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Problem definition

This work takes place into a research project which aim to characterize the electronic prop-
erties of materials by the use of quantum computing. The student’s work is focused on
getting an accurate DFT level of theory of pure magnesium in its hexagonal closed packed
structure. In that regard, he will obtain his results by employing Quantum Espresso as the
computational framework. An initial work will be done in order to encompass an exhaustive
review of the literature regarding magnesium. This will be coupled with a profound under-
standing of theoretical principles including plane waves, Density Functional Theory (DFT),
pseudopotentials, and their implications on electronic structure calculations. Subsequently, a
meticulously benchmarking protocol will be implemented, by considering parameters such as
smearing methodologies, pseudopotential selections, k-mesh densities, and cut-off energies.
The primary objective is to ascertain the optimal level of theory for accurately modelling
magnesium’s electronic properties. Following the benchmarking procedures, the acquired
data will undergo rigorous comparison with established reference datasets, facilitating a
discerning evaluation of computational methodologies efficacy and reliability. Then, in the
second part of his master thesis, the student will be focused on using the results he presented
in this work in order to perform quantum calculations.
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Abstract

For future quantum computer algorithms for quantum chemistry an ansatz is needed. One
possibility to get this ansatz is to use density functional theory (DFT) to calculate a wave-
function which is used as a guess wavefunction to build the ansatz. For a DFT calculation
simulation parameters are needed. These are the cutoff energies, the k-mesh and which
pseudopotential to use. Furthermore smearing parameters were tested to optimize the cal-
culations. To get a guess wavefunction these simulation parameters must be tested. This is
called a benchmark to find a sufficient ’level of theory’.

To evaluate the accuracy of the results of the benchmark a point of reference is needed. In
this thesis the lattice parameter of a hexagonal close packed (HCP) magnesium crystal were
calculated and compared to reference calculations and experiments.

The level of theory for the different pseudopotentials were ascertained and compared.

Kurzfassung

Für zukünftige Quantencomputeralgorithmen für Quantenchemie benötigen diese einen
’Ansatz’. Dieser Ansatz kann aus einer Wellenfunktion erzeugt werden. Die Wellenfunktion
eines Systems mit Dichte-Funktional-Theorie-Rechnungen (DFT) approximiert werden und
wird Startwellenfunktion genannt, weil es nur eine wohlbegründete Vermutung als Startwert
für den Quantenalgorithmus ist. Für diese DFT-Rechnungen werden Simulationsparameter
benötigt. Diese sind mindestens die ’Cutoff’-Energien, das k-Punkt-Gitter und welches Pseu-
dopotential benutzt werden soll. Zusätzlich wurden unterschiedliche Schmier-Algorithmen
getestet um die Rechnungen zu optimieren. Damit ein gute Startwellenfunktion berechnet
werden können, müssen diese Parameter getestet werden. Das Testverfahren wird ’bench-
marking’ genannt und dient dazu die richtige Komplexität der zugrundeliegenden Modelle
zu wählen.

Um die Genauigkeit der Ergebnisse bewerten zu können, ist ein Vergleichswert notwendig.
In dieser Arbeit wurden die Kristallparameter der Rechnungen mit Referenzrechnungen und
-experimenten verglichen am Beispiel eines HDP Magnesiumkristalls.

Es wurden hinreichende Simulationsparameter ermittelt und die unterschiedlichen Pseudopo-
tentiale verglichen.
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1 Introduction

Two current topics in science are the fast development of quantum computers [1] and the
potential of using hydrogen as energy storage. One problem of the latter is the effect of
hydrogen on high-strength metals and alloys called hydrogen-embrittlement [2]. Hydrogen-
embrittlement causes metals in hydrogen atmosphere to absorb the hydrogen, which leads
to decreasing ductility and embrittlement. To understand the mechanism of hydrogen-
embrittlement one can use ab initio calculations to simulate the behaviour of atoms [3].
These calculations are limited by their underlying theory. Our hope is that quantum com-
puting algorithms can shine a light on the mechanisms.

1.1 Quantum computing

The research interest in quantum computing algorithms increases due to the ongoing im-
provement of quantum computers and their performance. The huge investments in research
and development in this field is due to the expected "Quantum Advantage" of quantum
algorithms. The source of this "Quantum Advantage" lies in the structure of the quantum
computer and the use of effects of quantum mechanics to compute problems. [1]

1.1.1 Workflow

The idea is to create a workflow which combines the computational efficiency of density
functional theory (DFT) with the possibilities of a quantum computer. For the quantum
computer calculations an ansatz is needed. This ansatz is created by encoding a guess
wavefunction. This guess wavefunction can be computed by DFT. The target of this thesis
is to prepare the next thesis where this guess wavefunction is used. One can hope that with
a better guess the quantum algorithm can be faster or produce accurate results.

1.2 Ab initio calculations

To calculate the guess wavefunction we need a equation which describes the wavefunction of
a system. This is the Schrödinger equation [4]. It is not analytically solvable for more than
two particles. For solving the Schrödinger equation this problem different methods were
found. These methods are ordered by accuracy and computational cost on a ’ladder’ [5].
At the bottom is the Hartree-Fock method with the least computational cost but also the
smallest accuracy [6]. The next ’rungs’ are the different exchange-correlation-functionals
for the density functional theory (DFT) [5]. The amount of electrons one can reasonable
calculated decreases with every ’rung’. After DFT there are so called ’post Hartree-Fock’-
methods. These can only calculate a small amount of electrons i. e. 20 electrons in 20
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1 Introduction

orbitals for a configuration interaction is a huge accomplishment [7]. This is the reason that
in thesis different levels of theory of DFT were tested.

1.2.1 DFT

Density functional theory uses different approximations i. e. the Born-Oppenheimer approx-
imation to reduce the many-body Schrödinger equation to many one-electron Schrödinger
equations in a external effective potential Veff which creates the influence of the other elec-
trons. It uses that the electron density n(r) is one-to-one relatable to the wavefunction of the
system. This method calculates the kinetic and potential energies as accurate as possible but
can not calculate the ’exchange-correlation’ energies exactly. For these exchange-correlation
energies the functionals are used. They differ in what information they use [5]. The lo-
cal density approximation(LDA) and generalized-gradient approximation(GGA) functionals
were used.

1.2.2 Quantum Espresso

Quantum Espresso is a software packet which was used to run the DFT calculations in
this thesis [8–10]. It uses input files which include the description of the system to simulate
and simulation parameters to do different kinds of calculations. These calculate energies, can
minimize the forces in a system also called ’relaxation’ and can calculate electronic properties
like the bandstructure.

1.3 System

The studied system is the hexagonal close packed(HCP) magnesium crystal. Magnesium has
only 2 electrons in the outermost shell and suffers from hydrogen-embrittlement. Its unitcell
contains two atoms and a supercell is shown in .
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1.4 Objective

Figure 1.1: The magnesium HCP structure is shown.

1.4 Objective

In this essay the objective is to get the appropriate ’level of theory’ for a Quantum Espresso
calculation to get a guess wavefunction for the quantum algorithms of the next thesis. The
’level of theory’ describes a set of input parameter for the simulations which result in a certain
accuracy of the simulation. The target is to get the most accurate wavefunction. With a more
accurate wavefunction we attain a better ansatz for the quantum algorithm. This results in
a hopefully faster quantum calculation and more accurate results. The limiting factor is the
computational efficiency the relation between computational time and the accuracy of the
result.

3





2 Theory

2.1 DFT

DFT stands for density functional theory. Its name comes from the principles of two
Hohenberg-Kohn-Theorems. These build the basis for any implementations of DFT. It com-
putes an approximation for the ground state of the system. The ground state is the state
with the smallest energy. The ground state is interesting because the ground state is stable
and can be used to extrapolate from.

2.1.1 Hohenberg-Kohn-Theorems

First Theorem

The first Hohenberg-Kohn theorem proofs that the electron density n(r) defines uniquely
hamilton operator Ĥ and therefore all properties of the system. They proofed it by proofing
that no two different wavefunctions Ψ,Ψ′ can have the same n(r). [11]

Second Theorem

The second Hohenberg-Kohn theorem proofs that the "functional delivers lowest energy if
and only if the input density is the true ground state density, ρ0" [11, see p. 36]. This
means that one can use the ’variational principle’ to find the ground state. The ’variational
principle’ says that if all allowed densities are computed, the density with the smallest energy
is the ground state density with the ground state energy. For DFT it is impossible to test
all allowed densities. It is still important because is also means that the density with the
least energy of a subset of densities is the best approximation to the ground state of all the
densities of the subset.

2.1.2 Kohn-Sham-Approach

The Kohn-Sham-Approach tackles the problem of calculating the kinetic energy accurate.
It divides the kinetic energy of the electrons in an accurately calculable energy of a non-
interacting reference system and a remainder. The method to calculate the non-interacting
system accurate and efficient is to introduce the Kohn-Sham-Orbitals and to build them
by linear combination of atomic orbitals (LCAO). The remainder consists of correlation
energies, self interaction correction, exchange energies and a part of the kinetic energy which
is not accurately calculable. The remainder is small in comparison and approximated by the
exchange-correlation functional.

5



2 Theory

Kohn-Sham-Orbitals

A Kohn-Sham orbital is a one electron wavefunction φi:

f̂KSφl = εlφl (2.1)

where f̂KS is the Kohn-Sham one electron operator which consists of the kinetic energy, the
coulomb interaction between the electron and the nuclei, the electron-electron repulsion and
the exchange correlation term. εi is the eigenenergy of this electron.

2.1.3 Self consistent field

The self consistent field(SCF) procedure is a iterative algorithm to find a solution for the
f̂KS operator and necessary for each DFT calculation.

2.2 Unitcell

To describe the system to be simulated we use unitcells and supercells. A unitcell is a volume
V defined by three vectors a1,a2,a3:

V = a1 · (a2 × a3) (2.2)

The unitcell of a crystal is defined as smallest volume which when repeated through transla-
tion fills space completly and creates the desired crystal (Worch [12]). These translations
are defined by the lattice the three vectors a1,a2,a3 create such that:

T = N1a1 +N2a2 +N3a3, N1,2,3 ∈ Z (2.3)

The unitcell consist of a1,a2,a3, the positions and types of the atoms in the unitcell.

A supercell is also defined by three vectors but is a more general formulation. It is a possibility
to simulate systems with defects, surfaces or in vacuum. It has not to be the smallest volume,
in the opposite way it should be big enough that i. e. defects do not interact with defects in
other supercells (Meyer [13]).

2.2.1 Plane Wave Basis

One possibility for DFT is to use a plane wave basis set for calculations. A plane wave can
be represented by

F (r) = eik·r (2.4)

where r is the position in real space and k is the wave vector. Using plane waves as a
basis set is possible possible due to Bloch’s theorem [14]. The theorem is valid under the
assumption that the crystal behaves like it stretches infinitely in every dimension. This
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2.3 Calculations

behaviour is true for undisturbed matrix material. Surfaces and defects can be simulated
with the use of supercells.

Bloch’s Theorem

Bloch’s theorem says that the solution Ψk to the one-particle schrödinger equation in a lattice
periodic potential can be represented as a product of a plane wave and a lattice periodic
function:

Ψk(r) = u(r)eik·r

u(r) = u(r +R)
(2.5)

where u(r) is the lattice periodic function with the lattice vector R.

Wave Vector k

When the entire system is periodic with translations T like (2.3) the effective potential Veff

of DFT is also periodic:
r = r + T

Veff(r) = Veff(r + T )
(2.6)

A periodic function like Veff can described by a fourier series:

Veff(r) =
∑
G

Veff(G)eiG·r

Veff(G) =
1

V

∫
V
Veff(G)e−iG·rd3r

(2.7)

The sum runs over the set of wave vectors G which fulfil the condition G · T = 2πM (M is
an arbitrary integer)

2.2.2 Kohn-Sham-Orbitals

The Kohn-Sham-Orbitals φl in a plane wave basis are represented by a sum plane waves:

φl(r) =
∑

|G′|<kmax

c(G) exp(iG · r) (2.8)

The expansion coefficient c(G) is stored in the computer for each plane wave.

2.3 Calculations

A DFT implementation has different types of calculations it can do. They differ in the
calculated property and computational cost. We used so called ’single point’ calculations
and relaxation calculations.

7



2 Theory

2.3.1 Single-point calculation

A single-point calculation calculates the energies of a given fixed system. It does SCF cycles
till the energies are converged. The wavefunctions are calculated.

2.3.2 Relaxation calculation

In a relaxation calculation a input geometry is ’relaxed’. Relaxing means minimizing the
forces which act on the nuclei and minimizing the total energy. There are different degrees
of freedom which can be fixed or relaxed. These degrees of freedom are the positions of the
nuclei and the unit cell vectors. In our relaxation calculations all degrees of freedom were
relaxed. That means that every atom could move in each direction and the lengths of the
unit cell vectors and their angles could change.

It uses a Broyden-Fletcher-Goldfarb-Shanno-algorithm. This is an optimisation algorithm.
In DFT-simulations it uses the calculated forces of a single point calculation and changes
the unitcell and atomic positions accordingly. Then the new forces of the new geometry
are calculated in a single-point calculation and used to change the geometry again, till all
forces are below a threshold and the difference of total energy between the steps is below a
threshold.

Due to the repeated need of single-point calculations, relaxation calculations take more time
to finish.

8



3 Preliminary Studies - The Foundation

For the workflow of the next thesis to start we need a wavefunction which represents the
system to simulate. This wavefunction gets encoded by an algorithm. One possibility to get
this wavefunction is to use a DFT code to compute it. There are different DFT codes [8–10,
15–17]. They differ in:

• Functionality
The different implementations include differently complex algorithms to calculate dif-
ferent observables. All implementations calculate the energy of the system and can for
example compute a bandstructure. They offer different possibilities to postprocess the
calculated data.

• Implementation
Each code is different and uses their own data structures and file types. There is no
standard input or output file for DFT calculations while the content is similar. The
implementation can have a impact on computational cost for example by supporting
using graphics cards.

• Mathmatical basis
There are two types of representation of the electron orbitals. Plane waves are just
one possibility. The over is to use a more local basis set. These are comprised of
often gaussian type orbitals which are localised at nuclei. Abinit [15], Vasp [17] and
Quantum Espresso [8–10] use for example plane wave basis sets while Gaussian [16]
uses local basis sets.

• Price
There are open source codes and codes maintained by firms which license them.

3.1 Parameter

Cutoff energies, the k-point mesh, the smearing parameters and the pseudopotentials make
up the level of theory and will be called simulation parameters. They are the most important
parameters which are necessary for each calculation. The smearing parameter are an excep-
tion. These smearing parameters are not necessary for each Quantum Espresso calculation
but are beneficial for conducting metals.

3.1.1 Cutoff energies

The wavefunction cutoff Ewfc and the charge density cutoff Eρ are necessary for each plane
wave DFT-calculation. They describe values which determine the amount of plane waves
used. For different procedures to calculate different properties different amounts of plane
waves are needed. Therefore different cutoff energies are needed.
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3 Preliminary Studies - The Foundation

When using a plane wave basis set, these wavefunctions are approximated by a sum of plane
waves. A plane wave is described by its wave vector (see (2.4)). To describe the wavefunction
perfectly we need theoretically an infinite number of plane waves. It is computationally not
possible to work with an infinite amount of plane waves. That is the reason why a criterion
is needed to limit the amount of plane waves. This criterion is the cutoff energy. The
kinetic energy of a plane wave is calculated by relating the wavelength of the plane wave to
a momentum by the the deBrogli relation:

λ =
2π

|k|
(3.1)

λ =
h

p
(3.2)

p =
h|k|
2π

(3.3)

p =ℏ|k| (3.4)

This momentum combined with the mass of the electron are sufficient to calculate the kinetic
energy.

Ekin =
p2

2m
(3.5)

Ecut =
ℏ2

2m
|k|2max (3.6)

|k|max =

√
2mEcut

ℏ2
(3.7)

It is related to the wave vector k and the mass of the electronm. The cutoff energy determines
a maximum length of the wave vector |k|max like in equation (3.6) and (3.7) shown. The
origin of the idea to limit the wave vector is in the relation between the wave vector and the
wavelength λ of the plane wave. The wavelength of a plane wave determines the smallest
feature it can model. The wavelength is defined by the wave vector as (3.1).

λmin =
2π√
2mEcut

ℏ2

(3.8)

With this relation we can use a cutoff energy to limit the wavelength of the used plane waves
and calculate the smallest λmin of the plane waves used with the equation (3.8). We can
limit the number of plane waves needed by deciding a smallest feature size which should be
modelled.
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3.1 Parameter

Wavefunction cutoff

To calculate the kinetic energy of the electrons in DFT Kohn-Sham orbitals are used. For
the calculation of the kinetic energy the cutoff energy is called wavefunction cutoff Ewfc or
kinetic cutoff. This energy (Ewfc) describes one part of the accuracy of the approximation
of the wavefunction.

Charge density cutoff

The charge density n(r)is calculated as the square of the Kohn-Sham-orbitals φl.

n(r) =
∑
l

φ∗
l (r)φl(r) (3.9)

Due to computational reasons these equations are calculated in reciprocal space:

ñ(k) =
∑
l

∑
|k′|<kmax

φ̃∗
l (k

′)φ̃l(k − k′) (3.10)

We see that the product in real space transforms in a convolution in reciprocal space. Also
there are non-zero Fourier components up to 2kmax. That is the reason we need a second
cutoff energy Eρ which is at least 4 times as big as Ewfc. 4 times because the square root
of the cutoff energy determines the maximum norm, see equation (3.7) and table 3.1. In
this table it is shown that when the cutoff energy is quadrupled the wavelength halves.
Furthermore the used cutoffs are shown to get a relation between cutoff and wavelength.
Even higher cutoffs should be tested to be certain. The number of plane waves for charge
density calculations is determined by the charge density cutoff energy Eρ.

3.1.2 k-Point Mesh

To sample the first Brillouin zone we need a so called k-mesh. The k-mesh defines how
accurate the Brillouin zone is sampled and with which symmetries. The k-mesh consists of
a grid k-points mostly defined by the amount of k-points in each direction of the coordinate
system. The last defining parameter of the k-mesh is if the k-mesh is shifted in relation to

Table 3.1: This table shows the relation between common Ecut and their λmin.

Ecut λmin

10Ry 1.051Å
13Ry 0.922Å
52Ry 0.461Å
100Ry 0.332Å
400Ry 0.166Å

11
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the coordinate origin. The coordinate origin is called the Γ -Point. Only the first Brillouin
zone(BZ) has to be sampled because all other are symmetric to the first. Because this
Brillouin zone is in the reciprocal space the amount of k-points along each axis should be
inversely proportional to the length of the unitcell vectors.

The k-mesh is generated in a Monkhorst-grid [18]. It has always the same symmetries
as the unitcell. The Monkhorst-grid is generated out of the density of k-points along each
reciprocal direction. It is written like kx×ky×kz where kx, ky, kz are the amount of k-points
in the according direction in the first BZ.

3.1.3 Smearing

One optimisation possibility for conducting metals is to introduce smearing. Smearing de-
scribes the behaviour of occupation near the Fermi-level. It introduces a broadening of
discrete levels. There are different methods to introduce this broadening like ’Fermi’, ’Gaus-
sian’, ’Methfessel-Paxton’ and ’Marzari-Vanderbilt’.

3.1.4 Pseudopotentials (PP)

The last important parameter to consider is the pseudopotential which should be used. It
describes the behaviour of inner electrons. The wavefunction of these inner electrons rapidly
oscillates around the core. To replicate this behaviour we would need a very high wavefunc-
tion cutoff energy. Even with this high cutoff we would not get any important information
because in our system the inner electrons have not got a great effect on the behaviour of
the system. That is why we introduce PPs which describe a smoother substitution for these
electrons. There is a need for different pseudopotentials for each element in the system be-
cause the inner electrons behave differently. Different pseudopotentials substitute different
amounts of inner electrons i. e. there are PPs which treat all but the outer shell as inner
electrons and some which treat all but the outer two shells as inner electrons.

The pseudopotentials can be sorted in 3 different ways:

• Functional They can be sorted by the functional used into LDA and GGA. For GGA
the PBE and PBEsol functional were compared.

• Active electrons They can be sorted by how many electrons they actively calcu-
late. These pseudopotentials can be sorted into the 2e− and 10e− group. This LDA
functional calculates 10e−.

• Pseudopotential type They can be sorted which type they have. These pseudopo-
tentials can be sorted into PAW and US pseudopotentials. A PAW LDA was used.

12



3.2 Benchmark

3.2 Benchmark

One method to reach the objective of attaining the ’level of theory’ is a so called benchmark.
For that we have to test and optimize the simulation parameters. It is necessary to optimize
the testing procedure because there are to many combinations of parameter values to test all
of them. If 5 wavefunction cutoffs, 5 charge density cutoffs, 3 smearing methods each with
5 parameter, 20 different k-meshes and 7 PPs are considered, 52500 calculations would be
necessary to test each combination. This is not efficient nor feasible. Furthermore it would be
common that new values of parameters have to be considered to confirm some results, which
would grow this number enormously. That is why we benchmark the simulation parameter.
This means that each parameter is tested as separately as possible. For example the k-mesh
can be tested separately from the cutoff energies and the smearing parameter. In the opposite
way each of these three parameters has to be optimized for each different pseudopotential.
This way we get a ’level of theory’ for each pseudopotential. Testing is the variation of one
parameter while fixing the rest of the parameter and then comparing and interpreting the
results. The goal of the benchmark is the convergence (see 3.3) of the simulation parameters.

3.3 Convergence

For each of the these parameters we seek a value at which the calculation is ’converged’.
Convergence is defined by two aspects. The first is the accuracy, the ability to calculate
exact values of observables of the systems. The second aspect is the stability, the ability to
find the exact value reliable. A stable calculation means that the result is as good as possible
independently of small changes in the starting parameters. We will discuss the accuracy, the
stability and criteria for them:

3.3.1 Accuracy

Accuracy is a multi layered concept. It describes the deviation from some exact value. This
exact value is not accessible. The target is to get as close as possible to this exact value,
to get the deviation as small as possible and to know how big or the deviation could be.
Experiments as well as simulation suffer from deviations and it is important to know what
the reasons are and how it impacts the interpretability of the results. The first aspect is
to reach an accurate enough physical description with the simulation that calculated results
are meaningful. From a meaningful result one can make good predictions. A model can not
describe exactly the behaviour of the systems due to approximations which are necessary in
order to tackle computational challenges. The target is that the description is sufficiently
accurate that the calculated properties can be used for the cause they are simulated for.

13
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3.3.2 Stability

The second aspect is stability. To simulate a geometry the SCF-calculations has to find
a stable solution. That means that the difference of two consecutive steps of this itera-
tive algorithm has to be under a certain threshold. This is in our system achievable with
recommendations of the pseudopotentials.

To relax a geometry many single point calculation have to be converged. Stability in this
context means that independently of small variations in the starting parameters, the relax-
ation algorithm must still calculate the relaxed geometry. Small variations are changes of the
positions of the nuclei. This is the requirement to make predictions for unknown systems. It
can be tested by simulation of known systems and comparison with their reference values.

3.3.3 Criteria

To decide if and when the simulation is converged is difficult. One possibility is to compare
calculated properties to reference values like Yin et al. [19]. They compared experimental
values to their calculated lattice constants and elestic constants of hcp metals.

Reference values

There are different properties, i. e. lattice parameter, band gap and spectra, one can measure
experimentally and calculate in simulations. These are mandatory to evaluate the accuracy
of the simulation. One example we use in this work are crystal lattice parameters which
can be measured by x-ray crystallography like Barrett and Massalski [20] did. These
literature lattice parameters (A = 3.186Å, C = 5.174Å) can be compared to results of
relaxation calculations. The literature values are at 4K and the difference to 0K is in the
magnitude of 0.0001Å and therefore insignificant. Another possibility is to get reference
values from other simulations like Yin et al. [19]. To get relaxed lattice parameters we
need relaxation calculations, which are much more computational expensive than single-
point calculations. To reduce the amount of relaxation calculations we can use single-point
calculations to estimate good starting simulation parameters for the relaxation calculations.

single-point calculations estimations

Single-point calculations are less computational expensive then relaxation calculations. That
is the reason for starting with single-point calculations to benchmark simulation parameters.
The output of a single-point calculation does not include relaxed lattice parameters. It
outputs different energy values like the total energy Etot or the bandstructure of the system.
We use the total energy as convergence criterion.

Only in comparison the difference between two values of a simulation parameter becomes
visible and measurable. The path to a good estimation lies in varying simulation parameter
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3.3 Convergence

to evaluate the impact the variation has. One calculated property is the total energy Etot. It
is the the sum of all calculated energies in the model. A geometry of atoms with a lower total
energy is more stable then a geometry with a higher Etot. In the benchmark we search the
simulation parameters with the lowest Etot. Only the lowest Etot is not an proof of superiority
over other models. There are cases were an insufficiently accurate model calculates a lower
Etot. The total energy and the circumstances which lead to it have to be interpreted to use
it as an indicator. One point of reference is the ’chemical accuracy’ of 1 kJ mol−1 targeted
by nobel laureate Pople [21]. For a system of 2 atoms it is an equivalent of 0.021 eV per
2 atoms. One has to be careful because this is only for thermodynamic calculations and
not electronic calculations. If two models or more differ only in this order of energy the
thermodynamic properties should be converged.

Relaxation calculations

With the starting parameters from the single-point calculation estimations the optimization
calculations searches minima. Only if these minima exist can the algorithm find them. This
makes the choice of the sufficient simulation parameter important. Optimization calculations
search for optimal lattice parameter which we can compare to experiments [20] or other
simulation i. e. Yin et al. [19] . For our HCP structure in magnesium we have two defining
lattice parameter. The length of the unitcell in x-direction A and the length of the unitcell
in z-direction C. The relation between these lengths represented by C/A is considered as
well. This convolution has information on the shape of the unitcell.

Other calculations could be done to get properties with reference values, like electronic
structure calculations, pressure calculations and cohesive energy calculations [22]. There
was not enough time to go into detail with these reference properties.

outputs of relaxation calculations After a relaxation calculation finished, it outputs the
relaxed lattice parameters and atomic positions. In this system the relative position of the
atoms did not change because the atoms are in a HCP lattice and already at the optimal
position. Even the angles could change but they are also already optimal and did not
change. Only the length of the unitcell vectors and the energies did change. To reproduce
the calculations of Yin [19] a calculation with the same simulation parameters was done (see
’36× 36× 19 k-mesh’ in figure 3.5).

Limits

When the target is to reach the best description of reality raising the accuracy of the simula-
tion would be a reasonable path of accomplishing it. The problem with raising the accuracy
is one raises the resources required to compute the simulation. At a certain point there are
not enough resources to compute the simulation and often before that there is point where
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the raise in accuracy of the simulation is in no relation to the raise of accuracy of the results
if any. Therefore we are searching for the parameter set with lowest computational cost but
still sufficiently accurate that the results are satisfactory.

3.4 Benchmark results

3.4.1 Cutoff energies

The first simulation parameters to be benchmarked are the two cutoff parameters. For
each pseudopotential and without knowledge of the converged k-point mesh a number of
single point calculations were done. Then the total energy is compared to find a suitable
value. The results are calculated with an educated guess for the other simulation parameters
(Methfessel-Paxton smearing with Edegauss= 0.03Ry;8x8x8 k-mesh) from not included test
calculations.

In diagram 3.1 the result of the cutoff benchmark of PBE PAW 2e−is shown. The y-axis
shows the total energy of the system. The values of Etot range from −914.7575 eV to
−914.748 eV. The difference between the different simulation parameter is only 9.5meV.
This is the reason the y-axis is shifted by by −914.7 eV and shown in meV. The x-axis shows
Eρ which has to be optimized for each tested Ewfc. The lower bound of Ewfc was set at the
lowest recommendation for the pseudopotentials of 13 Ry. Every pseudopotential has its own
recommendation. Only combinations of Ewfc and Eρ should be tried were Eρ is four times
as big as Ewfc, as per the rule introduced in section 3.1.1. The different Ewfc are shown as
different data series. In (b) the range from −57.6meV to −57.4meV is enhanced because
the energy difference between 13 Ry and 40 Ry as Ewfc is clearly visible in (a), while the
difference between 40 and 100 Ry is minimal.

Generally the total energy stays constant for the tested Eρ with the exception of the first
value Eρ = 54Ry for Ewfc = 13Ry and 40Ry. The figure 3.1 also shows that for increasing
Ewfc the calculated total energy falls monotonously until the wavefunction cutoff reaches
80Ry where the total energy increases the first time. This change in energy difference is an
indicator for convergence.

To decide which cutoff energies are sufficient we can evaluate the change of Etot.The im-
portant criteria is the order of magnitude of the change in total energy between
different cutoff energies. The difference between the highest and lowest total energy is
only 9.5meV.

For Eρ a value of 160Ry would be sufficient because the total energy does not change
significantly after this value. The minimal energy increase at Ewfc = 80Ry is an indicator
that the description gets better until a plateau is reached at value just below Ewfc = 80Ry.
For these wavefunction cutoffs a charge density cutoff of at least 4Ewfc = 320Ry should
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Figure 3.1: Cutoff energy Benchmark: The total energy Etot of a two magnesium atoms system is
depicted over the charge density cutoff Eρ. Etot is shifted by −914.7 eV. In (a) the Etot-
range from −58meV to −48meV is shown. In (b) the range from −57.6meV to −57.4meV
is enhanced. The single-point calculations were done with with following parameters:
A = 3.2 nm;C = 5.226 nm; Methfessel-Paxton smearing with Edegauss= 0.03Ry;8x8x8
k-mesh, PBE PAW 2e−pseudopotential

be chosen. For this pseudopotential with this k-mesh there would be two possibilities to
choose the cutoff energies. If speed is a important aspect and the model should be on only
be accurate for thermodynamic calculations a pair of cutoffs of Ewfc = 13Ry;Eρ = 160Ry
should be chosen. When the target is to get the best possible result according to the total
energy a pair of cutoff energies of Ewfc = 80Ry;Eρ = 320Ry should be chosen.

Other Pseudopotentials In the benchmarks of the other pseudopotentials the PP with
the highest required cutoffs is the PBEsol PAW 10e−PP shown in figure 3.2. In this figure
the total energy is shown in eV not meV because it shows the range from −3823.789 eV to
−3536.000 eV. The y-axis is shifted by −3500 eV and in (b) the range from −323.9 eV to
−323.6 eV is enhanced. The same Ewfc as in figure 3.1 are shown as data series and the
x-axis are the same Eρ.

After Eρ reaches values above 240Ry Etot is constant in our accuracy. With this PP the Etot

is smaller for Eρ < 240Ry. The total energy falls monotonously with increasing wavefunction
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Figure 3.2: Cutoff energy Benchmark: The total energy Etot of a two magnesium atoms system is
depicted over the charge density cutoff Eρ. Etot is shifted by −3500 eV. In (a) the Etot-
range from −400 eV to 0 eV is shown. In (b) the range from −323.9 eV to −323.6 eV
is enhanced. The single-point calculations were done with with following parameters:
A = 3.2 nm;C = 5.226 nm; Methfessel-Paxton smearing with Edegauss= 0.03Ry;8× 8× 8
shifted k-mesh, PBEsol PAW 10e−pseudopotential

cutoff. A Ewfc of 20Ry is insufficient for this PP as seen by the difference in Etot of over 50 eV
between the wavefunction cutoffs of 20Ry and 40Ry. Only when reaching a wavefunction
cutoff of 100Ry the difference between 88Ry and 100Ry in the magnitude of 1meV.

That is the reason that for all following calculations Ewfc = 100Ry;Eρ = 400Ry are
used as cutoff energies for all pseudopotentials. With that the accuracy of the results of the
different PPs is more comparable in regard of computational cost, because the plane wave
accuracy is equal for all different pseudopotentials.

At low charge density cutoffs below 4Ewfc are outlier of the total energy. They seem more
stable energetically but are not a good representation of the system. They show the necessity
of the derived 4Ewfc rule.

3.4.2 Smearing

After determining sufficient cutoffs the smearing parameters are benchmarked. These define
the behaviour of occupation near the Fermi-level. It is benchmarked by fixing the other
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Figure 3.3: Smearing Benchmark: The total energy Etot of a two magnesium atoms system is depicted
over Edegauss. Etot is shifted by −910 eV. The single-point calculations were done with
with following parameters: A = 3.2 nm;C = 5.226 nm;Ewfc = 100Ry;Eρ = 400Ry;
8× 8× 8 shifted k-mesh, PBE PAW 2e−pseudopotential

simulation parameters to following values: Ewfc = 100Ry;Eρ = 400Ry; 8 × 8 × 8 shifted
k-mesh. Then the smearing algorithm is varied and the Edegauss-value is changed from
0.0001Ry to 0.1Ry. The results with the PBE PAW 2e−pseudopotential are shown in figure
3.3. The total energy in eV is plotted over the logarithmic x-axis of Edegaussin Ry. The four
different algorithm are shown as different series over the logarithmic x-axis.

The total energy changes very little for Marzari-Vanderbilt and Fermi-Dirac smearing, while
for Gaussian and Methfessel-Paxton smearing the energy changes by more than 0.5 eV from
Edegauss= 0.0001Ry to 0.1Ry. At high Edegaussvalues the total energy falls.

In the case of cutoff energies and k-mesh a minimal stable total energy is a good benchmark
criterium. In the case of smearing a small Edegausswith little to no change to the total energy
is the target, because it changes the behaviour of the electrons near the fermi level in way
that is not representative of the simulated system. That is the reason values of Edegaussover
0.03Ry for Methfessel-Paxton smearing and 0.01 for Gaussian smearing should not be chosen.

In this system we chose for all pseudopotentials 0.03Ry for Methfessel-Paxton smearing
because it is a so called ’cold smearing’ which does not influence the electrons that significant
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Figure 3.4: k-mesh Benchmark: The total energy Etot of a two magnesium atoms system and the total
amount of calculated k-points is depicted over the used k-mesh in the form of kx×ky×kz.
Etot is shifted by −914.7 eV. The single-point calculations were done with with following
parameters: A = 3.2nm;C = 5.226 nm;Ewfc = 100Ry;Eρ = 400Ry; Methfessel-Paxton
smearing with degauss = 0.03Ry; PBE PAW 2e−pseudopotential

(see Marzari [23]). 0.03Ry are chosen because it is a common value in DFT-calculations
and Yin et. al. [19] used a similar value (0.02Ry).

3.4.3 k-Mesh

The k-mesh has two aspects which have to be optimized. The amount of k-points and their
placement.

In figure 3.4 the results of the k-mesh benchmark are shown. With the determined simulation
parameters from the cutoff and smearing benchmark the results of the PBE PAW 2e−pseudopotential
are shown. The x-axis shows the amount of k-points in each reciprocal direction of the
Monkhorst-Pack k-mesh. The y-axis on the left shows the total energy shifted by −914.7 eV
for the shifted and unshifted k-meshes for the dotted line. The y-axis on the right shows
the total amount of calculated k-points of the calculations. The amounts are shown by the
dot-dashed lines in the diagram.
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3.4 Benchmark results

An oscillating behaviour of the total energy is shown with a decreasing amplitude from
hundreds of meV to 1meV. The amplitude in the total energy is smaller when using the
shifted mesh. At 18 k-points in each direction the unshifted mesh calculates results in the
same magnitude as the shifted one with half as much calculated k-points.

The total amount of calculated k-points rises cubically for the 3 dimensions. The calculated
amount starts equal for shifted and unshifted at 12 k-points for a 4 × 4 × 4 k-mesh, but
increases faster for the shifted mesh to 1100 calculated k-points in a 20 × 20 × 20 mesh,
while the unshifted k-mesh calculated only 484 k-points in a 20× 20× 20 mesh.

Amount of k-points (energy) In figure 3.4 it is visible, that after a density of 12 k-points
the total energy deviates less then 21meV. We can conclude that the used 8×8×8 k-mesh is
not accurate enough and should use at least a 12×12×12. It is for every PP the same energy
difference between the k-meshes only shifted by a constant energy related to the amounts of
electrons the PP calculates.
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Figure 3.5: k-mesh Benchmark: The lattice parameters A and C of the two magnesium atoms sys-
tem is depicted over the used k-mesh. The exp. reference is the adjusted value of Bar-
rett [20]. The DFT ref. is from Yin et. al. [19]. The relaxation calculations were done
with with following starting parameters: A = 3.1Å;C = 5.063Å;Ewfc = 100Ry;Eρ =
400Ry; Methfessel-Paxton smearing with degauss = 0.03Ry; BFGS algorithm
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3.5 Relaxation calculation results

After setting minimal values for cutoffs, smearing and k-mesh with the benchmark the second
type of calculations were started.

3.5.1 Target

After the benchmark is done, the more computationally expensive relaxation calculations are
started. These are to ascertain the sufficient k-mesh and to compare the pseudopotentials
among each other. It is to test the simulation against reference values to be able to determine
the accuracy of the results and the algorithms. To get values which can be compared to the
reference values relaxation calculations were needed. Furthermore the guideline that the
amount of k-points along the reciprocal directions should be inversely proportional to the
length of the according unitcell vector was tested.

3.5.2 Starting parameters relaxation calculation

The relaxation calculations started with a non-optimal starting geometry of A = 3.1Å and
C = 5.063Å(C/A = 1.633). The starting C/A is the mathematical optimal ratio of a HCP
lattice of perfect spheres. The reason for imperfect starting geometry this is to test the
ability of the simulation to calculate a good minima. If the starting geometry was optimal
we would not know if the algorithm can work to find minima of unknown systems which do
not start with optimal starting geometry. A good result of the algorithm in the test system
does not mean it works in unknown systems. But if it did not work in the test system it is
even more unlikely that it produces good results in more complex cases.

3.5.3 Results

In figure 3.5 all the results of the relaxation calculations are shown. In the top diagram
the lattice parameter A is shown which is always equal to B. Below the lattice parameter
C for the z-direction is shown. In the bottom diagram the ratio C

A is shown. C
A is a ratio

which gives insight to the calculated shape of the unitcell. The results are plotted over the
used pseudopotential. The different data series are for different used k-meshes. Also the the
experimental [20] and DFT [19] reference are shown as full or dashed line in each diagram.

The lattice parameter A increases with the k-point density and in case of PBE PAW 2e−,
PBE PAW 10e−and PBE US 10e−overshoots the experimental reference of 3.186Å. The
PBEsol pseudopotentials calculated A ≈ 3.17Å and the LDA pseudopotential calculates
only A ≈ 3.13Å.

The lattice parameter C decreases with the k-point density and in case of PBEsol PAW 2e−,
PBEsol PAW 10e−and PBEsol US 10e−overshoots the experimental reference of 5.174Å.

23



3 Preliminary Studies - The Foundation

The LDA pseudopotential calculates lengths below the experimental reference and gets even
smaller when the k-density is increased.

The ration C
A decreases with increasing k-point density for each pseudopotential. When the

same k-mesh is used the ratio is very similar independent of used pseudopotential. The
36× 36× 19 mesh reaches the DFT reference and the 12× 12× 12 mesh is just 0.003 away
from the ratio of the DFT reference.

3.5.4 Proportionality of k-meshes

As described in section 3.1.2 there is the argument that the amount of k-points along each
reciprocal direction should be inversely proportional to related unitcell lengths. That would
mean that for our system with C

A = 1.624 should have a ratio of kx
kz

= 1.624. With 12 k-points
in x-direction that would mean kz ≈ 7.4. The results of the relaxation calculations with k-
meshes around these 12×12×7.4 are shown in figure 3.5. There is always a trend with raising
the amount of k-points in reciprocal z-direction. The lattice parameter A increases with the
amount of k-points while C decreases. The ratio continues to drop with increasing amounts of
k-points in reciprocal z-direction. With the exception of the PBE pseudopotentials without
’sol’ in lattice parameter A,the 12×12×12 is always the closest to the experimental reference.

3.5.5 Lattice parameters

The influence of different k-meshes on the length of the unitcell vectors is shown in the
top and middle diagram in figure 3.5. It is visible that with higher k-point densities the
values get closer to a fixed value which is dependent on the functional and has not to be the
experimental reference. For the LDA functional and the highest k-point density it is still
0.05Å and 0.08Å off from the experimental reference for Aand C. For the PBE functional
the DFT reference is reached, while PBEsol relaxes the lattice parameters 0.01Å smaller
than the experimental reference.
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4 Discussion

The target was to find a set of simulation parameters for each pseudopotential which produces
accurate results in manageable computation time. After that the pseudopotentials were
compared to find the most suitable to calculate the starting wavefunction for a quantum
algorithm.

4.1 Cutoff energies

The benchmark of the cutoff energies is the starting point of the benchmark of the simulation
parameter and an important step with impact of the following steps.

The cutoff benchmark for the PBE PAW 2e−and PBEsol PAW 2e−pseudopotential is unam-
biguous. After a wavefunction cutoff of 80Ry the total energy does not decrease any more
and a plateau is reached. For the pseudopotentials which use 10 e− a higher cutoff is needed
and even at a very high wavefunction cutoff of 100Ry no plateau is reached. This implies
that higher cutoffs could lead to a higher accuracy. The problem to consider is the increasing
computational cost and time needed to calculate this many plane waves.

A wavefunction cutoff parameter of 100Ry results in 6 times more plane waves then a
wavefunction cutoff of 13Ry. On the computer we used the single-point calculation with
Ewfc = 13Ry;Eρ = 52Ry took 20-times less time then with Ewfc = 100Ry;Eρ = 400Ry.
This time difference is only an example and is dependent on lots of factors i. e. other people
using the machine, amount of processors used and if GPU acceleration is used. That is the
reason the computation time is not used quantitatively to compare the computational cost
of different sets of simulation parameters.

4.2 Smearing

The smearing parameters are a tool to make simulations shorter or difficult simulation pos-
sible (see Baisuk et. al.[24]). The used value changes Etot and for more accurate results,
the broadening parameter Edegaussshould be reduced. The current system is simple enough
that very little smearing is sufficient.

4.3 K-mesh benchmark

4.3.1 Amount of k-points

The amount of k-points along each reciprocal direction is a parameter which controls the
density of k-points in this direction. It does influence the amount of calculated k-points, but
is not the only influence. Due to symmetry of the crystal a lot of k-points are equivalent
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to each other and have to be calculated only once. This reduces the amount of calculated
k-points and the computation time. Furthermore it is the reason why there are different
amounts of calculated k-points necessary for shifted and unshifted meshes to reach the same
k-point density.

4.3.2 Position of k-meshes

The impact of shifting the k-mesh is due to the symmetry of the crystal. When coincidently
the symmetry of the k-mesh aligns with the symmetry of the crystal it is possible that
sampling of the first Brillouin-Zone is not optimal. It samples for example disproportional
often minima. This is shown in figure 3.4, where at low amounts of k-points bigger deviations
are visible. When more k-points are used both shifted and unshifted meshes give the same
result because the first BZ is sampled more dense.

That shifted k-meshes need more calculated k-points is uncommon. Only in HCP cells the
shift breaks the symmetry. Due to this symmetry break, a symmetrization is needed because
the k-mesh should always have the same symmetry as the crystal. This symmetrization
generates new k-points which increases the the amount of calculated k-points. This is also
the explanation of the faster increase of calculated k-points in the shifted mesh.

4.4 Relaxation Calculations

4.4.1 Lattice parameters

With the same simulation parameters (same k-mesh and functional) the DFT reference values
were reached. Unfortunately the calculated lattice parameters do not generally get closer to
the experimental reference value with increasing k-point density. They seem to get closer to
a fixed value, which is just near the experimental reference.

4.4.2 Proportionality of k-meshes

The results of the relaxation calculations shows that the shape of the calculated unitcell
gets generally better with a higher k-point density in the z-direction independently of used
pseudopotential. So a more unproportional k-mesh gets better results than a proportional.
That does not mean that the guideline is wrong. It is more probable that a denser sampling
of the BZ leads to better results. This is underlined by the calculations with the 36×36×19

where a even better shape is reached with a proportional k-mesh.

4.4.3 Pseudopotentials

Functionals The functional of the pseudopotentials has the biggest impact on the relaxed
lattice parameters. The LDA functional is less accurate than the GGAs, with values farther
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4.4 Relaxation Calculations

away from the experimental reference. The LDA functional is less computational expensive
than the GGA functionals.

The PBE functional estimates the unitcell lengths 0.01Å to 0.03Å to large, while the PBEsol
functional estimates them 0.01Å to 0.02Å to small at the highest k-point density. The
consequence is that the volume of the unitcell with the PBE functionals is bigger than the
volume of the unitcells with the PBEsol functionals. It could be that in a smaller unitcell
a hydrogen atom has a greater impact, than in a smaller one. We cannot decide which is a
’better’ choice.

The differences in the shape of the unitcell is within a functional group bigger than the
differences between the functionals are.

Aktive electrons The calculations with two active electrons per magnesium atom need
smaller cutoffs and compute faster than the calculations with 10 active electrons. There is a
small visible difference in lattice parameters and shape. This difference is in the magnitude
of 0.001Å and the significance is very small.

Pseudopotential Type The difference between the PAW and the US pseudopotentials is
even smaller than the difference from different amounts of active electrons. This is reassuring
because that implies that the same behaviour is modelled with different techniques and the
same result is achieved.
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5 Conclusion

The simulation parameters cutoff energies, smearing parameters and k-mesh were bench-
marked for 7 pseudopotentials. The accuracy was tested with the lattice parameters as
point of reference.

System The benchmark and accuracy test were done on a HCP magnesium crystal at 0K
with 2 atoms in the unitcell.

Cutoff Energies The Ewfc = 100Ry;Eρ = 400Ry cutoff parameters offer a good accuracy
while being computational reasonable. For 2e− pseudopotentials smaller cutoffs can be
considered.

Smearing A modern smearing algorithm like Methfessel-Paxton is suitable for this magne-
sium system, but a smaller broadening coefficient Edegaussthan 0.03Ry should be considered.

K-mesh benchmark The benchmark of the k-mesh judged by the total energy has two
sides. It shows that the shifted k-mesh is more suitable for small amounts of k-points,
where it calculates better results with a similar total amounts of k-points. At least a shifted
12 × 12 × 12 k-mesh should be used, while the energy difference between a shifted and
unshifted mesh vanishes at 18×18×18. The second side is that the amount of calculated k-
points increases faster with the shifted mesh than with the unshifted mesh. At high amounts
of k-points along each axis the unshifted mesh calculates similar total energies with half the
amount of calculated points.

Pseudopotentials The decision which pseudopotential to use is with the information of
the benchmark and relaxation calculations not definite. Depending on the use case differ-
ent choices can be suitable. The GGA functionals have a better accuracy than the LDA
functional.

Level of theory A sufficient level of theory for each pseudopotential was found. The re-
sults of a calculation with the benchmarked simulation parameters could be used for future
calculations. The accuracy of the lattice parameter is known.

’Best’ Pseudopotential The decision which pseudopotential to use is dependent not only
on the accuracy, but also for what the simulation will be used. When the wavefunction of
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5 Conclusion

more than 2 electrons per magnesium atom is needed, a pseudopotential with 10 electrons
should be used. A decision between the PBE and PBEsol functional is difficult. When
possible both should be tested. With the results of the benchmark of this thesis no decision
can be made. Only with further requirements or information one could be better than the
other. The PAW pseudopotentials with the same amount of active electrons took insignificant
less time then the US pseudopotentials. For this observable no decision can be made.

In the next thesis these different pseudopotentials will be tested in the quantum computing
workflow to compare them further.
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A Appendix

A.1 Cutoff benchmark

Cutoff energy Benchmark: The total energy Etot of a two magnesium atoms system is
depicted over the charge density cutoff Eρ. The single-point calculations were done with
with following parameters: A = 3.2 nm;C = 5.226 nm; Methfessel-Paxton smearing with
Edegauss= 0.03Ry;8x8x8 k-mesh and the in the title given pseudopotential
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Figure A.1: Cutoff energy benchmark(LDA), Etot is shifted by −3700 eV.
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Figure A.2: Cutoff energy benchmark(PBE PAW 2e−), Etot is shifted by −914.7 eV.
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Figure A.3: Cutoff energy benchmark(PBE PAW 10e−), Etot is shifted by −3500 eV.
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Figure A.4: Cutoff energy benchmark(PBE US 10e−), Etot is shifted by −3100 eV.
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Figure A.5: Cutoff energy benchmark(PBEsol PAW 2e−), Etot is shifted by −890.34 eV.
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Figure A.6: Cutoff energy benchmark(PBEsol PAW 10e−), Etot is shifted by −3500 eV.
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Figure A.7: Cutoff energy benchmark(PBEsol US 10e−), Etot is shifted by −3100 eV.
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A.2 Smearing benchmark

Smearing Benchmark: The total energy Etot of a two magnesium atoms system is depicted
over Edegauss. The single-point calculations were done with with following parameters: A =

3.2 nm;C = 5.226 nm;Ewfc = 100Ry;Eρ = 400Ry; 8 × 8 × 8 shifted k-mesh, in the title
given pseudopotential
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Figure A.8: Smearing energy benchmark(LDA), Etot is shifted by −3790 eV.
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Figure A.9: Smearing energy benchmark(PBE PAW 2e−), Etot is shifted by −910 eV.
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Figure A.10: Smearing energy benchmark(PBE PAW 10e−), Etot is shifted by −3840 eV.
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Figure A.11: Smearing energy benchmark(PBE US 10e−), Etot is shifted by −3440 eV.
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Figure A.12: Smearing energy benchmark(PBEsol PAW 2e−), Etot is shifted by −890 eV.
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Figure A.13: Smearing energy benchmark(PBEsol PAW 10e−), Etot is shifted by −3820 eV.
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Figure A.14: Smearing energy benchmark(PBEsol US 10e−), Etot is shifted by −3440 eV.
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A.3 k-point benchmark

k-mesh Benchmark: The total energy Etot of a two magnesium atoms system and the total
amount of calculated k-points is depicted over the used k-mesh in the form of kx × ky × kz.
The single-point calculations were done with with following parameters: A = 3.2 nm;C =

5.226 nm;Ewfc = 100Ry;Eρ = 400Ry; Methfessel-Paxton smearing with degauss = 0.03Ry;
in the title given pseudopotential
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Figure A.15: k-point energy benchmark(LDA), Etot is shifted by −3700 eV.
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Figure A.16: k-point energy benchmark(PBE PAW 2e−), Etot is shifted by −900 eV.
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Figure A.17: k-point energy benchmark(PBE PAW 10e−), Etot is shifted by −3800 eV.
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Figure A.18: k-point energy benchmark(PBE US 10e−), Etot is shifted by −3400 eV.
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Figure A.19: k-point energy benchmark(PBEsol PAW 2e−), Etot is shifted by −800 eV.
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Figure A.20: k-point energy benchmark(PBEsol PAW 10e−), Etot is shifted by −3800 eV.
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Figure A.21: k-point energy benchmark(PBEsol US 10e−), Etot is shifted by −3400 eV.
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