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This Supplementary Material contains: First, a glossary of abbreviations
and frequently used symbols. Second, theoretical results that were omitted
from the main text due to space constraints. Third, proofs of all theoretical
results presented in the main text together with various auxiliary results that
are used in these proofs.

A. Glossary of abbreviations and frequently used symbols. The following glossary
might be helpful for reading the main paper and this Supplementary Material.

Term / symbol Meaning Comment
DAG directed acyclic graph
MAG / DMAG (directed) maximal ancestral graph
PAG / DPAG (directed) partial ancestral graph
ts-DAG time series DAG see Def. 3.4
ts-DMAG / ts-DPAG time series DMAG / DPAG see Defs. 3.6 and 5.7
D DAG or ts-DAG
M DMAG or ts-DMAG
P partial ancestral graph or DPAG or ts-DPAG
O set of all observed vertices in a graph
MO(D) MAG latent projection of the DAG or ts-DAG D to see pp. 1442-1443 in

the vertices O Zhang (2008a)
IO variable indices of observed component time series
TO time indices of observed time steps
MIO×TO

(D) ts-DMAG of the ts-DAG D with observed vertices see Def. 3.6
O= IO ×TO

MO synonymous to MIO×TO
(D) with O= IO ×TO see Def. 3.6

p length of the observed time window, for regular
sampling related to TO by TO = {t− τ | 0≤ τ ≤ p}

Mp(D) synonymous to MIO×TO
(D) with see Sec. 4.2

TO = {t− τ | 0≤ τ ≤ p}
stat(·) stationarification, can be applied to graphs with time see Def. 4.6

series structure
Mp

st(D) stationarified ts-DMAG, synonymous to stat(Mp(D))
Dc(·) canonical DAG or canonical ts-DAG see Defs. 4.11 and 4.13
P(·, A) m.i. DPAG wrt. to background knowledge A see Def. 5.2
AD background knowledge of an underlying ts-DAG see Def. 5.4
Astat
D background knowledge of an underlying ts-DAG see Def. 5.4

for stationarifications
Ata background knowledge of time order and see Def. 5.4

repeating ancestral relationships
Ato background knowledge of time order and see Def. 5.4

repeating orientations
Pp(D) time series DPAG, synonymous to Pp(D, AD) see Def. 5.7

TABLE 1
Glossary of abbreviations and frequently used symbols.
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B. Omitted results. This section presents several theoretical results that were omitted
from the main text due to space constraints.

B.1. ts-DMAGs are a generalization of DMAGs. Consider an arbitrary DMAG Mnt

with vertex set Ont and without time series structure (the subscript “nt” stands for “non-
temporal”). As proven in Richardson and Spirtes (2002), there is DAG Dnt over some vertex
set Vnt ⊇Ont such thatMnt =MOnt

(Dnt). Now define D as the ts-DAG that consists of
disconnected copies of Dnt at every time step s ∈ Z, i.e., there are no lagged edges in D and
for all s ∈ Z its induced subgraph on Vnt × {s} is Dnt. It then immediately follows that the
ts-DMAGMIO×TO

with IO =Vnt and TO = {t} equalsMnt.
This consideration identifies ts-DMAGs as a proper generalization of DMAGs and thereby

shows that all statements about ts-DMAGs also apply to DMAGs as a special case.

B.2. Future vertices are not relevant for determining ts-DMAGs. In the MAG latent pro-
jection of D to MIO×TO

(D) the vertices L =V \ (IO ×TO) are unobserved, see Defini-
tion 4.6 in the main text. Since t is the upper bound of the set of observed time steps TO,
this form of L means that in particular all vertices after t, i.e., in [t+1,+∞) are unobserved.
However, for determiningMIO×TO

(D) these vertices are irrelevant:

LEMMA B.1. Let D be a ts-DAG with vertex set V = I× Z. Denote with D≤t the sub-
graph of D induced on V≤t = I × T≤t with T≤t = {s ∈ Z | s ≤ t}, i.e., the graph ob-
tained by removing all vertices after t and all edges involving these vertices from D. Then,
MIO×TO

(D) =MIO×TO
(D≤t), i.e., before applying the MAG latent projection one may

simply ignore the part of D that is after t.

PROOF OF LEMMA B.1. Let (i, ti) and (j, tj) with ti, tj ≤ t be distinct vertices in D.
Then, (i, ti) and (j, tj) are nonadjacent in D if and only if (i, ti) ⊥⊥ (j, tj) | S in D with
S= pa((i, ti),D) ∪ pa((j, tj),D) \ {(i, ti), (j, tj)}, see Verma and Pearl (1990, Lemma 1).
Moreover, all vertices in S are before or at t due to time order of D, i.e., S is a subset of
V≤t = I × T≤t. Consequently, (i, ti) and (j, tj) are nonadjacent in D if and only if there
is a subset S′ ⊆V≤t such that (i, ti) ⊥⊥ (j, tj) | S′ in D. This observation implies that the
graphsMV≤t

(D) and D≤t have the same skeleton, and the equalityMV≤t
(D) = D≤t fol-

lows because bothMV≤t
(D) and D≤t have the same ancestral relationships among vertices

in V≤t as D. From MV≤t
(D) = D≤t the statement follows with the commutativity of the

marginalization process as stated by Theorem 4.20 in Richardson and Spirtes (2002).

This result, which follows from time order and d-separation, has the intuitive interpretation
that the future need not be known in order to reason about the past and present.

B.3. Temporal confounding. As explained in Section 3.4 of the main text, in the con-
struction of MIO×TO

(D) all vertices before t− p, i.e., in (−∞, t− p− 1] are on purpose
treated as unobserved—even if they are observable and hence become observed for some
p̃ > p. As the following example shows, such temporally unobserved observable vertices
before t− p can act as latent confounders of observed vertices.

EXAMPLE B.2. In the ts-DAG D1 shown in part (a) of Figure 2 of the main text, the
temporally unobserved vertex O1

t−3 confounds the observed vertices O1
t−2 and O2

t−2 through
the path O1

t−2←O1
t−3→O2

t−2. This argument remains valid even without the unobservable
time series L1.
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In the time series setting one thus effectively always deals with the case of latent confound-
ing, even if all component time series are observable. This observation further demonstrates
the importance of conceptually understanding the latent variable setting as approached in this
paper.

We also note that it is precisely this type of confounding that gives rise to edges which are
inMp(D) but not inMp

st(D).

B.4. An axiomatic characterization of stationarifications. As we have already noted be-
low Definition 4.6 in the main text, the definition of stationarification implies the following
result.

LEMMA B.3. stat(G) is the unique largest subgraph of G that has repeating edges.

PROOF OF LEMMA B.3. Combine both parts of Lemma B.4.

Indeed, we could alternatively have defined stationarifications by this property and then
derived that stationarifications fulfill the properties as given in Definition 4.6.

LEMMA B.4. 1. stat(G) has repeating edges.
2. If G′ is a subgraph of G and has repeating edges, then G′ is a subgraph of stat(G).

PROOF OF LEMMA B.4. 1. Consider an edge ((i, ti), (j, tj)) ∈E• in stat(G) and let ∆t
be such that (i, ti+∆t), (j, tj +∆t) ∈V. Using the second point in Definition 4.6 twice, we
first get ((i, ti+∆t′), (j, tj+∆t′)) ∈E• in G for all ∆t′ for which (i, ti+∆t′), (j, tj+∆t′) ∈
V and thus ((i, ti +∆t), (j, tj +∆t)) ∈E• in stat(G).

2. Let G′ ⊆ G have repeating edges and assume G′��⊆ stat(G). Since both G′ and stat(G)
are subgraphs of G, adjacencies that are shared by G′ and stat(G) correspond to edges of the
same type. Thus, G′��⊆ stat(G) implies that there is an adjacency in G′ which is not in stat(G),
i.e., ((i, ti), (j, tj)) ∈E in G′ and ((i, ti), (j, tj)) /∈E in stat(G). Since G′ has repeating edges
by assumption, ((i, ti), (j, tj)) ∈E in G′ implies that ((i, ti +∆t), (j, tj +∆t)) ∈E in G for
all ∆t for which (i, ti +∆t), (j, tj +∆t) ∈V. But then the second point in Definition 4.6
gives ((i, ti), (j, tj)) ∈E in stat(G). Contradiction.

B.5. Why the case of no unobservable vertices remains special. As discussed in Sec-
tion B.3, even if there are no unobservable time series one in general still is in the setting
of latent confounding. It is worth noting, though, that the case of no unobservable vertices
remains special:

LEMMA B.5. Let D be a ts-DAG with variable index set I, let IO = I, and let TO =
{t− τ | 0 ≤ τ ≤ p} where p ≥ pts with pts the largest lag in D. Then, stat(MIO×TO

(D))
equals the subgraph of D induced on IO ×TO.

REMARK (on Lemma B.5). The proof is given in Section D.3 below.

In other words: If all component time series are observable (IO = I) and there are enough
regularly sampled time steps to capture all direct causal influences (choice of TO and p ≥
pts), the stationarified ts-DMAG stat(MIO×TO

(D)) equals the segment of D on TO. For
ts-DMAGsMIO×TO

(D) the same is not necessarily true.
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FIG A. Two different DMAGs with time series structure that have the same stationarification.

B.6. Different DMAGs with the same stationarification cannot both be ts-DMAGs. The
following result is an immediate consequence of the one-to-one correspondence between a
ts-DMAG and its stationarification (see Section 4.7 in the main text).

LEMMA B.6. Let M1 and M2 be DMAGs with time series structure such that M1 ̸=
M2 and stat(M1) = stat(M1). Then, at least one ofM1 andM2 is not a ts-DMAG.

REMARK (on Lemma B.6). The proof is given in Section D.7 below.

EXAMPLE B.7. The two DMAGs with time series structure in parts (a) and (b) of Fig-
ure A have the same stationarification (namely the graph in part (c) of the figure). Therefore,
at most one of them can be a ts-DMAG. Indeed, using Theorem 1 (or Theorem 2) from the
main text we confirm thatM2 is not a ts-DMAG and thatM1 is a ts-DMAG.

B.7. Additional results on Example 5.8. Here, we formalize and prove the following
claim made in Example 5.8 in the main text.

LEMMA B.8. Let D′ be a ts-DAG such that its ts-DMAGM1(D′) equals the ts-DMAG
M1(D) in part (a) of Figure 10 in the main text. Then, in D′ the pair of observed vertices
(O1

t−1,O
1
t ) is not subject to unobserved confounding, that is, in D′ there is no inducing path

(relative to the set of observed vertices) between O1
t−1 and O1

t that is into O1
t−1. Conse-

quently, from M1(D) we can conclude that the causal effect of O1
t−1 on O1

t is identifiable
and can be estimated from observations by adjusting for the empty set. Moreover, since the
ts-DPAG P1(D) in part (c) of Figure 10 is equal to the ts-DMAGM1(D), we can draw this
conclusion not only fromM1(D) but also from P1(D).

PROOF OF LEMMA B.8. First, we prove that the pair (O1
t−1,O

1
t ) is not subject to unob-

served confounding. To this end, we begin by deriving the existence of certain paths in D′:

1. Since O1
t−1 is an ancestor of O1

t in D′ according to the edge O1
t−1→O1

t in M1(D′),
in D′ there is a directed path π1 from O1

t−1 to O1
t . This path cannot intersect O2

t be-
cause else O2

t would be an ancestor of O1
t by means of the subpath π1(O2

t ,O
1
t ), which

together with the fact that O1
t is an ancestor of O2

t according to the edge O1
t→O2

t in
M1(D′) contradicts acyclicity. The path π1 can also not intersect O2

t−1 because the sub-
path π1(O2

t−1,O
1
t ) would then be a directed path from O2

t−1 to O1
t such that all its non-

end-point vertices, if any, are unobserved. Consequently, there would need to be the edge
O2

t−1→O1
t in M1(D′). Moreover, due to time order, π1 can also not contain any vertex

O1
s or O2

s with s ≤ t− 2. We conclude that all non-end-point vertices of π1, if any, are
unobservable.

2. Since O1
t−1 is an ancestor of O2

t−1 in D′ according to the edge O1
t−1→O2

t−1 inM1(D′),
in D′ there is a directed path π2 from O1

t−1 to O2
t−1. This path can, due to time order,

neither intersect O1
t nor O2

t . Moreover, also due to time order, π2 cannot contain any
vertex O1

s or O2
s with s≤ t− 2. We conclude that all non-end-point vertices of π2, if any,

are unobservable.
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3. Since O2
t−1 is an ancestor of O2

t in D′ according to the edge O2
t−1→O2

t inM1(D′), in D′

there is a directed path π3 from O2
t−1 to O2

t . This path cannot intersect O1
t−1 because else

O2
t−1 would be an ancestor of O1

t−1 by means of the subpath π3(O2
t−1,O

1
t−1), which to-

gether with the fact that O1
t−1 is an ancestor of O2

t−1 according to the edge O1
t−1→O2

t−1 in
M1(D′) contradicts acyclicity. The path π3 can also not intersect O1

t because the subpath
π3(O

2
t−1,O

1
t ) would then be a directed path from O2

t−1 to O1
t such that all its non-end-

point vertices, if any, are unobserved. Consequently, there would need to be the edge
O2

t−1→O1
t in M1(D′). Moreover, due to time, order π3 can also not contain any vertex

O1
s or O2

s with s ≤ t− 2. We conclude that all non-end-point vertices of π3, if any, are
unobservable.

For i = 1,2,3 let π′i be a copy of πi that is shifted backwards in time by one time step.
These paths π′i exist due to the repeating edges property of D′. Then, the concatenation
ρ1 = π′1(O

1
t−1,O

1
t−2)⊕ π′2 ⊕ π′3 is a collider-free path between O1

t−1 and O2
t−1 that is into

both O1
t−1 and O2

t−1 such that all its non-end-point vertices are unobserved. In particular, ρ1
is an inducing path.

Now suppose that, contrary to the claim to be proven, in D′ there is an inducing path ρ2
between O1

t−1 and O1
t that is into O1

t−1. Then, according to Lemma 32 in Zhang (2008a)
the concatenation ρ1 ⊕ ρ2 has a subsequence ρ which is an inducing path between O2

t−1

and O1
t in D′. However, then there would need to be an edge between O2

t−1 and O1
t in

M1(D′) (according to the ancestral relationships, this edge would be O2
t−1↔O1

t ), which is
a contradiction. We conclude that there is no inducing path between O1

t−1 and O1
t which is

into O1
t−1, that is, the pair (O1

t−1,O
1
t ) is not subject to unobserved confounding.

Second, we prove that the causal effect ofO1
t−1 andO1

t is identifiable and can be estimated
by adjusting for the empty set. To this end, assume that O1

t−1 and O1
t are not d-separated in

the graph G that is obtained by removing from D′ all edges out of O1
t−1. Then, there is at

least one path π between O1
t−1 and O1

t in G that is active given the empty set. This path

1. is into O1
t−1 because in G there are no edges out of O1

t−1,
2. is collider-free because π is active given the empty set,
3. is also a path in D′ because G is a subgraph of D′,
4. needs to intersect at least one of O2

t−1 and O2
t because else it would be an inducing path

between O1
t−1 and O1

t that is O1
t−1 in D′,

5. is into O1
t because else it would need to be directed from O1

t to O1
t−1, which contradicts

time order,
6. does not intersect O2

t because else O2
t would need to be an ancestor of O1

t (which is not
possible to due to the edge O1

t→O2
t inM1(D′)) or of O1

t−1 (which is not possible due to
time order),

7. does not intersect O2
t−1 because else the subpath π(O2

t−1,O
1
t ) would be a collider-free

path such that all its non-end-point vertices, if any, are unobserved. Consequently, there
would need to be an edge between O2

t−1 and O1
t inM1(D′).

Since the combination of points 6 and 7 in this enumeration contradicts point 4 of the enu-
meration, such a path π cannot exist. Consequently, O1

t−1 and O1
t are d-separated in G. The

second rule of the do-calculus, for example Pearl (2009), thus gives that the interventional
distribution P (O1

t | do(O1
t−1 = o1t−1)) is expressed in terms of the observational distribution

as P (O1
t | do(O1

t−1 = o1t−1)) = P (O1
t | O1

t−1 = o1t−1). □
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B.8. Increasing the number of observed time steps. The main text considers ts-DMAGs
and ts-DPAGs on observed time windows [t−p, t], where p≥ 0 is arbitrary but fixed. In Sec-
tion B.8.1 we first compare ts-DMAGs and ts-DPAGs on time windows of different length.
We show that, as expected, the ts-DMAGs and ts-DPAGs on the longer time window can
never contain less but may contain more information about the underlying ts-DAG than the
ts-DMAGs and ts-DPAGs on the shorter time window. In Section B.8.2 we then define the
notions of limiting ts-DMAGs and ts-DPAGs by allowing conditioning sets from the entire
past. All proofs are given in Section F.

B.8.1. Comparison of ts-DMAGs and ts-DPAGs on different observed time windows.
Since the reference time step t is arbitrary and only time differences are relevant, we need
only compare ts-DMAGs and ts-DPAGs on [t− p, t] and [t− p̃, t] with p̃ > p. To this end, we
use the following notation.

DEFINITION B.9 (Subgraph of a ts-DMAG / ts-DPAG induced on time window). Let D
be a ts-DAG, let p̃ ≥ p ≥ 0, and let t − p̃ ≤ t1 ≤ t2 ≤ t. The induced subgraph of Mp̃(D)
(subgraph of P p̃(D)) on its subset of vertices within [t1, t2] is denoted asMp̃,[t1,t2](D) (de-
noted as P p̃,[t1,t2](D)).

The additionally observed vertices in [t− p̃, t−p−1] enlarge the set of potential conditions
and thus may lead to more d-separations among the originally observed vertices. We thus get
the following result.

LEMMA B.10. Let D be a ts-DAG and let p̃ > p≥ 0. Then, up to relabeling vertices:

1. For all 0≤∆t < p̃− p:Mp̃,[t−p−∆t,t−∆t](D) is a subgraph ofMp(D).
2. Mp̃,[t−p̃,t−p̃+p](D) equalsMp(D).
3. There are cases in whichMp̃,[t−p,t](D) is a proper subgraph ofMp(D).

Moving to a semantic level, we confirm the intuition thatMp̃(D) cannot contain less but
may contain more information about D thanMp(D).

LEMMA B.11. Let D1 and D2 be ts-DAGs and let p̃ > p≥ 0. Then:

1. IfMp̃(D1) =Mp̃(D2), thenMp(D1) =Mp(D2).
2. There are cases in whichMp̃(D1) ̸=Mp̃(D2) andMp(D1) =Mp(D2).

In other words: Every inference aboutD that can be drawn fromMp(D) can also be drawn
fromMp̃(D), whereas the converse need not be true.

FIG B. Illustration of ts-DMAGs Mp(D) of the same ts-DAG D for different p, see also the discussion in Exam-
ple B.12. The component time series L1 is unobservable.
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FIG C. Illustration of ts-DPAGs Pp(D) of the same ts-DAG D for different p.

EXAMPLE B.12. Figure B shows the ts-DMAGsM1(D) andM2(D) for a ts-DAG D.
These graphs conform with parts 1 and 2 of Lemma B.10 and prove its part 3. Further, the
edge O1

t−2→O2
t inM2(D) shows that O1

t−2 is an ancestor of O2
t in D, which is a conclusion

that cannot be drawn fromM1(D).

Since ts-DPAGs Pp(D) by definition have the same adjacencies as the corresponding ts-
DMAGsMp(D), the effect of increasing p on their adjacencies is the same as for ts-DMAGs.
Regarding edge orientations, Lemma B.11 raises the expectation that all unambiguous edge
marks in Pp(D) should also be in P p̃(D). This is expectation is indeed correct.

LEMMA B.13. Let D be a ts-DAG and let p̃ > p≥ 0. Let (i, ti) and (j, tj) be adjacent in
both Pp(D) and P p̃(D). Then:

1. If there is a noncircle mark on (i, ti)∗−∗(j, tj) in Pp(D), then the same noncircle mark is
also on (i, ti)∗−∗(j, tj) in P p̃(D).

2. There are cases in which there is a noncircle mark on (i, ti)∗−∗(j, tj) in P p̃(D) that is not
on (i, ti)∗−∗(j, tj) in Pp(D).

LEMMA B.14. Let D be a ts-DAG and let p̃ > p≥ 0. Then:

1. Every circle edge mark in P p̃,[t−p,t](D) is also in Pp(D).
2. There are cases in which there is a noncircle edge mark in P p̃,[t−p,t](D) that is not also in
Pp(D).

EXAMPLE B.15. Figure C shows the ts-DPAGs P1(D) and P2(D) for a ts-DAG D.
These graphs conform with parts 1 of Lemmas B.13 and B.14 and prove parts 2 of both these
lemmas. For example, in P1(D) there is O1

t−1◦→O1
t while in P2(D) there is O1

t−1→O1
t

instead.

B.8.2. Limiting ts-DMAGs and limiting ts-DPAGs. Lemmas B.10 and B.13 imply the
following behaviour when p is kept fixed while p̃≥ p increases beyond any bound.

LEMMA B.16. Let D be a ts-DAG and p≥ 0. Then:

1. There is p̃≥ p withMp̃′,[t−p,t](D) =Mp̃,[t−p,t](D) for all p̃′ ≥ p̃.
2. There is p̃≥ p with P p̃′,[t−p,t](D) =P p̃,[t−p,t](D) for all p̃′ ≥ p̃.

Lemma B.16 implies that the sequence ∆p 7→Mp+∆p,[t−p,t](D) as well as the sequence
∆p 7→ Pp+∆p,[t−p,t](D) convergence with respect to the discrete metric1 on the space of
ts-DMAGs, respectively the space of ts-DPAGs.

1The discrete metric d(·, ·) is defined by d(x, y) = 1 if x= y and d(x, y) = 0 else.
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FIG D. Illustration of limiting ts-DMAGs and limiting ts-DPAGs. The underlying ts-DAGs D1 and D2 are, re-
spectively, those shown in parts (a) of Figure B and Figure C.

DEFINITION B.17 (Limiting ts-DMAG / ts-DPAG). Let D be a ts-DAG and let p ≥ 0.
The limiting ts-DMAGMp

lim(D), respectively limiting ts-DPAG Pp
lim(D), is the limit of the

sequence ∆p 7→Mp+∆p,[t−p,t](D), respectively ∆p 7→ Pp+∆p,[t−p,t](D), with respect to the
discrete metric on the space of ts-DMAGs, respectively the space of ts-DPAGs.

See Figure D for examples. Similar to stationarified ts-DMAGs, limiting ts-DMAGs
Mp

lim(D) are not in general DMAGs for the underlying ts-DAGsD and carry different mean-
ing. Namely, vertices (i, ti) and (j, tj) with ti ≤ tj ≤ t are adjacent inMp

lim(D) if and only if
there is no finite set of observable variables within (−∞, t] that d-separates (i, ti) and (j, tj)
in D. The same statement applies to limiting ts-DPAGs.

LEMMA B.18. 1. Mp
lim(D) has repeating edges.

2. Mp
lim(D) is a subgraph ofMp

st(D).
3. Mp

lim(D) is a DMAG.
4. Pp

lim(D) has repeating edges.
5. Pp

lim(D) is a DPAG forMp
lim(D).

Unlike the examples shown in parts (c) and (d) of Figure D, in general there may be
circle marks in a limiting ts-DPAG. Lastly, given thatMp

lim(D) and Pp
lim(D) have repeating

edges, one might hope to give meaning to sending p to infinity in Mp
lim(D) and Pp

lim(D)
by restricting attention to edges that involve a vertex at time t. However, as the following
example shows, such a construction is not possible in general.

EXAMPLE B.19. Consider the ts-DAG D in part (a) of Figure B. Since L1 is unobserv-
able and autocorrelated, for all p there is O2

t−p→O2
t in Mp

lim(D). In Malinsky and Spirtes
(2018) this effect is discussed under the names of “auto-lag confounders” and “infinite-lag
associations”.

C. Proofs for Section 3 and for Lemma B.5 and Lemma B.6.

C.1. Proofs for Section 3.3.

PROOF OF LEMMA 3.5. See the explanations in Sections 3.2 and 3.3 of the main text.
Formally: The set of random variables involved in the structural process defined in Section 3.1
is {V i

t | 1 ≤ i ≤ nV , t ∈ Z}, i.e., is indexed by the set I × Z where I = {1, . . . , nV }. This
form shows that the causal graph D has time series structure with time index set Z, where the
vertex (i, t) ∈ I× Z corresponds to the random variable V i

t . Further, pa((i, t),D) = PAi
t by

definition of causal graphs and PAi
t ⊆ {V k

t−τ | 1 ≤ k ≤ nV , 0 ≤ τ ≤ pts} \ {V i
t } by defini-

tion of the data-generating process. Hence, D is time ordered. The repeating edges property
follows because the data-generating process by definition is causally stationary, i.e., because
V k
t−τ ∈ PAi

t if and only if V k
t−τ−∆t ∈ PAi

t−∆t. Lastly, acyclicity of D is definitional for the
data-generating process.
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C.2. Proofs for Section 3.4.

LEMMA C.1. LetD be a DAG with vertex set V=O∪L. Then, for i, j ∈O, i ∈ an(j,D)
if and only if j ∈ an(i,MO(D)).

REMARK (on Lemma C.1). This claim is a well-known result, see for example Zhang
(2008a), Zhang (2008b), which straightforwardly follows from the definition of the MAG
latent projection procedure in Zhang (2008a) as well as from the definitions in Richardson
and Spirtes (2002). However, since we did not find a formal proof spelled out in the literature,
we here include a proof for completeness.

PROOF OF LEMMA C.1. Only if. Assume i ∈ an(j,D). This assumption means that in D
there is a directed path π from i to j. Let (k1, . . . , kn) with k1 = i and kn = j be the ordered
sequence of nodes on π that are in O. Consequently, for all 1≤m≤ n− 1 the vertices km
and km+1 can in D not be d-separated by any set of observed variables, and hence there are
the edges km→km+1 in MO(D) for all 1 ≤m ≤ n − 1. These edges give a directed path
from k1 = i to kn = j inMO(D), and hence i ∈ an(j,MO(D)).

If. Assume i ∈ an(j,MO(D)). This assumption means that inMO(D) there is a directed
path π from i to j. Let (k1, . . . , kn′) with k1 = i and kn′ = j be the ordered sequence of
nodes on π. By definition of edge orientations inM we thus get km ∈ an(km+1,D) for all
1≤m≤ n′ − 1, and hence i ∈ an(j,D) by transitivity of ancestorship.

PROOF OF LEMMA 3.7. 1. The vertex set ofMIO×TO
(D) is IO ×TO. This decompo-

sition defines the time series structure ofMIO×TO
(D), namely: IO is its variable index set

and TO is its time index set.
2. Assume MIO×TO

(D) is not time ordered, i.e., assume there is (j, tj)→(i, ti) in
MIO×TO

(D) with tj > ti. This assumptions means (j, tj) ∈ an((i, ti),MIO×TO
(D)) and

thus, by Lemma C.1, (j, tj) ∈ an((i, ti),D). The latter in turn implies that in D there is di-
rected path π from (j, tj) to (i, ti). This path must at least contain one edge (k, tk)→(l, tl)
with tk > tl, which contradicts time order of D.

3. See part (b) of Figure 2 in the main text for an example.

D. Proofs for Section 4.

D.1. Proofs for Section 4.2.

PROOF OF LEMMA 4.1. 1. The desired ts-DAG D′ is constructed by treating the vertices
at all time steps other than t −m · n with m ∈ Z as members of unobservable time series
in D′, by shifting all vertices of D within a time window [t −m · n − (n − 1), t −m · n]
to time t −m · n in D′ for all m ∈ Z, and by then relabeling the time steps according to
t−m · n 7→ t−m. Formally: Let I with IO ⊆ I denote the variable index set of D. Define
I′ = I∪K with K= I× {1, . . . , n− 1} and consider the following map:

ϕ : I×Z→ I′ ×Z

(i, t−∆t) 7→

{(
i, t− ∆t

n

)
for ∆t mod n= 0(

(i,∆t mod n), t−
⌊
∆t
n

⌋)
for ∆t mod n ̸= 0 .

Here, (∆t mod n) with negative ∆t is defined as the smallest nonnegative integer ∆t+n ·m
with m ∈ Z. Note that ϕ is bijective, and hence invertible. We define D′ as the directed graph
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FIG E. Illustration of the constructions involved in the proof of Lemma 4.1 for n = 2 and nsteps = 3. The
vertically arranged numbers to the left of the four ts-DAGs are their respective variable indices. a) The same
ts-DAG as in part (c) of Figure 2, here denoted D1. Here, IO = {2, 3} ⊆ I= {1, 2, 3} and TO = {t− 4, t−
2, t}. The corresponding implied ts-DMAG MIO×TO

(D1) is shown in part (d) of Figure 2. b) The ts-DAG D′
1

constructed from D1 as defined in the proof of part 1 of Lemma 4.1. Here, I′O = IO = {2, 3} ⊆ I′ = I ∪ K

with K = I × {1} and T′
O = {t − 2, t − 1, t}. Note that while in D1 the hatched vertices are temporally

unobserved, in D′
1 they are unobservable. The corresponding implied ts-DMAG MI′O×T′

O
(D′

1) is the same as

MIO×TO
(D1) up to relabeling vertices. c) The same ts-DAG as in part (a) of Figure 2, here denoted D2. Here,

IO = {1, 2} ⊆ I= {1, 2, 3} and TO = {t−2, t−1, t}. The corresponding implied ts-DMAG MIO×TO
(D2)

is shown in part (b) of Figure 2. d) The ts-DAG D′
2 constructed from D2 as defined in the proof of part 2 of

Lemma 4.1. Here, I′O = IO = {1, 2} ⊆ I′ = I and T′
O = {t − 4, t − 2, t}. The corresponding implied ts-

DMAG MI′O×T′
O
(D′

2) is the same as MIO×TO
(D2) up to relabeling vertices.

over the vertex set V′ = I′ × Z such that for vertices a, b ∈V′ there is an edge a→b if and
only if ϕ−1(a)→ϕ−1(b) in D. See parts (a) and (b) of Figure E for illustration.

This construction is such that D and D′ are as graphs equal up to relabeling their ver-
tices according to ϕ. As a consequence, D′ is acyclic and its d-separations are the same as
those of D. Moreover, D′ is indeed a ts-DAG: First, its time series structure is given by the
decomposition of V′ into V′ = I′ × Z, i.e., I′ is its variable index set. Second, time order
follows because (1) if b ∈V′ is after a ∈V′, then ϕ−1(b) is after ϕ−1(a) together with the
fact (2) that D is time ordered. Third, if for a = (i′, t′) ∈V′ we write ϕ−1(a) = (i, t), then
ϕ−1((i′, t′ −∆t′)) = (i, t− n ·∆t′). This observation implies that D′ has repeating edges.
Hence, D′ is a ts-DAG and the statement follows since ϕ(IO ×Tn

O) = IO ×T1
O.

2. The desired ts-DAG D′ is constructed by stretching all edges of D by a factor of n
in time and adding (n− 1) further copies of this stretched version of D to D′, respectively
shifted by 1 up to (n−1) time steps with respect to the first copy, without any edges between
the n copies. Formally: D′ is the ts-DAG over the vertex set V′ = I × Z, where I is the
variable index set of D, such that (i, t′ −∆t′)→(j, t′) in D′ if and only if (∆t′ mod n) =
0 and (i, t′ − ∆t′/n)→(j, t′) in D. See parts (c) and (d) of Figure E for illustration. The
statement is apparent from this construction.
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D.2. Proofs for Section 4.3.

PROOF OF LEMMA 4.3. In all statements that involve the repeating ancestral relation-
ships or repeating separating sets property, we implicitly assume the graph to be a DMAG
(because else these properties would be undefined).

1. & 2. These statements immediately follow from the definitions of the involved proper-
ties.

3. This statement follows because the ancestral relationships between an adjacent pair of
vertices uniquely specifies the type of the edge between this pair of vertices.

4. This statement follows because for T = Z repeating edges implies that the graph is
invariant under time shifts, i.e., invariant under the mapping ϕ∆t : I × T→ I × T with
ϕ∆t((i, ti)) = (i, ti +∆t) for all ∆t ∈ Z.

PROOF OF LEMMA 4.4. 1. This statement follows becauseMp(D) and D have the same
ancestral relationships between vertices inMp(D) (according to Lemma C.1) in combination
with the fact thatD has repeating ancestral relationships (as implied by part 4 of Lemma 4.3).

2. Combine part 1 of Lemma 4.4 with part 3 of Lemma 4.3.
3. Theorem 4.18 in Richardson and Spirtes (2002) implies that for sets S of vertices in

Mp(D) the m-separation (i, ti)⊥⊥ (j, tj) | S holds inMp(D) if and only if the d-separation
(i, ti)⊥⊥ (j, tj) |S holds inD. The statement now follows becauseD has repeating separating
sets as implied by part 4 of Lemma 4.3.

4. Let (i, ti) and (j, tj) be nonadjacent inMp(D) and without loss of generality assume
ti ≤ tj . Consequently, there is a set of vertices S inMp(D) with S∩{(i, ti), (j, tj)}= ∅ such
that (i, ti) ⊥⊥ (j, tj) | S in Mp(D). Due to time order of D, no (k, tk) with tj < tk can be
an ancestor of (i, ti) or of (j, tj). Lemma S5 in the supplementary material of Gerhardus and
Runge (2020) then asserts that (i, ti) ⊥⊥ (j, tj) | S′ in Mp(D) with S′ = S ∩ {(l, tl) | tl ≤
tj}. Now take any ∆t ∈ Z with 0 ≤ ∆t ≤ t − tj and let S′

∆t be obtained by shifting all
vertices in S forward in time by ∆t time steps. By construction of S′ all nodes in S′

∆t are
within [t− p, t]. The repeating separating sets property ofMp(D), as asserted by part 2 of
Lemma 4.4. and already proven, then implies (i, ti + ∆t) ⊥⊥ (j, tj + ∆t) | S′

∆t. This fact
proves the contraposition of the statement.

5. Part 1 of Lemma 4.4 implies that Mp(D) has repeating orientations. Thus, part 1 of
Lemma 4.3 shows thatMp(D) would also necessarily have repeating edges ifMp(D) nec-
essarily had repeating adjacencies, thereby contradicting part 3 of Lemma 3.7.

D.3. Proofs for Section 4.4 and of Lemma B.5.

LEMMA D.1. Let G be a directed partial mixed graph with time series structure that has
repeating orientations and past-repeating adjacencies. Then, stat(G) is the unique subgraph
G in which (i, ti) and (j, tj) with τ = tj − ti ≥ 0 are adjacent if and only if (i, t− τ) and
(j, t) are adjacent in G.

PROOF OF LEMMA D.1. The statement uniquely determines stat(G) for the following
reason: First, as is immediate from Definition 4.6 and asserted by the statement, stat(G) is
a subgraph of G. Second, the statement specifies the set of edges that are in G but not in
stat(G). Consequently, stat(G) is obtained by deleting a specified set of edges from G.

It remains to be shown that stat(G) has the asserted property: First, consider two vertices
(i, ti) and (j, tj) with τ = tj− ti ≥ 0 that are adjacent in stat(G). Since stat(G) has repeating
edges we thus get that (i, t− τ) and (j, t) are adjacent in stat(G), which in turn gives that
(i, t− τ) and (j, t) are adjacent in G because it is a supergraph of stat(G). Second, consider
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two vertices (i, t−τ) and (j, t) that are adjacent in G. The past-repeating adjacencies property
of G then implies that (i, ti +∆t) and (j, tj +∆t) are adjacent in G for all ∆t with (i, ti +
∆t), (j, tj +∆t) ∈V. Moreover, since G has repeating orientations, all these edges have the
same orientation. By the second point in Definition 4.6 we thus get that (i, ti) and (j, tj) are
adjacent in stat(G).

PROOF OF LEMMA 4.7. Apply Lemma D.1 to G =Mp(D).

PROOF OF LEMMA B.5. Denote the subgraph of D induced on I×TO as D[t−p,t]. This
graph clearly has the same set of vertices and the same time series structure asMIO×TO

(D)
because IO = I by assumption.

First, we show that D[t−p,t] and stat(MIO×TO
(D)) have the same adjacencies: Let (i, t−

τ) and (j, t) with 0≤ τ = tj − ti be distinct vertices in D, where without loss of generality
(j, t) /∈ an((i, t− τ),D). If (i, t− τ) and (j, t) are adjacent in D, then there is no set S with
S∩ {(i, t− τ), (j, t)}= ∅ that d-separates them. If (i, t− τ) and (j, t) are nonadjacent in D,
then (i, t− τ)⊥⊥ (j, t) | S with S= pa((j, t),D) \ {(i, t− τ)}. By time order of D and the
definition of pts, all vertices in pa((j, t),D) \ {(i, t− τ)} are within [t− pts, t]. Since pts ≤ p
by assumption we thus get: (i, t− τ) and (j, t) can be d-separated in D by a set of vertices
in IO×TO if and only if they are nonadjacent in D. In combination with repeating edges of
D and Lemma 4.7 the desired claim follows.

Second,D[t−p,t] andMIO×TO
(D) also have the same edge orientations because they have

the same ancestral relationships according Lemma C.1.

LEMMA D.2. LetM be a DMAG with time series structure that is time ordered and has
repeating orientations and past-repeating adjacencies. Then, stat(M) is a DMAG.

PROOF OF LEMMA D.2. We have to show that stat(M) does not have directed cycles,
does not have almost directed cycles, and is maximal.

No (almost) directed cycles: Assume that stat(M) has a directed or an almost direct cycle.
Then, since stat(M) is a subgraph ofM, alsoM has the same directed or almost directed
cycle. But thenM is not a DMAG. Contradiction.

Maximality: Assume the opposite, i.e., assume in stat(M) there are nonadjacent vertices
(i, ti) and (j, tj), where without loss of generality τ = tj − ti ≥ 0, between which there is
an inducing path π. We note that stat(M) is time ordered because it is a subgraph of the
time ordered graphM. Since by definition of inducing paths all vertices on π are ancestors
of (i, ti) or (j, tj), we get that all vertices on π are within the time window [t− p, tj ]. The
repeating edges property of stat(M) now shows that πt−tj , defined as the ordered sequence
of vertices obtained by shifting all vertices on π forward in time by t − tj time steps, is a
path in stat(M) whose edges are orientated in the same way as the corresponding edges of
π. Moreover, by combining part 1 of Lemma 4.3 with part 1 of Lemma B.4 we see that the
stationarification stat(M) has repeating ancestral relationships. Hence, πt−tj is an inducing
path between (i, t− τ) and (j, t) in stat(M). Since stat(M) ⊆M, πt−tj is also inM an
inducing path between (i, t − τ) and (j, t). Maximality of M thus requires (i, t − τ) and
(j, t) to be adjacent inM. According to Lemma D.1 we then obtain that (i, t− τ) and (j, t)
are adjacent in stat(M). Since (i, ti) and (j, tj) are nonadjacent in stat(M) by assumption,
this observation contradicts repeating edges of stat(M).

PROOF OF LEMMA 4.8. Apply Lemma D.2 toM=Mp(D).
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PROOF OF LEMMA 4.10. Assume (i, ti) ∈ an((j, tj),Mp
st(D)). This assumption means

that inMp
st(D) there is a directed path π from (i, ti) to (j, tj). SinceMp

st(D) is a subgraph
ofMp(D), this path π is also inMp(D). Hence, (i, ti) ∈ an((j, tj),Mp(D)).

Assume (i, ti) ∈ an((j, tj),Mp(D)). This assumption by Lemma C.1 implies that (i, ti) ∈
an((j, tj),D), and hence there is a directed path π from (i, ti) to (j, tj) in D. Since D
is time ordered, all vertices on π are within [t − p, t]. Let ((k1, t1), . . . , (kn, tn)) with
(k1, t1) = (i, ti) and (kn, tn) = (j, tj) be the ordered sequence of observed vertices on π.
For all 1 ≤ m ≤ n − 1 let πm be the ordered sequence of vertices obtained by shifting
π((km, tm), (km+1, tm+1)) by t − tm+1 time steps forward in time. These paths πm are
directed paths from (km, t − (tm+1 − tm)) to (km+1, t) in D and all their non-end-point
vertices unobservable. Hence, the paths πm cannot be blocked by any set of observable vari-
ables, which implies that inMp(D) there are the edges (km, t− (tm+1 − tm))→(km+1, t).
According to Lemma 4.7, we thus get that (km, t− (tm+1− tm))→(km+1, t) are inMp

st(D),
which due to repeating edges ofMp

st(D) in turn gives (km, tm)→(km+1, tm+1) inMp
st(D).

These edges combine to a directed path from (k1, t1) = (i, ti) to (kn, tn) = (j, tj) inMp
st(D),

hence (i, ti) ∈ an((j, tj),Mp
st(D)).

LEMMA D.3. Let G be a directed partial mixed graph with time structure that has re-
peating edges. Then, stat(G) = G.

PROOF OF LEMMA D.3. Apply part 2 of Lemma B.4 for (G′,G) = (G,G) to see that G
is a subgraph of stat(G). Since stat(G) is a subgraph of G, as immediately implied by the
second point in Definition 4.6, this observation shows stat(G) = G.

LEMMA D.4. Let G be a directed partial mixed graph with time structure. Then
stat(stat(G)) = stat(G).

PROOF OF LEMMA D.4. Combine part 1 of Lemma B.4 with Lemma D.3.

D.4. Proofs for Section 4.5 other than Lemma 4.14.

PROOF OF LEMMA 4.12. This statement is implied by Theorem 6.4 in Richardson and
Spirtes (2002).

D.5. Proof of Lemma 4.14. We split the proof into three parts that are respectively given
in Sections D.5.2, D.5.3 and D.5.4. Moreover, we collect several auxiliary results and defi-
nitions in D.5.1. For ease of notation, in Section D.5.4 we do not always denote vertices by
the tuples of their variable and time indices but sometimes just with a single character, for
example v instead of (i, t).

D.5.1. Auxiliary results and definitions.

LEMMA D.5. Let D be a DAG over vertices V and let O⊆V be the subset of observed
vertices. Then:

1. If i→j inMO(D), then for every subset S⊆O that does not contain i or j there is path
π between i and j in D that is active given S and into j.

2. If i↔j inMO(D), then for every subset S⊆O that does not contain i or j there is path
π between i and j in D that is active given S and into both i and j.
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REMARK (on Lemma D.5). This result might have appeared in the literature before.
Also note that the presence of i→j inM does not imply that for all S as above there is path
between i and j in D that is active given S and out of i. As an example, consider the DAG
over V= {i, j, k, l} constituted by i→j→k together with i←l→k and choose O= {i, j, k}:
Although i→k inM, for S= {j} the only active path in D is i←l→k.

PROOF OF LEMMA D.5. 1. The fact that i∗−∗j is in MO(D) is by Theorem 4.2 in
Richardson and Spirtes (2002) equivalent to the existence of an inducing path ρ relative
to O in D between i and j. Assume ρ is out of j. Then, because j is not an ancestor of i
according to i∗→j inMO(D), there is at least one collider on ρ. By definition of inducing
paths, all colliders on ρ are ancestors of i or j. Let k be the collider on ρ that is closest to
j on ρ. Because ρ is out of j, j is an ancestor of k. Transitivity of ancestorship thus implies
that j is an ancestor of i or j. Both options are a contradiction because there are no directed
cycles and because i∗→j is in MO(D). Hence, ρ is into j. The statement now follows by
combining Lemmas 6.1.1. and 6.1.2 in Spirtes, Glymour and Scheines (2000).

2. Arguments similar to those in the proof of part 1 of Lemma D.5 show that there is an
inducing path ρ relative to O in D between i and j that is into both i and j. The statement
for i↔j inM follows by Lemma 6.1.2 in Spirtes, Glymour and Scheines (2000).

LEMMA D.6. Let D be a DAG over vertices V and let O⊆V be the subset of observed
vertices. Let i→j be an edge inMO(D) and S⊆O \ {i, j}. Then: If in D there is no path
between i and j that is active given S and out of i, then i is an ancestor of S in D.

PROOF OF LEMMA D.6. We know that i is an ancestor of j in D because i→j in
MO(D). Hence, in D there is a directed path π from i to j. Assuming that in D there is
no path between i and j that is active given S and out of i, π must be blocked by S. Conse-
quently, S contains a vertex of π and thus a descendant of i.

DEFINITION D.7 (Observable vertices within a time window). The set of observable
vertices within a time window [t1, t2], where t1 ≤ t2, are denoted by O(t1, t2).

DEFINITION D.8 (Observable vertices within a time window not on a given path).
O(t1, t2)[π] is the set of all vertices in O(t1, t2) less the non-end-point vertices of the path π.

DEFINITION D.9 (Almost adjacent). Two distinct observable vertices (i, ti) and (j, tj)
in Dc(Mp(D)) are almost adjacent if there is an unobservable vertex (k, tk) such that
(i, ti)←(k, tk)→(j, tj) in Dc(Mp(D)).

LEMMA D.10. If (i, ti) and (j, tj) are almost adjacent in Dc(Mp(D)), then there is a
unique unobservable vertex (k, tk) such that (i, ti)←(k, tk)→(j, tj) in Dc(Mp(D)).

PROOF OF LEMMA D.10. Existence follows because (i, ti) and (j, tj) are almost adja-
cent, uniqueness follows in combination with the definition of canonical ts-DAGs (see Defi-
nition 4.13 in the main text).

LEMMA D.11. Let (i, ti) and (j, tj) with ti ≤ tj be distinct observable vertices in
Dc(Mp(D)). Then, (i, ti) and (j, tj) are adjacent or almost adjacent in Dc(Mp(D)) if and
only if (i, t− (tj − ti)) and (j, t) are adjacent inMp(D).
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PROOF OF LEMMA D.11. If. The premise is that (i, t − (tj − ti))∗−∗(j, t), where ∗−∗
is → or ← or ↔, is in Mp(D). Past-repeating adjacencies and repeating orientations of
Mp(D) then imply (i, t − (tj − ti) − ∆t)∗−∗(j, t − ∆t) for all 0 ≤ ∆t ≤ p − (tj − ti),
where ∗−∗ is the same edge type as between (i, t − (tj − ti)) and (j, t). Hence, all these
edges are also in stat(Mp(D)). If ∗−∗ is→ or←, then the definition of canonical ts-DAGs
implies (i, t− (tj − ti)−∆t′)∗−∗(j, t−∆t′) in Dc(Mp(D)) for all ∆t′ ∈ Z. In particular,
(i, ti) and (j, tj) are adjacent in Dc(Mp(D)). If ∗−∗ is ↔, then the definition of canonical
ts-DAGs implies that (i, t− (tj− ti)−∆t′)←((i, j, tj− ti), t−∆t′− (tj− ti))→(j, t−∆t′)
in Dc(Mp(D)) or ti = tj and (i, t−∆t′)←((j, i,0), t−∆t′)→(j, t−∆t′) in Dc(Mp(D))
for all ∆t′ ∈ Z. In particular, (i, ti) and (j, tj) are almost adjacent in Dc(Mp(D)).

Only if. Since the vertices (i, t − (tj − ti)) and (j, t) are nonadjacent in Mp(D) they
are also nonadjacent inMp

st(D). The statement now follows with the definition of canonical
ts-DAGs.

LEMMA D.12. Let (i, ti) and (j, tj) be distinct observable vertices that are adjacent or
almost adjacent in Dc(Mp(D)). Then:

1. (i, ti)→(j, tj) in Dc(Mp(D)) if and only if (i, ti) ∈ an((j, tj),D).
2. (i, ti)←(j, tj) in Dc(Mp(D)) if and only if (j, tj) ∈ an((i, ti),D).
3. (i, ti) and (j, tj) are almost adjacent in Dc(Mp(D)) if and only if (i, ti) /∈ an((j, tj),D)

and (j, tj) /∈ an((i, ti),D).

PROOF OF LEMMA D.12. Assume without loss of generality that ti ≤ tj , else exchange
(i, ti) and (j, tj). From Lemma D.11 it then follows that (i, t− (tj − ti)) and (j, t) are adja-
cent inMp(D). The definition of edges in DMAGs in combination with repeating ancestral
relationships of D further implies that

• (i, t− (tj − ti))→(j, t) inMp(D) if and only if (i, ti) ∈ an((j, tj),D),
• (i, t− (tj − ti))←(j, t) inMp(D) if and only if (j, tj) ∈ an((i, ti),D),
• (i, t − (tj − ti))↔(j, t) in Mp(D) if and only if (i, ti) /∈ an((j, tj),D) and (j, tj) /∈
an((i, ti),D).

Now proceed as in the proof of the if part of Lemma D.11.

D.5.2. Part 1:Mp(D) andMp(Dc(Mp(D))) have the same ancestral relationships. As
the first part of the proof of Lemma 4.14 we here show thatMp(D) andMp(Dc(Mp(D)))
have the same ancestral relationships.

LEMMA D.13. Dc(G) =Dc(stat(G)).

PROOF OF LEMMA D.13. An inspection of Definitions 4.6 and 4.13 in the main text re-
veals that Dc(G) is uniquely determined by stat(G). The statement thus follows because
stat(G) = stat(stat(G)) according to Lemma D.4.

LEMMA D.14. The stationarified ts-DMAG Mp
st(D) has the same ancestral relation-

ships among vertices inMp
st(D) as the canonical ts-DAG Dc(Mp(D)).

PROOF OF LEMMA D.14. Assume (i, ti) ∈ an((j, tj),Mp
st(D)). This assumption means

that in Mp
st(D) there is a directed path π = ((k1, t1), . . . , (kn, tn)) from (k1, t1) = (i, ti)

to (kn, tn) = (j, tj). Since Mp
st(D) has repeating edges and is time ordered, the fact that

(km, tm)→(km+1, tm+1) is in Mp
st(D) implies (km, tm)→(km+1, tm+1) in Dc(Mp

st(D)).
Consequently, π is also in Dc(Mp

st(D)) and we find that (i, ti) ∈ an((j, tj),Dc(Mp
st(D))).
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Let (i, ti), (j, tj) be vertices in Mp
st(D) and assume (i, ti) ∈ an((j, tj),Dc(Mp

st(D))).
This assumption means in Dc(Mp

st(D)) there is a directed path π = ((k1, t1), . . . , (kn, tn))
from (k1, t1) = (i, ti) to (kn, tn) = (j, tj). Since by definition of canonical ts-DAGs there are
no edges into unobservable vertices, all vertices on π are observed and thus also inMp

st(D).
Moreover, again by definition of canonical ts-DAGs, any edge of Dc(Mp

st(D)) that is be-
tween vertices in Mp

st(D) is also in Mp
st(D). Hence, π is also in Mp

st(D) and we find
(i, ti) ∈ an((j, tj),Mp

st(D)).
These considerations show that Mp

st(D) and Dc(Mp
st(D)) have the same ancestral re-

lationships among vertices in Mp
st(D). The statement follows because Dc(Mp

st(D)) =
Dc(Mp(D)) according to Lemma D.13.

LEMMA D.15. Consider a ts-DAG D and the canonical ts-DAG Dc(Mp(D)). Then:

1. If (i, ti) ∈ an((j, tj),D) and tj − ti ≤ p, then (i, ti) ∈ an((j, tj),Dc(Mp(D))).
2. If (i, ti) ∈ an((j, tj),Dc(Mp(D))), then (i, ti) ∈ an((j, tj),D).

PROOF OF LEMMA D.15. 1. Let (i, ti) ∈ an((j, tj),D) with τ = tj− ti ≤ p, where τ ≥ 0
due to time order of D. The repeating ancestral relationships property of D then gives (i, t−
τ) ∈ an((j, t),D), which implies (i, t − τ) ∈ an((j, t),Mp(D)) by Lemma C.1 and thus
(i, t−τ) ∈ an((j, t),Mp

st(D)) by Lemma 4.10 and finally (i, t−τ) ∈ an((j, t),Dc(Mp(D)))
by Lemma D.14.

2. Let (i, ti) ∈ an((j, tj),Dc(Mp(D))). This premise means that in Dc(Mp(D)) there is a
directed path π = ((k1, t1), . . . , (kn, tn)) from (k1, t1) = (i, ti) to (kn, tn) = (j, tj), where
tm ≤ tm+1 due to time order of Dc(Mp(D)). Using repeating ancestral relationships of
Dc(Mp(D)), we thus get that (km, t − (tm+1 − tm)) ∈ an((km+1, t),Dc(Mp(D))) for all
1 ≤ m ≤ n − 1. Since by definition of canonical ts-DAGs there are no edges into unob-
servable vertices, all vertices on π are observable. Moreover, again due to definition of
canonical ts-DAGs, Dc(Mp(D)) cannot contain edges with a lag larger than p. These ob-
servations require 0 ≤ |tm+1 − tm| = tm+1 − tm ≤ p and thus shows that both (km, t −
(tm+1 − tm)) and (km+1, t) are vertices in Mp

st(D). Using Lemma D.14 we therefore get
(km, t−(tm+1−tm)) ∈ an((km+1, t),Mp

st(D)), which in turn gives (km, t−(tm+1−tm)) ∈
an((km+1, t),Mp(D)) by Lemma 4.10 and thus (km, t− (tm+1 − tm)) ∈ an((km+1, t),D)
by Lemma C.1 and thus (km, tm) ∈ an((km+1, tm+1),D) by repeating ancestral relationships
of D. The statement now follows from transitivity of ancestorship.

LEMMA D.16. Mp(D) andMp(Dc(Mp(D))) have the same ancestral relationships.

PROOF OF LEMMA D.16. Combine Lemma C.1 with Lemma D.15.

D.5.3. Part 2: Any adjacency in Mp(Dc(Mp(D))) is also in Mp(D). As the second
part of the proof of Lemma 4.14 we here show that any adjacency in Mp(Dc(Mp(D)))
is also in Mp(D). Together with the fact that both these graphs have the same ancestral
relationships, as already proven in Section D.5.2, we then get that Mp(Dc(Mp(D))) is a
subgraph ofMp(D).

LEMMA D.17. Let (i, ti) and (j, tj) with t−p≤ ti, tj ≤ t be distinct observable vertices
in Dc(Mp(D)) and let S ⊆O(t − p, t) \ {(i, ti), (j, tj)}. Then: If (i, ti) and (j, tj) are d-
connected given S in Dc(Mp(D)), then (i, ti) and (j, tj) are d-connected given S in D.

REMARK (on Lemma D.17). The statement makes sense because D and Dc(Mp(D))
have the same observable time series.
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PROOF OF LEMMA D.17. Let (i, ti) and (j, tj) be d-connected given S ⊆O(t− p, t) \
{(i, ti), (j, tj)} in Dc(Mp(D)). Then, in Dc(Mp(D)) there is path π between (i, ti) and
(j, tj) that is active given S. Since no node in S is after t, no node on π is after t
because else due to time order of Dc(Mp(D)) there would be a collider on π after
t that, again due to time order, cannot be unblocked by S. Let ((k1, t1), . . . , (kn, tn))
with (k1, t1) = (i, ti) and (kn, tn) = (j, tj) be the ordered sequence of observable ver-
tices on π (not necessarily temporally observed, so some of these vertices may be be-
fore t − p). Since in Dc(Mp(D)) there are no edges into unobservable vertices and no
edges with a lag larger than p, the subpaths πm = π((km, tm), (km+1, tm+1)) with 1 ≤
m ≤ n − 1 are either of the form (km, tm)→(km+1, tm+1) or (km, tm)←(km+1, tm+1) or
(km, tm)←(lm, tlm)→(km+1, tm+1) with (lm, tlm) unobservable. In all cases |tm − tm+1| ≤
p. Now associate to each πm a path ρm in D between (km, tm) and (km+1, tm+1) in the
following way:

Case 1: If πm is (km, tm)→(km+1, tm+1), then (km, t − (tm+1 − tm))→(km+1, t) in
Dc(Mp(D)) by repeating edges ofDc(Mp(D)) and hence (km, t−(tm+1−tm))→(km+1, t)
in Mp(D) by Lemmas D.11 and D.12. According to Lemma D.5 there thus is path be-
tween (km, t − (tm+1 − tm)) and (km+1, t) in D that is into (km+1, t) and active given
Sm,t−tm+1

, where Sm,t−tm+1
is obtained by shifting Sm = S \ {(tm, km), (tm+1, km+1)} for-

ward in time by t − tm+1 time steps. Let pm be the set of all such paths. If any path in
pm is out of (km, t − (tm+1 − tm)), then let ρm,t−tm+1

be any such path and let ρm the
path obtained by shifting ρm,t−tm+1

backwards in time by t − tm+1 time steps. If no path
pm is out of (km, t − (tm+1 − tm)), then let ρm,t−tm+1

be any path in pm and let ρm the
path obtained by shifting ρm,t−tm+1

backwards in time by t− tm+1 time steps. In this latter
case (km, t− (tm+1 − tm)) is an ancestor of Sm,t−tm+1

in D according to Lemma D.6. By
repeating ancestral relationships of D the vertex (km, tm) is then an ancestor of S.

Case 2: If πm is (km, tm)←(km+1, tm+1), do the same as for case 1 with the roles of
(km, tm) and (km+1, tm+1) exchanged.

Case 3: If πm is (km, tm)←(lm, tlm)→(km+1, tm+1) and tm ≤ tm+1, then (km, t −
(tm+1 − tm))←(lm, t − (tm+1 − tlm))→(km+1, t) in Dc(Mp(D)) and hence (km, t −
(tm+1 − tm))↔(km+1, t) in Mp(D). According to Lemma D.5 there thus is path between
(km, t − (tm+1 − tm)) and (km+1, t) in D that is into both (km, t − (tm+1 − tm)) and
(km+1, t) and active given Sm,t−tm+1

. Let ρm,t−tm+1
be any such path and let ρm the path

obtained by shifting ρm,t−tm+1
backwards in time by t− tm+1 time steps.

Case 4: If πm is (km, tm)←(lm, tlm)→(km+1, tm+1) and tm > tm+1, do the same as for
case 3 with the roles of (km, tm) and (km+1, tm+1) exchanged.

The paths ρm exist due to repeating adjacencies of D and they are active given Sm due
to repeating separating sets of D. Moreover, due to repeating orientations of D all edges on
ρm are oriented in the same way as the corresponding edges on ρm,t−tm+1

. Consequently: If
(km+1, tm+1) is a collider on π and thus πm and πm+1 meet head-to-head at (km+1, tm+1),
then, first, (km+1, tm+1) is an ancestor of S because π is active given S and, second, ρm and
ρm+1 meet head-to-head at (km+1, tm+1). Moreover, if (km+1, tm+1) is a noncollider on π
and thus πm and πm+1 do not meet head-to-head at (km+1, tm+1), then, first, (km+1, tm+1)
is not in S because π is active given S and, second, ρm and ρm+1 may or may not meet
head-to-head at (km+1, tm+1). Importantly, if they do meet head-to-head, then (km+1, tm+1)
is an ancestor of S. By applying Lemma 3.3.1 in Spirtes, Glymour and Scheines (2000) to
the ordered sequence of paths (ρ1, . . . , ρn) we thus obtain a path between (k1, t1) = (i, ti)
and (kn, tn) = (j, tj) in D that is active given S, and hence (i, ti) and (j, tj) are d-connected
given S in D.

LEMMA D.18. Mp(Dc(Mp(D))) is a subgraph ofMp(D).
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PROOF OF LEMMA D.18. As an immediate consequence of Lemma D.17, every adja-
cency inMp(Dc(Mp(D))) is also inMp(D). The statement then follows with Lemma D.16
because the orientation of edges inMp(D) andMp(Dc(Mp(D))) are uniquely determined
by the ancestral relationships.

D.5.4. Part 3: Any adjacency inMp(D) is also inMp(Dc(Mp(D))). As the third and
final part of the proof of Lemma 4.14 we here show that any adjacency in Mp(D) is also
in Mp(Dc(Mp(D))). We note that the proof of Lemma D.17 crucially relies on the par-
ticular form of Dc(Mp(D)) due to which two subsequent observable vertices on a path in
Dc(Mp(D)) are at most p time steps apart and adjacent or almost adjacent. A general ts-DAG
D does, however, not necessarily have these properties, which is why this part of the proof
becomes more complicated. We begin by proving the converse of Lemma D.17 restricted to
collider-free paths in D.

LEMMA D.19. Let π be a collider-free path in D between distinct observable vertices
(i, ti) and (j, tj) with t − p ≤ ti, tj ≤ t. Then, the ordered sequence ((k1, t1), . . . , (kn, tn))
of observable vertices on π with (k1, t1) = (i, ti) and (kn, tn) = (j, tj) has a unique subse-
quence ((l1, s1), . . . , (lm, sm)) with the following properties:

1. (l1, s1) = (i, ti) and (lm, sm) = (j, tj),
2. |sα − sα+1| ≤ p for all 1≤ α≤m− 1,
3. all non-end-point vertices of π((lα, sα), (lα+1, sα+1)) are unobservable or are before

max(sα, sα+1)− p for all 1≤ α≤m− 1.

REMARK (on Lemma D.19). While the uniqueness of ((l1, s1), . . . , (lm, sm)) is not
needed for the subsequent proofs, we have included it to be able to refer to the subsequence
((l1, s1), . . . , (lm, sm)) instead of a such subsequence.

PROOF OF LEMMA D.19. Existence:
Assume without loss of generality that ti ≤ tj , else exchange (i, ti) and (j, tj). Since π is
collider-free, time order of D thus implies that no vertex on π is after tj . We now prove the
statement by induction over n, where n is the number of observable vertices on π:

Induction base case: n= 2
In this case, (i, ti) and (j, tj) are the only observable vertices on π. Clearly, the sequence
((i, ti), (j, tj)) has the desired properties.

Induction step: n 7→ n+ 1
In this case, π has n+ 1≥ 3 observable vertices and the statement has already been proven
for paths that have at most n observable vertices. Let π1 be the subpath of π from (i, ti) to
(kn, tn) (the observable vertex on π other than (j, tj) itself that is closest to (j, tj) on π) and
let π2 be the subpath of π from (k2, t2) (the observable vertex on π other than (i, ti) itself
that is closest to (i, ti) on π) to (j, tj). We distinguish three collectively exhaustive cases:

• Case |tj − tn|= tj − tn ≤ p:
This premise implies |ti−tn| ≤ p. Hence, by assumption of induction the statement applies
to π1. The desired sequence is obtained by appending (j, tj) to the sequence obtained by
applying the statement to π1.

• Case |tj − t2|= tj − t2 ≤ p:
By assumption of induction the statement then applies to π2. Moreover, |ti − t2| ≤ p. The
desired sequence is obtained by prepending (i, ti) to the sequence obtained by applying
the statement to π2.
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• Case |tj − tn|= tj − tn > p and |tj − t2|= tj − t2 > p:
Since π is collider-free and D is time ordered, this premise implies that all observable
non-end-point vertices on π are before tj − p. Hence, the sequence ((i, ti), (j, tj)) has the
desired properties.

Uniqueness:
Let ((l1, s1), . . . , (lm, sm)) and ((l′1, s

′
1), . . . , (l

′
m′ , sm′)) be two such subsequences. We proof

their equality by induction over α, where α is the index of the subsequences.
Induction base case: α= 1

The equality (l1, s1) = (l′1, s
′
1) follows due to the first property demanded in Lemma D.19

applied to both sequences.
Induction step: α 7→ α+ 1≤min(m,m′)

By the assumption of induction (lq, sq) = (l′q, s
′
q) for all 1 ≤ q ≤ α is given, and we have

to show (lα+1, sα+1) = (l′α+1, s
′
α+1). Assume the opposite, i.e., assume (lα+1, sα+1) ̸=

(l′α+1, s
′
α+1). Without loss of generality further assume that (lα+1, sα+1) is on the sub-

path π((l′α+1, s
′
α+1), (j, tj)), else exchange the two subsequences. Let r with α < r <

m′ be such that the vertices (l′q, s
′
q) with α < q ≤ r are non-end-point vertices on

π((lα, sα), (lα+1, sα+1)) and (l′r+1, s
′
r+1) is on π((lα+1, sα+1), (j, tj)). Such an r exists be-

cause both the sequence ((l1, s1), . . . , (lm, sm)) and the sequence ((l′1, s
′
1), . . . , (l

′
m′ , sm′))

are subsequences of ((k1, t1), . . . , (kn, tn)). Note that the (l′q, s
′
q) with α < q ≤ r are ob-

servable because all vertices of the subsequence ((l′1, s
′
1), . . . , (l

′
m′ , sm′)) are observable. The

third property demanded in Lemma D.19 applied to the sequence ((l1, s1), . . . , (lm, sm)) thus
requires s′q <max(sα, sα+1)− p for all α< q ≤ r. We distinguish two cases:

• Suppose sα+1 ≤ sα. Then s′q < sα − p for all α < q ≤ r. For q = α + 1 we thus get
s′α+1 < sα − p, which contradicts the second property demanded in Lemma D.19 applied
to ((l′1, s

′
1), . . . , (l

′
m′ , sm′)).

• Suppose sα+1 > sα. Then s′q < sα+1 − p for all α < q ≤ r. By time order of D in com-
bination with the facts that π is collider-free and that (lα, sα) is on π((i, ti), (lα+1, sα+1)),
the premise sα+1 > sα implies that (lα+1, sα+1) is on π between the root node of π
and (j, tj). Consequently, all vertices on π((lα+1, sα+1), (j, tj)) are not before sα+1.
Since (l′r+1, s

′
r+1) is on π((lα+1, sα+1), (j, tj)) we thus find sα+1 ≤ s′r+1, which implies

s′q < s′r+1 − p for all α < q ≤ r. For q = r we thus get s′r < s′r+1 − p, which contradicts
the second property demanded in Lemma D.19 applied to ((l′1, s

′
1), . . . , (l

′
m′ , sm′)).

Consequently, the assumption (lα+1, sα+1) ̸= (l′α+1, s
′
α+1) leads to a contradiction and

(lα+1, sα+1) = (l′α+1, s
′
α+1) must be true.

This induction terminates when α + 1 = min(m,m′). The first property demanded in
Lemma D.19 applied to both sequences then requires m =m′ and (lm, sm) = (l′m, s

′
m) =

(j, tj), which completes the proof

REMARK (on the proof of Lemma D.19). For the special case in which π is a directed
path we can also immediately see that the sequence ((k1, t1), . . . , (kn, tn)) of all observable
nodes on π has the desired properties. We need the above proof to also cover the case in
which π is into both (i, ti) and (j, tj).

LEMMA D.20. Let π be a collider-free path in D between distinct observable vertices
(i, ti) and (j, tj) with t− p≤ ti, tj ≤ t and let ((l1, s1), . . . , (lm, sm)) be as in Lemma D.19
applied to π. Then, (lα, sα) and (lα+1, sα+1) are adjacent or almost adjacent inDc(Mp(D))
for all 1≤ α≤m− 1.
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PROOF OF LEMMA D.20. Let πα be the path in D obtained by shifting the subpath
π((lα, sα), (lα+1, sα+1)) forward in time by t − max(sα, sα+1) ≥ 0 time steps. This πα
is a path between the vertices v1 = (lα, t − (max(sα, sα+1) − sα)) and v2 = (lα, t −
(max(sα, sα+1)− sα+1)), both of which are observable because all vertices in the sequence
((l1, s1), . . . , (lm, sm)) are observable and within [t− p, t] because of part 2 of Lemma D.19.
Moreover, πα is collider-free because π is collider-free. All non-end-point vertices on πα
are unobserved, i.e., unobservable or temporally unobserved due to part 3 of Lemma D.19.
Consequently, πα cannot be blocked by any set of observed variables, which is why v1 and
v2 are adjacent inMp(D). The statement then follows from Lemma D.11.

DEFINITION D.21 (Canonically induced path). Let π be a collider-free path in D
between distinct observable vertices (i, ti) and (j, tj) with t − p ≤ ti, tj ≤ t and let
((l1, s1), . . . , (lm, sm)) be as in Lemma D.19 applied to π. The canonical path induced by
π, denoted πci, is the (unique) path in Dc(Mp(D)) between (i, ti) and (j, tj) with the fol-
lowing properties:

1. For all 1≤ α≤m the vertex (lα, sα) is on πci.
2. For all 1≤ α≤m− 1 the subpath πci((lα, sα)), (lα+1, sα+1)) is

a) (lα, sα)→(lα+1, sα+1) if and only if (lα, sα) ∈ an((lα+1, sα+1),D),
b) (lα, sα)←(lα+1, sα+1) if and only if (lα+1, sα+1) ∈ an((lα, sα),D),
c) (lα, sα)←(l′α, s

′
α)→(lα+1, sα+1) with (l′α, s

′
α) unobservable if and only if (lα, sα) /∈

an((lα+1, sα+1),D) and (lα+1, sα+1) /∈ an((lα, sα),D).

REMARK (on Definition D.21). Existence follows from Lemma D.12 because according
to Lemma D.20 the vertices (lα, sα) and (lα+1, sα+1) are adjacent or almost adjacent for all
1 ≤ α ≤m− 1. Uniqueness follows from Lemma D.10 because in Dc(Mp(D)) there is at
most one edge between any pair of vertices.

LEMMA D.22. Let π be a collider-free path in D between distinct observable vertices
(i, ti) and (j, tj) with t− p≤ ti, tj ≤ t and let πci be the canonical path induced by π. Then:

1. All observable vertices on πci are also on π.
2. If (k1, t1), (k2, t2) and (k3, t3) are distinct observable vertices on πci and (k2, t2) is on
πci((k1, t1), (k3, t3)), then (k2, t2) is on π((k1, t1), (k3, t3)).

3. πci is a collider-free.
4. If (k1, t1) and (k2, t2) are distinct observable vertices on πci, then π((k1, t1), (k2, t2)) is

an inducing path relative to O(max(t1, t2)− p, t)[πci((k1, t1), (k2, t2))].
5. If π is active given S in D, then πci is active given S in Dc(Mp(D)).

PROOF OF LEMMA D.22. Let ((l1, s1), . . . , (lm, sm)) be as in Lemma D.19 applied to π.
1. The definition of canonically induced paths is such that ((l1, s1), . . . , (lm, sm)) is the

sequence of all observable vertices on πci. Moreover, all of (l1, s1), . . . , (lm, sm) are on π by
construction, see Lemma D.19.

2. Since (k2, t2) is on πci((k3, t3), (k1, t1)) if it is on πci((k1, t1), (k3, t3)), we can without
loss of generality assume that (k1, t1) is closer to (i, ti) on πci than (k3, t3) is to (i, ti) on πci.
Hence, there are 1≤ α1 < α2 < α3 ≤m such that (k1, t1) = (lα1

, sα1
), (k2, t2) = (lα2

, sα2
)

and (k3, t3) = (lα3
, sα3

). Moreover, by definition of ((l1, s1), . . . , (lm, sm)) and canonically
induced paths, (lα, sα) is closer to (i, ti) on π than (lq, sq) with α< q is to (i, ti) on π.

3. Assume there is a collider on πci. Since in Dc(Mp(D)) there are no edges into un-
observable vertices, all colliders on πci are observable. Hence, there must be 1 < α < m
such that (lα, sα) is a collider on πci, i.e., such that both πci((lα−1, sα−1), (lα, sα)) and
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πci((lα, sα), (lα+1, sα+1)) are into (lα, sα). In particular, πci((lα−1, sα−1), (lα, sα)) is not
(lα−1, sα−1)←(lα, sα) and πci((lα, sα), (lα+1, sα+1)) is not (lα, sα)→(lα+1, sα+1).

Assume π((lα−1, sα−1), (lα, sα)) is out of (lα, sα). Since π is collider-free, it then
follows that π((lα−1, sα−1), (lα, sα)) is directed from (lα, sα) to (lα−1, sα−1) and hence
(lα, sα) ∈ an((lα−1, sα−1),D). According to Definition D.21 this ancestral relationships
requires πci((lα−1, sα−1), (lα, sα)) to be (lα−1, sα−1)←(lα, sα), which is a contradiction.
Hence π((lα−1, sα−1), (lα, sα)) is into (lα, sα).

We similarly we find that π((lα, sα), (lα+1, sα+1)) is into (lα, sα) and thus that (lα, sα) is
a collider on π, a contradiction.

4. We may without loss of generality assume that (k1, t1) is closer to (i, ti) on π than
(k2, t2) is to (i, ti) on π. Write t12 =max(t1, t2).

Since π is collider-free, also its subpath π((k1, t1), (k2, t2)) is collider-free. For showing
that π((k1, t1), (k2, t2)) is an inducing path relative to O(t12 − p, t)[πci((k1, t1), (k2, t2))]
it is thus sufficient to show that none of its non-end-point vertices is an element of the set
O(t12 − p, t)[πci((k1, t1), (k2, t2))]. To this end, let (k3, t3) be a non-end-point vertex on
π((k1, t1), (k2, t2)).

Since ((l1, s1), . . . , (lm, sm)) is the sequence of all observable vertices on πci, there are
α1 and α2 with 1 ≤ α1 < α2 ≤m such that (k1, t1) = (lα1

, sα1
) and (k2, t2) = (lα2

, sα2
).

Therefore, either (k3, t3) equals (lα3
, sα3

) for some α1 < α3 < α2 or (k3, t3) is a non-end-
point vertex on π((lα3

, sα3
), (lα3+1, sα3+1)) for some α3 with α1 ≤ α3 < α2. In the former

case, (k3, t3) is not in O(t12 − p, t12)[πci((k1, t1), (k2, t2))] because it is a non-end-point
vertex on πci((k1, t1), (k2, t2)). In the latter case, according to part 3 of Lemma D.19, (k3, t3)
is unobservable or before max(sα3

, sα3+1)−p. Because π is collider-free and both (lα3
, sα3

)
and (lα3+1, sα3+1) are on π((k1, t1), (k2, t2)), time order of D implies max(sα3

, sα3+1) ≤
t12. Thus, (k3, t3) is not in O(t12 − p, t)[πci((k1, t1), (k2, t2))].

5. This claim follows from parts 1 and 2 of Lemma D.22: Since π is collider-free and
active given S, no vertex on π is in S. Thus, since all observable vertices on πci are also on
π, no vertex on πci is in S. Since πci is collider-free this observation shows that πci is active
given S.

LEMMA D.23. Let (i, ti) and (j, tj) with t−p≤ ti, tj ≤ t be distinct observable vertices
in D and let S ⊆O(t− p, t) \ {(i, ti), (j, tj)}. Then: If in D there is a collider-free path π
between (i, ti) and (j, tj) that is active given S, then (i, ti) and (j, tj) are d-connected given
S in Dc(Mp(D)).

PROOF OF LEMMA D.23. According to part 5 of Lemma D.22 the canonically induced
path πci of π d-connects (i, ti) and (j, tj) given S in Dc(Mp(D)).

In order to show that any adjacency inMp(D) is also inMp(Dc(Mp(D)))—and thus to
finish the proof of Lemma 4.14—it remains to prove a statement that extends Lemma D.23
to the case in which π, the d-connecting path in D, has nc ≥ 1 colliders c1, . . . , cnc

(ordered
starting with the collider closest to (i, ti)). One might think that such a generalization follows
readily now, namely by cutting π into nc + 1 collider-free paths πa,a+1 = π(ca, ca+1) with
0 ≤ a ≤ nc, where we let c0 = (i, ti) and cnc+1 = (j, tj), and then applying Lemma 3.3.1
in Spirtes, Glymour and Scheines (2000) to the canonically induced paths πa,a+1

ci of πa,a+1

with 0≤ a≤ nc. While we do use a similar approach, the proof is complicated by two facts:
First, the canonically induced path πa,a+1

ci of πa,a+1 only exists if πa,a+1 is between observ-
able vertices that are at most p time steps apart, see Definition D.21. However, some of the
colliders on π, i.e., some of the ca with a≤ 1≤ nc might be unobservable and/or more than
p time steps apart from the neighboring colliders or end-point vertices of π, i.e., from ca−1



22

or ca+1. Second, even if πa,a+1
ci exists, it may be out of one of its end-point vertices although

πa,a+1 is into this vertex. In case this vertex is a collider on π and an element of S, Lemma
3.3.1 in Spirtes, Glymour and Scheines (2000) does not apply. We will address the first of
these complications by noting that, in order for π to be active given S, every collider on π
must be an ancestor of S and thus an ancestor of an observed vertex within the time window
[t− p, t]. Hence, in D there are directed paths from the ca with a≤ 1≤ nc to some observed
vertices. By joining these directed paths with the πa,a+1 we get collider-free paths π̃a,a+1 in
D between observed vertices, the canonically induced paths π̃a,a+1

ci of which exist.

DEFINITION D.24 (Collider extension structure). Let π be a (non collider-free) path be-
tween the distinct observable vertices (i, ti) and (j, tj) with t − p ≤ ti, tj ≤ t in D that is
active given S⊆O(t− p, t) \ {(i, ti), (j, tj)}. Let c1, . . . , cnc

with nc ≥ 1 be the collider on
π, ordered starting with the collider closest to (i, ti). A collider extension structure of π with
respect to S and O(t− p, t) is a collection of paths ρ1, . . . , ρnc such that for all 1≤ a≤ nc
and 1≤ b≤ nc with a ̸= b all of the following holds:

1. One of these options holds:
a) ρa is the trivial path consisting of ca = da only and ca = da ∈O(t− p, t).
b) ρa is a nontrivial directed path from ca to some vertex da ∈O(t− p, t).

2. If v is on ρa and in S, then v = da.
3. da is an ancestor of S.
4. ρa intersects with π at ca only.
5. ρa and ρb do not intersect.

LEMMA D.25. Given the assumptions and notation of Definition D.24, one of the fol-
lowing statements holds:

1. There is a collider extension structure of π with respect to S and O(t− p, t).
2. InD there is a path π′ between (i, ti) and (j, tj) with at most nc−1 colliders that is active

given S.

PROOF OF LEMMA D.25. We divide the proof into three steps.
Step 1: The first, second and third property of collider extension structures holds

Let 1≤ a≤ nc. Since ca is a collider on π and π is active given S, there is Sa ∈ S (which may
be equal to ca) such that ca ∈ an(Sa,D). Hence, there is a (possibly trivial, namely if and
only if ca = Sa) directed path λa from ca to Sa. On λa let da be the vertex closest to ca that
is in O(t−p, t) (which may be ca itself). This vertex da exists because Sa ∈ S⊆O(t−p, t),
such that da is an ancestor of S by means of the subpath λ(da, Sa). Let ρa be the subpath
λa(ca, da), which is the trivial path consisting of the single vertex ca = da ∈O(t− p, t) or is
a nontrivial directed path from ca to da ∈O(t− p, t). Moreover, by definition of da together
with the fact that S ⊆O(t− p, t), no vertex on ρa other than da is in S. The collection of
paths ρ1, . . . , ρnc thus fulfills the first three conditions of a collider extension structure of π
with respect to S and O(t− p, t).

The first two of these conditions have two immediate implications that will be important
later in this proof: First, if ρa is nontrivial then ca /∈ S. Second, if ρa is nontrivial then it is
active given S \ {da}.

Step 2: The fourth property of collider extension structures or existence of π′

Assume there is 1 ≤ a ≤ nc such that π and ρa do not intersect at ca only. Then, ρa must
be nontrivial and hence we get ca /∈ S. Let ea be the vertex on ρa closest to ca other than ca
itself that is also on π. If ea is on π((i, ti), ca), then let v1 = (i, ti) and v2 = (j, tj), else let
v1 = (j, tj) and v2 = (i, ti). Let π′ be the concatenation π(v1, ea)⊕ ρa(ea, ca)⊕ π(ca, v2).
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By definition of ea, π′ is a path (rather than a walk) in D between (i, ti) and (j, tj). We now
show that π′ is active given S and has at most nc − 1 colliders.

All colliders on π′ are ancestors of S: Since ρa(ea, ca) is a nontrivial directed path from
ca to ea, every collider on π′ is a collider on π(v1, ea) or a collider on π(ca, v2) or equals ea.
Every collider on π(v1, ea) or π(ca, v2) is a collider on π and hence, because π is active given
S, an ancestor of S. Lastly, ea is an ancestor of Sa ∈ S by means of the path λa(ea, Sa).

No non-end-point noncollider on π′ is in S: All non-end-point noncolliders on π(v1, ea)
or π(ca, v2) are non-end-point noncolliders on π and hence, because π is active given S, not
in S. All vertices on ρa(ea, ca) other than, perhaps, ea are not in S because, as shown in step
1 of this proof, all vertices on ρa other than da are not in S. Lastly, assume that ea is in S and
a non-end-point noncollider on π′. Because ρa(ea, ca) is into ea, this assumption requires
that π(v1, ea) is a nontrivial path out of ea. Consequently, ea is a non-end-point noncollider
on π, which is a contradiction because ea ∈ S and π is active given S.

Number of colliders: There are no colliders on ρa(ea, ca) because it is a directed path. If
v1 = (i, ti), then there are at most a− 1 colliders on π(v1, ea) and exactly nc − a colliders
on π(ca, v2). If v1 = (j, tj), then there are at most nc − a colliders on π(v1, ea) and exactly
a− 1 colliders on π(ca, v2). The junction point ca is a noncollider on π′ because ρa(ea, ca)
is out of ca. Regarding ea, there are two cases:

1. First, assume ea is a noncollider on π′. Then, there are at most (a−1)+(nc−a) = nc−1
colliders on π′.

2. Second, assume ea is a collider on π′. This assumption requires π(v1, ea) to be into ea.
Let r be that particular root node on π(v1, ca) which is closest to ca on π. Then, π(r, ca)
is nontrivial (because ca is a collider on π and hence not a root on π) and directed from r
to ca (by combining the facts that ca is a collider on π, that r is a root on π, and that no
other root node on π is between r and ca). Assume that ea is on π(r, ca). Then, π(ea, ca)
would be a nontrivial (because ea ̸= ca) directed path from ea to ca, which contradicts
acyclicity because ca is an ancestor ea by means of ρa(ca, ea). Hence, ea is on π(v1, r).
Since π(v1, ea) is into ea, we thus see that ea is on π(v1, ca−1) if v1 = (i, ti) and that ea is
on π(ca+1, v1) if v1 = (j, tj). Consequently, there are at most a− 2 colliders on π(v1, ea)
if v1 = (i, ti) and there are most nc − (a + 1) colliders on π(v1, ea) if v1 = (j, tj) . In
summary, there are most (a− 2)+ (nc− a) + 1 = (nc− (a+1))+ (a− 1)+ 1 = nc− 1
colliders on π′.

Thus, if the collection of paths ρ1, . . . , ρnc does not fulfill the fourth condition of a collider
extension structure of π with respect to S and O(t−p, t), then there is path π′ as in point 2 of
this lemma. To complete this proof it is therefore sufficient to show the following statement:
If the collection of paths ρ1, . . . , ρnc fulfills the first four conditions of a collider extension
structure of π with respect to S and O(t− p, t), then this collection of paths also fulfills the
fifth condition of a collider extension structure (and hence is a collider extension structure)
or there is path π′ as in point 2 of the lemma.

Step 3: The fifth property of collider extension structures holds or existence of π′

Assume there are 1≤ a, b≤ nc with a < b such that ρa and ρb intersect. Then, at least one of
these paths must be nontrivial because ca ̸= cb. If one of them is trivial and the other one is
nontrivial, say ρa is trivial and ρb is nontrivial, then ρb must contain ca and hence intersects
with π at a vertex other than ca, namely cb. Since this conclusion violates the fourth condition
of a collider extension structure of π with respect to S and O(t−p, t), as explained in the last
paragraph of step 2 we do not need to consider this situation. Consequently, we can assume
that both ρa and ρb are nontrivial and intersect π at, respectively, ca and cb only.

The fact that both ρa and ρb are nontrivial implies S= S\{ca, cb}, see step 1 of this proof.
Let fab be the vertex closest to ca on ρa that is also on ρb. Because ρa and ρb respectively
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intersect π at ca and cb only, fab is neither ca nor cb and both ρa(ca, fab) and ρb(fab, cb) are
nontrivial paths. Moreover, fab is an ancestor of S by means of the directed path λa(fab, Sa)
from fab to Sa ∈ S. Let π′ be the concatenation π((i, ti), ca) ⊕ ρa(ca, fab) ⊕ ρb(fab, cb) ⊕
π(cb, (j, tj)), which by the assumptions on ρa and ρb as well as the definition of fab is a path
(rather than a walk) in D between (i, ti) and (j, tj). Consider the four constituting subpaths
of π′:

1. First, π((i, ti), ca) is active given S \ {(i, ti), ca}= S because π is active given S.
2. Second and similar to the first point, π(cb, (j, tj)) is active given S \ {cb, (j, tj)}.
3. Third, ρa(ca, fab) is active given S \ {da} since ρa is active given S \ {da} (see the last

paragraph in part 1 of this proof). There are two cases:
a) If fab = da, then ρa(ca, fab) is active given S \ {ca, fab}= S \ {fab}= S \ {da}.
b) If fab ̸= da, then fab /∈ S (because no vertex on ρa other than da is in S) and da is

not on ρa(ca, fab). Because ρa(ca, fab) is collider-free, we thus see that ρa(ca, fab) is
active given S \ {ca, fab}= S= {da} ∪ (S \ {da}).

Thus, ρa(ca, fab) is active given S \ {ca, fab}.
4. Fourth and similar to the third point, ρa(fab, cb) is active given S \ {fab, cb}.

Since the junction points ca and cb are noncolliders on π′ and not in S, whereas the third
junction point fab is a collider on π′ and an ancestor of S, Lemma 3.3.1 in Spirtes, Glymour
and Scheines (2000) asserts that π′ is active given S. Lastly, there are exactly (a− 1) + 1 +
(nc − b) = nc − (b− a)≤ nc − 1 colliders on π′.

Thus, if ρ1, . . . , ρnc fulfills the first four conditions of a collider extension structure of π
with respect to S and O(t− p, t), then it also fulfills the fifth condition or there is a path π′

as in point 2 of the lemma.

By induction over the number of colliders nc, using Lemma D.23 as the induction base
case and Lemma D.25 for the induction step, we thus arrive at the following conclusion: For
the purpose of proving Lemma 4.14 it is thus sufficient to consider d-connecting paths π in
D for which there is a collider extension structure of π with respect to S and O(t − p, t).
This reasoning allows to overcome the first complication mentioned above in the following
way (see Lemma D.29).

DEFINITION D.26 (Notation for remaining parts of the proof). Given the assumptions
and notation of Definition D.24, let ρ1, . . . , ρnc be a collider extension structure of π with
respect to S and O(t−p, t). We let ρ0 and ρnc+1 be the trivial paths that, respectively, consist
of c0 = d0 = (i, ti) and cnc+1 = dnc+1 = (j, tj) only. Moreover, for all 0≤ a1 < a2 ≤ nc +1
we let πa1,a2 = π(ca1

, ca2
) and π̃a1,a2 = ρa1(da1

, ca1
)⊕ πa1,a2 ⊕ ρa2 .

REMARK (on Definition D.26). The concatenation π̃a1,a2 is a path (rather than a walk)
in D according to the fourth and fifth property of collider extension structures, and both
end-points of π̃a1,a2 are in O(t− p, t) (according to the first property of collider extension
structures).

LEMMA D.27. Given the assumptions and notation of Definition D.26, it holds for all
0≤ a≤ nc:

1. π̃a,a+1 is active given S \ {da, da+1}.
2. π̃a,a+1

ci , the canonical induced path of π̃a,a+1, is active given S \ {da, da+1}.

REMARK (on Lemma D.27). These two statements concern different graphs: The first
statement is with respect to D, the second statement is with respect to Dc(Mp(D)).
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PROOF OF LEMMA D.27. 1. Since ρa and ρa+1 are trivial paths or nontrivial paths out
of, respectively, ca and ca+1 and since πa,a+1 is collider-free, π̃a,a+1 is collider-free. Thus,
assuming that π̃a,a+1 is blocked given S \ {da, da+1}, there is a non-end-point noncollider
v on π̃a,a+1 with v ∈ S \ {da, da+1}. This vertex cannot be on ρa(da, ca) because according
to the definition of collider extension structures the opposite requires v = da. Since v can
similarly not be on ρa+1, v must be a non-end-point vertex on πa1,a2 . However, then v must
be a non-end-point noncollider on π, which is a contradiction because v ∈ S and π is active
given S.

2. Since π̃a,a+1 is collider-free, as shown in the proof of part 1 of Lemma D.27, and since
both da and da+1 are by definition in O(t− p, t), the canonical induced path π̃a,a+1

ci exists.
The statement follows by combining part 1 of Lemma D.27 with part 5 of Lemma D.22.

At this point, we face the second complication mentioned above: We can now not straight
away apply Lemma 3.3.1 in Spirtes, Glymour and Scheines (2000) to the ordered sequence
of paths π̃0,1ci , . . . , π̃

nc,nc+1
ci in order to infer the existence of a path between d0 = (i, ti) and

dnc+1 = (j, tj) in Dc(Mp(D)) that is active given S. To recall, the reason is that π̃a,a+1
ci may

be out of one of its end-point vertices although π̃a,a+1 is into this vertex. To resolve this
complication, we now show that such a situation requires the existence of a certain inducing
path in D and hence the existence of an additional edge in Dc(Mp(D)) which can be used
to bypass that vertex.

DEFINITION D.28 (Canonical paths). Let π be a path in D between distinct observable
vertices (i, ti) and (j, tj) with t − p ≤ ti, tj ≤ p. A path πc between (i, ti) and (j, tj) in
Dc(Mp(D)) is canonical with respect to π if all of the following holds:

1. All observable vertices on πc are also on π.
2. If (k1, t1), (k2, t2) and (k3, t3) are distinct observable vertices on πc and (k2, t2) is on
πc((k1, t1), (k3, t3)), then (k2, t2) is on π((k1, t1), (k3, t3)).

3. πc is collider-free.
4. If (k1, t1) and (k2, t2) are distinct observable vertices on πc, then π((k1, t1), (k2, t2)) is

an inducing path relative to O(max(t1, t2)− p, t)[πc((k1, t1), (k2, t2))].

REMARK (on Definition D.28). First, Lemma D.22 implies that the canonically induced
path πci of a collider-free path π between distinct observable vertices (i, ti) and (j, tj) with
t− p ≤ ti, tj ≤ p is canonical with respect to π. Second, while the first property in Defini-
tion D.28 is implied by the second property and would thus not be needed, we have included
it in the definition for clarity.

LEMMA D.29. Given the assumptions and notation of Definition D.26, let 0 ≤ a1 <
a2 < a3 ≤ nc+1. Assume that π̃a1,a2

c is canonical with respect to π̃a1,a2 and active given S \
{da1

, da2
}, and that π̃a2,a3

c is canonical with respect to π̃a2,a3 and active given S\{da2
, da3
}.

Then: If at least one of π̃a1,a2
c and π̃a2,a3

c is out of da2
, then there is a path π̃a1,a3

c that is
canonical with respect to π̃a1,a3 and active given S \ {da1

, da3
}.

PROOF OF LEMMA D.29. We here assume that π̃a2,a3
c is out of da2

, the case in which
π̃a2,a3
c is into da2

and π̃a1,a2
c out of da2

follows equivalently. To simplify notation we write
t(v) for the time step of a vertex v, i.e., v = (·, t(v)). We divide the proof into 14 steps.

Step 1: No vertex on π̃a1,a2 or π̃a2,a3 is after t
If there would be a vertex on π̃a1,a2 (on π̃a2,a3 ) that is after t, then this path would have
a collider after t because of time order of D and because both da1

and da2
(both da2

and
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da3
) are not after t. Again using time order, this collider could not be unblocked by S \

{da1
, da2
} (by S \ {da2

, da3
}) because by definition of S all vertices in S are not after t (see

Definition D.24). This conclusion contradicts the assumption that π̃a1,a2 (on π̃a2,a3 ) is active
given S \ {da1

, da2
} (given S \ {da2

, da3
}).

Step 2: ca2
and da2

are in D ancestors of da3

Because π̃a2,a3
c is out of da2

and collider-free (the latter by means of being canonical with
respect to π̃a2,a3 ), the path π̃a2,a3

c is directed from da2
to da3

. Hence, all vertices on π̃a2,a3
c are

ancestors of da3
and descendants of da2

in Dc(Mp(D)) and thus, by part 2 of Lemma D.15,
also in D. Because ca2

is an ancestor of da2
in D by means of ρa2 , we thus see that ca2

is in
D an ancestor of every vertex on π̃a2,a3

c .
Step 3: Definition and properties of ga2,a3

and properties of π̃a2,a3(ca2
, ga2,a3

)

Let ga2,a3
be the vertex next to da2

on π̃a2,a3
c (this may be da3

). Since π̃a2,a3
c is directed

from da2
to da3

, the path π̃a2,a3
c is into ga2,a3

. Because in Dc(Mp(D)) there are no edges
into unobservable vertices, we see that ga2,a3

is observable. Moreover, using time order of
Dc(Mp(D)) and that π̃a2,a3

c is directed from da2
to da3

, we see that ga2,a3
is not before da2

and not after da3
. Hence, ga2,a3

is within the observed time window [t− p, t].
Since π̃a2,a3

c is canonical with respect to π̃a2,a3 and ga2,a3
is on π̃a2,a3

c , the vertex ga2,a3

is on π̃a2,a3 = ρa2(da2
, ca2

)⊕ πa2,a3 ⊕ ρa3 . If ga2,a3
were on ρa2 , then ga2,a3

would in D be
an ancestor of da2

by means of ρa2(ga2,a3
, da2

). This ancestorship would violate acyclic-
ity of D because ga2,a3

is a descendant of da2
according to step 2. Hence, ga2,a3

is on
π̃a2,a3(ca2

, da3
) = πa2,a3 ⊕ ρa3 excluding ca2

. Moreover, π̃a2,a3(ca2
, ga2,a3

) is a nontrivial
subpath of π̃a2,a3(ca2

, da3
) and of π̃a2,a3(da2

, ga2,a3
). Lastly, π̃a2,a3(ca2

, ga2,a3
) is into ca2

because π is into ca2
.

Since π̃a2,a3
c is canonical with respect to π̃a2,a3 and t(da2

) ≤ t(ga1,a2
) by time order,

π̃a2,a3(da2
, ga2,a3

) is an inducing path relative to O(t(ga2,a3
)−p, t)[π̃a2,a3

c (da2
, ga2,a3

)]. Here,
the simplification O(t(ga2,a3

) − p, t)[π̃a2,a3
c (da2

, ga2,a3
)] = O(t(ga2,a3

) − p, t) applies be-
cause π̃a2,a3

c (da2
, ga2,a3

) by definition of ga2,a3
consists of its end point vertices da2

and
ga2,a3

only. Using the defining properties of inducing paths, we thus see that the path
π̃a2,a3(da2

, ga2,a3
) has the following two properties:

1. First, if v is an observable non-end-point noncollider on π̃a2,a3(da2
, ga2,a3

), then t(v) <
t(ga2,a3

)− p or t(v)> t. Because step 1 excludes t(v)> t, in fact t(v)< t(ga2,a3
)− p.

2. Second, if v is a collider on π̃a2,a3(da2
, ga2,a3

), then v is in D an ancestor of da2
or ga2,a3

.
Since da2

is in D an ancestor of ga2,a3
, the vertex v is, in fact, an ancestor of ga2,a3

.

Both of these statements are also true for π̃a2,a3(ca2
, ga2,a3

) because it is a subpath of
π̃a2,a3(da2

, ga2,a3
).

Step 4: All observable vertices on ρa2 other than da2
are before t(ga2,a3

)− p
Let v ̸= da2

be an observable vertex on ρa2 . Since ga2,a3
is not on ρa2 , see step 2, v is then

a non-end-point vertex on π̃a2,a3(da2
, ga2,a3

). Moreover, since ρa2 is directed from ca2
to

da2
, the vertex v is a noncollider on π̃a2,a3(da2

, ga2,a3
). From step 3 we then get that t(v)<

t(ga2,a3
)− p or t(v)> t, and step 1 further excludes the case t(v)> t.

Step 5: Definition and properties of ha1,a2
and properties of π̃a1,a2(ha1,a2

, ca2
)

Let ha1,a2
be the observable vertex on π̃a1,a2

c closest to da2
other than da2

itself that is not
more than p time steps before ga2,a3

, i.e., for which t(ga1,a2
)− p≤ t(ha1,a2

) (note that ha1,a2

may be da1
).

Since π̃a1,a2
c is canonical with respect to π̃a1,a2 , the vertex ha1,a2

is on π̃a1,a2 =
ρa1(da1

, ca1
)⊕πa1,a2⊕ρa2 . Due to step 4 and t(ga1,a2

)−p≤ t(ha1,a2
), the vertex ha1,a2

can-
not be on ρa2 unless ha1,a2

= da2
, which is, however, excluded by definition. Hence, ha1,a2

is
on π̃a1,a2(da1

, ca2
) = ρa1(da1

, ca1
)⊕ πa1,a2 excluding ca2

(because ca2
is on ρa2

). Moreover,
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π̃a1,a2(ha1,a2
, ca2

) is a nontrivial subpath of π̃a1,a2(da1
, ca2

) and of π̃a2,a3(ha1,a2
, da2

). Lastly,
π̃a1,a2(ha1,a2

, ca2
) is into ca2

because πa1,a2 is into ca2
.

Write thd = max(t(ha1,a2
), t(da2

)) and thg = max(t(ha1,a2
), t(ga2,a3

)). Since π̃a1,a2
c is

canonical with respect to π̃a1,a2 , the path π̃a1,a2(ha1,a2
, da2

) is an inducing path relative
to O(thd − p, t)[π̃a1,a2

c (ha1,a2
, da2

)]. In particular, π̃a1,a2(ha1,a2
, da2

) has the following two
properties:

1. First, if v is an observable non-end-point noncollider on π̃a1,a2(ha1,a2
, da2

), then t(v) <
thd − p or t(v)> t or v is on π̃a1,a2

c (ha1,a2
, da2

). The case t(v)> t is excluded by step 1.
If v is on π̃a1,a2

c (ha1,a2
, da2

), then t(v) < t(ga1,a2
)− p by definition of ha1,a2

. Note that
thd − p≤ thg − p and t(ga1,a2

)− p≤ thg − p. Hence, in any case, t(v)< thg − p.
2. Second, if v is a collider on π̃a1,a2(ha1,a2

, da2
), then v is in D an ancestor of ha1,a2

or da2
.

Because da2
is inD an ancestor of ga2,a3

, the vertex v is, in fact, inD an ancestor of ha1,a2

or ga2,a3
.

Both of these statements are also true for π̃a1,a2(ha1,a2
, ca2

) because π̃a1,a2(ha1,a2
, ca2

) is a
subpath of π̃a1,a2(ha1,a2

, da2
).

Step 6: ga2,a3
and ha1,a2

are adjacent or almost adjacent in Dc(Mp(D))
Consider the concatentation ψ = π̃a1,a2(ha1,a2

, ca2
)⊕ π̃a2,a3(ca2

, ga2,a3
). This concatenation

is a path (rather than a walk) in D because π̃a2,a3(ca2
, ga2,a3

) is a subpath of πa2,a3 ⊕ ρa3

and because different ρa do not intersect (by definition of collider extension structures). The
junction point ca2

is a collider on ψ because both π̃a1,a2(ha1,a2
, ca2

) and π̃a2,a3(ca2
, ga2,a3

) are
into ca2

, see steps 5 and 3. We now show that ψ is an inducing path relative to O(thg−p, thg).
To this end, we separately look at the colliders and non-end-point noncolliders on ψ.

Colliders: According to steps 3 and 5, every collider on π̃a1,a2(ha1,a2
, ca2

) and on
π̃a2,a3(ca2

, ga2,a3
) is in D an ancestor of ha1,a2

or ga2,a3
. The junction point ca2

is in D
an ancestor of ga2,a3

according to step 1.
non-end-point noncolliders: Let v be a non-end-point noncollider on ψ. Since ca2

is a
collider on ψ, the vertex v is then a non-end-point noncollider on π̃a1,a2(ha1,a2

, ca2
) or a non-

end-point noncollider on π̃a2,a3(ca2
, ga2,a3

). With steps 3 and 5 we then get t(v)< thg − p.
Consequently, ψ is an inducing path relative to the set of observable vertices within

O(thg − p, thg). By shifting this structure forward in time by t − thg time steps, we see
that the forward shifted copies of ga2,a3

and ha1,a2
are adjacent inMp(D). Hence, ga2,a3

and
ha1,a2

are adjacent or almost adjacent in Dc(Mp(D)) according to Lemma D.11.
For reference further below we note that ψ is also on inducing path relative to O(thg−p, t).

This statement follows because, as shown, if v is a non-end-point noncollider on ψ, then
t(v)< thg − p and thus v is not in O(thg − p, t) \O(thg − p, thg).

Step 7: Properties of π̃a2,a3
c (ga2,a3

, da3
)

Since π̃a2,a3
c is directed from da2

to da3
, see step 2, π̃a2,a3

c (ga2,a3
, da3

) is the trivial path
consisting of the single vertex ga2,a3

= da3
or a nontrivial directed path from ga2,a3

to da3
,

and hence out of ga2,a3
and into da3

. In particular, π̃a2,a3
c (ga2,a3

, da3
) is collider-free.

Consider any vertex v on π̃a2,a3
c (ga2,a3

, da3
). Because in Dc(Mp(D)) there are no edges

into unobservable vertices and because ga2,a3
is observable, v is observable. Moreover, be-

cause π̃a2,a3
c is canonical with respect to π̃a2,a3 , the vertex v is on π̃a2,a3(ga2,a3

, da3
). Since

ga2,a3
is on πa2,a3 ⊕ ρa3 excluding ca2

, see step 3, also v is on πa2,a3 ⊕ ρa3 excluding ca2
. In

particular, v is not on ρa2 .
Step 8: Properties of π̃a1,a2

c (da1
, ha1,a2

)

Because π̃a1,a2
c is canonical with respect to π̃a1,a2 , the path π̃a1,a2

c is collider-free. Conse-
quently, also π̃a1,a2

c (da1
, ha1,a2

) is collider-free.
Consider any observable vertex v on π̃a1,a2

c (da1
, ha1,a2

). Because π̃a1,a2
c is canonical with

respect to π̃a1,a2 , the vertex v is on π̃a1,a2(da1
, ha1,a2

). Since ha1,a2
is on ρa1(da1

, ca1
)⊕πa1,a2
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excluding ca2
, see step 5, also v is on ρa1(da1

, ca1
)⊕ πa1,a2 excluding ca2

. In particular, we
conclude that v is not on ρa2 .

We now show that π̃a1,a2
c (da1

, ha1,a2
) and π̃a2,a3

c (ga2,a3
, da3

) do not intersect. Assume the
opposite, i.e., let w be on both π̃a1,a2

c (da1
, ha1,a2

) and π̃a2,a3
c (ga2,a3

, da3
). There are two cases:

1. First, assume w is observable. Then, according to step 7 and the previous discussion in the
current step,w is on ρa1(da1

, ca1
)⊕πa1,a2 excluding ca2

and on πa2,a3⊕ρa3 excluding ca2
.

These observations contradict each other because ρa1(da1
, ca1

)⊕ πa1,a2 and πa2,a3 ⊕ ρa3

intersect at ca2
only.

2. Second, assumew is unobservable. Then,w is a non-end-point vertex of π̃a1,a2
c (da1

, ha1,a2
)

and of non-end-point vertex of π̃a2,a3
c (ga2,a3

, da3
). Moreover, as follows immediately from

the definition of canonical ts-DAGs, every unobservable vertex inDc(Mp(D)) is adjacent
to exactly two vertices, both of which are observable. We thus find that π̃a1,a2

c (da1
, ha1,a2

)
and π̃a2,a3

c (ga2,a3
, da3

) also intersect at an observable vertex, which has already been ruled
out in the previous case and thus is a contradiction.

Step 9: Construction of π̃a1,a3
c

The fact that ga2,a3
and ha1,a2

are adjacent or almost adjacent in Dc(Mp(D)), see step
6, means that in Dc(Mp(D)) there is a path κa2 = ha1,a2

→ga2,a3
or κa2 = ha1,a2

←ga2,a3

or κa2 = ha1,a2
←ua2

→ga2,a3
with ua2

unobservable. Let π̃a1,a3
c be the concatenation

π̃a1,a2
c (da1

, ha1,a2
)⊕ κa2 ⊕ π̃a2,a3

c (ga2,a3
, da3

). We now show that π̃a1,a3
c is a path.

In step 8 we have already shown that π̃a1,a2
c (da1

, ha1,a2
) and π̃a2,a3

c (ga2,a3
, da3

) do not
intersect. Thus, if κa2 = ha1,a2

→ga2,a3
or κa2 = ha1,a2

←ga2,a3
, then π̃a1,a3

c contains every
vertex at most once and hence is a path. Now assume that κa2 = ha1,a2

←ua2
→ga2,a3

. In this
case, we show that ua2

is neither on π̃a1,a2
c (da1

, ha1,a2
) nor π̃a2,a3

c (ga2,a3
, da3

):

1. First, because as shown in step 7 all vertices on π̃a2,a3
c (ga2,a3

, da3
) are observable, ua2

cannot be on π̃a2,a3
c (ga2,a3

, da3
).

2. Second, if ua2
is on π̃a1,a2

c (da1
, ha1,a2

), then it is a non-end-point vertex of this path. Since
every unobservable vertex in Dc(Mp(D)) is adjacent two exactly vertices, which for ua2

are ha1,a2
and ga2,a3

, we thus find that ga2,a3
is on π̃a1,a2

c (da1
, ha1,a2

). This observation
contradicts the fact that π̃a1,a2

c (da1
, ha1,a2

) and π̃a2,a3
c (ga2,a3

, da3
) have no common vertex.

For reference below we note that by construction π̃a1,a2
c (da1

, ha1,a2
) = π̃a1,a3

c (da1
, ha1,a2

)
and π̃a2,a3

c (ga2,a3
, da3

) = π̃a1,a3
c (ga2,a3

, da3
).

Step 10: π̃a1,a3
c is collider-free

Since the three constituting subpaths π̃a1,a2
c (da1

, ha1,a2
), κa2 and π̃a2,a3

c (ga2,a3
, da3

) are
collider-free, only ha1,a2

or ga2,a3
can potentially be colliders on πa1,a3

c .
First, because π̃a2,a3

c (ga2,a3
, da3

) is a trivial path or a nontrivial path and out of ga2,a3
, see

step 7, ga2,a3
is a noncollider on π̃a1,a3

c .
Second, assume that ha1,a2

is a collider on π̃a1,a3
c . This premise requires that κa2 is

ha1,a2
←ga2,a3

or ha1,a2
←ua2

→ga2,a3
and that π̃a1,a2

c (da1
, ha1,a2

) is nontrivial and into ha1,a2
.

In combination with the facts that π̃a1,a2
c is collider-free and that ha1,a2

̸= ca2
this form of

π̃a1,a2
c (da1

, ha1,a2
) requires that π̃a1,a2

c (ha1,a2
, ca2

) is a nontrivial directed path from ha1,a2

to ca2
. Hence, ha1,a2

is an ancestor of ca2
in Dc(Mp(D)) and, thus, also an ancestor in D.

Together with step 2 this ancestral relationship shows that ha1,a2
is inD an ancestor of ga2,a3

.
Lemma D.12 in combination with the definition of κa2 then requires κa2 = ha1,a2

→ga2,a3
, a

contradiction.
Step 11: All observable vertices on π̃a1,a3

c are also on π̃a1,a3

Recall from above that π̃a1,a3
c = π̃a1,a2

c (da1
, ha1,a2

)⊕ κa2 ⊕ π̃a2,a3
c (ga2,a3

, da3
) and π̃a1,a3 =

ρa1(da1
, ca1

)⊕πa1,a2⊕πa2,a3⊕ρa3 (the latter because πa1,a2⊕πa2,a3 = πa1,a3 ). According to
step 7, every vertex on π̃a2,a3

c (ga2,a3
, da3

) is on πa2,a3⊕ρa3 and hence on π̃a1,a3 . According to
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step 8, every observable vertex on π̃a1,a2
c (da1

, ha1,a2
) is on ρa1(da1

, ca1
)⊕ πa1,a2 and hence

on π̃a1,a3 . Lastly, due to the three particular forms that the path κa2 may have, see step 9,
every observable vertex on κa2 is on π̃a2,a3

c (ga2,a3
, da3

) or π̃a1,a2
c (da1

, ha1,a2
) and hence on

π̃a1,a3 .
Step 12: π̃a1,a3

c fulfills point 2. in Definition D.28
For reference below we note the following results:

1. If w1 and w2 are on π̃a1,a2(da1
, ha1,a2

) or on π̃a1,a3(da1
, ha1,a2

), then π̃a1,a2(w1,w2) =
π̃a1,a3(w1,w2). This equality follows because ha1,a2

and thus also w1 and w2 are on
ρa1(da1

, ca1
)⊕ πa1,a2 .

2. If w1 and w2 are observable vertices on π̃a1,a2
c (da1

, ha1,a2
), then π̃a1,a2(w1,w2) =

π̃a1,a3(w1,w2). This equality follows from the previous result because w1 and w2 are
on π̃a1,a2(da1

, ha1,a2
) by means of π̃a1,a2

c being canonical with respect to π̃a1,a2 .
3. If w1 and w2 are on π̃a2,a3(ga2,a3

, da3
) or on π̃a1,a3(ga2,a3

, da3
), then π̃a2,a3(w1,w2) =

π̃a1,a3(w1,w2). This equality follows because ga2,a3
and thus also w1 and w2 are on

πa2,a3 ⊕ ρa3 .
4. If w1 and w2 are observable vertices on π̃a2,a3

c (ga1,a2
, da3

), then π̃a2,a3(w1,w2) =
π̃a1,a3(w1,w2). This equality follows from the previous result because w1 and w2 are
on π̃a2,a3(ga2,a3

, da3
) by means of π̃a2,a3

c being canonical with respect to π̃a2,a3 .

Let v1, v2 and v3 be distinct observable vertices on π̃a1,a3
c such that v2 is on π̃a1,a3

c (v1, v3)
and, without loss of generality, v1 is closer to da1

on π̃a1,a3
c than v3 is to da1

on π̃a1,a3
c . We

distinguish several collectively exhaustive cases:

1. First, assume v3 is on π̃a1,a3
c (da1

, ha1,a2
). This premise implies that also both v1 and v2 are

on π̃a1,a3
c (da1

, ha1,a2
) = π̃a1,a2

c (da1
, ha1,a2

). Hence, v2 is on π̃a1,a2
c (v1, v3) = π̃a1,a3

c (v1, v3)
and thus, using that π̃a1,a2

c is canonical with respect to π̃a1,a2 , also on π̃a1,a2(v1, v3). More-
over, using the second result at the beginning of this step, π̃a1,a2(v1, v3) = π̃a1,a3(v1, v3).
Hence, v2 is on π̃a1,a3(v1, v3).

2. Second, assume that v2 is on π̃a1,a3
c (da1

, ha1,a2
) excluding ha1,a2

and that v3 is not
on π̃a1,a3

c (da1
, ha1,a2

). This premise implies that also v1 is on π̃a1,a3
c (da1

, ha1,a2
) =

π̃a1,a2
c (da1

, ha1,a2
). Following the same steps as in the previous case with v3 replaced

by ha1,a2
, we get that v2 is on π̃a1,a3(v1, ha1,a2

) = π̃a1,a2(v1, ha1,a2
). Moreover, v3 is on

π̃a2,a3
c (ga2,a3

, da3
) = π̃a1,a3

c (ga2,a3
, da3

) and hence, using that π̃a2,a3
c is canonical with re-

spect to π̃a2,a3 , on π̃a2,a3(ga2,a3
, da3

). This observation shows that π̃a1,a3(v1, ha1,a2
) is a

subpath of π̃a1,a3(v1, v3) and hence that v2 is on π̃a1,a3(v1, v3).
3. Third, assume v1 is on π̃a1,a3

c (ga2,a3
, da3

). This premise implies that also both v2 and v3 are
on π̃a1,a3

c (ga2,a3
, da3

) = π̃a2,a3
c (ga2,a3

, da3
). Hence, v2 is on π̃a2,a3

c (v1, v3) = π̃a1,a3
c (v1, v3)

and thus, using that π̃a2,a3
c is canonical with respect to π̃a2,a3 , also on π̃a2,a3(v1, v3). More-

over, using the fourth result at the beginning of this step, π̃a2,a3(v1, v3) = π̃a1,a3(v1, v3).
Hence, v2 is on π̃a1,a3(v1, v3).

4. Fourth, assume that v2 is on π̃a1,a3
c (ga2,a3

, da3
) excluding ga2,a3

and that v1 is not
on π̃a1,a3

c (ga2,a3
, da3

). This premise implies that also v3 is on π̃a1,a3
c (ga2,a3

, da3
) =

π̃a1,a2
c (ga2,a3

, da3
). Following the same steps as in the previous case with v1 replaced

by ga2,a3
, we get that v2 is on π̃a1,a3(ga2,a3

, v3) = π̃a2,a3(ga2,a3
, v3). Moreover, v1 is on

π̃a1,a2
c (da1

, ha1,a2
) = π̃a1,a3

c (da1
, ha1,a2

) and hence, using that π̃a1,a2
c is canonical with re-

spect to π̃a1,a2 , on π̃a1,a2(da1
, ha1,a2

). This observation shows that π̃a1,a3(ga2,a3
, v3) is a

subpath of π̃a1,a3(v1, v3) and hence that v2 is on π̃a1,a3(v1, v3).
5. Fifth, assume that v2 is ha1,a2

or ga2,a3
. This premise implies that v1 is on the path

π̃a1,a2
c (da1

, ha1,a2
) = π̃a1,a3

c (da1
, ha1,a2

) and hence, because π̃a1,a2
c is canonical with re-

spect to π̃a1,a2 , on π̃a1,a3(da1
, ha1,a2

) = π̃a1,a2(da1
, ha1,a2

), where the latter equality fol-
lows by the first result at the beginning of this step. Moreover, the premise implies
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that v3 is on π̃a2,a3
c (ga1,a2

, da2
) = π̃a1,a3

c (ga1,a2
, da2

) and hence, because π̃a2,a3
c is canon-

ical with respect to π̃a2,a3 , on π̃a1,a3(ga1,a2
, da2

) = π̃a2,a3(ga1,a2
, da2

), where the lat-
ter equality follows by the third result at the beginning of this step. These considera-
tions show that π̃a1,a3(v1, v3) decomposes as π̃a1,a3(v1, ha1,a2

)⊕ π̃a1,a3(ha1,a2
, ga2,a3

)⊕
π̃a1,a3(ga2,a3

, v3). Hence, v2 is on π̃a1,a3(v1, v3) irrespective of whether v2 = ha1,a2
or

v2 = ga2,a3
.

Step 13: π̃a1,a3
c fulfills point 4. in Definition D.28

Let v1 and v2 be two distinct observable vertices on π̃a1,a3
c such that, without loss of general-

ity, v1 is closer to da1
on π̃a1,a3

c than v2 is to da1
on π̃a1,a3

c . We distinguish three collectively
exhaustive cases:

1. First, assume v2 is on π̃a1,a3
c (da1

, ha1,a2
). Then, both v1 and v2 are on π̃a1,a2

c (da1
, ha1,a2

) =
π̃a1,a3
c (da1

, ha1,a2
) and hence π̃a1,a2

c (v1, v2) = π̃a1,a3
c (v1, v2). Since π̃a1,a2

c is canoni-
cal with respect to π̃a1,a2 , we thus find that π̃a1,a2(v1, v2) is an inducing path rel-
ative to O(max(t(v1), t(v2)) − p, t)[π̃a1,a3

c (v1, v2)]. The desired results follows since
π̃a1,a2(v1, v2) = π̃a1,a3(v1, v2) according to the second result at the beginning of step 12.

2. Second, assume v1 is on π̃a2,a3
c (ga2,a3

, da3
). Then, both v1 and v2 are on π̃a2,a3

c (ga2,a3
, da3

)
and hence π̃a1,a3

c (v1, v2) = π̃a2,a3
c (ga2,a3

, da3
). Since π̃a2,a3

c is canonical with respect to
π̃a2,a3 , we find that π̃a2,a3(v1, v2) is an inducing path relative to O(max(t(v1), t(v2))−
p, t)[π̃a1,a3

c (v1, v2)]. The desired results follows since π̃a2,a3(v1, v2) = π̃a1,a3(v1, v2) ac-
cording to the fourth result at the beginning of step 12.

3. Third, assume that neither of the previous two cases applies. Then, using that every
observable vertex on κa2 is on π̃a1,a2

c (da1
, ha1,a2

) or π̃a2,a3
c (ga2,a3

, da3
), the vertex v1

is on π̃a1,a3
c (da1

, ha1,a2
) and v2 is on π̃a1,a3

c (ga2,a3
, da3

). Thus, both ha1,a2
and ga2,a3

are on π̃a1,a3
c (v1, v2). Since π̃a1,a3

c is collider-free, we thus find that both ha1,a2
and

ga2,a3
are ancestors of v1 or v2 in Dc(Mp(D)) and, thus, ancestors in D. Moreover,

since π̃a1,a3
c fulfills point 2 in Definition D.28, v1 is on π̃a1,a3(da1

, ha1,a2
) and v2 is

on π̃a1,a3(ga2,a3
, da3

). Consequently, the path of interest π̃a1,a3(v1, v2) decomposes as
π̃a1,a3(v1, ha1,a2

) ⊕ π̃a1,a3(ha1,a2
, ga1,a2

) ⊕ π̃a1,a3(ga1,a2
, v2). We now individually look

at the three constituting subpaths:
a) By following the same steps as in the first case of this enumeration with v2 re-

placed by ha1,a2
, we get that π̃a1,a3(v1, ha1,a2

) is an inducing path relative to
O(tv1h − p, t)[π̃

a1,a3
c (v1, ha1,a2

)], where tv1h =max(t(v1), t(ha1,a2
)). Moreover, note

that π̃a1,a3
c (v1, ha1,a2

) is a subpath of π̃a1,a3
c (v1, v2). Since an inducing path relative to

some set O1 of observed vertices is also an inducing path relative to another set O2 of
observed with O2 ⊆O1, we get that π̃a1,a3(v1, ha1,a2

) is an inducing path relative to
O(tv1h − p, t)[π̃

a1,a3
c (v1, v2)].

b) Because ha1,a2
is on ρa1(da1

, ca1
)⊕πa1,a2 and ga2,a3

is on πa2,a3⊕ρa3 , see steps 5 and
3, the path π̃a1,a3(ha1,a2

, ga1,a2
) decomposes as π̃a1,a2(ha1,a2

, ca2
)⊕ π̃a2,a3(ca2

, ga1,a2
).

This decomposition shows that π̃a1,a3(ha1,a2
, ga1,a2

) = ψ, with ψ as considered in step
6. Hence, π̃a1,a3(ha1,a2

, ga1,a2
) is an inducing path relative to O(thg − p, t) and, thus,

an inducing path relative to O(thg − p, t)[π̃a1,a3
c (v1, v2)].

c) By following the same steps as in the second case of this enumeration with v1
replaced by ga1,a2

, we get that π̃a2,a3(ga2,a3
, v2) is an inducing path relative to

O(tgv2
− p, t)[π̃a1,a3

c (ga2,a3
, v2)], where tgv2

= max(t(ga1,a2
), t(v)). Moreover, since

π̃a1,a3
c (ga2,a3

, v3) is a subpath of π̃a1,a3
c (v1, v2), we get that π̃a2,a3(ga2,a3

, v2) is induc-
ing path relative to O(tgv2

− p, t)[π̃a1,a3
c (v1, v2)].

To proof the desired inducing path property of π̃a1,a3(v1, v2), we now separately consider
its colliders and observable non-end-point noncolliders:
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a) First, let v be a collider on π̃a1,a3(v1, v2). Then, v is a collider on one of the three con-
stituting subpaths or is ha1,a2

or ga2,a3
. In all cases, using the inducing path properties

of the constituting subpaths, v is in D an ancestor of v1 or ha1,a2
or ga2,a3

or v2. Since,
as shown above in this step, both ha1,a2

and ga2,a3
are in D ancestors of v1 or v2, we

get that v is in D an ancestor of v1 or v2.
b) Second, let v be an observable non-end-point noncollider on π̃a1,a3(v1, v2). Since
ha1,a2

and ga2,a3
are in D ancestors of v1 or v2, time order of D guarantees that

t(ha1,a2
) ≤ tv1v2

and t(ga2,a3
) ≤ tv1v2

, where tv1v2
= max(t(v1), t(v2)). These in-

equalities imply tv1h ≤ tv1v2
, thg ≤ tv1v2

, and tgv2
≤ tv1v2

. Thus, using the inducing
path properties of the constituting subpaths in combination with t(v) ≤ t, see step 1,
we find that t(v)< tv1v2

− p if v is not a non-end-point vertex of π̃a1,a3
c (v1, v2).

Thus, π̃a1,a3(v1, v2) is an inducing path relative to O(tv1v2
− p, t)[π̃a1,a3

c (v1, v2)].

The combination of the four steps 11, 12, 10 and 13 shows that π̃a1,a3
c is canonical with

respect to π̃a1,a3 .
Step 14: π̃a1,a3

c is active given S \ {da1
, da3
}

Recall that π̃a1,a3
c = π̃a1,a2

c (da1
, ha1,a2

) ⊕ κa2 ⊕ π̃a2,a3
c (ga2,a3

, da3
) and assume π̃a1,a3

c is
blocked given S \ {da1

, da3
}. Since π̃a1,a3

c is collider-free, see step 10, this premise means
there is a non-end-point vertex v on π̃a1,a3

c with v ∈ S \ {da1
, da3
}. There are three collec-

tively exhaustive cases:

1. First, assume v is on π̃a1,a2
c (da1

, ha1,a2
). Then, because π̃a1,a2

c is canonical with respect
to π̃a1,a2 , the vertex v is on π̃a1,a2(da1

, ha1,a2
). Since π̃a1,a2(da1

, ha1,a2
) is a subpath of

ρa1(da1
, ca1

) ⊕ πa1,a2 excluding ca2
, see step 5, v is not on ρa2 . In particular, v ̸= da2

and thus v ∈ S \ {da1
, da2
}. Moreover, since v ̸= da1

and ha1,a2
̸= da2

by the respective
definitions of v and ha1,a2

, the vertex v is a non-end-point vertex on π̃a1,a2
c . Since π̃a1,a2

c

is collider-free by means of being canonical with respect to π̃a1,a2 and since v ∈ S \
{da1

, da2
}, we arrive at a contradiction to the assumption that π̃a1,a2

c is active given S \
{da1

, da2
}.

2. Second, assume v is π̃a2,a3
c (ga2,a3

, da3
). Then, because π̃a2,a3

c is canonical with respect
to π̃a2,a3 , the vertex v is on π̃a2,a3(ga2,a3

, da3
). Since π̃a2,a3(ga2,a3

, da3
) is a subpath of

πa2,a3 ⊕ ρa2 excluding ca2
, see step 3, v is not on ρa2 . In particular, v ̸= da2

and thus
v ∈ S \ {da2

, da3
}. Moreover, since v ̸= da3

and ga1,a3
̸= da2

by the respective definitions
of v and ga2,a3

, the vertex v is a non-end-point vertex on π̃a2,a3
c . Since π̃a2,a3

c is collider-
free by means of being canonical with respect to π̃a2,a3 and since v ∈ S \ {da2

, da3
}, we

arrive at a contradiction to the assumption that π̃a2,a3
c is active given S \ {da2

, da3
}.

3. Third, assume v is on κa2 . Then, since every element of S is observable, v is ha1,a2
or

ga2,a3
and thus on π̃a1,a2

c (da1
, ha1,a2

) or π̃a2,a3
c (ga2,a3

, da3
). These cases have already been

covered by the previous two points.

We have thus shown that π̃a1,a3
c is active given S\{da1

, da3
}, which completes the proof.

In case at least one of π̃a1,a2
c = π̃a−1,a

ci and π̃a2,a3
c = π̃a,a+1

ci is out of da = da2
, we can

thus collectively replace them by a path π̃a1,a3
c between da1

= da−1 and da3
= da+1 in

Dc(Mp(D)) that is active given S \ {da1
, da3
}. Moreover, since π̃a1,a3

c is canonical with
respect to π̃a1,a3 and since Lemma D.29 only used that π̃a1,a2

c and π̃a2,a3
c are, respectively,

canonical with respect to π̃a1,a2 and π̃a2,a3 as well as , respectively, active given S\{da1
, da2
}

and S \ {da2
, da3
}, this procedure can be repeated in case, for example, π̃a1,a3

c or π̃a3,a4

ci is out
of da3

, and so on.

LEMMA D.30. Let (i, ti) and (j, tj) with t−p≤ ti, tj ≤ t be distinct observable vertices
in D and let S ⊆ O(t − p, t) \ {(i, ti), (j, tj)}. Then: If (i, ti) and (j, tj) are d-connected
given S in D, then (i, ti) and (j, tj) are d-connected given S in Dc(Mp(D)).
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PROOF OF LEMMA D.30. Let (i, ti) and (j, tj) be d-connected given S ⊆O(t− p, t) \
{(i, ti), (j, tj)}. Then, in D there is path π between (i, ti) and (j, tj) that is active given S.
The proof is by induction over nc, the number of colliders on π.

Induction base case: nc = 0
In this case, (i, ti) and (j, tj) are d-connected given S in Dc(Mp(D)) according to
Lemma D.23.

Induction step: nc→ nc + 1
In this case, π has nc+1≥ 1 colliders and according to the assumption of induction we have
already proven the statement for paths that have at most nc colliders.

We may without loss of generality assume that π has a collider extension structure, because
if not then according to Lemma D.25 there is path π′ between (i, ti) and (j, tj) in D with at
most nc colliders that is active given S and hence, by assumption of induction, (i, ti) and
(j, tj) are d-connected given S in Dc(Mp(D)). Therefore, the assumptions and notation of
Definition D.26 apply.

Consider the following algorithmic procedure:

1. For all 0≤ a≤ nc let π̃a,a+1
c be π̃a,a+1

ci , that is, let π̃a,a+1
c be the canonically induced path

of π̃a,a+1.
2. Set m to nc.
3. Let σ : {0,1, . . . ,m+ 1} 7→ {0,1, . . . , nc + 1} be the identity map.
4. While there is an integer a with 1 ≤ a ≤ m such that at least one of π̃σ(a−1),σ(a)

c and
π̃
σ(a),σ(a+1)
c is out of dσ(a):

a) Let b be the smallest such a.
b) Let π̃σ(b−1),σ(b+1)

c = π̃a1,a3
c be a path as in Lemma D.29 applied to π̃

σ(b−1),σ(b)
c =

π̃a1,a2
c and π̃σ(b),σ(b+1)

c = π̃a2,a3
c .

c) If σ(b− 1) = 0 and σ(b+1) = nc+1, then return π̃σ(b−1),σ(b+1)
c = π̃0,nc+1

c and termi-
nate.

d) Decrease m by one.
e) Let σ′ : {0,1, . . . ,m+ 1} 7→ {0,1, . . . , nc + 1} be such that σ′(a) = σ(a) for all 1 ≤
a < b and σ′(a) = σ(a+ 1) for all b≤ a≤m+ 1.

f) Replace σ by σ′.
5. Return the ordered sequence of paths π̃σ(0),σ(1)c , . . . , π̃

σ(m),σ(m+1)
c and terminate.

According to Lemma D.27 and Lemma D.22, the canonically induced paths π̃a,a+1
ci are for

all 0≤ a≤ nc active given S\{da, da+1} and canonical with respect to π̃a,a+1. Lemma D.29
thus guarantees that all paths π̃a1,a3

c with 0 ≤ a1 < a3 ≤ nc + 1 constructed in step 4(b) of
the above procedure are active given S \ {da1

, da3
} and canonical with respect to π̃a1,a3 .

Thus, if the algorithm terminates in step 4(c), it returns a path π̃0,nc+1
c between d0 = (i, ti)

and dnc+1 = (j, tj) in Dc(Mp(D)) that is active given S= S \ {d0, dnc+1}. If the algorithm
terminates in step 5, then the following is true:

1. π̃σ(0),σ(1)c is a path in Dc(Mp(D)) between dσ(0) = d0 = (i, ti) and dσ(1) that is into dσ(1)
and active given S \ {dσ(0), dσ(1)}.

2. For all 1≤ a≤m− 1 the path π̃σ(a),σ(a+1)
c is a path in Dc(Mp(D)) between dσ(a) and

dσ(a+1) that is into both dσ(a) and dσ(a+1) and active given S \ {dσ(a), dσ(a+1)}.
3. π̃σ(m),σ(m+1)

c is a path in Dc(Mp(D)) between dσ(m) and dσ(m+1) = dnc+1 = (j, tj) that
is into dσ(m) and active given S \ {dσ(m), dσ(m+1)}.

Further, by definition of collider extension structures, da is an ancestor of S for all 1 ≤
a ≤ nc. Lemma 3.3.1 in Spirtes, Glymour and Scheines (2000) thus applies to the ordered
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sequence of paths π̃σ(0),σ(1)c , . . . , π̃
σ(m),σ(m+1)
c and guarantees the existence of a path between

(i, ti) and (j, tj) in Dc(Mp(D)) that is active given S.
Hence, (i, ti) and (j, tj) are d-connected given S in Dc(Mp(D)).

LEMMA D.31. Mp(D) is a subgraph ofMp(Dc(Mp(D))).

PROOF OF LEMMA D.31. As an immediate consequence of Lemma D.30, every adja-
cency in Mp(D) is also in Mp(Dc(Mp(D))). The statement follows with Lemma D.16
because the orientation of edges are uniquely determined by the ancestral relationships.

PROOF OF LEMMA 4.14. First, Mp(Dc(Mp(D))) is a subgraph of Mp(D) accord-
ing to Lemma D.18. Second, Mp(D)) is a subgraph of Mp(Dc(Mp(D))) according to
Lemma D.31. Hence,Mp(Dc(Mp(D))) =Mp(D).

D.6. Proofs for Section 4.6.

LEMMA D.32. The canonical ts-DAG Dc(G) of an acyclic directed mixed graph G with
time series structure is a ts-DAG.

PROOF OF LEMMA D.32. The time series structure of Dc(G) with T = Z is apparent
from the first point of Definition 4.13, the repeating edges property is enforced explicitly in
the second point of Definition 4.13, and time order is enforced explicitly in the second point
of Definition 4.13 by only considering edges in Estat

→ of the form ((i, t − τ), (j, t)) in the
first and second point of Definition 4.13. Assume there is a directed cycle in Dc(G). Because
as apparent from the second point of Definition 4.13 there are no edges into unobservable
vertices, all vertices on the directed cycle are observable. Moreover, due to time order all
vertices on the directed cycle must be at a single time step. Due to repeating edges there thus
is a directed cycle at time t in Dc(G). Since the second point of Definition 4.13 further shows
that all edges between observable vertices at time t in Dc(G) are also in stat(G), which is a
subgraph of G, we get a contradiction to the acyclicity of G.

PROOF OF THEOREM 1. If. The premise is M =Mp(Dc(M)). Since according to
Lemma D.32 the canonical ts-DAG Dc(M) is a ts-DAG, we can choose D = Dc(M) and
getM=Mp(D).

Only if. The premise isM=Mp(D). Together with Lemma 4.14, which saysMp(D) =
Mp(Dc(Mp(D))), thenM=Mp(D) =Mp(Dc(Mp(D))) =Mp(Dc(M)).

PROOF OF THEOREM 2. If. The premise is G =Mp(Dc(G)) with G acyclic. Since ac-
cording to Lemma D.32 the canonical ts-DAGDc(G) is a ts-DAG, we can chooseD =Dc(G)
and get G =Mp(D).

Only if. The premise is G =Mp(D). Together with Lemma 4.14, which saysMp(D) =
Mp(Dc(Mp(D))), then G =Mp(D) =Mp(Dc(Mp(D))) =Mp(Dc(G)). Moreover, G is
acyclic because it equals the DMAGMp(D) and DMAGs are acyclic.

D.7. Proofs for Section 4.7 and of Lemma B.6.

PROOF OF LEMMA 4.20. Combine Lemma D.13, according to which Dc(Mp
st(D)) =

Dc(Mp(D)), with Lemma 4.14, according to whichMp(D) =Mp(Dc(Mp(D))).

PROOF OF LEMMA B.6. Assume that both M1 and M2 are ts-DMAGs, i.e., M1 =
Mp(D1) andM2 =Mp(D2) for some ts-DAGs D1 and D2. Then, combining the premise
stat(M1) = stat(M2) with Lemma 4.20 leads to the contradictionM1 =M2.
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PROOF OF LEMMA 4.21. If. The premise is M =Mp
st(Dc(M)). Since according to

Lemma D.32 the canonical ts-DAG Dc(M) is a ts-DAG, we can choose D = Dc(M) and
getM=Mp

st(D).
Only if. The premise is M =Mp

st(D). We then get Mp(D) =Mp(Dc(M)) according
to Lemma 4.20, which by applying the operation of stationarification to both sides of this
equality gives thatM=Mp

st(Dc(M)).

PROOF OF LEMMA 4.22. If. The premise is G =Mp
st(Dc(G)) with G acyclic. Since ac-

cording to Lemma D.32 the canonical ts-DAGDc(G) is a ts-DAG, we can chooseD =Dc(G)
and get G =Mp

st(D).
Only if. The premise is G =Mp

st(D). We then get Mp(D) =Mp(Dc(G)) according to
Lemma 4.20, which by applying the operation of stationarification to both sides of this equal-
ity gives that G =Mp

st(Dc(G)). Moreover, G is acyclic because it equals the DMAGMp
st(D)

and DMAGs are acyclic.

E. Proofs for Section 5.

E.1. Proofs for Section 5.3.

LEMMA E.1. Let D be a ts-DAG and A ∈ {Ato, Ata, AD}. Then, P(Mp(D),A) has
repeating orientations.

PROOF OF LEMMA E.1. Note that AD is stronger than Ata and that Ata is stronger than
Ato. Thus, every graph consistent with A has repeating orientations. The statement then
follows from the definition of m.i. DPAGs because every element in [M]A has repeating
orientations.

PROOF OF LEMMA 5.5. From Lemma E.1 we know that P(Mp(D),A) has repeating
orientations. Moreover, P(Mp(D),A) has past-repeating adjacencies because its skeleton
by definition equals the skeleton ofMp(D).

Let (i, ti) and (j, tj) with t− p≤ ti ≤ tj ≤ t be distinct observable vertices. According to
Lemma D.1, these vertices are adjacent in stat(P(Mp(D),A)) if and only if (i, t− (tj− ti))
and (j, t) are adjacent in P(Mp(D),A). Because the skeletons of P(Mp(D),A) and
Mp(D) are the same, Lemma 4.7 gives that (i, t − (tj − ti)) and (j, t) are adjacent in
P(Mp(D),A) if and only if (i, ti) and (j, tj) are adjacent in Mp

st(D). Consequently,
stat(P(Mp(D),A)) andMp

st(D) have the same skeleton.
Moreover, consider an unambiguous edge mark in stat(P(Mp(D),A)). This edge mark

is also in P(Mp(D),A) and therefore corresponds to an ancestral relationship in Mp(D).
Because according to Lemma 4.10 the graphsMp(D) andMp

st(D) have the same ancestral
relationships, the same unambiguous edge mark is then also inMp

st(D).

LEMMA E.2. LetM be a DMAG with time series structure that has repeating orienta-
tions and past-repeating adjacencies and for part 2 in addition is time ordered. Then:

1. Let (i, ti)∗−∗(j, tj)∗−∗(k, tk) with tj ≤ max(ti, tk) be an unshielded triple in stat(M)
and let ∆t= tj −max(ti, tk). Then:
a) (i, ti +∆t)∗−∗(j, tj +∆t)∗−∗(k, tk +∆t) is an unshielded triple inM.
b) (i, ti +∆t)∗−∗(j, tj +∆t)∗−∗(k, tk +∆t) is oriented as a collider inM if and only

if (i, ti)∗−∗(j, tj)∗−∗(k, tk) is oriented as a collider in stat(M).
2. Let π = (l, tl) . . .∗→(i, ti)←∗(j, tj)∗→(k, tk) with tj ≤ max(tl, tk) be a discriminating

path for (j, tj) in stat(M) and let ∆t= tj −max(tl, tk). Then:
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a) π∆t, the copy of π shifted forward in time by ∆t time steps, is a discriminating path
for (j, tj +∆t) inM.

b) (i, ti +∆t)∗−∗(j, tj +∆t)∗−∗(k, tk +∆t) is oriented as a collider inM if and only
if (i, ti)∗−∗(j, tj)∗−∗(k, tk) is oriented as a collider in stat(M).

PROOF OF LEMMA E.2. 1(a) The repeating edges property of stat(M) together with
tj ≤ max(ti, tk) implies that (i, ti + ∆t)∗−∗(j, tj + ∆t)∗−∗(k, tk + ∆t) is an unshielded
triple in stat(M). Lemma D.1 then guarantees that (i, ti +∆t) = (i, t− (max(ti, tk)− ti))
and (k, tk + ∆t) = (k, t − (max(ti, tk) − ti)) are nonadjacent in M, because else they
would be adjacent in stat(M) too and hence (i, ti + ∆t)∗−∗(j, tj + ∆t)∗−∗(k, tk + ∆t)
would not be unshielded in stat(M). Since stat(M) is a subgraph ofM, we thus get that
(i, ti +∆t)∗−∗(j, tj +∆t)∗−∗(k, tk +∆t) is an unshielded triple inM.

2(a) By the definition of discriminating paths, all vertices on π other than, perhaps, (j, tj)
and/or (l, tl) are ancestors of (k, tk). Time order of M together with tj ≤max(tl, tk) thus
guarantees that all vertices on π are within [t−p,max(tl, tk)]. In combination with the repeat-
ing edges property of stat(M) we thus see that π∆t is a discriminating path for (j, tj +∆t)
in stat(M). Lemma D.1 then guarantees that (l, tl +∆t) = (l, t − (max(tl, tk) − tl)) and
(k, tk + ∆t) = (k, t − (max(tl, tk) − tk)) are nonadjacent in M because else they would
be adjacent in stat(M) too and hence π∆t would not be a discriminating path in stat(M).
Consequently, π∆t is a discriminating path inM because stat(M) is a subgraph ofM.

1(b) and 2(b) Because stat(M) has repeating edges, the triple (i, ti)∗−∗(j, tj)∗−∗(k, tk)
is oriented as a collider in stat(M) if and only if (i, ti+∆t)∗−∗(j, tj+∆t)∗−∗(k, tk+∆t) is
oriented as a collider in stat(M). Moreover, since stat(M) is a subgraph ofM and (i, ti +
∆t)∗−∗(j, tj +∆j)∗−∗(k, tk+∆t) is inM, the triple (i, ti+∆t)∗−∗(j, tj +∆j)∗−∗(k, tk+
∆t) is oriented as collider in stat(M) if and only if (i, ti +∆t)∗−∗(j, tj +∆j)∗−∗(k, tk +
∆t) is oriented as a collider inM.

LEMMA E.3. LetM1 andM2 be Markov equivalent DMAGs with time series structure
that are time ordered and have repeating orientations and past-repeating adjacencies. Then,
stat(M1) and stat(M2) are Markov equivalent DMAGs.

PROOF OF LEMMA E.3. Both stat(M1) and stat(M2) are DMAGs by means of
Lemma D.2. Next, we show that stat(M1) and stat(M2) are Markov equivalent. For this
purpose, assume the opposite. Then, according to the characterizing of Markov equivalence
of MAGs in Spirtes and Richardson (1997), at least one of the following statements is true:

1. The skeletons of stat(M1) and stat(M2) differ.
2. There is an unshielded triple (i, ti)∗−∗(j, tj)∗−∗(k, tk) in both stat(M1) and stat(M1)

that is oriented as a collider in stat(Ma) with a ∈ {1,2} and oriented as a noncollider in
stat(Mā) with ā= 3− a.

3. There is a path π that is in both stat(M1) and stat(M1) a discriminating path for (j, tj)
such that (j, tj) is a collider on π in stat(Ma) with a ∈ {1,2} and a noncollider in
stat(Mā) with ā= 3− a.

We now show that stat(M1) and stat(M2) do have the same skeleton and that both the
second and third statement contradict Markov equivalence ofM1 andM2.

Case 1: Skeleton. According to Lemma D.1, the skeletons of stat(M1) and stat(M2) are
determined uniquely by, respectively, the skeletons ofM1 andM2. Thus, sinceM1 andM2

have the same skeleton due to being Markov equivalent, also stat(M1) and stat(M2) have
the same skeleton.

Case 2: Unshielded colliders. Since (i, ti)∗−∗(j, tj)∗−∗(k, tk) is oriented as a noncol-
lider in stat(Mā), the vertex (j, tj) is in stat(Mā) an ancestor (parent, in fact) of (i, ti)
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or (k, tk). Time order of stat(Mā) thus implies tj ≤max(ti, tk). Hence, we can apply part
1 of Lemma E.2 to both stat(Mā) and stat(Ma), which gives that (i, ti +∆t)∗−∗(j, tj +
∆t)∗−∗(k, tk +∆t) with ∆tj = t−max(ti, tk) is an unshielded collider inMa and an un-
shielded noncollider inMā. This observation contradicts the assumptiont thatM1 andM2

are Markov equivalent.
Case 3: Discriminating paths. By definition of discriminating paths, π takes the form

. . .∗→(i, ti)←∗(j, tj)∗→(k, tk). Moreover, as follows from the definition of discriminating
paths together with the absence of almost directed cycles, (i, ti)↔(j, tj) if (j, tj)↔(k, tk).
In combination with the fact that (j, tj) is in stat(Mā) an ancestor (parent, in fact) of (i, ti)
or (k, tk) by means of (j, tj) being a noncollider on π in stat(Mā), we thus find that (j, tj)
is in stat(Mā) an ancestor (parent, in fact) of (k, tk). Time order of stat(Mā) thus implies
tj ≤ tk ≤ max(tl, tk). Hence, we can apply part 2 of Lemma E.2 to both stat(Mā) and
stat(Ma), which gives that π∆t, the copy of π that is shifted forward in time by ∆t =
t−max(tl, tk) time steps, is a discriminating path for (j, tj +∆t) in bothMa andMā and
that (j, tj +∆t) is a collider on π∆t inMa whereas (j, tj +∆t) is a noncollider on π∆t in
Mā. This observation contradicts Markov equivalence ofM1 andM2.

PROOF OF THEOREM 3. 1. Note that stat(P(Mp(D),A)) and P(Mp
st(D),Astat) have

the same skeleton because both of them are DPAGs forMp
st(D), as follows from Lemma 5.5.

We prove the statement by showing that (i, ti)◦−∗ (j, tj) in stat(P(Mp(D),A)) implies
(i, ti)◦−∗ (j, tj) in P(Mp

st(D),Astat).
Let the edge (i, ti)◦−∗ (j, tj) be in stat(P(Mp(D),A)). Then, (i, ti)◦−∗ (j, tj) is also in

P(Mp(D),A) becauseP(Mp(D),A) is a supergraph of stat(P(Mp(D),A)). By definition
of m.i. DPAGs, there thus are DMAGsM1 andM2 in [Mp(D)]A such that (i, ti)→(j, tj) in
M1 and (i, ti)←∗(j, tj) inM2. Without loss of generality we may assume thatM1 orM2

isMp(D).
Since (1) according to Lemma E.3 stat(M1) and stat(M2) are Markov equivalent

DMAGs and since (2) eitherM1 orM2 isMp(D) and hence either stat(M1) =Mp
st(D)

or stat(M2) =Mp
st(D), we thus get that both stat(M1) and stat(M2) are in [Mp

st(D)].
Recall that stat(M) always has repeating ancestral relationships (, and hence also repeating
orientations), that stat(M) is time ordered ifM is time ordered, and that stat(M) is a sta-
tionarified ts-DMAG ifM is a ts-DMAG. Hence, both stat(M1) and stat(M2) are in the
set [Mp

st(D)]Astat .
Since (1) both stat(M1) and stat(M2) are in [Mp

st(D)]Astat and since (2) (i, ti) and
(j, tj) are adjacent in Mp

st(D), the vertices (i, ti) and (j, tj) are also adjacent in both
stat(M1) and stat(M2). Since stat(Mi) is a subgraph of Mi for i = 1,2, we conclude
that (i, ti)→(j, tj) in stat(M1) and (i, ti)←∗(j, tj) in stat(M2). Hence, (i, ti)◦−∗ (j, tj) in
P(Mp

st(D),Astat).
2. This claim immediately follows from part 1 of Theorem 3 because stat(P(Mp(D),A))

is a subgraph of P(Mp(D),A).
3. The three graphs obtained by applying stationarification stat(·) to the graph in parts

(c), (d) and (e) of Figure 9 in the main text provide such examples, see also the discussion in
Example 5.6 in the main text.

4. This claim immediately follows from part 3 of Theorem 3 because stat(P(Mp(D),A))
is a subgraph of P(Mp(D),A) and because stat(P(Mp(D),A)) and P(Mp

st(D),A) have
the same skeleton.

E.2. Proofs for Section 5.4.

PROOF OF LEMMA 5.9. The premise that (i, ti)◦−∗ (j, tj) is in the ts-DPAG Pp(D)
by the definitions of m.i. DPAGs and the background knowledge AD means: There are
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ts-DAGs D1 and D2 such that both Mp(D1) and Mp(D2) are Markov equivalent to
Mp(D) and (i, ti)→(j, tj) in Mp(D1) and (i, ti)←∗(j, tj) in Mp(D2). Consequently,
(i, ti) ∈ an((j, tj),Mp(D1)) and (i, ti) /∈ an((j, tj),Mp(D2)) and thus, using Lemma C.1,
(i, ti) ∈ an((j, tj),D1) and (i, ti) /∈ an((j, tj),D2).

F. Proofs for Section B.8.

F.1. Proofs for Section B.8.1.

LEMMA F.1. Let (i, ti) and (j, tj) with t− p≤ ti, tj ≤ t be distinct observable vertices
in a ts-DAG D and let ∆t > 0. Then: There is S ⊆O(t − p, t) \ {(i, ti), (j, tj)} such that
(i, ti) ⊥⊥ (j, tj) | S if and only if there is S′ ⊆O(t− p, t+∆t) \ {(i, ti), (j, tj)} such that
(i, ti)⊥⊥ (j, tj) | S′.

PROF OF LEMMA F.1. If. The premise is (i, ti) ⊥⊥ (j, tj) | S′ with S′ ⊆ O(t − p, t +
∆t) \ {(i, ti), (j, tj)} for some ∆t > 0. According to Lemma S5 in the supplemen-
tary material of Gerhardus and Runge (2020) this premise implies (i, ti) ⊥⊥ (j, tj) | S,
where S is the restriction of S′ to ancestors of (i, ti) and (j, tj), i.e., where S =
S′ ∩ (an((i, ti),D)∪ an((j, tj),D)). By time order of D, no element of an((i, ti),D) ∪
an((j, tj),D) is after max(ti, tj)≤ t and hence S⊆O(t− p, t) \ {(i, ti), (j, tj)}.

Only if. Take S= S′.

PROOF OF LEMMA B.10. 1. The combination of past-repeating adjacencies and repeat-
ing orientations implies that Mp̃,[t−p−∆t,t−∆t](D) with 0 ≤ ∆t < p̃ − p is a subgraph of
Mp̃,[t−p̃,t−p̃+p](D). The statement then follows because by part 2 of Lemma B.10 the graphs
Mp̃,[t−p̃,t−p̃+p](D) andMp(D) are equal up to relabeling vertices.

2. We first show that Mp(D) and Mp̃,[t−p̃,t−p̃+p](D) have the same skeleton up to rela-
beling vertices. To this end, consider two distinct observable vertices (i, ti) and (j, tj) with
t − p ≤ ti, tj ≤ t and let ∆t = p̃ − p. According to Lemma F.1 there is S′ ⊆O(t − p̃, t) \
{(i, ti −∆t), (j, tj −∆t)} such that (i, ti −∆t) ⊥⊥ (j, tj −∆t) | S′ if and only if there is
S⊆O(t− p̃, t−∆t)\{(i, ti−∆t), (j, tj−∆t)} such that (i, ti−∆t)⊥⊥ (j, tj−∆t) | S. By
the repeating separating sets property of D, the existence of S⊆O(t− p̃, t−∆t) \ {(i, ti −
∆t), (j, tj −∆t)} such that (i, ti −∆t) ⊥⊥ (j, tj −∆t) | S is in turn equivalent to the ex-
istence of S∆t ⊆O(t− p, t) \ {(i, ti), (j, tj)} such that (i, ti)⊥⊥ (j, tj) | S∆t. Hence, (i, ti)
and (j, tj) are adjacent inMp(D) if and only if (i, ti −∆t) and (j, tj −∆t) are adjacent in
Mp̃(D). This equivalence shows thatMp(D) andMp̃,[t−p̃,t−p̃+p](D) have the same skeleton
up to relabeling vertices.

Next, let (i, ti − ∆t)∗−∗(j, tj − ∆t) be an edge in Mp̃,[t−p̃,t−p̃+p](D). Then, this edge
(i, ti − ∆t)∗−∗(j, tj − ∆t) in Mp̃,[t−p̃,t−p̃+p](D) and the edge (i, ti)∗−∗(j, tj) in Mp(D)
have the same orientation because in both graphs the edge orientations signify ancestral rela-
tionships according to D and D has repeating ancestral relationships.

3. See Example B.12.

LEMMA F.2. Let D be a ts-DAG and p̃ > p≥ 0. Then:

1. Mp(D) =Mp(Dc(Mp̃(D))).
2. There are cases in whichMp̃(D) ̸=Mp̃(Dc(Mp(D))).

PROOF OF LEMMA F.2. 1. Let D1 = D and D2 = Dc(Mp̃(D)). We then get the equal-
ityMp̃(D1) =Mp̃(D) =Mp̃(Dc(Mp̃(D))) =Mp̃(D2), where the second equality follows
from Lemma 4.14. Thus,Mp(D1) =Mp(D2) according to part 1 of Lemma B.11.
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FIG F. Example for proving part 2 of Lemma F.2. a) The canonical ts-DAG Dc(M1(D)) of the ts-DMAG M1(D)

in part (b) of Figure B . b) The ts-DMAG M2(Dc(M1(D))) implied by the canonical ts-DAG in part (a).

2. Consider the ts-DAG D in part (a) of Figure B, which respectively implies the ts-
DMAGsM1(D) andM2(D) in parts (b) of (c) of the same figure. Part (a) of Figure F shows
the canonical ts-DAG Dc(M1(D)) ofM1(D), which in turn marginalizes to the ts-DMAG
M2(Dc(M1(D))) ̸=M2(D) shown in part (b) of the same figure.

PROOF OF LEMMA B.11. 1. This claim follows from the commutativity of the marginal-
ization process as stated by Theorem 4.20 in Richardson and Spirtes (2002).

2. According to part 2 of Lemma F.2, there is a ts-DAG D and p̃ > p ≥ 0 such
Mp̃(D) ̸=Mp̃(Dc(Mp(D))).2 Moreover, Lemma 4.14 implies the equality Mp(D) =
Mp(Dc(Mp(D))). Take D1 =D and D2 =Dc(Mp(D)).

PROOF OF LEMMA B.13. 1. We prove the contraposition: Let there be a circle mark on
(i, ti)∗−∗(j, tj) in P p̃(D). Without loss of generality we may assume this edge to be of the
form (i, ti)◦−∗ (j, tj). Thus, by Lemma 5.9, there are ts-DAGs D1 and D2—one of which
without loss of generality is D—such that the ts-DMAGsMp̃(D1) andMp̃(D2) are Markov
equivalent and that (i, ti) ∈ an((j, tj),D1) and (i, ti) /∈ an((j, tj),D2). According to commu-
tativity of the marginalization process as stated in Theorem 4.20 in Richardson and Spirtes
(2002), the ts-DMAGs Mp(D1) and Mp(D2) are respectively obtained by marginalizing
Mp̃(D1) andMp̃(D2) over the vertices within [t− p̃, t− p− 1]. Hence, given thatMp̃(D1)
and Mp̃(D2) are Markov equivalent, so are Mp(D1) and Mp(D2). These considerations
show that (i, ti)◦−∗ (j, tj) in Pp(D).

2. See Example B.15.

PROOF OF LEMMA B.14. 1. Let (i, ti)◦−∗ (j, tj) be an edge in P p̃,[t−p,t](D). Because
P p̃(D) is a supergraph of P p̃,[t−p,t](D), the edge (i, ti)◦−∗ (j, tj) is then also in P p̃(D).
Moreover, according to part 1 of Lemma B.10 (for ∆t= 0) in combination with the definition
of DPAGs, (i, ti) and (j, tj) are adjacent in Pp(D). We conclude that the edge (i, ti)◦−∗(j, tj)
is Pp(D) too because the opposite would contradict part 1 of Lemma B.13.

2. See Example B.15.

F.2. Proofs for Section B.8.2.

PROOF OF LEMMA B.16. 1. Assume the opposite. Then, there is a strictly monotonically
increasing sequence an of positive integers such thatMp+an,[t−p,t](D) ̸=Mp+an+1,[t−p,t](D)

2Note that the proof of Lemma F.2 uses part 1 of Lemma B.11 but not part 2 of Lemma B.11, such that the
proofs of these two lemmas are not circular.
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for all n ∈N. Using part 1 of Lemma B.10 with (p, p̃,∆t) 7→ (p+an, p+an+1,0), we see that
Mp+an(D) is a subgraph ofMp+an+1,[t−(p+an),t](D) and henceMp+an,[t−p,t](D) is a sub-
graph of Mp+an+1,[t−p,t]. In combination with Mp+an,[t−p,t](D) ̸=Mp+an+1,[t−p,t](D) we
thus find that Mp+an+1,[t−p,t](D) is a proper subgraph of Mp+an,[t−p,t](D). Moreover, us-
ing part 1 of Lemma B.10 for (p, p̃,∆t) 7→ (p, p+an,0) and for (p, p̃,∆t) 7→ (p, p+an+1,0),
we learn that both Mp+an,[t−p,t](D) and Mp+an+1,[t−p,t](D) are subgraphs of Mp(D). By
combining these observations we arrive at a contradiction since there are only finitely many
edges between the finitely many vertices ofMp(D).

2. Assume the opposite. Then, there is a strictly monotonically increasing sequence an
of positive integers such that Pp+an,[t−p,t](D) ̸= Pp+an+1,[t−p,t](D) for all n ∈ N. Let m be
such thatMp+am,[t−p,t](D) =Mp

lim(D), which exists as a result of part 1 of Lemma B.16.
Then, for all n≥m the skeletons of Pp+an,[t−p,t](D) and Pp+an+1,[t−p,t](D) are equal. Us-
ing part 1 of Lemma B.13 we thus learn that for all n ≥ m there is a noncircle mark in
Pp+an+1,[t−p,t](D) that is not in Pp+an,[t−p,t](D). Since there are only finitely many circle
marks on the finitely many edges inMp

lim(D), this observation is a contradiction.

LEMMA F.3. LetM be a DMAG with vertex set V and letM[O] be the induced sub-
graph ofM on the subset of vertices O⊆V. Then,M[O] is a DMAG.

REMARK (on Lemma F.3). In particular, the graphs Mp̃,[t1,t2](D) defined in Defini-
tion B.9 are DMAGs.

PROOF OF LEMMA F.3. We have to show thatM[O] does not have directed cycles, does
not have almost directed cycles, and is maximal.

No (almost) directed cycles: SinceM[O] is a subgraph ofM andM does neither have a
directed nor an almost directed cycle, alsoM[O] does neither have a directed nor an almost
directed cycle.

Maximality: Assume the opposite, i.e., assume inM[O] there are nonadjacent vertices i
and j between which there is an inducing path π. SinceM[O] is a subgraph ofM, the same
path π between i and j is also inM. Maximality ofM thus implies that i and j are adjacent
inM. By the definition of induced subgraphs the nodes i and j would then also be adjacent
inM[O], a contradiction.

PROOF OF LEMMA B.18. 1. According to part 1 of Lemma B.16 there is ∆p such
that Mp

lim(D) =M
p+∆p′,[t−p,t](D) =Mp+∆p,[t−p,t](D) for all ∆p′ ≥ ∆p. Thus, since

the ts-DMAG Mp+∆p(D) has repeating orientations and past-repeating adjacencies, also
Mp

lim(D) =M
p+∆p,[t−p,t](D) has both these properties.

To complete the proof, we need to show thatMp
lim(D) has repeating adjacencies. To this

end, assume the opposite. Since Mp
lim(D) has past-repeating adjacencies, this assumption

means inMp+∆p(D) there is an edge (i, ti −∆t)∗−∗(j, tj −∆t) with t− p≤ ti, tj ≤ t and
∆t > 0 such that (i, ti) and (j, tj) are nonadjacent inMp+∆p(D). That (i, ti) and (j, tj) are
nonadjacent in Mp+∆p(D) shows the existence of S ⊆O(t − p −∆p, t) \ {(i, ti), (j, tj)}
with (i, ti) ⊥⊥ (j, tj) | S in D. Due to the repeating separating sets property of D, then
(i, ti−∆t)⊥⊥ (j, tj −∆t) | S−∆t where S−∆t is obtained by shifting all vertices in S back-
ward in time by ∆t steps. The vertices (i, ti −∆t) and (j, tj −∆t) are thus nonadjacent in
Mp+∆p+∆t(D) and hence also nonadjacent inMp

lim(D). This observation is in contradiction
to the equalityMp

lim(D) =M
p+∆p,[t−p,t](D).

2. Let (i, ti) and (j, tj) with τ = tj − ti ≥ 0 be distinct nonadjacent vertices inMp
st(D).

Then, the vertices (i, t− τ) and (j, t) are nonadjacent inMp
st(D) due to the repeating edges

property ofMp
st(D) and thus, using Lemma 4.7, also nonadjacent inMp(D). Hence, there
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is S ⊆ O(t − p, t) \ {(i, t − τ), (j, t)} such that (i, t − τ) ⊥⊥ (j, t) | S in D. Due to the
repeating separating sets property of D, we thus get that (i, ti) and (j, tj) are nonadjacent
in Mp+(t−tj)(D) and hence also nonadjacent in Mp

lim(D). Consequently, the skeleton of
Mp

lim(D) is a subgraph of the skeleton ofMp
st(D).

Next, let (i, ti)∗−∗(j, tj) be an edge in Mp
lim(D). Then, since the skeleton of Mp

lim(D)
is a subgraph of the skeleton of Mp

st(D), the vertices (i, ti) and (j, tj) are also adjacent
inMp

st(D). Note that, sinceMp
lim(D) =M

p̃,[t−p,t](D) for some p̃ > p according to part 1
of Lemma B.16, the orientation of (i, ti)∗−∗(j, tj) in Mp

lim(D) conveys an ancestral rela-
tionships according to D. Since also in Mp

st(D) the orientations of edges convey ancestral
relationships according to D, we finally get that the edge (i, ti)∗−∗(j, tj) inMp

st(D) has the
same orientation as inMp

lim(D).
3. Take n≥ 0 such thatMp

lim(D) =M
p+n,[t−p,t](D), which exists according to part 1 of

Lemma B.16. The statement now follows by applying Lemma F.3 withM 7→Mp+n(D) and
O the set of observable vertices within [t− p, t].

4. The limiting ts-DPAG Pp
lim(D) has repeating adjacencies because according to part 3

of Lemma B.18 it is a DPAG for the limiting ts-DMAGMp
lim(D), which according to part 1

of Lemma B.18 has repeating adjacencies. Let ∆p be such that Pp
lim(D) =P

p+∆p,[t−p,t](D),
which exists according to part 2 of Lemma B.16. Because Pp+∆p(D) has repeating orienta-
tions according to Lemma E.1, also Pp

lim(D) has repeating orientations. Now use part 1 of
Lemma 4.3.

5. Part 1 of Lemma B.16 gives the existence of an integer n ≥ 0 such that Mp
lim(D) =

Mp+n′,[t−p,t](D) for all n′ ≥ n, and part 2 of the same lemma gives the existence of an
integer m ≥ 0 such that Pp

lim(D) = P
p+m′,[t−p,t](D) for all m′ ≥ m. Thus, Mp

lim(D) =
Mp+k,[t−p,t](D) and Pp

lim(D) =P
p+k,[t−p,t](D) for k =max(n,m). The statement now fol-

lows because Pp+k(D) is a DPAG forMp+k(D).
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