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ABSTRACT 

 

This study presents a comparison between satellite-based 

vegetation optical depth (VOD) from multi-frequency 

radiometry (X-, C- and L-band), VOD-derived relative water 

content (RWC) and auxiliary data (e.g., evapotranspiration 

and soil moisture), which are investigated for their sensitivity 

to water status of tree canopies under dry and wet conditions 

for a temperate forest in Thuringia, Central Germany. For 

this, we estimated RWC directly from VOD normalization 

assuming no major changes in vegetation biomass or plant 

structure during the study period (2015-2019).  

 Our results show that RWC seasonalities are aligned for 

all investigated frequencies showing its maximum in early 

summer when leaves and twigs of the top and low canopy are 

particularly wet and photosynthetically active. Investigating 

drought versus non-drought years, we observed that X-band 

RWC is the one better capturing drought status by exhibiting 

low values in the extreme drought year 2018 compared to the 

wet year 2017 while L-band RWC reflects the ecological 

memory from the extreme drought conditions in 2018 in year 

2019 estimates. 

 

Index Terms— Radiometry, multi-frequency, forest, 

relative water content, vegetation optical depth, AMSR2, 

SMAP, Hainich National Park 

 

1. INTRODUCTION 

 

The years 2018 to 2020 in Germany were characterized 

by high temperatures and multi-year droughts, which 

triggered a large-scale temperate forest decline [1,2]. During 

water stress conditions, leaf stomata close to prevent water 

loss through transpiration. As the intensity and duration of 

drought increases, water stress causes hydraulic failure and a 

reduction in defense mechanisms, both of which amplify tree 

mortality [3,4].  

One useful indicator for monitoring water stress is the 

relative water content (RWC), i.e. the normalized vegetation 

water content [3]. RWC can be estimated directly from the 

vegetation optical depth (VOD) parameter without first 

calculating the gravimetric water content assuming no major 

changes in vegetation biomass or plant structure [5].  

In this research study, we compare satellite-based VOD 

and VOD-derived RWC from multi-frequency radiometry 

(X-, C- and L-band) with auxiliary data for a temperate forest 

in dry and wet conditions to investigate their connection to 

the water status of trees. The study site is located in a forest 

of the Free State of Thuringia in Germany and covers parts of 

the Hainich National Park (NP). 
  

2. STUDY AREA AND DATA 
 

Multi-frequency radiometry allows considering the RWC 

of different compartments of a tree due to increasing 

penetration depth with decreasing frequency. We use the 

VOD products of JAXA’s AMSR2 X- (10.7 GHz) and C-

band (6.9 GHz) [6,7] and NASA’s SMAP L-band radiometer 

sensors (1.4 GHz) [8] with almost daily (~1.7 days) 

acquisitions at the study area (Fig. 1).  

 

Fig. 1: Location of the study area and pixel location of the employed 

SMAP and AMSR2 data. The study area represents a temperate 

deciduous broadleaf forest in the Hainich National Park in 

Thuringia, Germany (10.35ºE, 51.15ºN). The vegetation image was 

taken by the Department of Bioclimatology (University of 

Göttingen) on May 5th, 2015 at the ICOS station. 
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The coarse spatial gridding of the passive microwave data 

(~10 × 10 km) [6,7] limits the use to only one pixel with the 

highest possible coverage of forest in the Hainich NP. These 

pixels are covered with deciduous broadleaf forest (~51% and 

~22%, primarily European beech; Fagus sylvatica), 

agricultural fields (~25 and ~39%) and pasture (~23% and 

~33%) for AMSR2 and SMAP respectively [9]. Due to the 

acquisition geometry, the pixels shift slightly with each 

repetition pass. Therefore, the pixels and the land coverage 

percentages are not static. 

For the analysis, we also use the Surface Reflectance and 

Leaf Area Index (LAI) products from NASA’s MODIS 

sensor on Terra and Aqua [10, 11]. The auxiliary data (soil 

moisture, evapotranspiration calculated from latent heat flux 

and air temperature) from the nearby ICOS station (DE-Hai) 

[12] and precipitation data from the nearest meteorological 

station (DWD: Mühlhausen/Thüringen-Görmar), due to a 

ICOS data gap, complete the data portfolio of the study [13]. 

We cover the period from January 2015 to December 

2019 (5 years). Based on precipitation data and its derived 

standard precipitation index (SPI), the period was divided 

into four dry (2015, 2016, 2018, 2019 for SPImax ≤ -1) and 

one wet year (2017 for SPImax ≥ 1) [14]. After the temporal 

and spatial extraction of the VOD data, the AMSR2 VOD 

dataset is divided into noon (~12:00 p.m.) and midnight 

(~01:30 a.m.) acquisitions, where we used the noon data only, 

because we assume that the plant-available water was 

replenished overnight and we see an impact of 

evapotranspiration at noon. Furthermore, the auxiliary data 

are averaged to daily mean products and tailored to the 

AMSR2 pixel. 

3. METHODS 

 

RWC is determined by normalizing the VOD using the 5th 

and 95th percentiles (VODmin and VODmax, respectively) over 

a specific time period [15]. An important prerequisite for this 

is no major change in vegetation biomass or plant structure 

[5]. To ensure this, a period of stable vegetation conditions is 

determined based on vegetation images and the MODIS LAI 

product [11]. This period (DOY 130-250) of each year, 

except 2018 due to extreme drought conditions, is used as the 

normalization period for calculating the RWC for the whole 

study period. Besides, four different vegetation phases are 

determined: spring reactivation phase (DOY 80-110), high 

foliage phase (DOY 110-190), foliage phase (DOY 190-300) 

and defoliation phase (DOY 300-320). 

Fig. 2: Seasonal dynamics of vegetation optical depth (VOD) [Np] and relative water content (RWC) [%] derived from AMSR2 X- and C-

band (10.7 and 6.9 GHz, only for noon) and auxiliary data (next page): soil moisture (SM) in a depth of 8 cm [vol. %], normalized difference 

moisture index (NDMI) [-], evapotranspiration (ET) [mm/d], leaf area index (LAI) [m²/m²], 95th percentile of air temperature (AT) in 2 m 

height [°C] and normalized difference vegetation index (NDVI) [-]. All lines are smoothed by a 31-day Savitzky-Golay filter to better 

recognize seasonal patterns and frost conditions were masked (DOY 1-60 and 330-365). The different years were colored based on the SPI 

(2017 very wet to 2018 extremely dry, blue to dark red) and the background was shaded based on four vegetation phases: spring reactivation 

phase (DOY 80-110, light green), high foliage phase (DOY 110-190, dark green), foliage phase (DOY 190-300, green) and defoliation phase 

(DOY 300-320, orange). 



  Moreover, the normalized difference vegetation index 

(NDVI) and the normalized difference moisture index 

(NDMI) were calculated based on the MODIS Surface 

Reflectance product (NDMI = (B2-B6)/(B2+B6), NDVI = 

(B2-B1)/(B2+B1)) [10].  

 

4. RESULTS 

 

Figure 2 shows the comparison of dry and wet years for 

VOD and RWC from the X-, C- and L-band together with the 

auxiliary data. Basically, for all bands, a high RWC (> 50%) 

occurs in summer for the high foliage phase (DOY 110-190). 

Comparing dry to wet conditions, the RWC in 2018 is clearly 

lower in the spring reactivation phase (DOY 80-110) and the 

foliage phase (DOY 190-300) for X-band and partially for C-

band, while for L-band wet conditions results in a higher 

RWC from the end of the foliage phase only (DOY ~230-

330) (Fig. 2d-f). Correspondingly, the same applies to VOD 

(Fig. 2a-c). 

Regarding the auxiliary data, higher air temperature 

(AT) occurs in drought years, especially in April to May and 

August to September (Fig. 2i). Soil moisture (SM) generally 

decreases from April to September. While under wet 

conditions SM does not fall below ~30 vol. % even in 

summer, dry periods bring the topsoil down to ~17 vol. %. 

For the extreme drought year 2018 SM does not recover over 

winter but stays on lower level (~30 vol. %) (Fig. 2h). 

Furthermore, for extremely dry conditions, 

evapotranspiration (ET) is considerably reduced (<1.5 

mm/day) in contrast to wet conditions (>2 mm/day), 

particularly between July to August (Fig. 2g). In addition, the 

different vegetation indices roughly follow the vegetation 

phases, i.e. the indices rise and fall with the development of 

vegetation (Fig. 2j-l). 

 

5. DISCUSSION AND OUTLOOK 

 

Drought conditions strongly reduce topsoil SM from late 

summer to winter, inducing a hydrological drought and high 

spring/early summer AT in drought years lead to an earlier 

start of the vegetation period (LAI) and results in lower ET. 

We find X-band RWC to correspond to drought-related 

variables by exhibiting low values in the extreme drought 

year 2018 compared to the wet year 2017 (Figure 2). This 

may be explained by water stress causing leaf desiccation, 

reducing ET and thus the photosynthetic activity [3], which 

is also confirmed by the LAI fall in summer (Fig. 2k). 

Moreover, we assume that the short X- and C-band waves 

interact mostly with the leaves and twigs of the top canopy. 

Therefore, X- and C-band RWC is the highest in early 

summer when these tree components are particularly wet and 

active (high foliage phase). Further indication of this is 

provided by the indices of the optical remote sensing data, 

which show a high biomass and water content at the same 

time as well as a similar course over the year. As RWC 

increases already in the spring reactivation phase before 

canopy foliation, a correlation with plant water uptake and 

understory development is conceivable. 

Furthermore, we assume that the longer L-band waves 

interact mainly with branches and trunks of the lower canopy. 



This can explain the differences between L-band RWC 

seasonality with respect to X- and C-band ones. Additionally, 

the L-band may reflect ecological memory from past drought 

conditions in low tree compartments, as we observed the L-

band RWC of 2019 (one year after extreme drought) is clearly 

lower in the high foliage phase (DOY 110-190).  

Previous studies have recommended the use of high-

frequency bands (C-, X- and Ku-band) instead of L-band to 

derive leaf-related variables, like the degree of isohydricity 

[17], the gross primary production (GPP; [17]) or the life fuel 

moisture content (LFMC; [18]). However, adding L-band can 

be helpful to interpret the behavior of VOD and RWC, 

especially in pixels with heterogeneous land cover [19] such 

as the ones in the Hainich NP. We hypothesize the difference 

between low and high frequency RWC for dry and wet years 

could point towards different water dynamics of the different 

tree compartments during the vegetation period. 

However, it has to be noted that the assumption of no 

biomass variability holds only partially in the study area. 

Even if a particular constant biomass period is used for VOD 

normalization, it is difficult to fully control the influence of 

this factor. Instead, the retrieved RWC can be partially 

affected by biomass changes along time, suggesting that 

complementing this analysis with in situ or remotely sensed 

vegetation moisture information should be a next step in this 

research. 

In summary, simultaneous multi-year and multi-

frequency radiometry is crucial to monitor different tree 

compartments and thus water stress in (complex) forest 

canopies. For long-term observations, it would be desirable 

to obtain several frequencies at the same time of the day, e.g. 

as will be provided by the upcoming CIMR mission carrying 

Ka-, K-, X-, C- and L-band sensors [20], as well as a higher 

temporal and spatial resolution compared to currently 

operating space-borne radiometers. 
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