Model-based Tensor Decompositions for Soil Moisture Estimation
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Abstract

Current and future SAR missions offer the potential to obtain high-resolution soil moisture estimates with large coverage
and frequent revisit times. This work extends model-based polarimetric inversion methods from coherency matrices to
tensors by integrating an additional spatial data dimension. The resulting data tensor is decomposed into model-based
components by solving an optimization problem. Tensors offer a larger observation space in comparison to coherency
matrices, allowing the use of more complex physical models that cover a more extensive range of scenarios. The proposed
three-component decomposition characterizes image areas in terms of model-based scattering mechanisms. Physical
parameters, including the soil dielectric constant, are directly obtained through optimization. The proposed method is
extensible and is well suited for geophysical parameter estimation from increasingly available multidimensional SAR

data.

1 Introduction

SAR sensors provide weather-independent and high-
resolution images offering sensitivity to dielectric and geo-
metrical properties. These properties make SAR an impor-
tant data source for estimating a wide range of geophysical
parameters. Soil moisture estimation from SAR data has
been an active research topic with several works focusing
on polarimetric [1], [2] and interferometric [3], [4] tech-
niques.

One of the challenges is the presence of vegetation and the
separation of the ground and vegetation scattering. Phys-
ical polarimetric models have been employed to decom-
pose the polarimetric data into several components and es-
timate soil moisture from the components associated with
the ground.

Since polarimetric data has a limited number of observ-
ables, the number of physical parameters that define the
components and can be uniquely inverted is also limited.
This restricts the complexity of applied models and can re-
quire hand-crafted inversion rules to resolve ambiguities if
there are more model parameters than observables. For ex-
ample, the inversion can include conditions to set specific
parameters to a constant value based on the data properties.
This work evaluates a new approach for model inversion
inspired by tensor decompositions. To address the limited
number of components, we propose to increase the obser-
vation space by additional data dimensions. With more ob-
servables, more complex physical models that describe the
data more accurately can be employed and inverted.
Model inversion is formulated as an optimization problem.
We iteratively adjust the model parameters to minimize the
distance between the model prediction and the measured

data. After convergence, we obtain the physical parameters
that best fit the data.

2  Methods

2.1 Tensor Decompositions

Tensor decompositions generalize matrix decompositions
like eigendecomposition or SVD to higher-dimensional
data. They directly operate on tensors and jointly process
the information along all dimensions. There exist several
tensor decomposition formulations, including the CP [5],
[6] and Tucker [7] decompositions. In the CP decomposi-
tion, a tensor X is approximated by a sum of components.
Each component is an outer product of factor vectors, one
factor for each tensor dimension. A three-dimensional ten-
sor X € CI*/*E can be approximated by R components
with factor vectors a, € C!, b, € C/, and ¢, € C¥:
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where o represents the outer product.

2.2 Polarimetric Decompositions

Second-order polarimetric data is commonly represented
with covariance or coherency matrices. Incoherent polari-
metric model-based decompositions like Freeman—Durden
[8] and Yamaguchi [9] approximate a single polarimetric
coherency matrix by a sum of components. Each com-
ponent is defined by a physical model associated with a
specific scattering mechanism. Given a coherency matrix
T € C3*3 in the Pauli basis, the Freeman—Durden decom-



position approximates it by three components:
T=T,+Ty+T, (2)

where T, T4, and T, are the surface, dihedral, and vol-
ume scattering components, respectively.

The components are internally defined by a set of param-
eters. For example, the surface component in the Free-
man—Durden decomposition has two parameters f5 and (:
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There is a limit to the number of model parameters that can
be uniquely inverted from a single coherency matrix. The
matrix T is Hermitian and has 9 independent real-valued
observables: three real-valued diagonal elements and three
complex-valued off-diagonal elements. Therefore, at most
9 physical parameters can be used to define the model com-
ponents. Otherwise, the inversion is ambiguous. If the cho-
sen physical model ignores some observables (e.g., assum-
ing constant values or real-valued off-diagonal elements),
the number of possible physical parameters is less than 9.
For example, the Freeman—Durden decomposition assumes
reflection symmetry (matrix elements Ty 31 = T'g,3) = 0),
resulting in 5 real-valued observables.

With a limited number of parameters, only relatively sim-
ple physical models can be inverted. This can result in
cases where the model cannot accurately describe the data
or has a small validity range.

2.3 Model-based Tensor Decomposition

To allow detailed models with more parameters, we com-
bine the concepts of tensor decompositions and model-
based polarimetric decompositions. Instead of inverting a
single polarimetric coherency matrix, we extend the obser-
vation space and jointly invert multiple matrices stacked
along a new dimension. Depending on the available data
and physical model, the new data dimension can be, for
example, spatial, temporal, or frequency. The stack of IV
polarimetric 3 x 3 matrices forms a tensor X € CV*3x3
that is approximated by a sum of model-based components:

X~R=) C “4)

where R is the reconstruction tensor approximating X and
C, are the component tensors.

Similarly to polarimetric model-based decompositions,
each component is associated with a specific scattering
mechanism defined by a set of parameters and a corre-
sponding physical model. The details of the physical model
depend on the new data dimension chosen to form the ten-
sor. We discuss the use of the spatial dimension and models
for soil moisture estimation in Section 2.5.

The use of a larger observation space allows to have more
physical parameters that can be uniquely inverted. How-
ever, the number of parameters is still limited. Therefore,
we share certain parameters across all coherency matrices
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Figure 1 Model-based Tensor Decomposition: A data
tensor is approximated by a sum of model-based compo-
nents. Each component is defined by a physical model
that reconstructs the component from a set of parameters.
Shared scalar parameters have the same value along the
new data dimension. Factor parameters are represented
by vectors and have different values along the new dimen-
sion.

and let other parameters vary along the new data dimen-
sion. The shared scalar parameters have the same value
for each coherency matrix in the stack. In contrast, the fac-
tor parameters can have a different value for each matrix.
We group the different values of a factor parameter into an
N-element parameter vector that resembles a factor vec-
tor from the CP decomposition. The concept of scalar and
factor parameters is illustrated in Figure 1.
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The inversion of the physical parameters from the data can
be performed in several ways. An analytical approach is
computationally efficient but might be unavailable or dif-
ficult to derive for complex physical models. Therefore, a
generic inversion approach that can handle different data
dimensions and physical models is desirable.

We propose using numerical optimization to perform the
decomposition and obtain the physical parameters. Opti-
mization can be computationally expensive but offers more
flexibility, allows additional constraints, and separates the
decomposition design from the model inversion.

The physical models discussed in this work are differen-
tiable mathematical functions. Therefore, methods based
on gradient descent can iteratively solve the optimization
problem. We start the inversion by initializing the physical
parameters either randomly or at expected values (if avail-
able). In every iteration, we first apply the physical model
to map the parameters to the component tensors C,.. Then,
the components are summed to obtain the reconstruction
‘R. In the next step, we measure the distance between R
and X by evaluating a loss function [:

Model Inversion with Optimization

L=1XR) (5)

The loss value L € R indicates how well R reconstructs
X. To minimize L and obtain a good reconstruction, we
compute the gradients of each physical parameter with re-
spect to L using automatic differentiation. Then, we adjust
the parameters based on the computed gradients using an



optimization algorithm, e.g., Adam [10]. The parameters
can additionally be constrained to a physically valid value
range depending on the model. This iterative process is
repeated until convergence.

In recent years, excellent optimization frameworks have
been developed. In our experiments, we use the PyTorch
[11] framework to perform model-based tensor decompo-
sition and obtain the physical parameters. The framework
offers automatic differentiation, supports complex-valued
tensors, and includes implementations of optimization al-
gorithms. In addition, PyTorch can significantly reduce
computational time by providing efficient library functions
and GPU acceleration.

2.5 Soil Moisture Estimation

This section discusses an algorithm for soil moisture es-
timation based on the proposed model-based tensor de-
composition. In this work, we restrict the decomposition
to polarimetric data to reuse the existing physical models
and compare the proposed approach to existing methods.
The spatial domain is used as the additional data dimen-
sion to form tensors. This approach comes at the cost of
reduced spatial resolution for the estimated parameters but
increases the observation space, allowing the inversion of
models with more parameters.

2.5.1 Tensor Formation

The tensors to be decomposed are formed using the co-
herency matrices obtained from a small spatial patch. First,
the coherency matrices are estimated from fully polarimet-
ric single-look complex (SLC) data. Since the matrix for-
mation involves spatial averaging, the multilook windows
must be non-overlapping to avoid redundancy between spa-
tially adjacent matrices. Then, small spatial patches are
chosen, and the coherency matrices within the patches are
stacked into a tensor. In our experiments, we use spatial
patches that contain N = 4 x 4 = 16 independent 3 x 3
coherency matrices, resulting in a tensor X € C'6x3%3 for
each spatial patch.

2.5.2 Physical Model

We use a three-component polarimetric model with sur-
face, dihedral, and volume components to describe the
data. The X-Bragg model proposed in [12] defines the
surface component. Three parameters describe the surface
scattering amplitude f;, the soil dielectric constant £, and a
term characterizing the soil roughness §. The dihedral com-
ponent describes smooth double-bounce scattering and fol-
lows the model from [1]. Three additional parameters are
required: the dihedral scattering amplitude f;, the trunk di-
electric constant €4, and a differential propagation phase ¢.
The volume component assumes randomly oriented dipole
scattering and is equivalent to the volume component used
in the Freeman-Durden decomposition. The only parame-
ter is the volume scattering amplitude f,,.

In total, this three-component model has 7 parameters: f;,
fy, f,, €5, €45 0, and ¢. However, it only describes three
real-valued diagonal elements and one complex-valued off-
diagonal element of the polarimetric coherency matrix (5

real-valued observables). Therefore, unique inversion is
impossible with a single coherency matrix, and an exten-
sion to tensors is required.

Assumptions about the data must be made to extend the
physical models designed for a single coherency matrix to
a tensor formed from multiple matrices. Since the spatial
dimension is used to form the tensor in this work, we can
assume that certain parameters do not change significantly
across the spatial patch. Those scalar parameters are shared
across all coherency matrices in the tensor and have the
same parameter value for each matrix during each recon-
struction step. Other factor parameters are allowed to have
different values for each matrix.

In our case, we allow the amplitude parameters f;, f;, and
f, to have individual values for each matrix along the spa-
tial dimension. These parameters are represented by N-
element factor vectors. The remaining parameters €, €4,
d, and ¢ are shared and remain scalars. For a tensor formed
from a stack of /N matrices, we have 5V useful observables
and 3N + 4 model parameters.

Note that the model does not directly provide soil moisture
estimates, instead providing the soil dielectric constant &.
The conversion from e to the soil moisture is performed
by applying a polynomial transformation from [13].

2.5.3 Loss Function

The loss function is an important metric that guides the
optimization process toward the solution and indicates how
well the model fits the data. A common choice also used in
the CP decomposition is the L2 (or squared error) loss:

I(X,R) =[|X = R|]? (6)

where ||)|| denotes the L2 norm of tensor ) € Cl1x>In:
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and Y;, 4,,....i] denotes the element of ) found at index
[i1,42,...,iN]-

The choice of the loss function makes implicit assumptions
on the data distribution. For example, the L2 loss assumes
that the data follows the Gaussian distribution [14]. The co-
herency matrices are Wishart-distributed, meaning that the
L2 loss may not be the most appropriate function to mea-
sure similarity. However, compared to the Wishart loss, L.2
is very efficient in terms of the computation cost and pro-
vides a simple and effective similarity measure. For this
reason, we use the L2 loss in the following experiments.

2.5.4 Validity Conditions

Solving an optimization problem iteratively always pro-
duces a solution. Therefore, all image patches can be in-
verted. However, for some areas, even complex models
will not be able to fit the data well and may produce un-
reliable estimates. Therefore, some decomposition estima-
tions should be discarded based on validity conditions that
depend on the application.

In this work, we are primarily interested in the soil mois-
ture estimates. We regard all patches as valid, where the



(a) Pauli RGB image: HH+VV, HH-VYV, and HV+VH polarizations in
blue, red, and green, respectively.

(b) Relative component powers indicate the relative intensity of model-
based components: surface, dihedral, and volume scattering in blue, red,
and green, respectively.

Figure 2 The decomposition allows the characterization
of different areas in terms of the model-based scattering
mechanisms and their intensity.

surface dielectric estimate is in the validity range of the X-
Bragg model: ¢4 € [3,25]. For invalid patches, the model
cannot accurately describe the data, and the estimates are
unreliable.

Another possibility to discard unreliable estimates is based
on the loss function. Patches with a large loss value do not
provide a reasonable reconstruction and can also be dis-
carded.

3 Dataset

The dataset used to perform experiments was obtained by
the DLR F-SAR [15] airborne radar during the HTERRA
campaign in 2022 in the province of Foggia, Italy. The ex-
amined area covers many agricultural fields with different
crop types, as shown in the Pauli RGB image in Figure 2a.
A number of soil moisture ground measurements were ob-
tained during the campaign. It should be noted that several
fields are irrigated, and we expect to see both dry and wet
areas. L-band data is used for the experiments and valida-
tion, motivated by the validity range of the X-Bragg model,
which is larger for longer wavelengths.

F-SAR data is multi-looked to the resolution of approxi-
mately 3 meters in azimuth and range, which results in 11
independent looks per coherency matrix. Using 4 x 4 spa-
tial patches to form the tensors, we obtain soil moisture
estimates at a resolution of 12 meters.

4  Experimental Results

4.1 Component Powers

After decomposing the tensors into components, we obtain
three coherency matrices describing the surface, dihedral,
and volume contributions for each resolution cell. This al-
lows us to characterize each resolution cell regarding the
dominant scattering mechanism. The characterization is
somewhat similar to the characterization with the Freeman-

(a) Soil moisture estimation using only the X-Bragg surface component
(method from [12])

(b) Soil moisture estimation using the model-based tensor decomposition

Figure 3 Comparison of soil moisture estimates. The
original X-Bragg method from [12] achieves a relatively
low inversion rate. Three-component tensor decomposi-
tion is able to cover more scenarios by employing a more
complex model.

Durden decomposition. The main difference is the use of
more complex models for the surface and dihedral compo-
nents. The component powers for each resolution cell are
obtained by taking the trace of the obtained coherency ma-
trices. Then, relative powers are obtained by dividing each
power by the sum of powers.

Figure 2b shows the obtained relative component powers
where each value in the range between 0 and 1 is directly
translated into RGB color. The differences between fields
are clearly visible: bare or slightly vegetated fields ap-
pear in blue (dominant surface scattering), while fields with
taller or denser vegetation appear in red or green, indicating
dominant dihedral or volume scattering, respectively.

4.2 Soil Moisture Inversion Rate

The advantage of using more complex models that can rep-
resent a larger range of scenarios is illustrated in Figure 3.
An inversion using only a single X-Bragg surface compo-
nent following the method from [12] is shown in Figure
3a. The inversion rate is relatively low, and soil moisture
estimates can only be obtained for a few fields. In contrast,
a significantly larger area can be inverted using the three-
component model as shown in Figure 3b.

Similar conclusions have been presented in [2], where a
similar three-component polarimetric model was also used,
combined with a different inversion approach.

4.3 Estimation Validation

The quality of soil moisture estimation is mainly influ-
enced by the employed physical model and depends on how
well the model fits the data. Figure 4 shows the estimated
values plotted against ground measurements obtained over
an almost bare field. We observe a clear correlation be-
tween the estimated and the measured values.

The estimations in densely vegetated areas with more com-
plex scattering mechanisms are still challenging and do not
obtain reliable soil moisture estimates with the current ap-
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Figure 4 Comparison of the measured and predicted
soil moisture values over bare surfaces for the three-
component model-based tensor decomposition.

proach. One reason is a simple volume scattering model
that assumes randomly oriented dipoles. More complex
models, for example, the parametric volume representation
from [2], can be investigated in the future.

Another promising direction is the integration of different
data dimensions like interferometry. While using the spa-
tial domain allows us to invert more parameters uniquely,
the information content may not be sufficient to separate
the ground and volume contributions well. In contrast, in-
terferometry adds sensitivity to the vertical distribution of
scatterers and is very promising to improve the separation.

5 Conclusion

In this work, model-based decomposition techniques for
polarimetric matrices have been extended to higher-order
data tensors. This approach is promising since it jointly
processes the information from a larger observation space
and enables the use of more complex physical models that
require more parameters. We demonstrate this by invert-
ing a three-component model with more parameters than
the classical PolISAR decomposition models like Freeman-
Durden.

Soil moisture inversion using polarimetric and spatial in-
formation was presented. The obtained component powers
directly indicate the type of the dominant scattering mech-
anism. Furthermore, the decomposition directly provides
the physical parameters best fitting the observed data.

The quality of the estimation mainly depends on the em-
ployed physical model. Over bare surfaces, the obtained
soil moisture estimates show a clear correlation to the
ground measurements. Over densely vegetated areas where
the employed model is not able to fit the data well, a larger
reconstruction error is observed. These findings suggest the
importance of a good model for the vegetation component.
The integration of the spatial dimension increases the ob-
servation space and allows the inversion of more parame-
ters at the cost of reduced resolution. It is important to keep
in mind that the amount of additional information in the
spatial dimension can be limited when all coherency ma-
trices in the spatial patch are similar to each other. There-
fore, the proposed model-based tensor decomposition can
benefit from integrating additional data dimensions such as
interferometry/tomography or multi-frequency data.
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