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In this paper, we introduce a novel class of graphical models for repre-
senting time-lag specific causal relationships and independencies of multi-
variate time series with unobserved confounders. We completely characterize
these graphs and show that they constitute proper subsets of the currently
employed model classes. As we show, from the novel graphs one can thus
draw stronger causal inferences—without additional assumptions. We fur-
ther introduce a graphical representation of Markov equivalence classes of
the novel graphs. This graphical representation contains more causal knowl-
edge than what current state-of-the-art causal discovery algorithms learn.

1. Introduction. In recent decades, causal graphical models have become a standard
tool for reasoning about causal relationships, for example, Pearl (2009), Spirtes, Glymour and
Scheines (2000), Koller and Friedman (2009). The most basic and popular class of models
are directed acyclic graphs (DAGs). In their interpretation as causal Bayesian networks, these
graphs specify interventional distributions and causal effects in terms of the observational
distribution, for example, Spirtes, Glymour and Scheines (1993), Pearl (1995), Pearl (2000).
DAGs can only model acyclic causal relationships among variables that are not subject to
latent confounding, that is, such that there are no unobserved common causes of observed
variables. The latter assumption is known as causal sufficiency and intuitively means that all
variables relevant for describing the system’s causal relationships are modeled explicitly. If
causal sufficiency cannot be asserted, as is often the case, then one approach is to instead work
with maximal ancestral graphs (MAGs); see Richardson and Spirtes (2002), Zhang (2008a).
This larger class of graphs retains a well-defined causal interpretation in presence of latent
confounding.

MAGs can even represent selection variables, that is, unobserved variables that determine
which sample points belong to the observed population. In this paper, we rule out selection
variables by assumption. It is then sufficient to work with a subclass of MAGs that, fol-
lowing Mooij and Claassen (2020), are called directed maximal ancestral graphs (DMAGs).
Assuming the absence of selection variables is common both in the literature on causal ef-
fect estimation and causal discovery, for example, Zhang (2006), Perkovi¢ et al. (2017) and
Entner and Hoyer (2010), Malinsky and Spirtes (2018), Gerhardus and Runge (2020). As an
advantage, DMAGs convey significantly stronger inferences about the presence of causal an-
cestral relationships than MAGs. Moreover, for time series there is exactly one sample point
per time step, and hence potential selection bias would at least not go unnoticed.

To use any of these model classes for causal reasoning, one needs to already know the
system’s causal structure in form of the respective graph. If this knowledge is not avail-
able and experiments are infeasible, then one must rely on observational causal discovery,
for example, Spirtes, Glymour and Scheines (2000), Peters, Janzing and Scholkopf (2017),
which refers to learning causal relationships from observational data under suitable enabling
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assumptions. So-called independence-based methods, also called constraint-based methods,
attempt to learn the causal graph from independencies in the observed probability distribu-
tion. In general, learning the graph from independencies is an underdetermined problem since
distinct graphs may describe the same set of independencies. This nonuniqueness is known
as Markov equivalence. Without more assumptions, it is then only possible to learn those
features of the causal graph that it shares with all its Markov equivalent graphs. These shared
features can in turn be represented by certain graphs, which for the case of MAGs are partial
ancestral graphs (PAGs); see Ali, Richardson and Spirtes (2009), Zhang (2008b). There are
sound and complete causal discovery algorithms for learning PAGs, for example, the FCI
algorithm; see Spirtes, Meek and Richardson (1995), Spirtes, Glymour and Scheines (2000),
Zhang (2008b). Here, sound refers to correctness of the method and complete to it learning
all shared features. The refinement of PAGs obtained by restricting from MAGs to DMAGs
are called directed partial ancestral graphs (DPAGs) in Mooij and Claassen (2020).

The causal graphical model framework outlined above does not inherently rely on temporal
information, and the nontemporal setting so far is its major domain of application. However,
dynamical systems and time series data are ubiquitous and of great interest to science and
beyond. In this setting, Granger causality (see Granger (1969)) is a widely-used framework
for causal analyses. This framework employs a predictive notion of causality, according to
which a time series X has a causal influence on time series Y if the past of X helps in
predicting the present of Y given that the pasts of all time series other than X are already
known. Granger causality has two central limitations: First, it requires the absence of latent
confounders, that is, unobserved time series that are a common cause of two observed time
series. Second, it cannot in general deal with contemporaneous causal influences, that is,
causal influences on time scales below the sampling interval. For an in-depth discussion of
these limitations, see, for example, Peters, Janzing and Scholkopf ((2017), Chapter 10).

Since the causal graphical model framework is not subject to these two limitations, in re-
cent years there has been a growing interest in adapting it to the time series setting. Generally,
there are three ways to do this. The first approach, for example, Eichler and Didelez (2007),
Eichler (2010), Eichler and Didelez (2010) and Didelez (2008), Mogensen and Hansen
(2020), uses a graph in which there is one vertex per component time series. The edges
then summarize the causal influences at all time lags, thus giving a conveniently compressed
graphical representation of the causal relationships. However, the information about time
lags of individual cause-and-effect relationships is lost. The second approach uses graphs
with one vertex per component time series and time step, thus resolving the time lags. There
are various causal discovery methods that implement this approach, for example, Chu and
Glymour (2008), Hyvirinen et al. (2010), Entner and Hoyer (2010), Malinsky and Spirtes
(2018), Runge (2020), Pamfil et al. (2020), Gerhardus and Runge (2020), and application
works from diverse domains, for example, Kretschmer et al. (2016), Huckins et al. (2020),
Saetia, Yoshimura and Koike (2021). By resolving time lags, it becomes possible to obtain a
data-driven process understanding and to study the effect of interventions on particular time
steps of variables. However, learning a time-resolved graph is statistically more challenging
than learning a time-collapsed graph and one might need to compromise on the number of
resolved time steps. Assaad, Devijver and Gaussier (2022) propose a third, intermediate ap-
proach with two vertices per component time series (one for the present time step and one for
the entire past).

We follow the second approach. In this case, the temporal information inherent to time se-
ries restricts the connectivity pattern (i.e., absence and presence of edges, edge orientations)
of the resulting time-resolved graphs. Namely, since we here consider graphical models in
which directed edges signify causal influences (DAGs, DMAGs and DPAGsS), the directed
edges must not point backwards in time. In addition, we assume time invariant causal rela-
tionships. This invariance, known as causal stationarity, implies that the graph’s edges are
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repetitive in time. For DAGs that represent time series without latent confounders, which we
call time series DAGs (ts-DAGs), these are the only restrictions on the connectivity pattern.

For DMAGsS that represent time series with latent confounders, the corresponding restric-
tions on the connectivity pattern have, however, not yet been worked out. Although there
are works on independence-based time series causal discovery with latent confounding (see
Entner and Hoyer (2010), Malinsky and Spirtes (2018), Gerhardus and Runge (2020)), no
characterization of the associated class of graphical models has been given. This is the con-
ceptual gap that we close in the present work, that is, we completely characterize which
DMAGS are obtained by marginalizing ts-DAGs, and hence can serve as causal graphical
model for causally stationary time series with latent confounders. We call the novel graphs
defined by this characterization time series DMAGs (ts-DMAGs) and show that these novel
graphs constitute a strictly smaller model class than the previously considered model classes.
We further show that, without imposing additional assumptions, one can draw stronger causal
inferences from ts-DMAGs than from the previously considered graphs. We also intro-
duce time series DPAGs (ts-DPAGs) as representations of Markov equivalence classes of
ts-DMAGs. Time series DPAGs are more informative than the graphs learned by current
latent time series causal discovery algorithms. As a remark, since contemporaneous causal
interactions are allowed without restrictions other than acyclicity, the time series case con-
sidered here formally subsumes, and hence is more general than the (acyclic) nontemporal
case.

The structure of this paper is as follows: In Section 2, we summarize basic graphical con-
cepts and introduce our notation. In Section 3, we first specify the considered type of causally
stationary time series processes. We then introduce ts-DMAGs, a class of causal graphical
models for representing the causal relationships and independencies among only the observed
variables of such processes at finitely many regularly spaced observed time steps. In Sec-
tion 4, we analyze ts-DMAGs and first derive several properties that they necessarily have.
With Theorems 1 and 2, we then completely characterize ts-DMAGs by a single necessary
and sufficient condition. We further show that ts-DMAGs are a strict subset of the classes of
graphical models that have previously been considered in the literature (see Section 4.8). For
this reason, and as we demonstrate with examples, one can draw stronger causal inferences
from ts-DMAGs than from the previously considered graphs. We further introduce the con-
cept of stationarification in order to illuminate various discussions. In Section 5, we put these
developments to use in the context of causal discovery by defining ts-DPAGs as representa-
tions of the Markov equivalence classes of ts-DMAGs. We show that these graphs contain
more causal information than the output of current causal discovery algorithms. Moreover,
we point out an incorrect claim in the literature that, as we argue, has misguided recent de-
velopments (see the discussion below Theorem 3). We also present an algorithm that learns
ts-DPAGs from data. We give further theoretical results and all proofs in the Supplementary
Material (Gerhardus (2023)).

2. Basic graphical concepts and notation. Our notation and terminology is a mix-
ture of those used in Maathuis and Colombo (2015), Perkovi¢ et al. (2017) and Mooij and
Claassen (2020) as well as some idiosyncratic notation.

A graph G = (V, E) consists of a set of vertices V together with a set of edges EC V x V.
The vertices i, j € V are adjacent if (i, j) € E or (j, i) € E. We then say that there is an edge
between i and j and that i is an adjacency of j, and similarly for i and j interchanged.

Throughout this paper, we only consider directed partial mixed graphs. These are graphs
that satisfy three conditions: First, there is at most one edge between any pair of vertices.
Second, no vertex is adjacent to itself. Third, there are at most four types of edges: directed
edges (— ), bidirected edges (<), partially directed edges (o— ) and nondirected edges (0—o).
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The third condition is formalized by a decomposition of E as E=E_, UE_ UE,, UE.
that specifies the edge types (also called edge orientations). This decomposition is consid-
ered part of the specification of a concrete graph. A directed mixed graph is a partial mixed
graph without partially directed and nondirected edges, and a directed graph is a directed
mixed graph without bidirected edges. The skeleton of a graph is the object obtained when
disregarding the information about the decomposition of E into E_, UE_, UE., UE, .

Given directed partial mixed graphs G = (V,E) and G’ = (V',E'), we say that G’ is a
subgraph of G and that G is a supergraph of G’, denoted as G’ C G or G 2 G', if V' C V and
(i, j) € E, with e € {—, <>, o>, o—o} implies (i, j) € E,. Given a directed partial mixed
graph G = (V, E), its induced subgraph on V' C V is the graph G’ = (V’, E’) such that (i, j) €
E, with e € {—, <>, o>, oo} ifand only if i, j € V' and (i, j) € E,.

We denote a directed edge (i, j) e E_, asi—j or j<«i and say i—j (j<«i)isin G if
(i, j) € E_,; similarly for the other edge types. We view edges as composite objects of the
symbols at their ends—the edge marks—which are tails, heads or circles. For example, i o— j
has a circle mark at i and a head mark at j, and i— j has a tail mark at i. Tails and heads
are noncircle marks and unambiguous orientations. Circle marks are ambiguous orientations.
The symbol ‘x’ is a wildcard for all three marks. For example, %> may be —, <> or o—.

A walk in G is an ordered sequence & = (i1, i, ..., i,) of vertices such that iy and ix4
are adjacentin G forall k =1, ...,n — 1. The integer n > 1 is the length of = and a vertex in
this sequence is said to be on . A path is a walk on which every vertex occurs at most once.
For a path w = (i, i, ..., in), the vertices i and i,, are the end-point vertices of m; all other
vertices on 7 are the non-end-point vertices of w. We refer to mw as a path between i1 and
in and graphically represent it by iqs—kip*—k...*—ki, where i;*—xi;11 is the unique edge
between i and ir1. Such a graphical representation can also specify a path. We say that
is out of i1 if i;—ip in G and that 7 is into i1 if i1 <—i; in G; similarly for the other end-point
vertex. For 1 <a < b <n, we write w (i,, ip) for the path (iy, is+1, ...1p) and 7w (ip, i,) for the
path (ip,ip—1, ...is). Both of these are subpaths of . Given walks m; = (i1, i2,...,i,) and
= (j1, j2, .-, jm) With i, = ji, we write | @ m for the walk (iy,i2,...,0n, j2, .-\ jm)-
A vertex iy on path m is a collider on m if it is a non-end-point vertex of w and 7 (ix—1, ix+1)
iS g %>} <—=kir41, else it is a noncollider on . If the vertices i and k are nonadjacent, then
the path ix—xk j*—xk is an unshielded triple and the path is— j<—k an unshielded collider.
A path of length n =1 is called trivial. The path m = (i1, i>,...,i,) is a directed path if
ix—ig+1inGforall 1 <k <n—1orig<iry;inGforall 1 <k <n—1.In the former case,
we speak of a directed path from i\ to i, in the latter case of a directed path from i, to i.
The previous definitions equally apply to walks.

If the edge i—j is in G, then i is a parent of j and j is a child of i. The vertex i is an
ancestor of j and j is a descendant of i if i = j or if there is a directed path from i to j.
The set of parents and ancestors of a vertex i in G are respectively denoted as pa(i, G) and
an(i, G). We say vertex i is an ancestor of a set S of vertices and S is a descendant of i if at
least one element of S is a descendant of i. Similarly, vertex i is a descendant of a set S of
vertices and S is an ancestor of i if at least one element of S is an ancestor of i.

A directed partial mixed graph G has a directed cycle if there are distinct vertices i and
j with i € an(j,G) and j € an(i, G). A directed acyclic graph (DAG) D is a directed graph
without directed cycles. A directed partial mixed graph G has an almost directed cycle if
the edge i<>j isin G and i € an(j, G). A directed ancestral graph is a directed mixed graph
without directed cycles and almost directed cycles. An inducing path between i and j is a path
7 between i and j such that all non-end-point vertices of 7 are colliders on 7 and ancestors
of i or j. A directed maximal ancestral graph (DMAG) M is a directed ancestral graph
that has no inducing paths between nonadjacent vertices. Every DAG is a DMAG. Directed
partial ancestral graphs (DPAGs) ‘P are directed partial mixed graphs that represent Markov
equivalence classes of DMAGs; see Definition 5.2 in Section 5.1 for a formal definition.
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3. A class of causal graphical models for time series with latent confounders. In this
section, we first formally specify the considered type of time series processes; see Section 3.1.
We then explain how, if there are no unobserved variables, certain DAGs with an infinite
number of vertices (Definition 3.4) can model these processes as causal Bayesian networks;
see Sections 3.2 and 3.3. Importantly, Definition 3.6 in Section 3.4 introduces so-called time
series DMAGs (ts-DMAGs). These graphs are projections of the infinite DAGs and represent
the causal relationships and independencies among only a subset of observed variables at a
finite number of regularly sampled or regularly subsampled observed time steps. Time series
DMAGS constitute the novel class of causal graphical models which is the central topic of
this paper.

3.1. Structural vector autoregressive processes. We consider multivariate time series
{V:};ez, where V, = (V,l,..., V,n‘/) with the component time series Vi = {V}}tez for
1 <i < ny, that are generated by an acyclic structural vector autoregressive process with
contemporaneous influences, for example, Malinsky and Spirtes (2018). That is to say, for all
t € Z (time index) and 1 <i < ny (variable index) the value of Vti is determined as

(1) Vi= f'(PAL€)),

where f' is a measurable function that depends on all its arguments, the random variables
ef (so-called “noise” variables) are jointly independent (with respect to both indices) and
have a distribution that may depend on i but not on ¢, and PA; - {Vtk_ Al <k<ny,0<
T < pist\ {Vti}. Here, the order pg of the process is the smallest integer for which the set
inclusion in the previous sentence holds (for all i and ¢). We demand that 0 < py < 00.

We allow contemporaneous causal influences (i.e., VX . € PA! with T = 0). Further, for
all At € 7 we assume the sets PA! and PA!_,, to be consistent in the sense that V! _ € PA!
if and only if Vtk_ —Ar € PA;'_ Az - Acyclicity means the system of equations is recursive. The
attribute structural asserts that equation (1) is a structural causal model (SCM), for exam-
ple, Bollen (1989), Pearl (2009), Peters, Janzing and Schélkopf (2017), which we indicate by
the “:=" symbol. Because of this causal interpretation, we refer to the variables PA! as causal
parents of Vti and to the consistency of PA;' and PA;'_ Az s causal stationarity. The restric-
tion of PA! to variables V} _ with T > 0 ensures that there is no causal influence backward
in time.

3.2. Time series DAGs. The causal parentships specified by an SCM are graphically rep-
resented by the SCM’s causal graph, for example, Spirtes, Glymour and Scheines (2000),
Pearl (2009), Peters, Janzing and Scholkopf (2017). The causal graph is a directed graph
with one vertex per variable, typically excluding the noise variables, and directed edges from
each variable to all variables of which it is a causal parent. The same construction applies to
structural processes as in equation (1). However, as we capture by the below three notions, the
resulting “temporal causal graphs” carry more structure than their nontemporal counterparts.

First, the random variable Vti corresponds to a particular time step ¢ of a particular com-
ponent time series V. This correspondence is captured by the following notion.

DEFINITION 3.1 (Time series structure). A graph G = (V, E) has a time series structure
if V=IxT,wherel={1,2,...,n} with n > 1 is the variable index set and T = {t € Z|t; <
t <t} witht; € ZU{—o0o} and t, € Z U {+o00} and t; <1, is the time index set.

We say that a vertex (i,t) € V is at time ¢, and if 1, <t <1}, to be in the time window
[ta,p]. We further say (i, ;) € V is before (j,tj) € V and (j,t;) € V is after (i,t;) € V if
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ti <tj. Anedge ((i,1;),(j,t;)) € E has length or lag |t; —t;|. We call edges of length zero
contemporaneous and call all other edges lagged.

Second, below equation (1) we explicitly restricted the causal parents PAi to only contain
vertices that are before or at time ¢. This restriction is captured by the following notion.

DEFINITION 3.2 (Time order). A directed partial mixed graph G = (V, E) with time
series structure is time ordered if ((i, 1;), (j, t;)) € E_, implies 1; <t;.

In a time ordered graph G, the ancestral relationship (i, ;) € an((j, ¢;), G) implies #; <t;.
This fact shows that also indirect causal influences are correctly restricted to not go backwards
in time as soon as this restriction is imposed on direct causal influences.

Third, the property of causal stationarity (see Section 3.1) restricts the edges to be repeti-
tive in time. This restriction is captured by the following notion.

DEFINITION 3.3 (Repeating edges). A directed partial mixed graph G = (V, E) with
time series structure has repeating edges if the following holds: If ((i, #;), (j, 7)) € E, with
ec{—,<,0>,00}and (i,t; + At), (j, t; + At) € V, then ((i, t; + A1), (j, tj + At)) € E,.

REMARK (on Definition 3.3). Section 3 is concerned with DAGs and DMAGs only. In
these graphs, there are by definition no edges of the types o— or o—o. However, in Section 5
we will apply the concept of repeating edges also to DPAGs. Since these graphs (DPAGs) can
contain edges o— or o—o, we already here formulate Definition 3.3 in sufficient generality.

By combining the three notions introduced in Definitions 3.1, 3.2 and 3.3, we define the
following class of graphical models, which plays an important role throughout the paper.

DEFINITION 3.4 (Time series DAG). A time series DAG (ts-DAG) is a DAG D = (V,E)
with time series structure V=1 x T with T = Z that is time ordered and has repeating edges.

Due to time order and repeating edges, a ts-DAG D is fully specified by its variable index
set together with its edges that point to a vertex at time . Hence, if the longest edge of D is of
finite length pp < oo then one unambiguously specifies D by drawing all vertices within the
time window [t — pp, t] and the edges between these; see Figure 1 for an example. In slight
abuse of notation, we sometimes denote vertices by the random variable that they represent.

3.3. Time series DAGs as causal graphs for structural vector autoregressive processes.
Since the structural process in equation (1) is acyclic by assumption, that is, since the system
of equations is recursive, its causal graph is acyclic (hence the terminology). In combination
with the discussions in the previous subsection, we thus get the following result.

a) D b) D
t—3 t—2 t—1 t t+1 t—2 t—1 t
72! el
V2 V2
‘/rii ‘/3

FI1G. 1. Two illustrations of the same ts-DAG D that represents a structural process as in equation (1) of order
PD = Pts = 2 with three component time series V1, V2 and V3. Given the implicit assertion that there is no edge
of length larger than those depicted, the ts-DAG is uniquely specified by showing a segment of pts + 1 successive
time steps. The horizontal dots indicate that the structure is repeated into the infinite past and infinite future.
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LEMMA 3.5. The causal graph of an acyclic and causally stationary structural vector
autoregressive process as in equation (1) is a ts-DAG.

This observation has been made before, for example, in Runge et al. (2012) and Peters,
Janzing and Scholkopf (2013) where ts-DAGs have respectively been called time series
graphs and full time graphs. We note that, because of time order, the assumption of acyclicity
restricts only the ts-DAG’s contemporaneous edges.

In the non-time series setting, an acyclic SCM defines a unique distribution over the SCM’s
variables (pushforward of the noise distribution by the structural assignments). According
to the causal Markov condition (see Spirtes, Glymour and Scheines (2000)), the SCM’s
causal graph is a Bayesian network for this so-called entailed distribution (Pearl (2009)),
which in turn implies that d-separations (see Pearl (1988), denoted by “_11”) in the causal
graph imply the corresponding independencies in the distribution (Verma and Pearl (1990),
Geiger, Verma and Pearl (1990)). The causal faithfulness condition (see Spirtes, Glymour
and Scheines (2000)) assumes the reverse implication, that is, that all independencies imply
the corresponding d-separations. Then d-separations and independencies are in one-to-one
correspondence.

Although acyclic, the time series setting specified by equation (1) is more complicated:
Since time is indexed by ¢ € Z (as opposed to, e.g., t € N), there is no initial “starting” distri-
bution that can be pushforwarded to explicitly define a unique entailed distribution. Instead,
we need to ask whether equation (1) implicitly defines a distribution; and if yes, how many.
Following the terminology in Bongers, Blom and Mooij (2018), this question asks for solu-
tions to equation (1), that is, for stochastic processes which satisfy equation (1) almost surely.
The existence of such solutions as well as their uniqueness (up to almost sure equality) and
properties are nontrivial and not considered here. Rather, for the purpose of this paper we
assume that equation (1) is solved by a (not necessarily unique) strictly stationary stochastic
process whose finite-dimensional distributions satisfy the causal Markov and causal faith-
fulness condition with respect to its ts-DAG. This assumption is common in the literature,
cf. Entner and Hoyer (2010), Malinsky and Spirtes (2018), Gerhardus and Runge (2020),
and is here only needed for the connection to causality. The results of the present paper are
technically about marginalizing the independence (i.e., d-separation) models of ts-DAGs and
remain valid also without that additional assumption. The issue of solving equation (1) is an
important aspect to consider in future work.

3.4. Time series DMAGs. In mostreal-world scenarios, unobserved common causes can-
not be excluded. As mentioned in Section 1 for the non-time series setting, directed maximal
ancestral graphs (DMAGs) are often used for causal modeling in the presence of unobserved
variables. This use of DMAGs as causal graphical models was pioneered in Richardson and
Spirtes (2002), which defines a marginalization/projection procedure that from a DAG G over
vertices V, of which only a subset O C V is observed, constructs a DMAG Mg (D) over the
observed variables O only (see also Zhang (2008a)). The projection of D to Mg (D) has two
properties: First, both graphs have the same ancestral relationships among vertices in O. Sec-
ond, d-separations in D among vertices in O are in one-to-one correspondence to the similar
concept of m-separation in Mg (D) (also denoted by “_11.”’). These two properties ensure that
if D is a causal graph then also M (D) carries causal meaning and can be used for causal
reasoning as explained in Zhang (2008a).

Below, we generalize the construction of such “causal” DMAGSs to the time series setting.
To begin, we first note that for time series there are two types of unobserved variables:

e Unobservable variables: Some component time series LY ..., L”L‘With 0 <np <ny may
be unobserved entirely by the experimental setup. We call these L' unobservable and call
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the other component time series o', ..., 0" with no =ny — n; < oo observable. The
variable index set I of the ts-DAG D accordingly decomposes as I = I UIy,. This first
type of unobserved variables is similar to the case of unobserved variables in the non-time
series setting.

e Temporally unobserved variables: In addition, throughout the paper we will treat only
a finite number of time steps T as observed. This construction is specific to the time
series setting and means that at times T \ To also the observable time series are treated as
unobserved. The rational for doing so is that in practice only finitely many observations
are available, and hence one can only reason about DMAGs of finite temporal extension.

Throughout the paper, we restrict the set Tg of observed time steps to take one of the follow-
ing two forms:

e Regular sampling: All time steps within a time interval [t — p, ¢] for some nonnegative
integer p < oo and a reference time step ¢ are observed, that is, To ={r — t|0 <t < p}.

e Regular subsampling: Every nth time step, for n > 2 an integer, within [t — p, t] with
p < oo is observed, thatis, To ={t — 7|0 <t < p, T mod n =0}.

The time window length p is not restricted relative to the order p of the data-generating
process, that is, we allow all of p < pis and p = pis and p > py. The reference time step ¢ is
arbitrary since the ts-DAG D has repeating edges. We are led to the following definition.

DEFINITION 3.6 (Time series DMAG). LetD = (V, E) be a ts-DAG with variable index
set I, let Iop € I, and let To € Z be regularly sampled or regularly subsampled. The fime
series DMAG implied by D over O =1Ig x Tq, denoted as Mg (D) or My, xT, (D) and also
referred to as a ts-DMAG, is the DMAG on the vertex set O that is obtained by applying
the MAG latent projection defined in Zhang ((2008a), pp. 1442-1443) to D with L=V \ O
being the set of latent vertices.

Figure 2 illustrates the construction of ts-DMAGs as projections of ts-DAGs. We stress
that all vertices prior to the observed time window (i.e., before time ¢ — p) are treated as
unobserved, even if they are observable, and hence would be observed for a larger value of p.

a) Dy b) Migx1o(D1)
t—4  t-3  t-2  t-—1 t t+1 t—-2  t-1 t
o'=v? o'=v?
0*=v? 0*=Vv?
'=v?
c) Dy d) Migxre(D2)
t—4 t—3 t—2 t—1 t t+1
r=v

t—4 t—2 t

o =v? o'=v> Oe—O+—0)

F1G. 2. The ts-DAG Dy in part (a) implies the ts-DMAG MIOXTO (Dy) in part (b) for Ig = {1,2} and
To = {t —2,t — 1,1} (regular sampling). The ts-DAG D, in part (c) implies the ts-DMAG Myqx1o(D2) in
part (d) for Ig ={2,3} and Tog = {t — 4,1t — 2, t} (regular subsampling). Color coding: Observed vertices are
light blue, unobservable vertices are dark gray, temporally unobserved observable vertices are light gray.
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REMARK (on Defintion 3.6). The time series DMAG M (D) is defined as the MAG
latent projection of an infinite object, namely of the ts-DAG D. An implementation of this
projection in a procedure that always terminates in finite time is possible but nontrivial. Such
a procedure is discussed in Gerhardus et al. (2023). For the present paper, however, this
procedure is not needed because all theoretical results and examples either do not require the
explicit construction of ts-DMAGs or one can carry out the required projections by hand.

Time series DMAGs are the central objects of interest in this paper and a significant part of
the paper deals with deriving their properties. We will see that the repeating edges property
of ts-DAGs D plays an essential role in this regard. As a first step, the following lemma notes
which of the defining properties of ts-DAGs carry over to ts-DMAGs.

LEMMA 3.7. Let Mo(D) be a ts-DMAG. Then:

1. Mo(D) has a time series structure.
2. Mo(D) is time ordered.
3. There are cases in which Mo (D) does not have repeating edges.

While according to part 1 of Lemma 3.7 every ts-DMAG is a DMAG with time series
structure, part 2 implies that the reverse is not true. Namely, DMAGs with time series struc-
ture that are not time ordered cannot be ts-DMAGs. We thus see that ts-DMAGs are a proper
subclass of DMAGs with time series structure. The following example shows that ts-DMAGs
Mo (D) do not in general have repeating edges.

EXAMPLE 3.8. The ts-DMAG in part (b) of Figure 2 does not have repeating edges
because there is the edge 0z1—2<_> 0z2—2 although Otl_1 and Otz_1 (and Ozl and 0,2) are non-
adjacent.

Despite this fact, the repeating edges property of the ts-DAG D strongly restricts the con-
nectivity pattern of the ts-DMAG Mo (D). We will work out these restrictions in Section 4.

4. Characterization of ts-DMAGs. The main goal of this section is to characterize the
space of ts-DMAGs, that is, to find conditions that specify exactly which DMAGs with time
series structure are ts-DMAGs. Theorem 1 in Section 4.6 achieves this goal by providing a
single condition that is both necessary and sufficient. The theorem uses the notion of canon-
ical ts-DAGs; see Definition 4.11 in Section 4.5. In Section 4.4, we introduce stationarified
ts-DMAGs and, more generally, the concept of stationarification. This concept simplifies the
definition of canonical ts-DAGs and is useful to describe the output of two recent time se-
ries causal discovery algorithms (see Section 5.5). In Section 4.8, we show that ts-DMAGs
constitute a strict subset of the classes of graphical models that have so far been used in the lit-
erature for describing time-lag specific causal relationships and independencies in time series
with latent confounders. Section 4.3 discusses several properties that ts-DMAGs necessarily
have, but which can also be obeyed by DMAGs that are not ts-DMAGs. These properties are
useful for the discussions in Sections 4.8 and 5. In Section 4.2, we show that regular sampling
and regular subsampling are equivalent from a graphical point of view. Section 4.7 gives a
characterization of the space of stationarified ts-DMAGs. At first, however, we spell out the
motivation for the analysis.

4.1. Motivation. When using a class of graphs to represent causal knowledge, it is desir-
able to know which graphs belong to this class and which do not. Otherwise, it is impossible
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to fully characterize which causal claims a given graph of that class conveys. Another, a pos-
teriori motivation has been mentioned in the previous paragraph: In Section 4.8, we will see
that ts-DMAGs are a strict subset of the previously employed model classes. Thus, when us-
ing ts-DMAGs as targets of inference in causal discovery or to reason about causal effects, it
is, respectively, possible to learn more qualitative causal relationships (see Sections 5.4 and
5.5 for an in-depth discussion) and to identify more causal effects (see Example 5.8) from
data without having imposed any additional assumption or restriction.

4.2. Equivalence of regular subsampling and regular sampling. 1In Section 3.4, we re-
stricted the set of observed time steps Tq to regular sampling or regular subsampling. While
different at first sight, these two cases are equivalent in the following sense.

LEMMA 4.1.  Let D be a ts-DAG and 1 < nyeps € N. For 1 <n € Z define the set T{) =
{t —m -n|0 <m < ngeps — 1}. Then, with equality up to relabeling vertices:

1. Forevery n > 1, there is a ts-DAG D’ such that Migxry (D) = MIObe (D).
2. Forevery n > 1, there is a ts-DAG D’ such that MI()XT(I) (D) = Migxy, (D).

Lemma 4.1 implies the following: Every property that ts-DMAGs necessarily have in case
of regular sampling is also necessarily obeyed in case of regular subsampling (part 1) and
vice versa (part 2). Moreover, every set of additional properties that, when imposed on a
DMAG M with time series structure, is sufficient for M to be a ts-DMAG in case of regular
sampling is also sufficient in case of regular subsampling (part 2) and vice versa (part 1).

Due to this equivalence, we from here on restrict to regular sampling, without losing gen-
erality, and write M? (D) for Mo (D) where O =1g x Tg and To ={r — 7|0 <7 < p}.

4.3. Properties of ts-DMAGs. In this subsection, we discuss several properties that ts-
DMAGs M? (D) necessarily have. These properties are such that a certain graphical property
persists when the involved vertices are shifted in time. We use the following definitions.

DEFINITION 4.2 (Time-shift persistent graphical properties). A partial mixed graph G =
(V, E) with time series structure has. . .

1. ... repeating adjacencies if the following holds: If ((i, ), (j,;)) € E and (i,#; +
At), (j,tj + At) € V, then (G, 1; + A1), (j, tj + At)) € E.

2. ... past-repeating adjacencies if the following holds: If ((i,#), (j,t;)) € E and
@i, + A1), (j, tj + At) € V with At <0, then ((i, t; + At), (j, t; + At)) € E.

3. ... repeating orientations if the following holds: If ((i,#), (j,?;)) € E, with e €
{—,<,0>,00}and ((i,#; + A1), (j, tj + At)) € E, then ((i, 1; + A1), (j, t; + At)) € E,.

A DMAG M = (V, E) with time series structure has

4. ... repeating ancestral relationships if the following holds: If (i, #;) € an((j, t;), M)
and (i,1; + At), (j, t; + At) € V, then (i, 1; + At) € an((j, t; + At), M).

5. ... repeating separating sets if the following holds: If (i, #;) LL (j, ;)|S and {(i, #; +
At), (j,tj+ At)}USA; €V, where S, is obtained by shifting every vertex in S by At time
steps, then (i, #; + Ar) 1L (j, tj + At1)[Sa;-

REMARK (on Definition 4.2). Section 4 is concerned with DAGs and DMAGs only.
However, in Section 5 we will apply the concepts of repeating adjacencies, past-repeating
adjacencies and repeating orientations also to DPAGs (which are a special case of partial
mixed graphs). Hence, we already here formulate the definition in sufficient generality.
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a) t—1 t b) t—-1 t c) t—1 t d) t-1 t e) t—1 t f) t-1 t

ot o! o! o! o! o!

0? 0? 0? o 0? 0?
FI1G. 3.  Examples of time ordered DMAGs with time series structure for illustrating the properties from Defi-
nition 4.2 and the repeating edges property from Definition 3.3. In each case, we state which of these properties
apply. a) Repeating adjacencies, repeating separating sets, past-repeating adjacencies. b) Repeating orientations,
repeating separating sets, past-repeating adjacencies. ¢) Repeating orientations, repeating ancestral relation-

ships. d) All but repeating separating sets. e) All but repeating repeating edges and repeating adjacencies. f)
All.

Figure 3 illustrates the five properties introduced by Definition 4.2 as well as their dis-
tinctions. Below we will make frequent use of the implications expressed by the following
lemma.

LEMMA 4.3.

1. Repeating edges is equivalent to the combination of repeating adjacencies and re-
peating orientations.

2. Repeating adjacencies implies past-repeating adjacencies.

3. Repeating ancestral relationships implies repeating orientations.

4. In graphs with time index set T = 7, repeating edges implies repeating ancestral
relationships and repeating separating sets.

These implications further show that the combination of repeating adjacencies and repeat-
ing ancestral relationships implies repeating edges. Importantly, repeating orientations does
not imply repeating ancestral relationships; see part (b) of Figure 3 for an example.

Since ts-DAGs have repeating edges, according to Lemma 4.3 they in fact also have all
five properties given in Definition 4.2. How about ts-DMAGs? While these in general do not
inherit repeating edges from the underlying ts-DAG (see part 3 of Lemma 3.7), the following
lemma shows that ts-DMAGs do feature some of the weaker time-shift persistent properties.

LEMMA 4 4.

1. Time series DMAGs MP (D) have repeating ancestral relationships.

Time series DMAGs MP (D) have repeating orientations.

Time series DMAGs MP (D) have repeating separating sets.

Time series DMAGs MP (D) have past-repeating adjacencies.

There are cases in which a ts-DMAG MP (D) does not have repeating adjacencies.

AR

The ts-DMAGs in parts (b) and (d) of Figure 2 indeed satisfy the properties asserted by
parts 1 through 4 of Lemma 4.4. Moreover, part 5 of Lemma 4.4 clarifies why ts-DMAGs may
fail to have repeating edges: They do not necessarily have repeating adjacencies but only the
weaker property of past-repeating adjacencies. The following example illustrates this fact.

EXAMPLE 4.5. Consider the ts-DAG D in part (a) of Figure 2. In this graph, the d-

separation 0}+At 1L 01‘2+At|0t1+At—1 holds for all At € Z. Hence, the vertices O} and 0?

(and, similarly, 02_1 and Of_l) are nonadjacent in the ts-DMAG M?(D)) in part (b) of
the figure. However, since 0t1_3 is temporally unobserved and the d-separation Otl ar L

0t2+ Az S requires that 0,1 tAr_1 € S, the vertices 0,1_2 and 0,1_2 are adjacent in ./\/lZ(Dl).

That ts-DMAGs have repeating orientations and repeating separating sets has already been
found and used in Entner and Hoyer (2010).
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4.4. Stationarified ts-DMAGs. Example 4.5 shows that in a ts-DMAG M? (D) there may
be an edge (i, 1; + At)*—x(j, t; + Ar) with Ar <0 even if the vertices (i, ;) and (j, ;) are
nonadjacent in MP? (D). This is the case even though one then knows that (i, #; + At) and
(j,tj + At) can be d-separated in underlying ts-DAG D, just not by a set of vertices that is
within the observed time window. One might thus view such an edge (i, #; + At)*—*(j,t; +
At) in MP (D) as an artifact of the chosen time window, and hence prefer to manually remove
the edge by subjecting the ts-DMAG to the following operation.

DEFINITION 4.6 (Stationarification). Let G = (V, E) be a directed partial mixed graph
with time series structure. The stationarification of G, denoted as stat(G), is the graph
stat(G) = (V', E') defined as follows:

1. It has the same set of vertices as G, thatis, V' =V.
2. There is an edge ((i, %), (j,t;)) € E, with e € {—, <>, o, o—o} if and only if
(G, 1 + A1), (j, tj + At)) e E, in G for all At with (i,1; + At), (j, t; + At) € V.

REMARK (on Definition 4.6). Section 4 is concerned with DAGs and DMAGs only. In
these graphs, there are by definition no edges of the types o— or o—o. However, in Section 5
we will apply the concept of sationarification also to DPAGs. Since these graphs (DPAGs)
can contain edges o— or o—o, we already here formulate the definition in sufficient generality.

To see that the process of stationarification indeed achieves what it is supposed to do, con-
sider the ts-DMAG M in part (a) of Figure 4. In this graph, there is the edge 01 > 0; ) €
E ., while the vertices 0}_1 and Ot_1 (and, similarly, Ot1 and 0,2) are nonadjacent. Accord-
ing to part 2 of Definition 4.6 (note the “for all Ar”), the vertices 0}_2 and 03_2 are therefore
nonadjacent in the stationarification stat(M) of M as shown in part (b) of Figure 4.

Stationarification removes an edge (i, #; + At)x—(j,t; + At) also if (i,#) and (j, ;)
are adjacent but if the edges (i, #;)*—*(j, ;) and (i,; + At)*—*(j, t; + At) have different
orientations (note the “e” subscripts on E, and E, in part 2 of Definition 4.6). This effect,
illustrated by parts (c) and (d) of Figure 4, ensures that stat(G) is the unique largest subgraph
of G with repeating edges. For graphs with repeating orientations (as, e.g., ts-DMAGS), this
effect does not occur and stationarification only concerns adjacencies (as, e.g., in parts (a)
and (b) of Figure 4).

Since ts-DMAGs M7 (D) have repeating orientations and past-repeating adjacencies, their
stationarifications stat(AM? (D)) can be characterized with the following simpler condition.

LEMMA 4.7. The stationarification stat(MP (D)) of a ts-DMAG MP (D) is the unique
subgraph of MP (D) in which the vertices (i,t; — t) and (j, t;) with T > 0 are adjacent if
and only if the vertices (i,t — t) and (j, t) are adjacent in MP (D).

a) M; = M*(Dy) Stdt(./\/l ) stat(M
t—2  t-1

R

FIG. 4. A ts-DMAG M| = MZ(DI) (the same as in part (b) of Figure 2) and a DMAG with time series
structure My (the same as in part (a) of Figure 3) together with their stationarifications. Note that although M)
has repeating adjacencies its contemporaneous edges are not in stat(Moy) because these edges do not have the
same orientation.
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Because the stationarification stat(G) is a subgraph of G, a time series structure and time
order naturally carry over from G to stat(G). Moreover, we can prove the following.

LEMMA 4.8. The stationarification stat(MP? (D)) of a ts-DMAG MP (D) is a DMAG.

We thus refer to stat(MP? (D)) as a stationarified ts-DMAG and abbreviate stat(M? (D))
as MZ (D). However, as the following example shows, a stationarified ts-DMAG M (D)
may not be the MAG latent projection of any ts-DAG, that is, may not be a ts-DMAG.

EXAMPLE 4.9. The stationarified ts-DMAG /\/l%t(Dl) in part (b) of Figure 4 implies the
d-separation Ozl_2 1 03_2 and the d-connections 0}_ A Otz_l and O] _H~0?. The graph
./\/lgt(Dl) does thus not have repeating separating sets and can, by means of Lemma 4.4, not
be a ts-DMAG. Also, note that in the underlying ts-DAG Dj, shown in part (a) of Figure 2,
the d-connection Otl_zﬁdf 0,2_2 holds. From this observation, we learn that (i, #;) LL (j, ¢;)[S
in Mé’t(D) does not necessarily imply (i,#;) 1L (j,#;)|Sin D.

The vertices (i,t — ;) and (j, 7 — 7;) with 0 < 7; < 1; < p are adjacent in a stationarified
ts-DMAG M (D) if and only if they cannot be d-separated by any set of observable vertices
within [# — p — 7;,¢] in the underlying ts-DAG D (instead of [t — p, ], which is what a
ts-DMAG would assert). The orientation of edges, however, retains the standard meaning:
Tail and head marks, respectively, convey (non)ancestorship according to the ts-DAG D. The
following lemma says that stationarification does not change ancestral relationships.

LEMMA 4.10. The ts-DMAG MP (D) and its stationarification M4 (D) agree on an-
cestral relationships, that is, (i,t;) € an((j, t;), MP(D)) if and only if (i,t;) € an((], t;),
ME(D)).

Since MP? (D) and D by construction of the MAG latent projection agree on ancestral
relationships, Lemma 4.10 implies that also the stationarified ts-DMAG M (D) agrees with
the ancestral relationships of D. Thus, MY (D) has repeating ancestral relationships.

In summary, edges in the ts-DMAG MP (D) that are not also in MZ%(D) are due to
marginalizing over observable vertices before + — p. Such edges disappear when p is suf-
ficiently increased; see also Gerhardus ((2023), Section B.8). However, as we will show in
Section 5.3, these additional edges play a useful role in causal discovery. In Section 5.5, we
will further use the concept of stationarification to describe the SVAR-FCI causal discovery
algorithm from Malinsky and Spirtes (2018) and the LPCMCI causal discovery algorithm
from Gerhardus and Runge (2020).

4.5. Canonical ts-DAGs. In the current subsection, we return to the goal of characteriz-
ing the space of ts-DMAGs. To this end, we first recall the concept of canonical DAGs.

DEFINITION 4.11 (Canonical DAG. From Section 6.1 of Richardson and Spirtes (2002),
specialized to the case of directed ancestral graphs). Let G = (V, E) be a directed ancestral
graph. The canonical DAG D.(G) of G is the graph D.(G) = (V?, E®?) defined as follows:

1. Its vertex setis V* = VUL, where L = {/;;|(i, j) e E.}.
2. Tts edge set E* = E®? consists of the edges:

e i—jforall (i, j) e E_, and
o l;j—iforall/;; € L and
° l[j-)j for all l,‘j eL.
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Intuitively, the canonical DAG D.(G) of a directed ancestral graph G is obtained by re-
placing each bidirected edge i<>j in G with i <—[;;— j where /;; is an additionally inserted,
unobserved vertex. The canonical DAG D,.(G) is a DAG and has the convenient property that
there are no edges pointing into unobserved vertices, and hence that there are also no edges
between two unobserved vertices. Despite this simple structure of unobserved vertices, the
following result shows that canonical DAGs are expressive enough to generate all DMAGs.

LEMMA 4.12 (Theorem 6.4 in Richardson and Spirtes (2002), specialized to directed
ancestral graphs). If M is a DMAG over vertex set O, then the MAG latent projection
Mo(D.(M)) of the canonical DAG D.(M) of M equals M, that is, M = Mg (D.(M)).

Lemma 4.12 means that every DMAG is the MAG latent projection of some DAG. Moreo-
ever, the condition M = Mg (D.(M)) yields a characterization of DMAGs in the sense that
a directed ancestral graph G is a DMAG if and only if it meets the condition G = Mo (D.(G)).
Because DMAGs are already characterized by definition,' the alternative characterization by
the condition G = Mg (D.(G)) is of limited use in this case.

For ts-DMAGs, however, there is no definitional characterization. In addition, because
not every DMAG with time series structure is a ts-DMAG (see the explanation below
Lemma 3.7), characterizing ts-DMAGs is a nontrivial task. In the remaining parts of the
current subsection and Section 4.6, we show that ts-DMAGs can be characterized by an
appropriate generalization of the condition G = Mo (D.(G)). The first step of such a gener-
alization is to find an appropriate generalization of canonical DAGs.

The generalization of canonical DAGs to the time series setting is nontrivial for the follow-
ing reason. Consider an edge (i, ;)*—*(j, ;) in a DMAG M with time series structure that
is not in the DMAG?’s stationarification stat(M). If, depending on the orientation of the edge
(i, t;))*—x(j, ;) in M, either (i,t;)—(j, ;) or (i,t;)<=(j,t;) or (i,1;)<(l;j, t;;))—>(j, ;)
with (/;;, t;j) unobserved were included in a “canonical ts-DAG” D.(M), then the re-
peating edges property of ts-DAGs would require the same structure to be present at all
other time steps, too. Hence, in D.(M) there would be (i,t; + At)—(j,t; + At) or
(i, + At)<(j,tj + At) or (i, t; + At)«(lij, t;j + At)—(j, t; + At) for all At € Z. Con-
sequently, in the MAG latent projection Mg (D.(M)) of D.(M) there would be an edge
(i, t; + At)x—*(j, t; + At) of the same type for all Az. But then also in the stationarification
stat(Mo(D.(M))) of Mo(D.(M)) there would be the edge (i, t; + At)*—x(j, t; + At) for
all Az. Hence, M could not equal Mo (D, (M)).

Given these considerations, the canonical ts-DAG D.(M) of a ts-DMAG M should in-
stead only take into account the edges in the stationarification stat(M) of M. We are thus
lead to the following definition, which for use further below is not restricted to ts-DMAGs
but more generally applies to acyclic directed mixed graphs.

DEFINITION 4.13 (Canonical ts-DAG). Let G be an acyclic directed mixed graph with
time series structure and let V=1 x T with T = {r — 7|0 < t < p} be its set of vertices.
Denote with ES® the set of edges of stat(G). The canonical ts-DAG associated to G, denoted
as D.(G), is the graph D.(G) = (V?, E?) defined as follows:

1. Its set of vertices is V* = (I1UJ) x Z, where J = {(i, j, T)|((i,t — 1), (j, 1)) € E3?'}. The
variable index set is I U J and the time index set is Z.
2. Its set of edges E°? = E< are, for all At € Z,

o (i,t — 1+ Af)—(j,t + Ar) forall ((i,1 — 1), (j, 1)) € E and

I As directed ancestral graphs without inducing paths between nonadjacent vertices, see Section 2.
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a) M; = M%(Dy) b) D.(My) = De(M*(Dy))

t—2 t—1 t t—3 t—2 t—1 t t+1
o' o'
o g
c) Mo d) D.(My)

t—1 t t—3 t—2 t—1 t t+1
o' o

L@

0? o?

F1G.5. Ats-DMAG My = ./\/12(2?1) (the same as in part (b) of Figure 2 and part (a) of Figure 4) and a DMAG
with time series structure Moy together with their canonical ts-DAGs. In D.(M ), there is no unobservable time
series because in M| there is no bidirected edge that is repetitive in time, and hence there is no bidirected edge
in stat(M ). The unobservable time series L@LD iy D, (My) in the notation of Definition 4.13 corresponds to
(2,1, 1) € J and results from the edge 012_1<—>0t1 in stat(Mp) = Mo.

o ((i,j,71),t+ At)—(i,t + At) forall (i, j,7) € J and
e ((i,j,0),t—14+ At)—>(j,t+ Ar)forall (i, j,7) €J.

Figure 5 illustrates canonical ts-DAGs. Intuitively, the canonical ts-DAG D.(G) of G is
obtained in three steps: First, replace G by its stationarification stat(G). Second, in stat(G)
replace every bidirected edge (i,1; — t)<>(j, ;) with (i, 1; — 1)< (0, j, 7),t; —T)—>(J, t})
where ((i, j, T),t; — ) is an additionally inserted, unobserved vertex. Third, repeat this struc-
ture into the infinite past and future according to the repeating edges property. This intuition
identifies the vertices ((i, j, t),s) with (i, j,7) € J and s € Z as analogs of the unobserved
vertices /;; € L in standard canonical DAGs (see Definition 4.11 above) and, in addition,
means that the time series indexed by J are treated as unobservable. The key difference be-
tween standard canonical DAGs and canonical ts-DAGs is the first of the three steps, that is,
the application of stationarification. A similarity is that also in canonical ts-DAGs there are
no edges into unobservable vertices, and hence no edges between two unobservable vertices.

Canonical ts-DAGs are indeed ts-DAGs and, by means of the following result, yield the
desired generalization of Lemma 4.12.

LEMMA 4.14. Let D be a ts-DAG with variable index set 1. Let Io C 1 and To = {t —
7|0 <t < p} with p > 0. Then Mo(D) = Mo(D.(Mo(D))) with O =1Igp x To.

REMARK (on Lemma 4.14). The lemma involves two different MAG latent projections:
First, the projection of the ts-DAG D to the ts-DMAG M (D). Second, the projection of
the canonical ts-DAG D.(M (D)) of Mg(D) to Mo(D.(Mop(D))). In the first projection,
the time series indexed by I\ Ip are unobservable. In the second projection, the time series
indexed by the set J are unobservable. In both projections, all vertices before + — p and after
t are temporally unobserved. However, since the set of observed variables is the same in both
projections (namely O), no confusion arises when writing M? (D) = M?(D.(M?(D))) in-
stead of Mo (D) = Mo(D.(M¢(D))). From here on, we adopt this notation.

Lemma 4.14 says that the composition of creating the canonical ts-DAG and then pro-
jecting back to the original vertices is the identity operation on the space of ts-DMAGs; see
Figure 6. This result is far from obvious for two reasons: First, if an edge (i, #;)*—*(j, ;) ina
ts-DMAG M?P (D) is not in the stationarified ts-DMAG ML (D) then in the canonical ts-DAG
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D MP(D) D.(MP(D))
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FI1G. 6. Conceptual illustration of Lemma 4.14.

D.(MP (D)) there is neither (i, #;)—(j, ;) nor (i, )<= (j, t;) nor (i,1;)<(;j, t;j;)—>(j, t})
with (/;;, ;;) unobservable. Hence, the edge (i, ;)*—+(j, f;) needs to appear in the MAG la-
tent projection MP? (D.(MP(D))) of D.(MP(D)) in a nontrivial way, namely because of
marginalizing over the temporally unobserved vertices. Second, this marginalization over the
vertices before ¢+ — p must not create superfluous edges.

EXAMPLE 4.15. The example in Figure 7 illustrates Lemma 4.14. This example also
shows that the original ts-DAG D and the canonical ts-DAG D.(MP (D)) need not be equal.

We stress that Lemma 4.14 holds for arbitrary ts-DAGs D. In particular, in D there may
be what in Malinsky and Spirtes (2018) is referred to as “auto-lag confounders,” namely un-
observable autocorrelated component time series L, that is, L;_;— L; with L unobservable.

4.6. A necessary and sufficient condition that characterizes ts-DMAGs. Lemma 4.14
readily implies the following characterization of ts-DMAGs as a subclass of DMAGs with
time series structure by a single necessary and sufficient condition.

THEOREM 1. Let M be a DMAG with time series structure and time index set T =
{t —7]10 <t < p}. Then M is a ts-DMAG, that is, there is a ts-DAG D such that M = MP (D)
if and only if the MAG latent projection MP (D.(M)) of the canonical ts-DAG D.(M) of
M equals M, that is, if and only if M = MP(D.(M)).

Theorem 1 is one of the central results of this paper. The following four examples are
included for its illustration.

EXAMPLE 4.16. The DMAG M in part (c) of Figure 5 is a ts-DMAG. This conclusion
follows because the canonical ts-DAG D, (M) in part (d) of the figure projects to M.

EXAMPLE 4.17. One may use Theorem 1 to confirm that none of the four DMAGS in
parts (a)—(d) of Figure 3 is a ts-DMAG. In these cases, this conclusion also follows because
each of these four graphs violates at least one of the necessary conditions in Lemmas 3.7 and
4.4,

a) D b) M'(D) ) De(M'(D))
t—2 t—1 t t+1 t—1 t t—2 t—1 t t+1
o! o! ot
o L Lo
02

FI1G. 7. A ts-DAG D together with the ts-DMAG Ml (D) and the canonical ts-DAG D, (./\/l] (D)) of the ts-D-
MAG. Marginalizing D (./\/t1 (D)) to the observed vertices gives back M! (D). Same color coding as in Figure 2.
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FIG. 8. Two examples of DMAGs with time series structure, M (the same as in part part (e) of Figure 3) and
My (the same as in part (f) of Figure 3), that are not ts-DMAGs although they obey all necessary conditions in
Lemmas 3.7 and 4.4. See also the discussions in Examples 4.18 and 4.19.
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EXAMPLE 4.18. The DMAG M in part (a) of Figure 8 is not a ts-DMAG because
its canonical ts-DAG D.(M) in part (b) projects to the ts-DMAG M!(D.(M)) in part
(c), which is a proper subgraph of M. This example also demonstrates that the equality
stat(M) = ME(D.(M)) is not sufficient for M to be a ts-DMAG.

EXAMPLE 4.19. The DMAG M in part (d) of Figure 8 is not a ts-DMAG since its
canonical ts-DAG D.(M>) in part (e) projects to the ts-DMAG M (D.(M>)) in part (f),
which is a proper supergraph of M5. The edge 012_1<—>O,1 in M(D.(My)) is due to
the green colored inducing path 012—1<_012—2‘_0t1—2<_L§1—;’1)_> 0t1_1<—L§£11’1)—> Ol1 in
DC(MZ)-

Importantly, the DMAGs considered in Examples 4.18 and 4.19 obey all necessary condi-
tions given in Lemmas 3.7 and 4.4. The condition M = MP?(D.(M)) is thus strictly stronger
than even the combination of all these necessary conditions. This observation clearly demon-
strates the significance and nontriviality of Theorem 1.

As an alternative to Theorem 1, we also characterize ts-DMAGs as a subclass of directed
mixed graphs with time series structure.

THEOREM 2. Let G be a directed mixed graph with time series structure and time index
set T={t — 1|0 <t < p}. Then G is a ts-DMAG, that is, there is a ts-DAG D such that
G = MP(D) ifand only if G is acyclic and G = MP (D.(G)).

Theorem 2 is even stronger than Theorem 1 because Theorem 2 does not require the graph
G to be ancestral and/or maximal. Acyclicity, however, is needed because the definition of
canonical ts-DAGs D, (G) requires G to be acyclic, as does the notion of d-separation.

4.7. Implications for stationarified ts-DMAGs. A ts-DMAG MP (D) by definition
uniquely determines its stationarification MZ (D). How about the opposite? That is, can a
ts-DMAG M? (D) be uniquely determined from its stationarification MK (D)? At first it
seems perfectly conceivable that different ts-DMAGs have the same stationarification, which
would make it impossible to uniquely determine Mft(D) from MP? (D). However, as a corol-
lary to the observation D.(G) = D.(stat(G)) and Lemma 4.14 we get the following result.

LEMMA 4.20. Let D be a ts-DAG. Then the ts-DMAG MP (D) equals the MAG latent
projection MP (D.(MZE(D))) of the canonical ts-DAG D.(ML (D)) of the stationarification
MUE(D) = stat(MP (D)) of MP (D), that is, MP (D) = MP(D.(ME(D))).
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According to Lemma 4.20, one can always uniquely determine M? (D) from ML (D). A
ts-DMAG MP (D) and its stationarification Mft(D) thus carry the exact same information
about the underlying ts-DAG D. In this sense, MP? (D) and ML (D) are, if interpreted in the
correct way, equivalent descriptions.

Lastly, we also arrive at two characterizations of stationarified ts-DMAGs.

LEMMA 4.21. Let M be a DMAG with time series structure and time index set T =
{t — 7|0 <t < p}. Then M is a stationarified ts-DMAG, that is, there is a ts-DAG D such
that M = ME(D) if and only if M = ME(D.(M)).

LEMMA 4.22. Let G be a directed mixed graph with time series structure and time index
set T={t — 7|0 <t < p}. Then G is a stationarified ts-DMAG, that is, there is a ts-DAG D
such that G = ML (D) if and only if G is acyclic and G = ME(D.(G)).

4.8. Comparison with previously considered model classes. The author is aware of two
distinct classes of graphical models based on DMAGs that have so far been used to represent
time-lag specific causal relationships in time series with latent confounders. Here, we show
that both these model classes are strictly larger than the class of ts-DMAGs.

The first previously used model class, employed by the tsFCI algorithm from Entner and
Hoyer (2010), are DMAGs with time series structure that are time ordered and have repeating
orientations as well as past-repeating adjacencies. Lemmas 3.7 and 4.4 show that ts-DMAGs
fall into this model class. The reverse, however, is not true: The graphs in part (b) of Figure 3
and parts (a) and (d) of Figure 8 fall into the model class used by tsFCI but are not ts-DMAGs.

The second previously used model class, employed by the SVAR-FCI algorithm from
Malinsky and Spirtes (2018) and LPCMCI from Gerhardus and Runge (2020), are DMAGs
with time series structure that are time ordered and have repeating edges. From Lemma 3.7
and Definition 4.6, we see that each ts-DMAG M7 (D) is associated to a graph in this model
class, namely to the stationarified ts-DMAG MK (D) = stat(MP(D)). Lemma 4.20 further
implies that the mapping ¢ : M? (D) > ML (D) is injective. Conversely, not all graphs in the
model class used by SVAR-FCI and LPCMCI are stationarified ts-DMAGs: The graph in part
(d) of Figure 8 is an example.

5. Markov equivalence classes of ts-DMAGs and causal discovery. This section dis-
cusses the implications of the concepts and results of Section 4 for causal discovery. To this
end, Definition 5.7 in Section 5.4 introduces time series DPAGs (ts-DPAGs) as graphs that
represent Markov equivalence classes of ts-DMAGs. Time series DPAGs are refinements
of DPAGs obtained by incorporating our background knowledge about the data generating
process—namely that the data are generated by a process as in equation (1) and that the
observed time steps are regularly (sub)sampled. We further introduce several alternative re-
finements of DPAGs (see Sections 5.1 and 5.2), concretely DPAGs which represent Markov
equivalence classes of stationarified ts-DMAGs and DPAGs which incorporate only some of
the necessary properties of ts-DMAGs as background knowledge. As we show, these alter-
native DPAGs carry less information about the underlying ts-DAG than ts-DPAGs do. Us-
ing the introduced terminology, in Section 5.5 we discuss and compare three algorithms for
independence-based causal discovery in time series with latent confounders and show that
none of them learns ts-DPAGs. That is, all of these algorithms are conceptually suboptimal as
they fail to learn causal properties of the underlying ts-DAG that in principle can be learned.
As opposed to that, Algorithm 1 in Section 5.6 does learn ts-DPAGs and in this sense is com-
plete. Another important result is Theorem 3 in Section 5.3, according to which DPAGs based
on stationarified DMAGs carry less causal information than DPAGs based on nonstationar-
ified DMAGs. Theorem 3 corrects an erroneous claim that has appeared in the literature;
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see the explanation below Theorem 3 in Section 5.3 and the discussion of the SVAR-FCI
algorithm in Section 5.5 for more details.

5.1. Background knowledge and DPAGs. Markov equivalent DMAGs by definition have
the same m-separations, and thus cannot be distinguished by statistical independencies. They
might, however, be distinguished if additional assumptions are made. One type of such as-
sumptions is background knowledge, that is, the assertion that DMAGs with certain properties
can be excluded as these are in conflict with a priori knowledge about the system of study.

DEFINITION 5.1 (Background knowledge, cf. Mooij and Claassen (2020)). A back-
ground knowledge A is a Boolean function on the set of all DMAGs. If A(M) = 1, then
M is said to be consistent with A, else it is said to be inconsistent with A.

Combining Definition 2 in Mooij and Claassen (2020) with the definition of PAGs in
Andrews, Spirtes and Cooper (2020), we refine DPAGs by background knowledge as fol-
lows.

DEFINITION 5.2 (DPAGs refined by background knowledge). Let M be a DMAG, let
[M] be its Markov equivalence class, and for a background knowledge A let [M] 4 be the
subset of [ M] that is consistent with A, that is, [M]4 = {M € [M]|A(M) = 1}. Then:

1. A directed partial mixed graph P is a DPAG for M if:

e P has the same skeleton (i.e., the same set of adjacencies) as M and
e cvery noncircle mark in P is also in M.

2. A DPAG P for M is called maximally informative (m.i.) with respect to [M] C [M] if:

e every noncircle mark in P is in every element of [M]" and
e for every circle mark in P there are M, Mj € [M] such that in M there is a tail
mark and in M, € [M]’ there is a head mark instead of the circle mark.

3. The maximally informative (m.i.) DPAG with respect to A, denoted as P(M, A), is the
m.i. DPAG of M with respect to [M] 4.

4. The conventional m.i. DPAG for M is the m.i. DPAG P(M) = P(M, Ay), where Ay is
the “empty” background knowledge for which Az = 1 constant.

To compare different background knowledges and the accordingly refined DPAGs, we
employ the following terminology.

DEFINITION 5.3 (Stronger/weaker background knowledge, more/less informative DPAG).
Let A; and A; be background knowledges, and let P and P, be DPAGs for M. We say:

o A is stronger than A, and A; is weaker than A; if A;(M) =1 implies Ay(M) = 1.
e Py is more informative than P> and P; is less informative than P if every circle mark in
Py is also in P5.

It follows that P(M, A;) is more informative than P(M, A,) if A; is stronger than A,.
By construction, P(M, A) is the most informative DPAG for M that can be learned from
statistical independencies together with the background knowledge A.
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5.2. Considered background knowledge. In the below discussions, we are interested in
the following background knowledge.

DEFINITION 5.4 (Specific background knowledge). The background knowledge of

e ... an underlying ts-DAG is the background knowledge Ap for which Ap(M) =1 if and
only if M is a ts-DMAG, that is, Ap(M) = 1 if and only if there is a ts-DAG D with
M = MP (D).

e ... an underlying ts-DAG for stationarifications is the background knowledge A3 for
which A5 (M) = 1 if and only if M is a stationarified ts-DMAG, that is, AT (M) = 1
if and only if there is a ts-DAG D with M = ML (D).

e ... time order and repeating ancestral relationships is the background knowledge Ay, for
which A (M) =1 if and only if M is time ordered and has repeating ancestral relation-
ships.

e ... time order and repeating orientations is the background knowledge Ay, for which
Aio(M) = 1 if and only if M is time ordered and has repeating orientations.

The first background knowledge Ap is as much background knowledge as is available in
the time series setting defined in Section 3.1. In Section 5.4, we will use Ap to define ts-
DPAGs. The second background knowledge AF is the equivalent background knowledge
when working with stationarified ts-DMAGs M/ (D) instead of ts-DMAGs M? (D). We
will use A" to compare causal discovery based on M? (D) with causal discovery based
on ML (D). Given that a ts-DMAG M?P (D) and its stationarification MZ (D) are in one-to-
one correspondence (see Section 4.7), one might also expect the corresponding DPAGs to
carry the same information. Interestingly, as we will show in Section 5.3, this expectation
is incorrect. The third and fourth background knowledge A, and A, equally apply to both
standard and stationarified ts-DMAGs. They are included for comparison with existing causal
discovery algorithms.

The four specified background knowledges compare as follows: Since both ts-DMAGs
MP (D) and stationarified ts-DMAGs Mft(D) are time ordered and have repeating ancestral
relationships, both Ap and A5 are stronger than Ay,. Since repeating ancestral relation-
ships imply repeating orientations, Ay, is stronger than Ay,. For stationarified ts-DMAGs
MS(D), however, Ay, and Ay, are equivalent (as follows from Lemma 4.3). In our notation,
this equivalence is expressed as P(ME(D), Aw) = P(ME(D), Aw).

5.3. DPAGs of ts-DMAGs MP (D) carry more information than DPAGs of stationari-
fied ts-DMAGs ML (D). 1In this subsection, we show that when working with the back-
ground knowledges specified in Definition 5.4, DPAGs of ts-DMAGs can never carry less
but may carry more information about the underlying ts-DAG than DPAGs of stationarified
ts-DMAGs. This is so despite the fact that, as explained in Section 4.7, a ts-DMAG and its
stationarification are in one-to-one correspondence. Toward proving the claim, we first note
the following.

LEMMA 5.5. Let D be a ts-DAG and let A € {Ap, Awn, Aw}. Then the graph
stat(P(MP (D), A)) is a DPAG for ML (D).

In particular, both DPAGs P(MEL(D), A%) and stat(P(MP (D), A)) have the same ad-
jacencies. Moreover, it is well-defined to ask whether one of the two DPAGs is more infor-
mative than the other. The following result answers this question.

THEOREM 3. Let D be a ts-DAG and let (A, A either be (Ao, Ato) or (Ata, Aw) or
(Ap, A%at). Then:
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F1G. 9. An example for illustrating Theorem 3; see also the discussion in Example 5.6.

1. Every noncircle mark (head or tail) in P(ME(D), A%) is also in stat(P(MP (D),
A)).

2. Every noncircle mark in P(MZE (D), A is also in P(MP (D), A).

3. There are cases in which a noncircle mark that is in stat(P(MP (D), A)) is not also
in P(ME(D), A3,

4. There are cases in which a noncircle mark that is in P(MP (D), A) is not also in
P(ME(D), AS4Y), even regarding adjacencies that are shared by both graphs.

Theorem 3 contradicts the opposite claim in Malinsky and Spirtes (2018) according to
which more unambiguous edge orientations (heads or tails) may be inferred if, as licensed
by the assumption of causal stationarity, the property of repeating adjacencies is enforced in
causal discovery; see Section 5.5 for more details. The following example illustrates Theo-
rem 3.

EXAMPLE 5.6. Parts (a) and (b) of Figure 9 respectively show a ts-DMAG M? (D) and
its conventional m.i. DPAG P (M7 (D)). To derive P(M?P (D)) one may, for example, apply
the FCI orientation rules (see Zhang (2008b)) to the skeleton of M? (D). Part (c) of the same
figure shows P(MP (D), Ay,), where the head at 0t2 on Of_l <~ 0t2 follows by time order. Re-
peating orientations does not help in orienting the last remaining circle mark on Otl_1 o—> Otz_1
because 0} and OI2 are nonadjacent. The stronger background knowledge A4, is, however,
sufficient to do so: Vertex Otl_ | cannot be an ancestor of Of_ | because Ot1 1s not an ances-
tor of 02, which in turn follows because there is no possibly directed path from 0! to 0Z;
see Zhang ((2006), p. 81f). We hence get the DPAG P(MP (D), Aa) shown in part (d). Since
there are no circle marks left, P(M? (D), A,) here equals the DPAG P(MP (D), Ap) in part
(e).? The graphs stat(P(MP (D), Ay)), stat(P(MP (D), Ay)) and stat(P(MP (D), Ap)) are
respectively obtained by removing the edge between 0}_1 and Of_l from the graphs in
parts (c), (d) and (e). The stationarified ts-DMAG MQ(D) and its conventional m.i. DPAG
P(MUL(D)) are shown in parts (f) and (g). Part (h) shows P(ML (D), Ay), where there is a
head mark at O,2 on Otz_1 o— Ot2 due to time order. As explained in Section 5.2, the equality
PME(D), Aw) = P(ME(D), Aw) always holds. With the characterization of stationarified
ts-DMAGSs in Lemma 4.21 (or Lemma 4.22) we can further show that in this example the
graph in (h) equals P(MZ (D), Ap) in part (i). Note that the ts-DMAG M (D) in part (a) is
indeed a ts-DMAG. For example, its canonical ts-DAG D.(MY(D)) projects to MY(D).

2In general, the DPAGs P(MP? (D), Ap) and P(MP (D), Ara) are not equal and can contain circle marks.
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Theorem 3 and Example 5.6 show that P(MP? (D), A) and stat(P(MP (D), A)) have
more unambiguous edge marks than P(MZE(D), A%). Tt thus is conceptually advanta-
geous to work with DPAGs P(MP (D), A) of ts-DMAGs—or with their stationarifica-
tions stat(P(MP (D), A)), if one prefers graphs with repeating edges—rather than with
DPAGs P(MUL(D), A% of stationarified ts-DMAGs. One might argue, though, that the
additional ambiguous orientations (i.e., circle marks) which P(MZ% (D), A% has as com-
pared to P(MP (D), A) might turn into unambiguous orientations (i.e., head or tail marks)

in P(ME(D), A%2) for an increased length p > p of the observed time window.> How-
ever, increasing p to p also increases the number of observed vertices, and thus yields a
higher-dimensional causal discovery problem. Having more observed vertices typically hurts
finite-sample performance of causal discovery; see, for example, the simulation studies in
Gerhardus and Runge (2020). On the other hand, algorithms that work with stationarified
ts-DMAGS rather than ts-DMAGs may scale more favorably with the length p of the ob-

served time window because they remove the edges 0;_ Ap_p ¥k OZJ_ A; for all At as soon

as the edge O,"_t*—* 0,j is removed and, therefore, typically make fewer independence tests.
From a practical perspective, there thus is a trade-off between working with ts-DMAGSs ver-
sus working with stationarified ts-DMAGs, which calls for empirical evaluation in future
work.

5.4. Time series DPAGs. In Section 5.3, we showed that DPAGs of ts-DMAGs al-
ways carry more information about the underlying ts-DAG than DPAGs of stationarified ts-
DMAGs. Because of this fact, we choose to define time series DPAGs as the former type of
DPAG:s.

DEFINITION 5.7 (Time series DPAG). Let D be a ts-DAG with variable index set I, let
Ip € Iandlet To C Z be regularly sampled or regularly subsampled. The time series DPAG
implied by D over O =1Ig x Tq, denoted as Pg(D) or Py, x1, (D) and also referred to as a
ts-DPAG, is the m.i. DPAG P(Mqo (D), Ap).

REMARK (on Definition 5.7). The equivalence of regular sampling and regular sub-
sampling (see Section 4.2) carries over to ts-DPAGs. We hence restrict to regular sam-
pling without loss of generality and write P?(D) for Po(D) with O = Ig x To and
To={t—71|0<71 < p}.

The following example discusses a case in which the use of the strongest background
knowledge Ap leads to strictly more unambiguous edge orientations than A,. We thus can-
not replace Ap with Ay, in the definition of ts-DPAGs without losing information.

EXAMPLE 5.8. The ts-DMAG M!(D) in part (a) of Figure 10 gives rise to PMYD),
Aia) in part (b) with a circle mark at Ot1 on Otl_lo—> 0}. According to the stronger back-

ground knowledge Ap, one can orient this edge as 0[171—> Ot1 because the opposite hypothe-
sis gives the graph in part (d) in Figure 8, which by means of Theorem 1 was shown to not be
a ts-DMAG:; see Example 4.19. Thus, from the ts-DPAG P! (D) we can conclude that OZI_1

has a causal influence on Ot1 whereas from P(M! (D), Aw) we can only conclude that this
causal influence might but also might not exist.
Furthermore (see Gerhardus (2023), Lemma B.8), in the ts-DMAG M!(D) the pair

(Otl_l, 0}) cannot suffer from latent confounding.4 Thus, the causal effect of 0,1_] on 0}

3There are examples with this property, but it is unknown to the author whether this property is a general fact.
4Interestingly, we can draw this conclusion although 0t1_1—>0,] is not visible, thereby suggesting that the
notion of visibility from Zhang (2008a) needs refinement for ts-DMAGs and ts-DPAGs.
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FI1G. 10. A case in which PP (D) has a noncircle mark that is not in P(MP (D), Ata).

is identifiable and can be estimated from observations by adjusting for the empty set. Impor-
tantly, if we interpret M 1(D) not as a ts-DMAG but as a “standard” DMAG, then the causal
effect of 011—1 on 0,l would be unidentifiable as follows from Lemma 10 in Zhang (2008a).

Example 5.8 clearly demonstrates the importance of our characterization of ts-DMAGs for
the tasks of causal discovery and causal inference. Moreover, the following result shows that
ts-DPAGs are complete with respect to ancestral relationships.

LEMMA 5.9. Ifin a ts-DPAG PP (D) there is an edge (i, t;)o—* (j, t;), then there are
ts-DAGs D1 and D, such that both ts-DMAGs MP (D1) and MP (D3) are Markov equivalent
to the ts-DMAG MP (D) and (i, t;) € an((j, t;), Dy) and (i, t;) ¢ an((j, t;), D>).

5.5. Existing causal discovery algorithms do not learn ts-DPAGs. To the best of the au-
thors’ knowledge, so far there is no causal discovery algorithm that learns ts-DPAGs P? (D).
Hence, all existing causal discovery algorithms fail to learn some causal relationships that
can be learned. This failure also applies to the independence-based algorithms tsFCI from
Entner and Hoyer (2010), SVAR-FCI from Malinsky and Spirtes (2018) and LPCMCI from
Gerhardus and Runge (2020).% Below, we discuss and compare these three algorithms con-
ceptually (but also note the practical considerations discussed at the end of Section 5.3).

The tsFCI algorithm from Entner and Hoyer (2010) refines the well-known FCI algorithm
(see Spirtes, Meek and Richardson (1995), Spirtes, Glymour and Scheines (2000), Zhang
(2008b)), to structural processes as in equation (1). To this end, see the blue colored instruc-
tions in parts 2(a) and 2(b) of Algorithm 1 in Entner and Hoyer (2010), tsFCI imposes time
order from the start and enforces repeating orientations at all steps. In addition, see the blue
colored instructions in parts 1(b) and 1(c) of Algorithm 1 in Entner and Hoyer (2010), tsFCI
excludes future vertices from conditioning sets and uses repeating separating sets to avoid
unnecessary independence tests (these latter two modifications are, however, only relevant
computationally and statistically but not conceptually). Importantly, Entner and Hoyer (2010)
introduces two variants of the algorithm. The first variant, which we call tsFCI* (with “I”” for
“lagged”), assumes that in the data-generating ts-DAG there are no contemporaneous edges,
and hence orients all contemporaneous edges in the DPAG as bidirected. This first variant is
as specified by Algorithm 1 in Entner and Hoyer (2010). However, in Section 6 of Entner and
Hoyer (2010) (see, in particular, their footnote 3) the authors explain the minor modifications
that have to be done when not making the additional assumption of no contemporaneous cau-
sation. Moreover, there they also show an application of the resulting more general variant.
We refer to this second variant as tsFCI'+¢ (with “I + ¢” for “lagged plus contemporaneous™).
To summarize, in our terminology tsFCI/t¢ attempts to learn the DPAG P(M?P (D), Ay,) of
the ts-DMAG MP (D). Since P(MP (D), Ai,) may contain circle marks that are not in the
ts-DPAG P? (D) = P(MP (D), Ap) (see Examples 5.6 and 5.8), tsFCI'T¢ does not learn all
ancestral relationships that can be learned when using the available background knowledge

SThe same is true for the score-based and hybrid algorithms from Gao and Tian (2010) and Malinsky and Spirtes
(2018).
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Ap. From Example 5.6, we even conclude that tsFCI'*¢ learns fewer orientations as can be
learned with the weaker background knowledge Ay,.

As compared to tsFCI' ¢, the more recent SVAR-FCI algorithm from Malinsky and Spirtes
(2018) enforces repeating adjacencies by removing the edges 0;_ Ap—_p¥* Otj_ A for all At
as soon as the edge O!__+—+0] is removed—even in cases where there is no associated
separating set in the observed time window.® This modification is achieved by the respective
second lines in the “then” clauses in steps 5 and 11 of Algorithm 3.1 in Malinsky and Spirtes
(2018). Consequently, SVAR-FCI finds a skeleton which has repeating adjacencies, that is,
SVAR-FCI finds the skeleton of the stationarified ts-DMAG M‘SD[(D) rather than the skeleton
of the ts-DMAG MP (D). On the skeleton of M (D), the algorithm then applies the FCI ori-
entation rules, augmented with the background knowledge of time order and repeating orien-
tations. In our terminology, SVAR-FCI hence attempts to learn the DPAG P(MQ(D), Ao)
of the stationarified ts-DMAG ./\/lft(D). Now recall Theorem 3, which says that all unam-
biguous edge orientations in this DPAG P(ML (D), Ay) are also in P(MP (D), Ay)—the
one learned by tsFCI'**—while there are cases in which the opposite is not true. Thus, if
ground-truth knowledge of (conditional) independencies is given, SVAR-FCI can never learn
more unambiguous edge orientations than tsFCI'T¢ while there are cases in which it learns
strictly fewer. The additional edge removals thus actually have the opposite effect of what
was intended in Malinsky and Spirtes (2018). Moreover, also SVAR-FCI fails to learn all
identifiable ancestral relationships of the underlying ts-DAG.

EXAMPLE 5.10. Assume ground-truth knowledge about (conditional) independencies.
When applied to the ts-DMAG in part (a) of Figure 9, tsFCI'T¢ returns the graph in part
(c) whereas SVAR-FCI returns the graph in part (h) with strictly fewer unambiguous edge
marks. This difference is relevant: From tsFCI‘*¢’s output, we can conclude that 0t2_1 gener-
ically has a causal effect on 0,1 whereas from SVAR-FCI’s output we can only conclude that
Otz_1 might but also might not generically have a causal effect on Otl. As another difference,
tsFCI/+¢ gives the edge Otl_1 o—> 0z2—1 whereas SVAR-FCI gives that Otl_1 and Otz_l are non-
adjacent. At first, one might think that SVAR-FCI is at the advantage in this regard, because
the absence of an edge between 0}_ | and Of_l correctly conveys that the pair (0}_ 1> OIZ_ D
is not confounded by unobservable variables. Note, however, that tsFCI'*¢ conveys the same
conclusion by means of having learned that O and O? are nonadjacent (cf. last paragraph
in Section 4.4). In fact, see Theorem 3, one can always post-process the output of tsFCI‘+¢
by stationarification stat(-) to obtain a graph that, compared to the graph learned by SVAR-
FCI, has the same adjacencies and the same or more unambiguous edge orientations. In the
current example, this post-processing step amounts to removing the edge 0}71 o—> 0,271 from
the graph in part (c) of Figure 9.

The LPCMCI algorithm from Gerhardus and Runge (2020) applies several modifications
to SVAR-FCI that significantly improve the finite-sample performance. The infinite sample
properties are unchanged, however. Thus, also LPCMCI in general learns fewer orientations
than tsFCI'™¢ and fails to learn all ancestral relationships that can be learned.

5.6. ts-DPAGs can be learned from data. In this subsection, we show that ts-DPAGsS can,

at least in principle, be learned from data. In fact, using the characterization of ts-DMAGs by
Theorem 1, we can immediately write down Algorithm 1 for this purpose.

5To clarify, Malinsky and Spirtes (2018) do not mention tsFCI't¢ but refer to tsFCI' when writing “tsFCIL.”
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Algorithm 1 Learning ts-DPAGs

1: Apply any causal discovery algorithm on the time window [t — p, ¢] that determines a
DPAG P* for MP? (D) which is at least as informative as the conventional m.i. DPAG
P(MP(D)). The tsFCI'*T¢ algorithm meets this requirement, whereas SVAR-FCI and
LPCMCI do not meet this requirement.

2: Let M* be the set of all DMAGs that are represented by and are Markov equivalent to the
DPAG P*. This step can, for example, be done with the Zhang MAG listing algorithm
described in Malinsky and Spirtes (2016).

3: Let M be the set of all DMAGs M € M* for which M = M?(D.(M)). This step
can be executed as follows: For each M € M*, first construct the canonical ts-DAG
D.(M) by applying Definition 4.13 and, second, apply the MAG latent projection to de-
termine the ts-DMAG M? (D.(M)) and, third, check for equality of the graphs M and
MP(De(M)).

4: Let P be the m.i. DPAG with respect to the set M. Note that parts 1 and 2 of Definition 5.2
specify how P is determined from M.

5: return ts-DPAG P = PP (D)

Practically, however, finding the set of candidate DMAGs M* in step 2 is expected to
become computationally infeasible for large graphs P*. This expectation is based on the em-
pirical finding in Malinsky and Spirtes (2016) according to which the Zhang MAG listing
algorithm (there used not for causal discovery but for causal effect estimation and in a non-
temporal setting) becomes too slow for graphs with about 15 to 20 vertices. On the contrary,
when using tsFCI' ¢ in step 1, the DPAG P* already incorporates the background knowledge
Ao of time order and repeating orientations. Hence, P* will tend to have fewer circle marks
than a typical DPAG in the nontemporal setting. Therefore, Algorithm 1 might be feasible
for yet larger graphs. Nevertheless, it would be desirable to instead derive orientation rules
that impose the background knowledge Ap directly on P*, and thus entirely circumvent the
need to determine the set M*. Moreover, recalling from the remark on Definition 3.6, an im-
plementation of the projection procedure required for step 3 is possible but nontrivial; see
Gerhardus et al. (2023). The following example illustrates Algorithm 1.

EXAMPLE 5.11. Consider the graph P(M!(D), Aw) in part (b) of Figure 10, which
in this example equals P(MI (D), Ay). Given ground-truth knowledge of (conditional) in-
dependencies, this graph is the output of tsFCI'*¢ (and of SVAR-FCI and LPCMCI) on
any ts-DAG D that projects to M!(D) in part (a) of the figure. Such D exists, for ex-
ample, the canonical ts-DAG D.(M! (D)) of M!(D). There is exactly one circle mark in
P* =PMUD), Aw), namely on Otl—1°_> 0,1. This circle mark can be oriented either as
a tail (0t1_1—> 0,1), giving rise to a DMAG M|, or as a head (0t1_1<—>0t1), giving rise
to a DMAG M. Both of these candidates are represented by and Markov equivalent to
P*, hence M* = { M, M3}. Moving to step 3, the first candidate M passes the check
M = MY (D.(M))), whereas (see Example 5.8) My # M (D.(M3)) for the second can-
didate M>. Thus, M = {M}. Since there is only a single element M; in M, this DMAG
M according to parts 1 and 2 of Definition 5.2 equals the ts-DPAG P!(D). Noting that
P1(D) (learned by Algorithm 1) has an additional unambiguous edge mark as compared to
P(M (D), A) (learned by tsFCI*T¢, SVAR-FCI and LPCMCI), we see that Algorithm 1 is
indeed more informative than the existing algorithms.

REMARK (on Example 5.11). The example has two nongeneric properties. First, see
(Gerhardus (2023), Figure C and Example B.15), in general there can be circle marks in the ts-
DPAG PP (D). Second, the ts-DMAG M? (D) = M'(D) here has repeating edges, and thus
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equals M4(D) = ML (D). Only if the equality MP? (D) = ML (D) holds, then also SVAR-
FCI and LPCMCI learn the DPAG P* = P(MP (D), Ay,), which then also necessarily equals
P(MP (D), Aw). In general, however, MP? (D) and MZ (D) are not equal and neither SVAR-
FCI nor LPCMCI may be used for step 1 of Algorithm 1; see Figure 9 and Example 5.6.

6. Discussion. In this paper, we developed and analyzed ts-DMAGs, a class of graphi-
cal models for representing time-lag specific causal relationships and independencies among
finitely many regularly (sub)sampled time steps of causally stationary multivariate time series
with unobserved components. As a central result, Theorems 1 and 2 completely character-
ize ts-DMAGs. Examples demonstrated that ts-DMAGs constitute a strictly smaller class
of graphical models than the graphs that have previously been employed in the literature;
see Section 4.8 for details. At the same time, using ts-DMAGs does not require additional as-
sumptions or restrictions on the data-generating process. From ts-DMAGs, one can thus draw
stronger causal inferences than from the previously employed model classes, both in causal
discovery and causal effect estimation. In addition, we defined ts-DPAGs as representations
of Markov equivalence classes of ts-DMAGs. Time series DPAGs contain as much informa-
tion about the ancestral relationships as can in principle be learned from observational data
under the standard assumptions of independence-based causal discovery. We then showed
that current time series causal discovery algorithms do not learn ts-DPAGs, that is, they fail
to learn some causal relationships that can be learned. As opposed to that, Algorithm 1 does
learn ts-DPAGs. With Theorem 3, we corrected the incorrect claim from the literature that
causal discovery on stationarified DMAGs gives more unambiguous edge orientations than
causal discovery on nonstationarified DMAGs—in fact, the opposite is true. We envision that
these results will be used to improve time series causal inference methods that resolve time
lags, which in turn can have applications in diverse scientific and technical domains.

The results presented here point to various directions of future research. First, it would be
valuable to consider the causal discovery problem in more detail. In particular, it is desirable
to develop orientation rules that impose the background knowledge of an underlying ts-DAG
Ap without the need for listing all DMAGs consistent with .4p. Second, it remains open
to characterize the causal inferences that can be drawn from ts-DMAGs and ts-DPAGs. As
shown by Example 5.8, deriving such a characterization is a nontrivial task that goes beyond
the corresponding task in the nontemporal setting. Third, one may analyze the additional
restrictions and causal inferences that follow when, as opposed to this work, assumptions
on the connectivity pattern of the underlying ts-DAG are imposed. Lastly, it is desirable to
generalize our results to cases with cyclic causal relationships and selection variables.
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