following equation.

Anomaly score𝑖 =
𝑅𝑀𝑆𝐸𝑖 − 𝑚𝑖𝑛(𝑅𝑀𝑆𝐸)

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸) − 𝑚𝑖𝑛(𝑅𝑀𝑆𝐸)
𝑖 = 1, 2,… , 𝑛. (11)

here, 𝑚𝑎𝑥(𝑅𝑀𝑆𝐸) and 𝑚𝑖𝑛(𝑅𝑀𝑆𝐸) are the maximum and minimum
of the 𝑅𝑀𝑆𝐸, respectively. The higher the anomaly score at a certain
point, the more probable that it is an anomaly. If the anomaly score of
certain data points in a time-series increases significantly, it is highly
probable that these points represent anomalous, indicative of changes
related to landslides. Due to the nature of landsliding in vegetated
slopes, the anomaly score of the post-failure timestamps is higher than
that of the pre-failure timestamps, which can be used in the following
section by an anomaly detection procedure for dating the landslide.

3.3.3. A adaptive threshold method to detect change point
An anomaly change point in a time series is defined as an excursion

above a threshold. Therefore, if the value of a point in the time-series
is greater than a fixed threshold, then this point can be marked as
an anomaly. However, there are situations in which a fixed threshold
approach is not working properly. For example, when a time-series has
multiple change points, multiple thresholds are needed instead of a
singular fixed threshold. To solve this problem, we propose an adaptive
and dynamic threshold method to detect anomalies in the time-series
of the anomaly score calculated in Section 3.3.2, which is based on
up-crossing analysis (UCA). Fig. 3 illustrates details of the UCA for a
simulated time-series (dark line). Let the time-series be denoted as 𝑥(𝑡)
with time index 𝑡, 𝑡 = 1, 2, 3,… , 𝑛 and 𝐴, 𝐵, 𝐶, and 𝐷 (blue dash lines)
being the threshold levels. The intersection points in the up-direction
of the time-series 𝑥(𝑡) and threshold level 𝐴, 𝐵, 𝐶, and 𝐷 are defined as
the up-crossing point 𝑃 (𝑖) (red points in Fig. 3). The points in the 𝑥(𝑡)
near the up-crossing points satisfies the following conditions:

𝑥(𝑖 − 1) < 𝑇 and 𝑥(𝑖 + 1) > 𝑇 (12)

where 𝑇 represents the threshold. The amount of the up-crossing points
is defined as frequency (diagonal red crosses in Fig. 3). For example,
the threshold level B intersects the time-series 𝑥(𝑡) with two up-crossing
points that are noted as 1, and 2, corresponding to a frequency is 2.

Following the above analysis, the value in the time-series corre-
sponding to the local minimum frequency of up-crossing is defined
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Fig. 4. Change point detection using adaptive threshold method. The green line represents the simulated time-series data, and the red circles are the change points. The red line
represents the frequency of up-crossing points for each threshold level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
as the adaptive threshold, which can be exploited to detect multiple
change points. This has been illustrated in Fig. 4 with the simulated
time-series that is characterized by multiple change points (green line
in Fig. 4). Between the lowest and highest values of the simulated time-
series, 200 values are equally sampled to be employed as threshold
levels (like blue dash lines in Fig. 4). The frequency of the intersection
points of these 200 threshold levels and simulated time-series data
is shown in Fig. 4 in red line. From the frequency line (red line in
Fig. 4), it is obvious that the frequency domain is characterized by
2 local minima. These two local minima in the frequency domain
are corresponding to two change points (red points in Fig. 4) of the
simulated time-series. Therefore, the threshold corresponding to the
local minimum of the frequency can be adopted as the adaptive and
dynamic threshold for detecting change points. Inevitable errors may
arise in the process; however, the introduction of additional artificial
judgment is not employed to preemptively mitigate these potential
errors.

4. Results

4.1. Time-series of SAR-derived parameters

The interferometric coherence, amplitude, entropy and alpha de-
rived from Sentinel-1 SAR data for the seven landslide cases are shown
in Fig. 5. The boundaries of the seven landslides are delineated in red in
Fig. 5. The Sentinel-2 and Google Earth images before and after each
event are also shown as reference. The optical images show that all
seven failures resulted in the loss of vegetation cover and the exposure
of the underlying soil mass. In Fig. 5, we can see that all four SAR
parameters exhibit discernible changes before and after the failure.
Thus, their variations can be utilized to delineate the evolution of the
landslide body. It is noteworthy that the magnitude of the change is not
similar across all parameters. For instance, in the cases of Shuicheng,
Shaziba, and Brumadinho landslides, the changes in coherence between
pre- and post-failure are significantly greater than those observed in
amplitude.

Fig. 6 illustrates the time-series of SAR parameters for the selected
landslides in this study. As seen in Fig. 6, all time-series of SAR pa-
rameters are characterized by frequent spikes, troughs, as well as local
and global changing trends. In the Shuicheng landslide (Fig. 6a), an
offset in reaction to the landslide occurrence can be easily recognized
in the time-series of all four SAR parameters owing to the significant
shifts in value. However, several unexpected offsets also occur during
data analysis for the time-series of coherence (in July 2020, July
7

2021, and June 2022) and amplitude (in June 2021). For the Shaziba
landslide (Fig. 6b), time-series analysis of alpha and entropy clearly
reveals the failure time due to a significant decline in their values
following the landslide occurrence. The time-series of amplitude also
shows a visible jump in the time-series before and after the failure.
However, several other spikes, peaks, and troughs are also visible in
time-series of alpha, entropy, and amplitude which will make automatic
detection without a priori knowledge very challenging. Unlike the other
three parameters, three clear sharp seasonal peaks in the time-series of
coherence in Shaziba can be recognized before the main failure around
the same time of year, and these peaks are likely to trigger false alarms
during automatic detection. For the Takht landslide shown in Fig. 6c,
an increase or decrease in the time-series of SAR parameters can be
visually seen during the failure. However, the background noise in the
time-series can easily lead to several false detections. In contrast to the
Takht landslide, the time-series of coherence for the Jalgyz-Jangak and
Kugart landslides (Fig. 6d-e) illustrate only a single jump point, which
makes it more suitable for failure detection in this case than alpha and
entropy. For time-series of amplitude, alpha and entropy, there is no
clear dividing point between pre- and post-failure in Figs. 6d and 6e.
Finally, from Fig. 6f-g, we found that the failure times of the Hitardalur
and Brumadinho landslides can be best determined from the distinct
jump points in the time-series of amplitude, rather than the coherence,
alpha and entropy.

4.2. Result of landslide dating

Fig. 7 shows estimated time windows for landslide occurrence using
our proposed strategy in this paper. The detailed time window is listed
in Table 3. For comparison, the time window estimated using two
cloud-free Sentinel-2 data nearest to the real failure time is also listed
in Table 3. The time window was estimated using the time difference
between the acquisition time of Sentinel-2 images. As seen in Fig. 7, the
anomaly score produced by our improved model increased significantly
after the failure for all cases analyzed with all post-failure anomaly
scores being much higher than those from pre-failure. For example for
the Shuicheng landslide, the anomaly score evaluated by our improved
Transformer model significantly increased by 86% from 0.21 on July
22, 2019 before the failure to about 0.39 on August 01, 2019 after
the failure. In the following, the anomaly score continues to remain
high at around 0.8 after the failure. The duration of the detected time
period and whether it coincidence with the real date of the landslide
occurrence is used as a criterion to assess the accuracy of the time
detection.
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Fig. 5. Interferometric coherence, amplitude, entropy, and alpha images derived from Sentinel-1 before and after the failure of each landslide case. Landslide surfaces shown on
Sentinel-2 images and Google Maps before and after the landslide failures, respectively. Google Maps was employed to display the landslide surface after the failure here since its
resolution (1 m) is better than that of Sentinel-2 images (10 m). The acquisition times of the optical images are also shown in their corresponding pictures. Red lines indicate the
landslide boundary. In each case, the first row shows the optical and SAR parameters images before the failure, while the second row displays these images after the failure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Our method estimates that the Shuicheng landslide occurred be-
tween 22.07 and 01.08.2019, narrowing down the time window in
which the landslide occurred to 12 days compared to 45 days estimated
from Sentinel-2 data. Similar observations for the anomaly score are
clearly seen for the other 6 cases, through which our method can
significantly narrow the time period down to the sensor revisit period.
Only for the Jalgyz-Jangak landslide both optical and SAR data perform
equally in identifying the occurrence time period (5 days for optical
compared to 6 days for SAR data).

5. Discussion

5.1. Comparison of multi-SAR and single-SAR parameter

In this research, we proposed a novel methodology for the au-
tomated detection of the timing of landslides using SAR data. Our
approach involves the integration of multiple SAR-derived parameters
with an enhanced Transformer model. Analyzing SAR data from 7
cases, we found that the combination of the coherence, amplitude, and
polarization parameters (entropy and alpha), has a significant potential
for enhancing the precision of landslide dating in vegetated areas.
8

These four SAR-derived parameters can be used for landslide detection
because they are able to detect the transformation of the dominant
scatterer on the landslide body from volume scattering to surface
scattering triggered by the failure. Prior to the failure, the landslide
surface is covered with vegetation with the dominating backscattering
mechanism being volume scattering. After the failure the landslide
surface transforms into bare soil, where surface scattering becomes
dominant. However, it is crucial to consider that the alterations in
the scattering mechanism can be induced not only by landslides but
also by other factors such as precipitation, snowfall, soil moisture,
plant growth, anthropogenic effects and so on. This indicates that
some changes detected by SAR-derived parameters may not necessarily
correspond to landslides but to other disturbances, leading to poten-
tial false alarms in automated analysis. Therefore, using time-series
of a single SAR parameter does not always work for detecting the
occurrence time period of landslides as it may lead to lots of false
detection. For example, for the Shuicheng landslide, the jump point
that occurred in June 2021 on the time-series of amplitude is a false
alarm, as it is related to a continuous heavy rainfall during June 2021
that influenced soil moisture there. Rainwater that accumulates on the
landslide body weakens the original dominated surface scattering. Thus
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Fig. 5. (continued).
Table 3
The real occurrence date and detected time period of seven landslide cases.

Case Real date Time period
from Sentinel-2
(dd∕mm∕yyyy)

Timespan
from
Sentinel-2
(days)

Time window
detected by
our method
(dd∕mm∕yyyy)

Timespan
from
our method
(days)

Shaziba 21/07/2020 30/05-03/08/2020 65 11/07-23/07/2020 12
Shuicheng 23/07/2019 01/07-15/08/2019 48 22/07-01/08/2019 12
Takht 19/03/2019 16/03-02/04/2019 17 18/03-24/03/2019 6
Jalgyz
-Jangak

15/06/2018 13/06-18/06/2018 5 11/06-17/06/2018 6

Kugart 25/05/2018 24/05-28/06/2018 35 24/05-30/05/2018 6
Hitardalur 07/07/2018 20/06-17/07/2018 27 05/07-11/07/2018 6
Brumadinho 25/01/2019 11/01-01/02/2019 21 22/01-28/01/2019 6
the return signal to the radar receiver becomes weaker, resulting in
an abrupt reduction in amplitude. In the case of the Shaziba landslide,
the proportion of various types of scatterers and dominant scatterers
showed minimal change after the failure. As a result, only alpha and
entropy proved effective in detecting landslide occurrences. On the
contrary, the coherence and amplitude values were not satisfactory for
the time detection there, since there were more than two jump points
in their time series. Among them, only one jump point corresponds to
the landslide failure, whilst the others are related to other factors that
affect temporal decorrelation and strength of the backscatter signal.
Similar observations were made for other cases investigated in this
9

study. Therefore, integrating four different SAR parameters is necessary
to better date landslide occurrence. In the future, full polarization
SAR and more polarization parameters are considered to improve the
detection capabilities and accuracies of landslides’ failure.

5.2. Comparison with the LSTM

In this study, we proposed an unsupervised multivariate Trans-
former model via gated relative position to automatically date land-
slides using the time-series of SAR-derived parameters. The effective-
ness of the proposed method was validated with seven selected land-
slide cases. We also attempted to compare its results with those of the
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Fig. 6. Time-series of amplitude, alpha, entropy, and coherence for (a) Shuicheng, (b) Shaziba, (c) Takht, (d) Jalgyz-Jangak, (e) Kugart, (f) Hitardalur, and (g) Brumadinho
landslide. The red dashed lines represent the real failure times.
most commonly used and state-of-the-art model, i.e., the LSTM model.
Compared with the results of detected time using LSTM (Fig. 8), we
can see that the failure times are not simply visible on the time-series
of anomaly scores for all cases. In contrast to our transform model, the
time-series of anomaly scores estimated by the LSTM after the failure
are not necessarily higher than those before the failure and are charac-
terized by unexpected waves and several peaks. This makes estimation
of occurrence time using LSTM very challenging. For example, although
the anomaly score value estimated by LSTM for the Shuicheng before
the failure is slightly higher than that of post-failure values by about
0.3 and there was a very low anomaly score (approximately 0.16) near
the real failure time, using the LSTM and proposed adaptive threshold
method we infer that the landslide possibly occurred either in the
period 11/03/2019-22/03/2019 or 25/08/2019-06/09/2019, even not
coincidence with the real failure date. Similar to the Shuicheng land-
slide, the LSTM model failed to detect the correct occurrence period
of the other six landslides. From the results of our proposed model
(Fig. 7) and the LSTM model, it is obvious that the occurrence period of
landslides detected by our method is much closer to the real date than
the LSTM model. The possible explanation is that the Transformer with
gated relative position bias has the ability to dynamically prioritize
the most significant temporal relationships in the time-series and then
identify the most impactful anomaly on a global scale. The gated
relative position bias layer introduced in the Transformer can provide
temporal features that are not available in LSTMs. This layer allows the
Transformer to capture global dependencies across the entire sequence
and dynamically adjust the importance of these dependencies based
on their relative positions. This means that the Transformer can more
effectively discern which parts of the sequence are most relevant for
a given task, such as identifying anomalies in landslide time series
10
data. This dynamic adjustment is a key difference from LSTM. Although
LSTM inherently focuses on local temporal dependencies, its sequential
processing nature limits its ability to weigh the importance of different
sequence parts. For example, correlations and dependencies between
data in the time-series of SAR parameters can be lost in the process of
the LSTM model as it computes time-series step-by-step in chronologi-
cal order, e.g., earlier information farther in the past from the current
timestamp is forgotten and information probably is ignored after the
current timestamp. Although the LSTM introduces a gate mechanism
or uses a bidirectional model to alleviate this problem (Hochreiter
and Schmidhuber, 1997; Pascanu et al., 2013; Malhotra et al., 2015,
2016; Nanduri and Sherry, 2016; Guo et al., 2018; Canizo et al., 2019),
the temporal relationships are still lost between the data that are far
away from each other in time-series. Therefore, this local attention
mechanism limits the LSTM model from effectively analyzing time-
series. Besides, the Transformer with gated relative position bias can
provide a more nuanced understanding of the entire sequence, adapting
its focus and attention based on the relative positioning of elements
within the sequence. Therefore, the Transformer with gated relative
position bias can identify the most impactful anomaly, which could
explain why a single, more globally relevant anomalous time point can
be detected, as shown in Fig. 7. In contrast, an LSTM, which focuses on
local patterns, might detect multiple anomalies that are locally relevant
but may not capture the global context as effectively, as shown in Fig. 8.

5.3. Role of dynamic weights

Another unique characteristic of our novel method lies in its ability
to dynamically weight the four SAR parameters using the attention
weights matrix derived from the Transformer model. This dynamic
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Fig. 7. Time detection results of seven landslide cases based on our improved Transformer model. The black dashed lines represent the failure times. The blue crosses represent
anomaly change points in the time-series of anomaly score (AS). The anomaly change point is detected by the proposed adaptive threshold method from the time-series of anomaly
score, and its acquired date is the start day of the occurrence period. Light green and gray bars represent the detected time period of 12 days and 6 days, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Time detection results of seven landslide cases based on the LSTM model. The black dashed lines represent the failure times. The blue crosses represent anomaly points in
the time-series of anomaly score (AS). The anomaly change point is detected by the proposed adaptive threshold method from the time-series of anomaly score, and its acquired
date is the start day of the occurrence period. Light green and gray bars represent the detected time period of 12 days and 6 days, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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weighting improves the accuracy of landslide time detection. Taking
the Takht landslide as an example, where all four parameters can
be exploited to detect the failure time, but the coherence could not
identify landslide occurrence time very well compared to the other
three parameters. Assigning equal weights to all four parameters would
result in false detection. In contrast to LSTM, our improved Transformer
model can automatically and optimally increase or decrease the weights
of coherence, alpha, entropy, and amplitude in an adaptive manner to
enhance the precision of time detection. This adaptive approach is also
beneficial for other case studies involving multi-variants time series
analysis.

5.4. Robust performance of our methods

Our model also exhibits strong robustness against various noise on
the time-series of four SAR parameters caused by rainfall, snowfall,
vegetation, and anthropogenic activities. For example, two false alarms
are observed on the time-series of coherence in the Shaziba landslide
due to seasonality, and one false alarm is detected on the time-series of
amplitude in the Shuicheng landslide due to rainfall. In addition, each
time-series is characterized by irregularity and significant local waves,
spikes, and peaks. Despite being disturbed by these noises, our model
detected a time period of 6 days overlapping with the real time of the
Shaziba and Shuicheng landslide occurrences in the correct manners
(Fig. 7). In contrast, the LSTM model failed to detect the occurrence
times of these two landslides due to such mentioned noises (Fig. 8).

5.5. The automated framework

The occurrence period of a single landslide is detected effectively
because SAR data are highly responsive to landslide occurrences. How-
ever, the successful automated detection of multiple landslide occur-
rence periods is probably attributed to the implementation of the
automated framework on the SAR data. For example, the Hitardalur
and Brumadinho’s landslide occurrence times are visible in time-series
of amplitude as shown in Fig. 6 (f) and (g), whereas the Shaziba
landslide occurrence time can be investigated from the coherence time-
series. Landslides cannot be dated only using one fixed SAR parameter,
which is limited by several reasons, such as different vegetation, rain-
fall, and snowfall. Multi SAR-derived parameters can help us better
date landslides. However, manually reviewing the SAR-derived pa-
rameters for each landslide would be a time-consuming challenge.
Several studies (e.g., (Fu et al., 2023; Deijns et al., 2022) ) have
utilized the threshold method, which requires manual intervention to
determine landslide occurrence time, utilizing either optical data or
SAR data coherence. Nevertheless, manual threshold selection may not
be ideal for dating a considerable quantity of landslides. Compared with
previous studies (Fu et al., 2023; Deijns et al., 2022), our framework
can automatically detect the landslide occurrences period based on a
deep learning model and four SAR-derived parameters.

5.6. Limitations

For our temporal detection methodology, the spatial detection of
landslide boundaries is a prior foundation. In this work, the provided
landslide spatial boundaries from existing archives and inventories
were applied to subset the images of SAR-derived parameters. There-
fore, it is essential to obtain certain prior knowledge from various
perspectives before applying our method to narrow down the search
for landslide occurrence time. Moreover, this framework has been
successfully applied to landslides in mountainous areas covered by
vegetation, where we can hypothesize that the slope is dominated by
volume scattering before the failure and by surface scattering after the
failure. This transition in the scattering mechanism causes measurable
changes in SAR-derived parameters such as interferometric coherence,
12

polarimetric alpha, entropy, and amplitude. The direct application of
this method for dating landslides in non-vegetated regions could be
challenging as the absence of vegetation limits the transition in the
scattering mechanism. However, there are several techniques that can
be employed to improve the applicability for non-vegetated areas. One
potential approach could be to utilize object-based methods (Martha
et al., 2010), such as landslide diagnostic features using textural char-
acteristics based on SAR greyscale images, to detect the occurrence
of landslides. This needs to be investigated in more detail in future
work. Our methodology is well-suited for the detection of large, rapid
failures characterized by significant surface changes, resulting in dis-
tinct boundaries after the failure due to the washout or erosion effects.
However, its applicability is limited to slow-moving landslides and
creeping motions, which do not show changes in the backscattering
properties of the landslide area, making detection using SAR parame-
ters impracticable. In comparison to optical data (Behling et al., 2014),
applying Sentinel-1 SAR data has significant potential to narrow down
the occurrence time period for most of the landslide cases, but there
is still potential for further improvement. The primary issue affecting
the accuracy of time detection is the periodicity of Sentinel-1 satellite
imagery. Both Sentinel-1 A and Sentinel-1B satellite data do not yet
completely cover the whole ground surface worldwide, and the revisit-
ing time was 12 days for most regions until Dec. 2023; The Sentinel-1B
satellite was no longer able to acquire data since Dec. 23, 2021. The
accuracy of time detection can be increased by reducing the interval
between image acquisitions from SAR satellites. However, judging by
the archive data and imaging schedules, this is an unlikely option
for all landslide cases. Moreover, there may also be missing images
due to Sentinel-1 orbit errors, ground download, or calibration issues.
Besides, the lack of imagery close to the failure is also a reason for not
properly estimating the failure time. In the future, the combination of
multiple satellite constellations, e.g., Radarsat−2, ALOS-2, TerraSAR-X,
and NISAR can improve the sampling frequency of the dataset, leading
to a higher temporal resolution when applying our method.

The SAR parameters used for landslide occurrence time period
detection are also limited by the quality of the landslide boundaries and
the resolution of the SAR data. The SAR parameters for a single times-
tamp of time-series are averaged spatially into every value over the
landslide’s body. Therefore, the quality of landslide boundary mapping
and the SAR data resolution would greatly impact landslide detection.
Utilizing higher resolution SAR satellites enhances the accuracy of the
results obtained by our proposed methodology.

6. Conclusion

In this study, we propose a novel automated framework to detect
landslide occurrence times using multivariate time-series analysis of
Sentinel-1 SAR data based on a deep-learning approach.

The main steps in this framework are outlined below. Firstly, the
time-series of interferometric coherence, polarization parameters (al-
pha and entropy), and SAR amplitude for the given landslide bound-
aries are derived and combined as the input data to implement the
framework. Then, the improved multivariate Transformer model via
gated relative position is adopted to successfully learn the patterns in
the time-series, and highlight changes related to catastrophic failures
via an anomaly score. Finally, a developed adaptive threshold method
is used to automatically identify the jump point in the time-series of
anomaly scores and estimates the time of the landslide.

This framework has been tested on seven landslide cases distributed
all over the world with different locations and shapes, and results were
compared with those obtained from optical data as well as from the
LSTM model. Our study has yielded several noteworthy findings. For
all cases, the experimental results are shown to verify the effectiveness
of our method. Notably compared to optical data, the time windows
detected from SAR data were significantly refined when compared to
optical data. The proposed method outperformed the LSTM model.
The time-series of anomaly scores predicted by LSTM was noisier than
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our improved Transformer model. Consequently, employing LSTM for
automatic landslide dating proved challenging.

In the future, the application field can be extended for the in-
tegration of multiple remote sensing acquisitions in improving the
spatiotemporal accuracy of applying our method, as well as the ex-
ploitation of our framework in complementing date information for
regional landslide inventories.
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