CONCEPTS FOR COMBINING CONCENTRATING SOLAR MIRRORS WITH PV MODULES

Moritz Ruhwedel^{1,2}, Florian Sutter¹, Stephan Heise³, Kai Gehrke³, Eckhard Lüpfert¹, Peter Heller¹, Robert Pitz-Paal^{1,2}

¹ Deutsches Zentrum für Luft- und Raumfahrt e. V. , Institute of Solar Research ² RWTH Aachen University, Chair of Solar Technology

³ Deutsches Zentrum für Luft- und Raumfahrt e. V., Institute of Networked Energy Systems

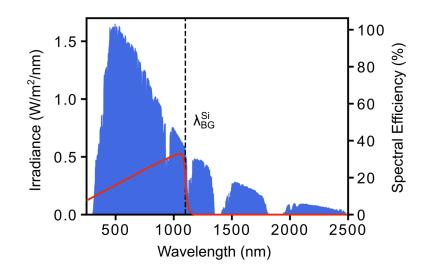
Concentrating Solar Thermal (CST) Systems

CST Systems and Photovoltaics (PV)

Photovoltaics

Sunlight J Electricity

CST Systems



CST Systems and PV

Photovoltaics

CST Systems

Image: BrightSource – www.brightsourceenergy.com

Pyromark 2500:

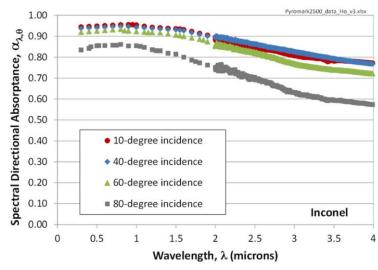


Image: Ho et al. 2014¹

\rightarrow PV efficiency is wavelength dependent while CST efficiency in principle is not

Moritz Ruhwedel, Institute of Solar Research, 19.03.2024

3

¹Ho et. al., *Characterization of Pyromark 2500 Paint for High-Temperature Solar Receivers*, 2014, Journal of Solar Energy Engineering

Central Receiver System (CRS)

Concentration \rightarrow lower heat loss \rightarrow high temperatures

Individual heliostats

Concentration onto tower

Image: Grupo Cerro - www.grupocerro.com

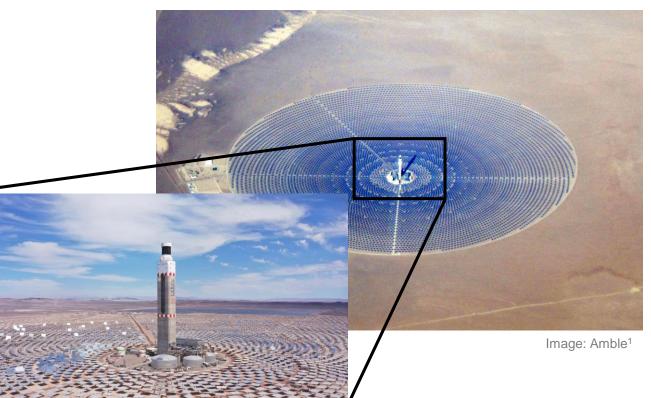


Image: KfW Entwicklungsbank - www.kfw-entwicklungsbank.de

¹ "File:Crescent Dunes Solar December 2014.JPG" by Amble is licensed under CC BY-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/?ref=openverse, partly superimposed

Parabolic Trough collectors

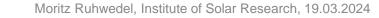
Plataforma Solar de Almería, owned by CIEMAT

Levelized cost of electricity (LCOE) – IRENA, 2021¹:

PV: ~0.05 USD/kWh

CSP: ~0.11 USD/kWh

Storage:


- Storing heat is much cheaper than storing electricity
- For storage durations of over 4-10h CSP is expected to remain cheaper than PV with storage²

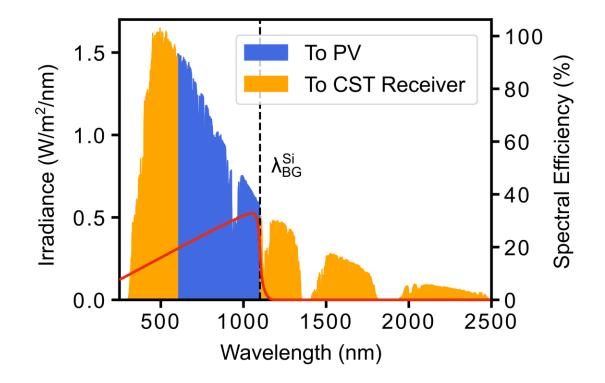
mage: U.S. Department of Energy www.energy.gov

\rightarrow PV for immediate demand, CSP for dispatchable generation, CST for heat

¹International Renewable Energy Agency, *Renewable Power Generation Costs in 2021*, 2022 ²Schöniger et. al., *Making the sun shine at night: comparing the cost of dispatchable concentrating solar power and photovoltaics with storage*, 2021, Energy Sources, Part B: Economics, Planning, and Policy

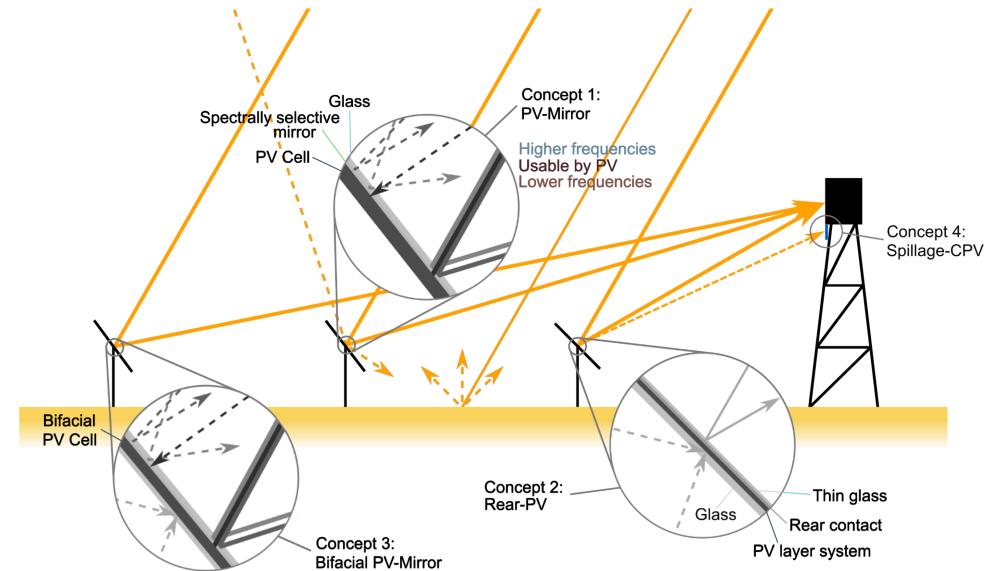
CST-PV Hybrid Concepts

F


stitute of Solar Research, 19.03.202/

7

Montz


PV conversion efficiency depends on wavelength:

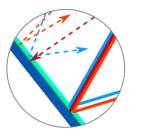
\rightarrow Hybridization: utilize loss channels

Concepts for Integrating PV in a CST System

Moritz Ruhwedel, Institute of Solar Research, 19.03.2024

Yield and Investment Cost

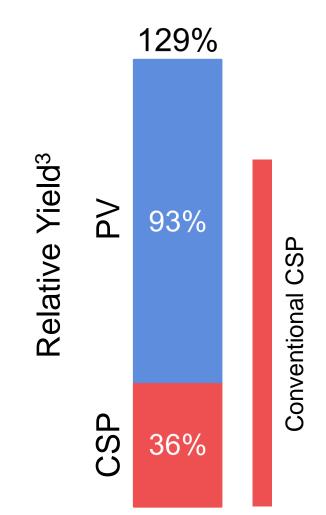
Yield and Investment Cost


Concepts utilize loss channels \rightarrow

Power plants using them could be reoptimized

→ Here comparison of use of the concepts in **conventional power plant configuration**

Moritz Ruhwedel, Institute of Solar Research, 19.03.2024

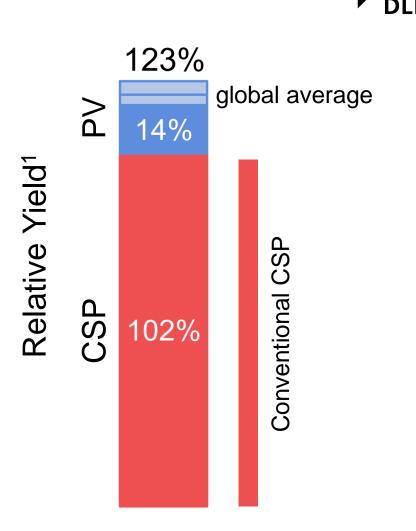

Yield – PV-Mirror

Based on: simulation of PV-Mirror in Themis plant¹

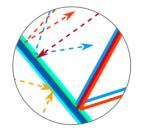
Image: PROMES-CNRS² - www.promes.cnrs.fr

\rightarrow Results heavily depend on mirror configuration

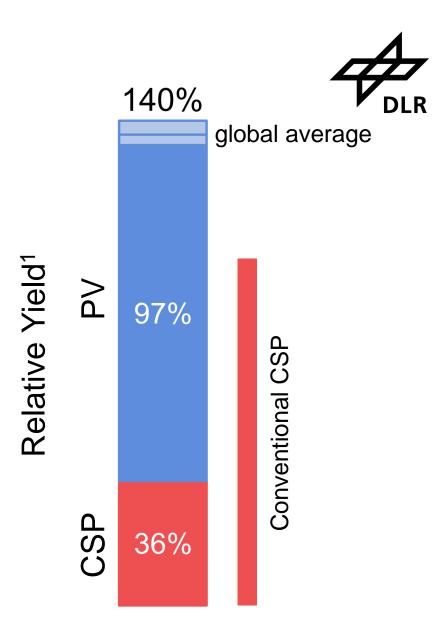
¹Ziyati et. al., *A multiphysics model of large-scale compact PV–CSP hybrid plants*, 2021, Applied Energy ²Procédés Matériaux et Energie Solaire - Centre national de la recherche scientifique ³Ruhwedel et. al., *Integrated Concentrating Solar/Photovoltaic Hybrid Concepts—Technological Discussion, Energy Yield, and Cost Considerations*, 2024, Energy Technology


Based on: data of bifacial PV

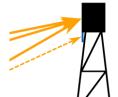
➤radiation flux on the back is 4-15% of the radiation flux on the front¹


Image: DNV - www.dnv.com

\rightarrow Increased CSP output due to usability of thin-glass mirrors



Yield – Bifacial PV-Mirror



Based on: PV-Mirror with additional yield as the Rear-PV

\rightarrow Highest additional output of all concepts

Based on: assumed CPV efficiency of 32%

Image: RayGen - www.raygen.com

136% ~1500 °C <u>Ч</u> ~500 °C 8% Relative Yield¹ Conventional CSP C S P 100%

\rightarrow PV output depends on type of power plant

¹Ruhwedel et. al., Integrated Concentrating Solar/Photovoltaic Hybrid Concepts—Technological Discussion, Energy Yield, and Cost Considerations, 2024, Energy Technology

\rightarrow PV for immediate demand, CSP for dispatchable generation, CST for heat

Assumptions:

- Additional PV output reduces need for stand-alone PV (883 USD/kW¹)
- Concentrating structure has to be scaled to maintain radiation flux on receiver (576 USD/kW excluding mirrors²)

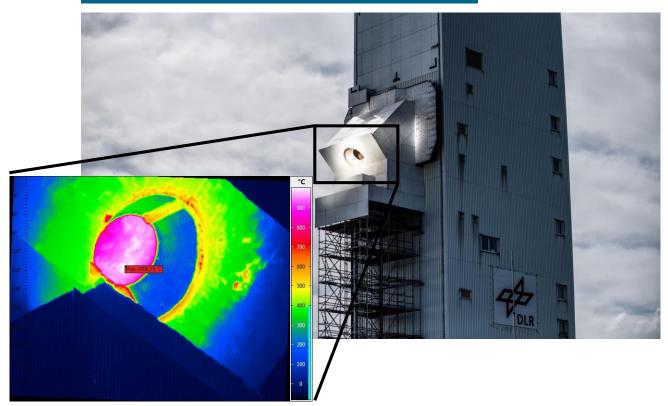
\rightarrow Criterion for cost of concepts replacing the mirrors

Investment Cost – (Bifacial) PV-Mirror, Rear-PV

Conventional solar mirrors¹: 17 USD/m²

	PV-Mirror	Rear-PV	Bifacial PV-Mirror
Break-even cost (USD/m ²) ¹	82	44 with a range of 39 to 51	92 with a range of 87 to 97
PV module price (USD/m ²) ¹	Monofacial: 78		Bifacial: 87

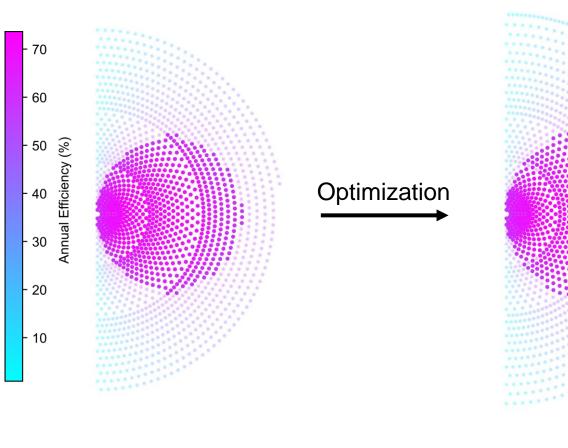
→ (Bifacial) PV-Mirror might be feasible in conventional power plants, Rear-PV probably not


Investment Cost – Spillage-CPV

CPV modules1:48000 USD/m2Periphery1:308 USD/kWStand-alone PV2:883 USD/kW

→ Break-even for radiation fluxes of \sim 350 kW_{solar}/m²

CentRec® Receiver – over 900 °C

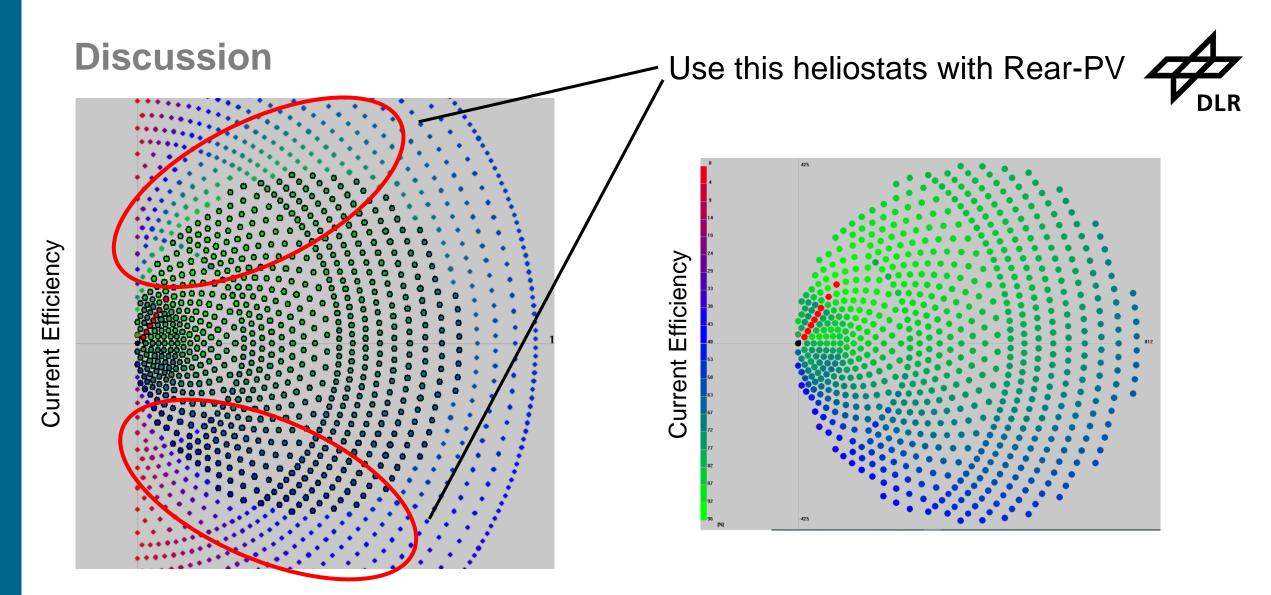


→ Spillage-CPV most interesting in high-temperature receivers

¹Ruhwedel et. al., Integrated Concentrating Solar/Photovoltaic Hybrid Concepts—Technological Discussion, Energy Yield, and Cost Considerations, 2024, Energy Technology ²International Renewable Energy Agency, *Renewable Power Generation Costs in 2021*, 2022

Discussion

Radial staggered algorithm:

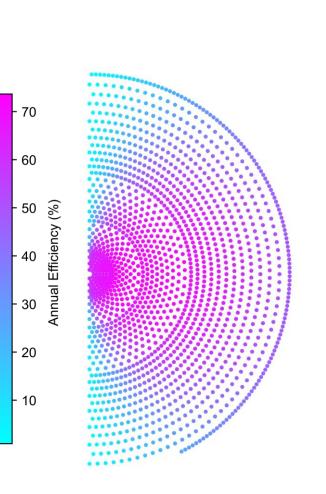


<section-header>

Image: "File:PS20andPS10.jpg" by Koza1983 is licensed under CC BY 3.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/3.0/?ref=openverse.

1 km

Moritz Ruhwedel, Institute of Solar Research, 19.03.2024

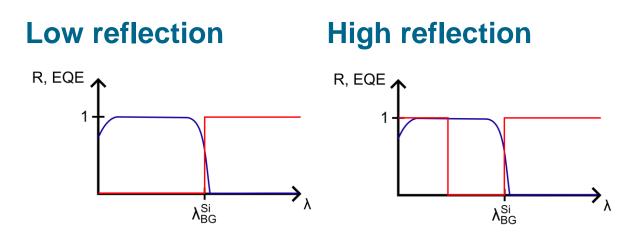

→ Additional Rear-PV heliostats can increase solar field efficiency

Conclusion

Maybe feasible in conventional CSP (Bifacial) PV-Mirror, Spillage-CPV

Probably not feasible in conventional CSP Rear-PV

CST systems have to be reoptimized using hybrid concepts


Outlook – Bifacial PV-Mirror

Prototypes: Loaded long-term tests

→ Modelling of PV cell under spectrally selective mirror

Mirror configurations:

Imprint

Topic:Concepts for combining concentrating solar mirrors with
PV modules

Date: 2024-03-19

Author: <u>Moritz Ruhwedel</u>, Florian Sutter, Stephan Heise, Kai Gehrke, Eckhard Lüpfert, Peter Heller, Robert Pitz-Paal

Institute: Institute of Solar Research

Image sources: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated

Cost Criterion – (Bifacial) PV-Mirror, Rear-PV

$$z_i < \left(\frac{a_i}{r_i}\frac{\sigma_{\rm PV}}{\sigma_{\rm CSP}} + m_{\rm CSP}\left(1 - \frac{1}{r_i}\right)\right)\frac{r_i}{l_{\rm CSP}} + r_i$$

Cost Criterion – Spillage-CPV

$$\sigma_{\text{SCPV}} = \left(\sigma_{\text{SCPV}}^{\text{Inverter}} + \sigma_{\text{SCPV}}^{\text{Switchgear}} + \sigma_{\text{SCPV}}^{\text{Cooling}} \cdot \frac{1 - \eta_{\text{CPV}}}{\eta_{\text{CPV}}} + \frac{\sigma_{\text{SCPV}}^{\text{CPV}}}{F \cdot \eta_{\text{CPV}}}\right)$$
$$\cdot (1 + \text{BoP})$$