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Abstract. The level of automation in human-centered systems is
steadily increasing, leading to a demand for advanced design methods
for automation control at the human-machine interface. This is partic-
ularly important in safety-critical applications, where the multi-faceted
interaction between the automated system and humans must be care-
fully analyzed to identify potential risks to the overall safety. This paper
presents our vision of an approach determining an appropriate level of
automation taking into account the automation’s impact on the human.
The approach is based on a game theoretic framework where we investi-
gate whether the automation’s controller can be synthesized as a strategy
considering human behavior and thus ensuring human-adaptive control.

1 Introduction

The increasing automation of human-centered cyber-physical systems (HCPS)
requires advanced control technologies that not only control technical tasks, but
must also interact with and support users. Adaptation to the users’ explicit
requirements and implicit needs is important for these systems on the one hand,
but on the other hand they must not hinder users. Reconciling these goals is
particularly intricate in safety-critical domains. Safety cannot be treated as an
ad hoc measure but, as emphasized by Bowen, “safety must be designed into a
system and dangers must be designed out of it” [6, p.4]. The importance of “the
right level of automation” can be nicely illustrated e.g. in the road transporta-
tion domain. There automated vehicles (AVs) promise to reduce the number of
accidents caused by driver errors and enhancement of the transport efficiency
[8]. Nowadays, modern vehicles offer automated driver-assistance systems for e.g.
lane-keeping and blind-spot warning. These systems have the power to intervene
in a safety-critical way. One of the design challenges is to determine what con-
trol actions have to be taken and when. A lane keeping assistance system should
select an appropriate level of counterforce when reminding drivers not to leave
the lane. While too much counterforce might hinder drivers (e.g. to do an evasive
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maneuver, especially when they are unfamiliar with the system), applying not
enough force might not be noticed (e.g. when there are strong winds).

In this paper, we outline our vision of an approach that supports the early
design of human-centered automation systems. We analyze the level of permis-
sible interference scenario-wise by varying what control actions the automation
can choose and when. We then determine whether applying these control actions
in the given circumstances suffice to achieve the mission goal. To this end, we
define for each variant a reactive game [17,25] of the automation system interfac-
ing with the user. The control strategies synthesized for this game accomplish
the control objective. Since they also take the human reactions into account,
they implement the shared control paradigm [24] creating a synergistic control
in which both the human and the automation contribute to the task. Our app-
roach considers the impact of the automation’s control on the human by using
psychological models of the human mind. Since trying to capture human’s mind
necessarily results in a coarse approximation, the presented approach gives guid-
ance rather than an implementable control strategy.

We describe the approach to determine the level of automation for shared
control in Sect. 2. At the core of our methodology is a comprehensive under-
standing of human behavior. We achieve this by modeling based on cognitive
architectures, which is described in Sect. 3. Examining the landscape of existing
models reveals valuable insights into their individual strengths and limitations.
A single architecture is not capable of capturing a broad spectrum of human
behavioral aspects. To refine our understanding, we propose to integrate a com-
bination of different human models. We conclude in Sect. 4.

2 Determining the Level of Power

To mitigate potential hazardous situations, an AV can usually apply a spectrum
of responses, from activating an audible alarm to applying the brakes. Our app-
roach determines whether a design variant can successfully adapt its control to
the human and the current situation so that the operational requirements are
met without hindering the human. Thereby, the approach can help designers
choose between the variants that apply different level of control.

Control Synthesis. To implement the shared control paradigm, our approach
uses control synthesis in a timed game between the automation system and the
user. The strategy for controlling the automation system is synthesized while
the actions of the human and those of the environment are uncontrollable. In
this way, the human is not hindered and the synthesized controller implements
shared control. A successfully synthesized strategy guarantees that the control-
lable actions are applied in such a way that the control objective is achieved,
even in an uncooperative environment with maximum interference. This interfer-
ence is modelled by introducing uncontrollable actions that formalize all possible
forms of interfering. Therefore, the control objectives of automation system are
captured as winning conditions of the game. For now, we will use winning condi-
tions that can be expressed in terms of sets of states that are either desirable or
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undesirable. The reachability synthesis problem is hence important. It is about
identifying a maximal subset of states and transitions in the game graph that
lead into the desired states and/or avoid undesired states [17,20]. The latter cor-
responds to the safety control problem, where the goal is to consistently avoid
a set of predefined undesired states. In a controllable game, the current state is
within the set of winning states for the control player. Various algorithms to com-
pute the set of winning states under different winning conditions are discussed
in [17]. These computations yield an explicit winning strategy alongside. The
problem of control synthesis can thus be reduced to computation of a winning
strategy for the control player.

On the Need for a Human Model. To determine what control actions the
controller should take when, we must model their impacts on the human and
the technical system within their environment. While the impact on the tech-
nical system is a well-studied problem, our work focuses on the impact on the
human. This aspect is currently less explored in the existing literature [15].
Our research therefore aims to fill this gap by providing specific considerations
related to humans in the design of automation. We aim to explore the intri-
cate joint dynamics of humans and automation systems in interaction through
formal modelling. The objective is to determine the degree of automation, delin-
eating the actions undertaken by the controller. The analysis is envisioned to be
performed during the system design phase to facilitate the derivation of HCPS

specifications. Moving along the levels of automation thoughtfully relies on a
comprehensive understanding of human behavior. The inclusion of a human
model becomes imperative. We use cognitive architectures as sources of human
behavior models. Such models let us predict human behavior, thereby specifying
what uncontrollable actions our controller has to face.

Formal Model of Human Behavior. Our approach necessitates obtaining
a formalization that is amenable to game-based reactive synthesis. The con-
struction presented by [13,14] manually translates an approximation of ACT-R

cognitive model (cf. Sect. 3 for ACT-R) into a network of timed automata. To
streamline the integration and translation process, we propose using model learn-
ing methods like Angluin’s L* algorithm [3]. We adopt the concept of behavior
from discrete-event systems [7], where the behavior is described by a temporally
ordered sequence of events. Accordingly, the behavior of a dynamic system can
be described as a language. Finite automata and their (ω-)regular languages are
one of the convenient candidates to specify the dynamic systems. An automatic
translation of arbitrary computational models into such an automata-theoretic
modelling framework can be achieved by automata-learning algorithms, which
provide mechanisms to derive finite automata approximating the target lan-
guage with a specified degree of accuracy from finite samples. We propose using
cognitive architectures as source for our human model. Moreover, we propose
integrating the behavior of different psychological models of humans within a
human model, HM . As illustrated in Fig. 1, various models are simulated using
an identical scenario. The generated traces are then fed into a learning algo-
rithm, in order to integrate them into one comprehensive and automata-based
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Fig. 1. Framework to learn a model of human HM .

human model. To enhance model learning and avoid over-fitting, we incorpo-
rate a fleet of different human models. Each model represents slight variations
resulting from distinct valuation of adjustable parameters or alterations within
the distributions of noisy selections. This approach enables the HM to capture
a spectrum of possible behaviors.

Adapting Automation. The overall framework for adapting the power of
automation is illustrated in Fig. 2. It describes a process that runs through a
list of design variants and evaluates whether the current variant can achieve the
control objective by applying its specific level of the power. On the far left, the
game graph is represented that describes the HCPS. It is composed of the learned
human model HM (including the environment) whose actions are uncontrollable,
and the models of CPS components, whose actions are controllable. This game
graph and the winning condition of the game, which captures the control objec-
tives of the automation, are examined to see if it is possible to synthesize a
winning strategy for the automation. If this is possible, the synthesis algorithm
generates a winning strategy. However, if controlling the game is infeasible, the
process ensues to update the set of control actions. The iteration process stops
if either a winning strategy can be synthesized or if the last variant of con-
trol actions has been explored. If a winning strategy could be synthesized an

Fig. 2. Framework to design interactive controller.
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adaptive design [12] has been achieved, which takes the human into account.
The adaptive nature of the generated strategies makes it possible to adjust the
degree of automation to the human and environmental conditions. For example,
let us consider automation variants in the automotive sector. According to the
SAE classification [22], the level of automation can range from 0 (no automa-
tion) to 5 (full automation). Each level represents different human involvement.
Within this spectrum depending on the automation systems in place, the degree
of human involvement varies from hands-on to mind-off. Our approach can be
employed to determine when what level of automation is appropriate.

One shortcoming of the approach as described so far is that the feasibility
check of the control synthesis may yield unsound results due to incompleteness
of the learned HM . Since the HM is trained using a finite number of observed
traces, HM might not reflect the original cognitive models sufficiently well. We
hence co-simulate the CPS with the synthesized control strategy CSi and the
cognitive model in order to refine the learned HMi (see Fig. 3) and subsequently
to eliminate insufficient control. Therefore, the traces of the simulation that
violate the control objectives are fed into the automaton learning algorithm to
refine the HMi . The result is a new learned human model, HMi+1 . After learning
HMi+1 , we proceed the control synthesis following Fig. 2 yielding a new control
strategy CSi+1 . As HMi+1 has been derived from the observed traces of a CPS

controlled by CSi , CSi+1 main purpose is to deal with the newly discovered
behaviors. Thereby our approach realizes a divide a conquer approach of the
control synthesis. Within the current framework, there is no guarantee that the
refinement process will be terminated. Therefore, a termination criterion needs to
be defined, e.g. when the synthesized controller has sufficient performance. The
development of termination conditions is part of our future work. Additionally,
by collecting real-world data, the generated behavior of the learned HM can be

Fig. 3. Framework to refine the learned human model HM .
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tuned by adjusting its parameters to improve its accuracy and adaptability to
human behavior.

3 Cognitive Modeling

Cognitive architectures encode dynamic models of cognition based on established
theories about the structure of mind [2,18]. Empirically validated, these architec-
tures constitute plausible cognitive theories that enable predictions about immi-
nent human behavior. Above that, emotions have a significant impact on deci-
sions and influence individuals’ daily choices [5]. Various configuration parame-
ters affect the overall behavior of the cognitive model, such as the learning rate,
the decay rate of memory, the retrieval threshold, and the noise distribution of
knowledge selection, to name but a few. In the following, we briefly survey the
research landscape of human models.

ACT-R [1] is a neurally plausible architecture with interconnected mod-
ules through buffers and a central production-pattern matching module. The
input/output system consists of visual, auditory, and motor modules. The declar-
ative and procedural modules constitute the central cognitive component by
storing knowledge. The goal and imaginal modules track the agent’s intentions
and the internal representation of the world.

CASCaS [9,16] is designed for real-time simulation of human behavior in
traffic scenarios. It has been validated extensively in aviation and automotive
application, e.g. by [19,28,29]. It includes perception and motor modules as well
as memory module for storing declarative (e.g., current speed limit) and proce-
dural (e.g. driving instructions) knowledge. The memory incorporates processes
for retrieval and forgetting.

SEEV [26] designed for predicting pilot attention, has been applied to predict
driver attention in road traffic, e.g. by [4,10,27]. Modifying the SEEV parameters
(Salience, Effort, Expectancy and V alue) leads to human modes, e.g. anxious,
calm or bored.

There are a few cognitive architectures that capture the interplay of emotions
and behavior as reviewed by [21], such as e.g. MAMID [11] and SAMPLE [30].
Cognitive appraisal theory [23] focuses on the processing of input stimuli to
infer emotional states by taking the individual history, personality and current
affective state into account.

4 Conclusion

This paper presents our vision on how to determine an appropriate level of
automation in a human-centered system in the early phase of system design. The
proposed approach aims to support designers to evaluate the automation variants
in a structured way to choose the variants that guarantee safety objectives while
realizing the shared control paradigm. Therefore, we propose to derive a human
model HM from cognitive architectures using automata learning methods. The
HM encodes human limitations and changing behavior patterns and is used
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in a game-theoretic analysis. The appropriateness of the level of automation
is determined by testing whether a control strategy can be synthesized that
implements the shared control paradigm and establishes the control objectives.
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