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Abstract 

 

This master's thesis investigates the feasibility of using Earth Observation and low-cost 

environmental sensors in urban areas to complement existing government monitoring 

systems to provide a sharper picture of air quality, which is a growing concern for the 

health and well-being of urban dwellers. The work uses NO2 tropospheric column data 

from the Copernicus Sentinel-5P satellite, regulatory PM10 readings and self-constructed 

low-cost sensor systems measuring PM10, ambient temperature and relative humidity. 

The environmental monitors were developed with computer-aided design, 3D printed, 

and their performance evaluated. A network of static sensors and a mobile system were 

deployed to better cover the urban space in Wuerzburg, Germany, and detect spatio-

temporal patterns. Each of the three layers has its own limitations with satellites facing 

temporal and spatial resolution issues and cloud cover interference, regulatory data 

providing site-specific measurements but only publishing hourly averages, and low-cost 

sensors being sensitive to elevated relative humidity and cold ambient temperatures. 

However, the work also shows that with appropriate data and procedures, calibration of 

low-cost sensors is possible and that all three levels can be intertwined to make a valuable 

contribution to research and understanding of urban space and its pollution levels. 



 

Zusammenfassung 

 

Die vorliegende Masterarbeit untersucht, ob Erdbeobachtung und Low-cost-Sensorik im 

urbanen Raum synergetisch genutzt werden können, um bestehende behördliche 

Monitoringsysteme zu ergänzen und so ein schärferes Bild über die Luftqualität zu 

erhalten, die ein wachsendes Problem für die Gesundheit und das Wohlbefinden der 

Stadtbewohner darstellt. Die Arbeit verwendet NO2-Troposphären Daten des Copernicus 

Sentinel-5P-Satelliten, behördliche PM10-Messungen und selbst konstruierte Low-cost-

Sensor Systeme, die PM10, Außentemperatur und relative Luftfeuchtigkeit messen. Die 

Umweltmonitore wurden mit einer Software zum computerunterstützten Design 

entworfen, mit 3D-Druck realisiert und ihre Leistung evaluiert. Ein Netzwerk aus 

statischen Sensoren und ein mobiles System wurden eingesetzt, um den urbanen Raum 

in Wuerzburg, Deutschland, besser abzudecken und raumzeitliche Muster zu erkennen. 

Jede der drei Schichten hat ihre eigenen Einschränkungen, wie zeitliche und räumliche 

Auflösung sowie Störungen durch Wolkenbedeckung bei Satelliten, ortspezifische 

Messungen und nur stündliche Durchschnittswerte bei behördlichen Daten und 

Empfindlichkeit gegenüber erhöhter relativer Luftfeuchtigkeit und kalten 

Umgebungstemperaturen bei kostengünstigen Sensoren. Die Arbeit zeigt jedoch auch, 

dass mit geeigneten Daten und Verfahren eine Kalibrierung der Low-cost-Sensorik 

möglich ist und dass alle drei Ebenen ineinandergreifen können, um einen wertvollen 

Beitrag zur Forschung und zum Verständnis über den urbanen Raum und seiner 

Schadstoffbelastung zu leisten. 
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I Introduction 

 

1. Background and Motivation 

Air pollution remains a critical environmental risk to human health in Europe [1] [2], 

making the monitoring of exposure levels of critical concern. Despite various policy 

measures, poor air quality in many places continues to pose a significant health risk to the 

population [3]. Harmful air pollution can lead to severe respiratory and cardiovascular 

diseases, which are the most common causes of premature death due to air pollution [4]. 

The International Agency for Research on Cancer (IARC) has classified air pollution as 

carcinogenic, with particulate matter identified as the primary component of air pollution 

mixtures  [5]. In 2018, air pollution resulted in a total of 452,400 premature deaths in the 

European Union, with particulate matter (PM), nitrogen dioxide (NO2), and ozone (O3) 

pollution being the main contributors [1]. Those most severely affected by the effects of 

breathing polluted air include children, pregnant women, the elderly, and individuals with 

pre-existing conditions. Moreover, people with lower socioeconomic statuses are more 

impacted since they are more likely to reside in environments with subpar air quality [6]. 

Elevated pollution levels also contribute to increased costs for businesses and healthcare 

systems due to lost workdays and required medical care [7]. Consequently, the benefits 

of implementing stricter air quality policies outweigh the associated costs [8].  

Efforts to reduce air pollution in Europe are progressing but citizens are still breathing air 

that widely exceeds the World Health Organization (WHO) guidelines [9] and suggested 

exposure limits [10] . To better understand the sources of air pollution and its impacts, it 

is necessary to monitor air quality and pollution levels with high spatial and temporal 

resolution. Remote sensing technology and low-cost air quality sensors can contribute to 

this objective and have been used to achieve this goal [11] [12]. However, low-cost 

sensors have limitations in terms of accuracy, reliability, and consistency [13], while 

government-grade monitors are expensive and cover only a limited area [14].  
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Therefore, integrating low-cost sensors, Earth Observation and governmental-grade 

monitors can provide a more comprehensive and accurate assessment of air quality [15] 

[16]. My motivation for this study is to contribute to a more profound understanding of 

urban space and its environmental factors. Healthy air quality is an issue that cannot be 

overlooked and needs interdisciplinary integration to provide a clear picture and to better 

plan and adapt our cities. Remote sensing plays a pivotal role due to its unique ability to 

provide large-scale insights that are invisible to the human eye.  

 

1.1 Research Questions and Objectives 

The overarching aim of this research is to critically examine the potential of an integrative 

methodology for assessing air quality in urban environments. This methodology 

encompasses data from Earth Observation technologies, conventional in-situ monitoring 

mechanisms, and emerging low-cost sensor technologies. In the first phase, the research 

evaluates the extent to which the retrievals of NO2 tropospheric columns from the 

European Space Agency (ESA) Copernicus Sentinel-5P satellite offer observations that 

are sufficiently contiguous in both spatial and temporal dimensions. This is critical for 

generating a robust analysis of air quality in localized urban areas such as Wuerzburg. 

Subsequently, the study then addresses low-cost particulate matter sensors with an 

emphasis on comparing these cost-effective alternatives to authorities-operated 

monitoring sites to assess their reliability and accuracy in data collection. A key 

component of this research is the investigation of mobile monitoring systems. The 

objective is to evaluate whether such devices can accurately provide robust data sets 

compared to stationary instruments. Finally, the study will investigate whether discernible 

patterns and trends can be identified when contrasting in-situ PM10 measurements with 

tropospheric NO2 data.  

By exploring these avenues of inquiry, the study not only seeks to shed light on the 

specific air quality dynamics in Wuerzburg but also aspires to contribute to the broader 

methodological discourse in air quality assessment. 
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1.2 Limitations 

The study grapples with multiple methodological and data-related challenges. Firstly, the 

spatial resolution of Sentinel 5P Offline Nitrogen Dioxide data is 1113.2 meters, 

constraining the granularity of results when examining urban-scale phenomena. 

Budgetary constraints imposed additional obstacles to the use of low-cost sensor systems, 

which affects data density and completeness. The scope of a master's thesis inherently 

restricts a more in-depth examination of specific air quality facets. 

Data sets for official ambient measurements, essential for calibrating the low-cost 

sensors, lacked the desired temporal format. Winter conditions posed challenges for 

sensor performance, which is particularly sensitive to variations in relative humidity and 

ambient temperature. The segment of the study centred on low-cost particulate matter 

sensors was methodologically limited to PM10 omitting other pollutants like NO2 and 

O3. The deployment of mobile monitoring systems faced spatial and temporal constraints 

due to being a single-person operation. 

Lastly, the integration of heterogeneous data sources, including measurement 

methodologies with various physical units, serves as a distinct limitation in the study. 

While aiming to create a comprehensive spatio-temporal profile of air quality in 

Wuerzburg, this diversity of data sources introduces its own set of challenges. 
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II Literature Review 

Building upon the compelling issue of air pollution outlined, this chapter endeavours to 

provide a comprehensive understanding of urban air quality monitoring in Europe with a 

focus on Germany. This exploration starts with a historical overview of air quality 

monitoring, tracing the advancements and shifts in understanding over time. 

Subsequently, the chapter will evaluate the strengths and limitations of Earth Observation 

(EO) technologies as mechanisms for monitoring and understanding air quality. 

Concluding the chapter, an assessment will be presented on the utility and efficacy of 

low-cost environmental sensors for monitoring air quality. The potential benefits, 

alongside the inherent limitations of these sensors, will be discussed. 

 

2.1 Historical Overview of Air Quality Monitoring 

The pivotal moment that triggered a heightened focus on air quality occurred with the 

Great Smog of London in 1952 [17]. This environmental disaster led to thousands of 

premature deaths and severe health issues. This event served as a catalyst for legislative 

actions, including the UK's Clean Air Act of 1956 [18]. In the European Union, the Air 

Quality Framework Directive (Directive 96/62/EC [19]) marked the beginning of a 

concerted effort to assess and control air pollution. This framework established systems 

for monitoring various pollutants and laid down exposure limits, which were further 

specified in subsequent daughter directives. 

The Ambient Air Quality Directive (Directive 2008/50/EC [3]) represents a significant 

evolution in European air quality governance, promulgated to emergent scientific 

evidence highlighting the deleterious impacts of air pollutants. This Directive 

encapsulates a multi-faceted approach to air quality management, harmonizing advanced 

analytical methods and scientific techniques for comprehensive air quality evaluation. 

Additionally, it affords Member States a degree of implementation flexibility to 

accommodate regional variations in pollution sources and meteorological conditions. The 

Directive also mandates a stronger framework for public disclosure of air quality metrics, 

thereby augmenting transparency and public awareness.  
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The directive accentuates the importance of cross-border cooperation to manage 

transboundary air pollution, while introducing a legal apparatus to enforce compliance 

and impose sanctions on non-compliant Member States. These sanctions must be 

‘effective, proportionate and dissuasive’ (Directive 2008/50/EC Article 30). As we look 

towards the future, recent legislative endeavours underscore the European Parliament 

Environment Committee's commitment to implementing even more stringent regulations 

on air quality. A report recently ratified by the committee outlines ambitious objectives, 

including the imposition of tighter emission limits on critical pollutants by 2030. The plan 

seeks to standardize air quality indices across the European Union and mandates that 

Member States formulate comprehensive air quality roadmaps [20]. Additionally, the 

report advocates for an increase in air quality monitoring stations and demands enhanced 

public information dissemination, including hourly updates to air quality indices. These 

initiatives are designed to align with the latest World Health Organization Air Quality 

Guidelines [9], [21] aiming to substantially reduce premature mortality rates attributed to 

air pollution in the EU. However, it is essential to recognize that despite these 

advancements in legislative action, significant challenges remain. Even with increasingly 

stringent regulations, achieving widespread compliance and reducing air pollution to safe 

levels continues to be an arduous task requiring multidisciplinary efforts [22]. This 

necessitates the exploration of innovative monitoring technologies, data analytics 

methods, and policy interventions. 

 

2.2 Monitoring Technologies and Data Sources 

In the context of the evolving regulatory landscape and ongoing challenges, this section 

will review the array of technologies and data sources that are currently being employed 

for air quality monitoring, highlighting their role as foundational elements in both 

academic research and policy formulation. 
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2.2.1 Governmental In-Situ Monitoring 

In Germany, where the study area is situated, the 39th Federal Immission Control 

Ordinance, based on the EU Directive 2008/50/EC establishes legal benchmarks and limit 

values for diverse pollutants in the air [23]. Both the type of measurements, location 

criteria and the number of environmental monitoring sites are governed herein. Table 1 

outlines the minimum number of stationary sites mandated for PM10 assessment. The 

study area has a population of approximately 145.000 [24] and belongs in category one. 

As per this classification, the area is required to have two stationary monitoring sites for 

PM10 and PM2.5. Notably, if both PM2.5 and PM10 measurements are logged at the 

same station, they should be counted as two distinct sampling stations. For NO2, the 

regulations require the inclusion of at least one measuring station for urban background 

sources and another specifically for traffic-related emissions. 

Population of Area 

(in thousands) 

PM (Max Value Exceeds Upper 

Assessment Threshold)  

PM (Max Value Between Upper and 

Lower Assessment Thresholds)  

0 – 249 2 1 

250 – 499 3 2 

500 – 749 3 2 

750 – 999 4 2 

1000 – 1499 6 3 

1500 – 1999 7 3 

2000 – 2749 8 4 

2750 – 3749 10 4 

3750 – 4749 11 6 

4750 – 5999 13 6 

≥ 6000 15 7 

Table 1: Criteria for determining the number of sampling stations [23] 

 

Air quality monitoring stations are positioned based on macro- and micro-scale siting 

rules. These stations are typically classified by the dominant emission sources, with traffic 

stations being located close to major roads, industrial stations near industrial areas or 

sources, and background stations situated in places where pollution levels best represent 

the average exposure of the general population or vegetation. In terms of the 

surroundings, stations are described based on the type of area they are in. An urban station 

is in a continuously built-up urban area, a suburban station is in a largely built-up urban 

area, and a rural station is found in areas other than urban or suburban. It is noteworthy 

that all stations which are officially reported to the EEA are included in Europe’s air 
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quality status briefing [25]. The data quality goals concerning PM10 for air quality 

assessment stipulate parameters ensuring precision. For stationary measurements, a 25% 

uncertainty and a minimum 90% data capture are required. Urban background, traffic, 

and industrial areas have no specified measurement duration for PM10. Indicative 

measurements have a 50% uncertainty rate but maintain the 90% data capture, with a 

minimum duration set at 14%, either yearly or over eight weeks. Authorities can choose 

spot measurements for PM10, provided the uncertainty, considering sample randomness, 

meets the 25% quality goal. These measurements should spread evenly over the year to 

avoid bias. For compliance with PM10 limits using spot measurements, the 90.4 

percentile value, which shouldn’t exceed 50 micrograms per cubic meter, is prioritized 

over data capture-influenced results. Uncertainty evaluation in measurements adheres to 

specific standards, aligning with guidelines and ISO norms compliance. These 

uncertainty percentages relate to single measurements averaged over relevant periods 

versus the limit value. This uncertainty definition also encompasses stationery and model 

calculations, considering the model's spatial resolution [23]. 

 

2.2.2 Earth Observation for Air Quality Assessment 

The capability of remote sensing technology to span large geographical areas offers 

numerous advantages in evaluating air quality. Satellite-based methods have emerged as 

indispensable tools in contemporary atmospheric research, going beyond the limitations 

of traditional in-situ methods that are geographically restricted. Recent advancements in 

Earth Observation have proven invaluable for assessing air quality, specifically in the 

quantification of nitrogen dioxide (NO2) levels. Ka Lok Chan et al. focuses on the 

application of machine learning techniques to estimate surface NO2 levels in Germany. 

Drawing upon TROPOMI satellite observations coupled with meteorological parameters, 

the researchers employ a neural network model to predict surface NO2 concentrations. 

They validate their model against ground-based in situ measurements and regional 

chemical transport model (CTM) simulations, finding a favourable Pearson correlation 

coefficient (R) of 0.80. What makes this study particularly noteworthy is that the machine 

learning-based estimates of surface NO2 show better agreement within situ data than 

regional CTM simulations.  
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Therefore, Chan et al. establish that machine learning techniques, when employed 

alongside satellite data, can provide reliable estimates of air quality. In the study 

conducted by Inken Müller, Thilo Erbertseder, and Hannes Taubenböck from the German 

Remote Sensing Data Center and the Julius-Maximilians-Universität Würzburg, high-

resolution Sentinel-5P/TROPOMI satellite data is used to explore the spatial variability 

of nitrogen dioxide (NO2) in Germany [26]. The research identifies 24 significant hot 

spots for NO2, primarily in urban regions, and investigates the correlation between NO2 

levels and non-meteorological factors such as impervious surfaces, population, and road 

density. The authors demonstrate that TROPOMI data can effectively supplement 

traditional in-situ measurement networks in understanding the role of road traffic in NO2 

emissions. Their findings underscore that spatial variability in NO2 levels is influenced 

both by local emission sources and broader regional factors, contributing valuable 

insights for air quality management and climate adaptation strategies. Adding to these 

observations, a study by D. Oxoli, J. R. Cedeno Jimenez, and M. A. Brovelli from the 

Department of Civil and Environmental Engineering at Politecnico di Milano focuses on 

Sentinel-5P's effectiveness in ground-level air quality monitoring. The study compares 

Sentinel-5P observations with traditional ground measurements in the Lombardy region 

of Northern Italy. Utilizing data collected during the COVID-19 pandemic, the 

researchers found a marked 17.5% reduction in NO2 concentrations during the lockdown. 

The study also reported strong positive correlations between ground-based and satellite 

observations, with Spearman's rank correlation coefficients (ρs) outperforming Pearson’s 

correlation coefficients (ρp), especially in plain and metropolitan areas. This work sets 

the stage for future research focused on leveraging machine learning and geostatistics 

methods to improve the granularity of air quality monitoring [27]. 

While EO technology offers several advantages, there are critical limitations. One of the 

most significant challenges is the data gaps arising from cloud cover and other retrieval 

limitations. A study by Philipp Schneider and his team from the NILU—Norwegian 

Institute for Air Research, highlights these shortcomings [28]. According to their study, 

depending on the site and the season, only 20% to 50% of the retrievals were found to be 

valid, significantly limiting the utility of EO technologies during high pollution periods. 

These data gaps also impede the operational assimilation of local-scale dispersion models.  
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The study suggests that data availability could be improved by lowering the acceptable 

retrieval quality threshold, albeit at the cost of data quality. Another limitation pertains to 

the temporal constraints of the technology. Sentinel-5P’s TROPOMI sensor collects data 

at specific acquisition times, rendering it incapable of providing continuous, 24/7 

monitoring of air quality. The temporally sparse data is particularly problematic given the 

high volatility of gases such as NO2, which can fluctuate substantially over short periods 

[29]. This temporal limitation restricts the efficacy of EO technologies in real-time air 

quality management and necessitates the integration of complementary data sources for 

a comprehensive air quality assessment. 

 

2.2.3 Advantages and Challenges of Low-Cost Sensors 

The advent of low-cost sensors has brought a revolution in the realm of air quality 

monitoring. These affordable, easy-to-use, and accessible tools offer a means for various 

stakeholders - including citizens, non-governmental organizations, and local authorities - 

to monitor air quality in different contexts[29]. One way these low-cost sensors enable in 

situ data collection is by forming networks that provide near-real-time air quality 

observations with high spatial and temporal resolution. This fine-grained data can fill the 

gaps left by existing official regulatory networks that usually operate at lower spatial and 

temporal scales [30]. Peer Nowack et al. investigated the potential of machine learning 

algorithms to calibrate low-cost sensors for NO2 and PM10. Conducted in the urban area 

of London, their study evaluated multiple regression methods and found that machine 

learning algorithms like Gaussian Process Regression (GPR) and ridge regression could 

significantly improve the sensor performance. The study also shed light on the limitations 

of these machine-learning-based calibration techniques, such as the difficulty in 

transferring calibrated sensors to new locations with different air pollution patterns [31]. 

In a multi-city epidemiological study, Marina Zusman et al. evaluated the performance 

characteristics of the Plantower PMSA003 and Shinyei PPD42NS sensors for measuring 

fine particulate matter. Their findings indicate that region-specific calibration models 

significantly improve the performance of these sensors. For example, Plantower PMS 

A003 sensors calibrated with regional models showed high precision and accuracy 

compared to regulatory instruments.  
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The study emphasizes the need for localized calibration and warns against using 

manufacturer-provided general calibration factors, particularly when the data is intended 

for use in environmental epidemiological studies [32]. Expanding on sensor-based 

approaches, a research study by Amin Anjomshoaa et al. introduced the concept of drive-

by sensing in smart cities. Utilizing portable sensors mounted on urban vehicles, this 

dynamic method allows for comprehensive and efficient monitoring of the urban 

environment. The study posited that this strategy offers lower deployment and 

maintenance costs compared to traditional stationary sensor networks. Furthermore, the 

research highlighted the influence of street network topology on data sampling frequency 

and spatial granularity, suggesting the need for custom models that take into account the 

complexity of urban parcels [33].  

Despite these advancements, there are still challenges to overcome. Alice Cavaliere et al. 

further emphasized the importance of calibration in a study focused on O3 and NO2 

sensors. They found that while machine learning models like multiple random forests 

(MRF) offered high accuracy, they were less reliable in generalizing to new datasets. In 

contrast, parametric models like multiple linear regression (MLR) were more robust and 

easily adjustable over time. This is particularly relevant for NO2 and O3 sensors, as these 

require unique parameter values due to intersensory variability [30]. However, even with 

improved calibration techniques, low-cost air pollution sensors and drive-by sensing 

methods often still fall short of the performance metrics set by state-of-the-art air quality 

monitoring stations. The quality of the data produced may not be suitable for legal 

sanctions, but these emerging technologies offer a rapid and flexible approach to air 

quality monitoring, filling in gaps that traditional methods may miss. 
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III Study Area  

Wuerzburg, the focal point of this study, is situated in the federal state of Bavaria in 

Germany. The city's geographical coordinates range from 49.7105°N to 49.8456°N in 

latitude and 9.8716°E to 10.0144°E in longitude. Set within a valley and framed by 

surrounding hills, the Main River winds its way through the city, adding to the complexity 

of its topography. Wuerzburg is divided into 13 administrative districts, covering a total 

land area of 87.63 km² and sustaining a population density of about 1486 inhabitants per 

square kilometre [24]. Based on records from 1991-2020, the average annual temperature 

in Wuerzburg fluctuates from 1.2°C in January to 19.7°C in July [34]. 

 

Figure 1: Research area – Wuerzburg.  

Left: Digital Orthophoto  [35] Right: Urban Atlas [36] 
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Figure 1 offers a comprehensive visual representation of Wuerzburg, showcasing both 

high-resolution RGB imagery and Copernicus Urban Atlas 2018 classifications. 

According to the Copernicus Urban Atlas 2018 [36], the city primarily consists of 

discontinuous dense urban fabric, accounting for approximately 16.19% of the total area. 

This is followed by industrial, commercial, public, military, and private units, making up 

about 16.07%. Continuous urban fabric contributes to 14.05%, whereas green urban areas 

comprise approximately 10.89% of the land. Other notable land classes include 

discontinuous medium-density urban fabric (6.85%), pastures (5.83%), sports and leisure 

facilities (5.42%), arable land (5.18%), and forests (4.76%). The least prevalent is 

discontinuous low-density urban fabric, occupying only around 3.27% of the city's total 

area. 
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IV Materials and Methods 

This section outlines the materials and methods utilized in this master’s thesis, as detailed 

in Figure 2, which illustrates the workflow and key components of the study. 

 

 

Figure 2: Applied workflow 
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4.1 Data 

4.1.1 Sentinel-5 Precursor 

The present thesis focuses on the analysis of Earth Observation data obtained from the 

TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor 

satellite [2]. The aim is to examine the patterns of tropospheric nitrogen dioxide (NO2) 

concentrations in Wuerzburg, Germany, over a period of January 2019 to March 2023. 

Sentinel-5 Precursor, launched on 13 October 2017, is a low Earth orbit satellite designed 

to provide daily atmospheric data products for a period of seven years. The TROPOMI 

instrument achieves high spatial resolution (0.01 arc degrees) and uses its UV-VIS 

spectrometer to measure backscattered solar radiation within the 405–465 nm wavelength 

range. [37]. This allows for precise measurements of tropospheric NO2 columns, a 

significant indicator of air quality produced by both natural and anthropogenic sources, 

including fossil fuel combustion and forest fires. The study leverages the Sentinel-5P 

Offline Nitrogen Dioxide (OFFL NO2) dataset, with a spatial resolution of 1113.2 meters, 

which is accessible via Google Earth Engine [38], a cloud-based platform for satellite 

imagery and geospatial data. The dataset covers the period from 28 June 2018 to 03 

February 2023 [39] and is updated periodically. The acquired data collection underwent 

multiple layers of filtering to ensure the reliability of the study's findings. First, the data 

was restricted by time parameters, encompassing records from January 2019 through 

March 2023, and segmented further by year, seasons, and months. Additionally, the 

dataset was subjected to a cloud fraction filter to maintain the maximum effective cloud 

fraction at 0.1 (10%) for the entirety of the image collection [40]. Following this, the data 

was spatially clipped to conform to the geographical boundaries of the city of Wuerzburg 

and its districts. Finally, the unit of measurement was converted from µmol/m3 to 

µmol/m² by multiplying the values by 106. These pre-processing steps culminated in 

datasets representing the mean NO2 tropospheric column for individual years, seasons, 

and monthly intervals, which were subsequently stored for further analysis. 
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4.1.2 Urban Atlas 2018 

To establish a robust spatial framework for correlating land use patterns with air quality 

metrics in Wuerzburg, this study utilized the Urban Atlas 2018 [36]. This dataset serves 

as a pivotal source of standardized land use and land cover information for major cities 

within the European Union and European Free Trade Association (EFTA) countries. 

Under the leadership of the Copernicus program [41], a land monitoring initiative, the 

Atlas is collaboratively produced by the Directorate-General for Regional Policy, the 

Directorate-General for Enterprise and Industry, and supported by the European 

Environment Agency. The Atlas primarily uses high-spatial-resolution imagery from 

SPOT 5 & 6 and Formosat-2, with 2 to 2.5m spatial resolution, to derive its land cover 

classes, which are further enriched by ancillary data such as local city maps. Introduced 

initially in 2006 covering 305 Functional Urban Areas (FUAs), the 2018 iteration has 

expanded its scope to nearly 700 cities in the EU28 and EFTA countries. It has also 

evolved in its nomenclature, expanding from the initial 17 classes to include a broader 

array of land use categories. The atlas now includes detailed rural fringe classes and an 

additional 'street tree layer.' In this study, the Urban Atlas 2018 provided invaluable land 

cover data for Wuerzburg, which will be analysed in conjunction with tropospheric NO2 

data to offer a multi-dimensional view of the city’s air quality. 

 

4.1.3 Governmental Permanent Monitoring Sites  

To evaluate the accuracy and calibration performance of the low-cost Air Quality Sensor 

(LCS) deployed in this study, benchmark data was sourced from the Bavarian Air Quality 

Monitoring System (LÜB) [23]. Specifically, datasets from the Measuring Station 

Wuerzburg Stadtring Süd, located at coordinates 49°47.430 N and 9°56.858 E, served as 

the reference for comparative analyses. This site continuously monitors various air 

pollutants and meteorological indicators, encompassing carbon monoxide (CO), nitrogen 

monoxide (NO), nitrogen dioxide (NO2), as well as particulate matter with diameters less 

than 10 micrometres (PM10). The NO2 concentration is determined using a method 

described in DIN EN 14211:2012 that employs Chemiluminescence. This technique 

leverages a chemical reaction between O3 and NO that results in the emission of light.  
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The spectrum of this emitted light is characteristic of the substances being measured and 

serves as a highly reliable detection method [42]. Other detection methods include 

colorimetry, coulometry, and IR and microwave spectroscopy. More parameters recorded 

include benzo(a)pyrene, lead, cadmium, arsenic, nickel, air temperature, and relative 

humidity. The particulate pollutants are captured at inlet heights of 3.8 m and 6.0 m above 

ground level, situated 6.0 m from the edge of the adjacent roadway. The particulate 

pollutants are captured at inlet heights of 3.8 m and 6.0 m above ground level, situated 

6.0 m from the edge of the adjacent roadway. The monitoring station is geographically 

located to the east of Wuerzburg's city centre, adjacent to the four-lane federal road B 4 

[24]. The local terrain exhibits a downward incline toward the west and is bordered by 

open residential zones. For the purposes of this study, datasets of PM10 concentrations, 

ambient temperature, and relative humidity were collected for the months of January and 

February 2023. These datasets were subjected to pre-processing steps to ensure data 

quality and integrity. Available in CSV format, the datasets include date, time stamp, and 

an hourly average value for PM10. 

 

Figure 3:Locations of the two governmental measurement sites, featuring Wuerzburg Süd [43]. 

Base-Map: CartoDB Inc.[44] 
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4.2 Software and Programming Languages 

In the conduct of this research, a range of software applications and programming 

languages were employed to support geospatial data management, sensor design, and data 

analytics. QGIS functioned as an open-source Geographic Information System (GIS) 

[45], providing a comprehensive suite of tools for the manipulation, analysis, and 

visualization of geospatial data. It was pivotal in computing zonal statistics of the average 

NO2 tropospheric column for Wuerzburg and in generating maps for data interpretation. 

Concurrently, FreeCAD [46], an open-source Computer-Aided Design (CAD) platform, 

was utilized for the conceptualization and prototyping of weather-resistant enclosures 

tailored for the environmental monitoring stations. To facilitate the physical realization 

of these prototypes, Prusa Slicer was used to prepare 3D STL files for additive 

manufacturing on a Prusa 3D printer [47]. Google Earth Engine, a cloud-based platform, 

was used to acquire and pre-process the Earth Observation data [38]. The platform 

granted access to Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide datasets [39], 

forming a core component of the research data pool. Java [48] was implemented as the 

primary programming language within the Google Earth Engine environment to conduct 

complex data filtering and modelling tasks. These included constraining the datasets to a 

maximum cloud cover of less than 10% and spatially confining them to the geographical 

boundaries of Wuerzburg. Moreover, the data were temporally categorized to capture 

annual, seasonal, and monthly fluctuations for later analysis. R, a robust open-source 

language for statistical computing and graphical representation, was invoked for 

processing, filtering and merging datasets [49]. It was utilised for statistical analysis and 

data visualisation. Furthermore, MicroPython [50], an open-source programming 

language optimized for microcontrollers and other embedded systems, was employed for 

the programming of microcontrollers that manage the environmental sensors. Data 

storage was executed both locally and, in a cloud,-based database, with data transmission 

facilitated via the Message Queuing Telemetry Transport (MQTT) protocol [51] to the 

Amazon Web Services (AWS) IoT Core [52]. Collectively, the strategic utilization of 

these diverse software and programming tools enabled a comprehensive and multi-

faceted approach to achieving the research objectives. 
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4.3 Sensor Design  

This section outlines the conceptualization and realization of cost-effective 

environmental sensors employed in this research project. The primary objective was to 

ensure the reliable protection of sensor electronics against external environmental 

influences. To achieve this goal, customized weather-resistant enclosures were designed 

using Computer-Aided Design (CAD) methodologies. These prototypes were 

subsequently produced through additive manufacturing techniques with the aid of a 3D 

printer. Following the assembly stage, the environmental sensors were integrated with a 

microcontroller unit. This unit was programmed to methodically collect and record data 

from the connected sensors at predetermined intervals. 

 

4.3.1 Platforms and Sensors 

In the present study, the Raspberry Pi Pico W microcontroller board [33] was designated 

as the central unit responsible for sensor management and environmental data logging. 

The RP2040 microcontroller chip, which serves as the computational core of the Pico W, 

facilitates efficient data acquisition and storage. This is achieved through its capability to 

communicate with attached sensors via the Inter-Integrated Circuit (I2C) protocol and to 

record data onto a Secure Digital (SD) Card through a Serial Peripheral Interface (SPI). 

The Pico W boasts several advantageous features, including a 2.4 GHz wireless interface 

for data transmission, 2 MB of onboard flash memory for code storage and execution, 

and a Micro USB B port for both power provision and data transfer. The boards power 

supply architecture is both straightforward and flexible. Additionally, it is equipped with 

an array of 40 digital pins, providing a suite of digital peripherals such as dual UARTs, 

I2Cs, and SPIs, along with 16 PWM channels and an integrated real-time clock.  
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Optimized for both cost-efficiency and performance, the Pico W was selected for its 

modest price point of approximately seven Euro and its high-quality construction, 

establishing it as an ideal platform for development and prototyping within this research 

context. 

 

Figure 4: Raspberry Pico W microcontroller [53] 
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4.3.2 Computer Aided Design 

Three distinct instrument enclosures were engineered to accommodate the array of 

components deployed in this research project. Utilizing the Prusa i3 MK3S+ printer, these 

housings were fabricated through an additive manufacturing method (AM) with 

polylactides filament (PLA), a synthetic polymer, as the printing material [54]. Particular 

attention was afforded to the design to ensure rapid and secure assembly, incorporating 

threaded nuts compatible with the 3D-printed parts. The design also took into account the 

necessity to shield the sensors and other constituents from harsh external environmental 

conditions, while still ensuring their optimal functionality. 

 

Figure 5:Photograph of Prusa i3 MK3S+ 3D printer 

 

4.3.3 Enclosure Design for Simultaneous Multi-Sensor Monitoring 

To enable synchronized air quality assessments via four identical Plantower PMSA003I 

particulate matter sensors [55], a custom enclosure was designed. This configuration 

seeks to examine sensor-to-sensor variability and assess the performance of the low-cost 

sensors relative to the reference station. To mitigate potential biases in the data, the design 

incorporates air inlets at the front and exhaust outlets at the bottom, thereby ensuring that 

air sampled is not contaminated by prior measurements. The enclosure dimensions are 24 

cm in length, 10 cm in height, and 8 cm in width, with an approximate additive 

manufacturing time of 25 hours for all essential components.  
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In addition to accommodating the control unit and the four air quality sensors, the 

enclosure is designed to house two battery units (one with a 5200 mAh capacity and 

another with 3800 mAh) providing a dependable power source for uninterrupted data 

collection. To facilitate data storage, a MicroSD card adapter (HW-125 [56]) is integrated 

into the system architecture. Enhancing the data acquisition capabilities further, an 8-

channel multiplexer, TCA9548A [57], has been integrated to resolve I2C address 

conflicts inherent in the PMSA003I sensors and enables multiple I2C connections for 

efficient data collection. Given that ambient temperature and relative humidity are already 

monitored by the proximately co-located Stadtring Süd measuring station, the inclusion 

of sensors for these parameters was deemed superfluous. 

 

 

Figure 6: Photographs of the 3D-printed case for four PMSA300I particulate matter sensors - showing the 

instruments, the closed housing, and the co-location with the reference station 

 

4.3.4 Enclosure Design for Static Monitoring Configurations 

To establish a compact and cost-effective network of monitoring stations, a small 

instrument housing was designed with the aim of enhancing the spatial and temporal 

availability of PM10 values within the research area. The enclosure, with a diameter of 

10 cm, is fabricated through additive manufacturing processes, requiring approximately 

18 hours for each unit. The assembly is comprised of three parts: a base that hosts the 

control unit and SD card for data storage, a top part that contains the PMSA300I and the 

Bosch BMP/BME 280 sensors for accurate measurement of ambient temperature, relative 

humidity, and atmospheric pressure, and a divider that separates the electronics and 

sensors into two distinct chambers. Power is supplied to the microcontroller via a micro-

USB cable connected to a standardized electrical socket.  
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To ensure the durability and reliability of the monitoring system, two safety measures 

were implemented. The first involves the physical separation of the electronic circuitry 

from the sensor array, a feature designed to mitigate the risks associated with potential 

moisture ingress. The second involves the strategic routing of cable connections through 

a sealed cable gland, thereby ensuring a hermetic interconnection between the enclosure's 

compartments. Additionally, a lid designed in the style of a Stevenson Screen was 

mounted to ensure proper ventilation and protection of the monitoring chamber, while 

accurately measuring the ambient air. 

 

 

Figure 7: Photographs of the 3D-printed case for the static monitor for one PMSA300I particulate matter sensors - 

showing the instruments and separated chambers 

 

 

4.3.5 Enclosure Design for Mobile Monitoring Applications 

To complement the capabilities of the static monitoring units, a mobile variant of the 

sensor system was developed to collect data in motion. This dynamic configuration 

mirrors the architectural attributes of the static setups, but introduces an auxiliary bracket 

situated at the base of the enclosure for facile attachment to a vehicular platform. A 

mountain bike was selected as the vehicular platform for data collection, providing the 

mobility needed to travel long distances and collect data at diverse locations. The bracket 

was securely fastened to the handlebars of the bike and further stabilised with a pair of 

magnets on both the mount and the enclosure, ensuring robust attachment even in rough 

terrain.  
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A supplementary pocket was added atop the spherical case to accommodate a 5200 mAh 

batterie, thereby providing an autonomous energy source for the mobile monitoring unit. 

The total printing time required for the completion of this mobile configuration was 

roughly 25 hours. 

 

 

Figure 8: Photographs of the 3D-printed case for the mobile monitor system - showing the closed case with mount 

and attached to bike 
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4.3.6 Sensor Suite: Core Sensors Employed 

This section details the sensor modules used for data acquisition. In order to obtain 

reliable and comparable air quality metrics across diverse urban settings in Wuerzburg 

and its districts, the study leveraged an array of cost effective sensors. Serving next to the 

EO products as the analytical foundation of the research, these sensors were integral for 

generating a comprehensive dataset for the evaluation of atmospheric conditions. A 

standardization was maintained across all monitoring units by equipping them with 

homogenous sensor components, thereby ensuring dataset integrity suitable for 

comparative analysis. 

 

Components Simultaneous Static Mobil 

Pico W 1 1 1 

PMSA003I 4 1 1 

BME280 0 1 1 

MicroSD Adapter 1 1 1 

Multiplexer 1 0 0 

Plug 0 1 1 

Batterie 9000 mAH 0 mAH 5200 mAH 

Table 2: Components used for each type of monitoring system 
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4.3.6.1 PMSA003I Air Quality 

To capture air quality measurments the study employed multiple PMSA003I dust sensors 

from Plantower, priced at approximately 50 Euros each. This low-cost sensor uses an 

optical measurement method that determines the number of suspended particles in the air 

by laser scattering. The scattered light is then collected and analysed to determine the 

equivalent particle diameter and distribution of particles of different sizes (PM1.0, PM2.5 

and PM10.0) per unit volume. This data is recorded at 2.3-second intervals and expressed 

in units of mass concentration (μg/m3). Communication with the Pico W is established 

via I2C communication protocol. For data stability, the sensor requires a minimum of 30 

seconds after waking from sleep mode to stabilize its internal fan. It operates within a 

temperature range of -10 to 60 °C and is effective in environments with relative humidity 

levels up to 99% relative humidity (RH). Given its compact dimension, the PMSA003I is 

adaptable for both stationary and mobile air quality monitoring systems. Figure 9 

provides a top and side view of the sensor, detailing the fan opening and air outlet, while 

Figure 10 shows its operational mechanism. 

 

Figure 9: Photograph of a Plantower PMSA033I sensor - top and side view 

 

Figure 10: Functional block diagram of PMSA003I  [55] 
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4.3.6.2 Bosch-Sensor BME280 

For precise measurement of ambient temperature, relative humidity, and atmospheric 

pressure, the Bosch BME280 sensor [21] was used. Priced at approximately 15 euros per 

unit, this multifunctional sensor integrates both a digital humidity sensor and a high-

precision temperature and pressure sensor. It operates over an extensive temperature 

range of -40 to 85°C and can accommodate relative humidity levels from 0 to 100% RH. 

With a data acquisition interval in the millisecond range, the sensor assures rapid and 

reliable readings. The BME280 uses a capacitive humidity sensing element for humidity 

measurement and a thermistor for gauging temperature and pressure. It communicates 

with the controller via the I2C protocol, ensuring high accuracy and stability in its data. 

Given its compact form factor and low energy consumption, the sensor is highly suitable 

for both stationary and mobile environmental monitoring applications. The data collected 

by the BME280 not only enriches the study's dataset but also serves as a pivotal element 

for understanding the relationship between air quality and various environmental factors. 

 

 

Figure 11: Photograph of a BME280 sensor – top view 
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V Methodology 

The methodology adopted for this research is structured into three main stages. The first 

stage leverages Earth Observation techniques to examine average tropospheric NO2 

levels across five cities in Bavaria, namely Munich, Augsburg, Regensburg, Nuremberg, 

and Wuerzburg. This approach aims to place the study areas NO2 levels in a broader 

geographic context. To further understand the exposure, the study investigates the annual, 

seasonal, and monthly mean levels of tropospheric NO2 for the city and its districts. 

Sentinel 5P datasets, extracted via Google Earth Engine Cloud Platform, serve as the basis 

for this temporal analysis. Further, correlation techniques are applied to assess the 

temporal stability of NO2 levels within the studied period. A focal correlation between 

pixels is then utilized to examine spatial correlation in NO2 levels across the city. 

For a more nuanced analysis, zonal statistics are employed to calculate district-wise mean 

NO2 levels, thereby ranking Wuerzburg's districts based on their tropospheric NO2 

concentrations. The study also incorporates the Urban Atlas 2018 dataset to categorize 

various regions of the city into clusters of comparable land use types. This information is 

then correlated with the tropospheric NO2 data to discern any trends. Additionally, a 

comparison is made between tropospheric NO2 values and a Digital Elevation Model 

(DEM) to assess how topography might affect tropospheric NO2 levels. 

The second stage of the methodology focuses on the evaluation and calibration of low-

cost PM sensor systems. Four sensors measuring simultaneously are assessed for their 

performance relative to the reference system at Wuerzburg Stadtring Süd, using statistical 

metrics such as the coefficient of determination (R²) and the root mean square error 

(RMSE). A random forest-based approach is employed to calibrate these low-cost sensors 

using hourly temperature and relative humidity data. Subsequently, three fixed stations 

are deployed in Wuerzburg's districts along with a mobile unit that collects data over a 

five-day period, sampling three times per day. Correction factors derived from the 

calibration are applied to generate time-series data for these sensor systems. This data is 

then correlated with the reference measurements from Wuerzburg Stadtring Süd. 
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5.1 S5P Timeseries 

The following section outlines the methodology employed to investigate tropospheric 

NO2 concentrations over Wuerzburg and selected cities in Bavaria. Utilizing data from 

the Sentinel-5P satellite, the study employs a multi-tool approach, incorporating both R 

for statistical analysis and QGIS for geospatial evaluations. Sub-sections detail the 

analysis, including district-level assessments, land-use correlations, and topographical 

influences. 

 

5.1.1 NO2 Levels in Selected Bavarian Cities 

This section of the study utilizes Earth Observation methods to examine average 

tropospheric NO2 concentrations across five Bavarian cities: Munich, Augsburg, 

Regensburg, Nuremberg, and Wuerzburg. The overarching goal is to contextualize 

Wuerzburg's tropospheric NO2 levels within a broader geographic and environmental 

framework. The initial stage of the methodology entailed gathering Sentinel-5P OFFL 

NO2 tropospheric column number density data via Google Earth Engine (GEE). This raw 

dataset was confined to a specific time frame, spanning the years 2019 to 2022, with each 

year considered as a separate entity for subsequent analyses. To enhance data quality, a 

filter was applied, eliminating scenes with more than 10% cloud cover and thus increasing 

the reliability of the tropospheric NO2 measurements. After this quality filtering, the 

dataset's spatial boundaries were adjusted to match those of the selected Bavarian cities. 

Within these confines, average monthly tropospheric NO2 levels were calculated for each 

city and compiled into distinct yearly datasets. The final step utilized the R programming 

language to summarize and rank the cities based on their calculated average monthly 

tropospheric NO2 concentrations. This ranking offers a comparative metric, allowing 

Wuerzburg's tropospheric NO2 levels to be evaluated in relation to those of the other 

cities examined. 

 



29 

 

5.1.2 Tropospheric NO2 Variability in Wuerzburg 

5.1.2.1 Geospatial Visualization of Annual NO2 Trends 

Initial insights into the fluctuations in tropospheric NO2 pollution levels over the study 

period were garnered through a Time Series map, generated using R and QGIS. This 

visual representation offered a preliminary understanding of the trends and variations in 

pollution levels across the years under examination. 

5.1.2.2 Temporal Correlation of NO2 Concentrations 

A Pearson correlation analysis was executed using the R programming language to 

examine the relationship between the mean tropospheric NO2 concentrations for the years 

2019 to 2022. The mean tropospheric NO2 levels were pre-processed using Google Earth 

Engine and stored as CSV files. In addition to this initial analysis, a focal correlation 

approach was implemented using a square window of size 5x5 pixels, each having a 

resolution of 1113.2 m. This method allowed for the incorporation of local spatial context 

in the temporal correlation analysis. This data was imported into R using the read.csv 

function, and further transformed and cleaned using the tidyr [58] and dplyr [59] 

packages. The Pearson correlation coefficient (r) was calculated using the cor() function 

in R, according to the formula: 

𝑟 =
𝛴[(𝑥 −  �̄�)(𝑦 − �̄�)]

√[𝛴(𝑥 − �̄�)2𝛴(𝑦 − �̄�)2]
 

 

Where: 

• r is the correlation coefficient between x and y. 

• x represents the mean tropospheric NO2 concentrations for a given year. 

• y represents the mean tropospheric NO2 concentrations for another year. 
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5.1.3 District-wise NO2 Analysis in Wuerzburg 

5.1.3.1 Ranking and Correlation Analysis Across Districts 

To investigate the spatial distribution of tropospheric NO2 concentrations across 

Wuerzburg, the zonal statistics tool in QGIS was used to calculate annual mean levels for 

each district from 2019 to 2022. The objectives were to generate a ranking based on these 

tropospheric NO2 concentrations and to employ Analysis of Variance (ANOVA) [60] to 

assess both seasonal and monthly fluctuations. This statistical tequnique serves as an 

effective means for identifying significant disparities in average concentrations across 

districts. 

The equation for the ANOVA is given by: 

 

𝐹 =
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛
 

 

Where: 

• F represents the F-statistic, which serves as an indicator of the statistical 

significance between group means. 

• MSbetween denotes the mean square between groups, essentially the variance in 

means across the different districts. 

• MSwithin refers to the mean square within groups, essentially the variance within 

each respective district. 
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5.1.4 Urban Atlas Classes and NO2 Correlation Analysis 

5.1.4.1 Temporal and Spatial NO2 Patterns in Different Land-Use Classes 

To systematically assess the spatial distribution of tropospheric NO2 concentrations 

across varying land use classes, the analytical strategy delineated in Section 5.1.3.1 for 

district-level scrutiny was adapted to conform to the specificities of the 2018 Urban Atlas 

data. The adjustment was necessary to accommodate the high spatial resolution of the 

dataset. Classes with similar land uses were aggregated into broader categories. The 

cluster "Vegetation" includes the classes of Green urban areas, Arable land (annual 

crops), Sports and leisure facilities, Permanent crops (vineyards, fruit trees, olive groves), 

Pastures, and Forests. The "Urban/Built-up" category comprises Discontinuous low 

density urban fabric (S.L.: 10% - 30%), Discontinuous dense urban fabric (S.L. : 50% - 

80%), Continuous urban fabric (S.L. : > 80%), Discontinuous medium density urban 

fabric (S.L. : 30% - 50%), and Discontinuous very low density urban fabric (S.L. : < 

10%). The "Industrial Areas" category encompasses Industrial, commercial, public, 

military and private units, Mineral extraction and dump sites, and Construction sites. 

Lastly, the "Transport" category includes Fast transit roads and associated land, Other 

roads and associated land, Railways and associated land, Airports, and Port areas. In 

preparation for the analysis, the Urban Atlas dataset was manipulated in R by first adding 

an empty column called "cluster". Finally, the new clusters were created by grouping and 

combining the original land use classes into the categories mentioned. Analysis of 

Variance (ANOVA) was applied to these clustered Land-Use Classes with the aim of 

generating rankings based on mean tropospheric NO2 concentrations from 2019 to 2022.  

Cluster Classes 

Vegetation Green urban areas, Arable land (annual crops), Sports and leisure 

facilities, Permanent crops (vineyards, fruit trees, olive groves), 

Pastures, Forests 

Urban/ 

Built-up 

Discontinuous low density urban fabric (S.L. : 10% - 30%), 

Discontinuous dense urban fabric (S.L. : 50% - 80%), Continuous urban 

fabric (S.L. : > 80%), Discontinuous medium density urban fabric (S.L. 

: 30% - 50%), Discontinuous very low density urban fabric (S.L. : < 

10%) 

Industrial 

Areas 

Industrial, commercial, public, military and private units, Mineral 

extraction and dump sites, Construction sites 

Transport Fast transit roads and associated land, Other roads and associated land, 

Railways and associated land, Airports, Port areas 

Table 3: Cluster based on Urban Atlas 2018 classes 
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5.1.5 Topographical Influence on NO2 Levels 

5.1.5.1 Correlation Between Elevation and NO2 Concentrations 

To examine the impact of topography on tropospheric NO2 concentrations, a systematic 

workflow was employed. A Digital Elevation Model with a one meter raster cell size 

(“DGM1 – GeoTIFF“ Bayerische Vermessungsverwaltung – www.geodaten.bayern.de) 

for Wuerzburg and mean tropospheric NO2 levels with a 1113,2 meter raster cell size 

spanning the years 2019 to 2022 was used as the data sources for this analysis. In the first 

step, the DEM was segmented into elevation zones with vertical intervals of five meters 

using QGIS reclassification tool. This interval was chosen to capture small-scale 

topographic changes in an urban environment. The zonal statistics tool was then applied 

to calculate the average concentrations for each elevation zone. The resultant data was 

exported to R, where it was filtered to remove missing values. A linear regression model 

was established, formulated as follows: 

 

𝑙𝑚 = (𝑥𝑚𝑒𝑎𝜂~𝐷𝑁) 

 

Where:  

• Xmean represents the mean tropospheric NO2 concentrations for 2019 to 2022.  

• DN denotes the elevation zones.  
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5.2 Sensor Placement  

In determining the optimal locations for the three stationary air quality sensor systems, 

multiple criteria were evaluated. As delineated in Section 6.1, urban districts manifest 

elevated levels and greater variability of tropospheric NO2, thereby warranting a more 

nuanced air quality analysis. To align the stationary sensor data with mobile data 

collection routes for performance evaluation, the sensors were strategically located in 

proximity to the mobile sampling paths, as well as near power sources and Wi-Fi access 

points. Given the logistical constraints, mobile tours were capped at a one-hour duration. 

To capture a comprehensive picture of diurnal air pollution trends, the districts of Altstadt, 

Steinbachtal, and Frauenland were selected as the sites for the stationary air quality 

sensors. Specifically, Monitor 2 was situated in Frauenland, adjacent to the high-traffic 

B4 city ring road. Monitor 3 was installed in Steinbachtal in a residential setting, perched 

on a balcony along Mergentheimer Straße. Lastly, Monitor 4 was positioned in the 

Altstadt district, overlooking a parking area near the Government of Lower Franconia. 

Figure 12 depicts the geographical distribution of the sensor locations. 

 

Figure 12: Locations of static Air Quality monitors. Base-Map: Open Street Map [61] 
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5.3 LCS Data Measurement and Validation  

5.3.1 Simultaneous Monitor Method 

5.3.1.1 Data Acquisition Parallel System 

To assess the performance of the four low-cost particulate matter sensors, they initially 

were co-located adjacent to the reference station at Wuerzburg Stadtring Süd. Data was 

collected from February 9, 2023, to February 10, 2023. Figure 13 illustrates the 

environmental context of the monitoring site. Positioned on the heavily trafficked B4 

roadway, the sensor array was strategically placed about five meters from the official 

measurement station and was adequately protected from environmental elements. 

 

  

 

 

 

 

Figure 13: Photographs of the area around the monitor site Stadtring Süd 

 

Data acquisition and storage for measuring particulate matter levels commenced with the 

connection of a micro-USB port to a battery source, powering on the Pico W controller. 

The microcontroller, which stores the managing code, initiates operations automatically. 

Upon powering up, an integrated LED illuminates while the device attempts to establish 

a Wi-Fi connection and synchronize its real-time clock with network time. Successful 

synchronization is indicated by the LED extinguishing, and the Wi-Fi chip is 

subsequently disabled to conserve energy. 
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Following a 30-second initialization period, the Pico W controller engages its main data 

collection loop. An LED signal briefly activates at the start of each loop, allowing for 

visual confirmation of ongoing data collection. Initial PM10 values for each sensor are 

provisionally recorded as "NA." Utilizing a multiplexer, the system cycles through each 

sensor to obtain five readings at 2.3-second intervals, subsequently calculating an average 

value. These averaged PM10 values are stored in distinct variables and replace the initial 

"NA" placeholders. Timestamping occurs immediately after PM10 value calculation. 

Data are preserved in CSV format on an SD card, with the date appended to the file name 

for daily differentiation. Error handling is incorporated through Except options to ensure 

the data collection loop continues uninterrupted until either the battery is depleted, or the 

power source is disconnected. 

 

5.3.2 Sensor to Sensor Performance 

The examination of the PM10 measurements entailed an in-depth statistical analysis 

executed within the R programming environment. The initial phase was devoted to data 

cleaning and pre-processing tasks to assure the integrity of column order and data format. 

Seasonal time adjustments were made by adding an hour to the timestamp column to align 

it with wintertime, and records with 'NA' values were excluded. Following this, minute-

based data was aggregated to an hourly average, accompanied by the addition of an hourly 

log. For the purpose of comparative assessment, datasets containing hourly averaged 

PM10 readings from the Wuerzburg Stadtring Süd data logger were sourced from the 

publicly accessible database of the Bayerisches Landesamt für Umwelt [62]. These 

datasets were subsequently filtered and restructured to exclusively retain Wuerzburg 

station data corresponding to the co-location period. The final analytical dataset was 

formed by merging these government-sourced readings with data from the low-cost 

sensors. 
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To gauge the accuracy of the PMSA003I device, the coefficient of determination, R2, was 

computed using the formula: 

𝑟 =
𝛴[(𝑥 −  �̄�)(𝑦 − �̄�)]

√[𝛴(𝑥 − �̄�)2𝛴(𝑦 − �̄�)2]
 

 

Here, X represents one PM sensori and Y another sensorj. This calculation was iteratively 

applied to all possible sensor pairings, generating a range of R2 values between 0 and 1. 

Values approaching 1 indicate higher sensor-to-sensor consistency. 

The second evaluative criterion employed was the Root Mean Square Error (RMSE), 

utilized to measure each low-cost sensor's performance against the reference 

governmental station. The RMSE was calculated as follows:  

𝑅𝑀𝑆𝐸𝑖𝑗 = √∑(𝐿𝐶𝑆𝑖 − 𝑅𝐹𝑆𝑗)
2

𝑛
 

Where LCSi represents a PMSA003I sensor and RFSj  serves as the reference of Stadtring 

Süd monitor. 

 

5.3.2.1 Calibration  

The third phase of analysis entailed calibration of the low-cost sensor dataset. This was 

accomplished by generating a linear regression model [63] that employed the hourly-

averaged PM10 readings from the four PMSA300I sensors. The model also incorporated 

ambient temperature and relative humidity data obtained from the reference station. The 

objective was to derive corrected PM10 values based on these sensor and environmental 

parameters, using the PM10 readings from Stadtring as the dependent variable. After 

linear regression modelling, a machine-learning approach was implemented by creating 

a random forest model [64]. This was applied to the set of instruments engaged in 

simultaneous data logging with the aim of determining a correction factor.  
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This correction factor was subsequently calculated by dividing the predicted PM10 values 

by the mean PM10 values in the test dataset. The last step of the calibration process 

involved applying the derived correction factor to the raw PM10 mean readings. The 

initial linear regression model served as the calibration tool for this final adjustment. 

 

5.3.3 Static Stations  

5.3.3.1 Data Acquisition of the Static System 

As described in section 5.2 a constellation of three of the low-cost sensors was 

strategically deployed across the named districts within the scope of the research area to 

monitor PM10 levels within the focused area. These sensors engaged in a continuous five-

day data collection regimen. The Pico W controller was powered up by connecting the 

micro-USB port to an electrical source, and it initiated a code sequence pre-stored in its 

microcontroller to manage the instrument operations. Upon initialization, the device 

sought to establish a Wi-Fi connection to a predefined network and synchronized its Real-

Time Clock with the network time. A 30-second preparatory phase was allocated to prime 

the PM sensor for data collection. Unlike the mobile sensors, these static stations featured 

an additional functionality of live data streaming. Utilizing MQTT Protocol, the control 

unit initiated an SSL connection to the AWS IoT core for this purpose. As a result, LED 

indicators were unnecessary and thus excluded from the design. The Pico W controller 

initiated the primary data collection loop. For each iteration of the loop, placeholders were 

created to store the values for PM10, ambient temperature, relative humidity, and 

pressure, initially marked as "NAN." A series of 25 PM sensor readings were taken at 

intervals of 2.3 seconds, after which the BME280 sensor recorded the ambient conditions. 

All placeholder variables were then updated, assuming no error emerged during this data 

acquisition cycle. The current date and time were also stored. The acquired data was saved 

in CSV format on an SD card, appending the current date to the filename for 

differentiation. Following the local storage, the dataset was transmitted to a database via 

MQTT. Any exceptions or errors encountered during this process were addressed through 

error-handling mechanisms, ensuring the uninterrupted flow of the data collection loop 

until either the power supply was exhausted or manually terminated. 
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5.3.3.2 Data Visualisation  

For an enhanced comprehension of the spatial variability in PM10 levels across the 

selected districts, time-series plots were generated for each monitoring station within the 

designated study period. To provide a contextual baseline, these plots were augmented 

with corresponding PM10 measurements sourced from both governmental monitoring 

stations located in Wuerzburg. 

 

5.3.4 Mobile System 

To secure high-resolution spatio-temporal data, the mobile data collection system was 

configured for high-frequency readings. This system functioned in a manner analogous 

to its stationary counterpart, albeit with a modification: a quicker sampling interval 

comprised of two readings within 2.3 seconds for averaging PM10 levels, followed by 

immediate logging of BME280 environmental variables and data storage. 

Due to the constraints of the Pico W microcontroller in interfacing with multiple external 

peripherals and software libraries, a supplementary approach was devised to capture 

location data. The GPS functionality of a Samsung Galaxy Note 20 Plus, utilized in 

conjunction with the Geotracker GPS Logging application [65], enabled the recording of 

geographical coordinates at one-second intervals. Subsequent preprocessing and filtering 

of these datasets occurred in R, where they were merged based on date and time. A 

snapping function facilitated the alignment of timestamps, accommodating minor 

discrepancies by correlating entries within a five-second buffer. 

Structured to encompass a range of districts, the mobile data collection tours had an 

approximate length of 11 km as shown in Figure 15. Commencing at Monitor 4 in 

Altstadt, each tour proceeded to Monitor 3 in Steinbachtal, then to Monitor 2 in 

Frauenland, before retracing back to the point of origin at Monitor 4. To guarantee the 

integrity of data for comparative analysis with static sensors, intermittent stationary 

periods were instituted in proximity to each static sensor.  
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Tri-daily data collections - morning, noon, and evening - were performed to enrich the 

dataset, offering insights into the diurnal and spatial variations of PM10 levels. Figure 14 

details the described data collection and processing steps in a Flowchart. 

 

Figure 14: Flowchart of mobile system 

 

 

Figure 15: Mobile path. Base-Map: Open Street Map [61] 
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5.3.4.1 Mobile Analysis 

The evaluation of the mobile datasets was conducted through two principal 

methodologies. The first approach entailed a spatio-temporal comparison with the fixed 

monitoring stations. A 50-meter spatial buffer was defined around each stationary sensor, 

capturing instances when the mobile sensor entered this vicinity. Data captured by both 

monitoring systems within this area were partitioned into discrete subsets. The 

arithmetically mean of these subsets were calculated to yield a singular PM10 value for 

each of the mobile and stationary systems. To enhance the robustness of the analysis, 

these individual PM10 values were subjected to further aggregation across the trio of 

daily tours, thereby yielding a comprehensive perspective on the spatio-temporal 

discrepancies between the mobile and fixed monitoring systems. The second analytical 

technique focused on comparing the mobile sensor data against district-level tropospheric 

NO2 rankings.  
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IV Results 

6.1 Sentinel 5P NO2 Analysis 

6.1.1 Comparative Analysis of NO2 Levels Across Selected Bavarian Cities 

Figure 16 depicts the monthly variations in NO2 concentrations for the years spanning 

2019 to 2022. Seasonality in NO2 levels is observed across all cities, with elevated 

concentrations typically seen during the colder months. The concentrations range from a 

minimum of approximately 20 to a maximum of about 144 µmol/m². More specifically, 

the winter months show tropospheric NO2 levels ranging from 20 to 144 µmol/m², 

whereas the summer months show a more constrained range from about 25 to 

approximately 60 µmol/m². 

 

Figure 16: Monthly tropospheric NO2 levels (2019-2022) 
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Figure 17 illustrates that Munich emerges as the city with the consistently highest average 

monthly tropospheric NO2 concentrations for the studied years 2019 to 2022 among the 

selected Bavarian cities. Nuremberg frequently ranks second. 

 

Figure 17: Monthly and yearly average tropospheric NO2 levels (2019 -2022) 

 

Table 4 further validates these observations, highlighting that Munich and Nuremberg 

have the highest average tropospheric NO2 concentrations over the four-year period, 

recorded at 70 µmol/m² and 63.5 µmol/m², respectively. They are followed by Augsburg 

and Wuerzburg, with averages of 56.7 µmol/m² and 57 µmol/m², while Regensburg 

exhibits the lowest four-year average concentration of 52.4 µmol/m². 

City / Year 2019 2020 2021 2022 AVG 

Augsburg 63,6 51,6 59,9 51,6 56,7 

Munich 81,1 67,8 70,2 60,9 70 

Nuremberg 69,5 58,7 65,9 59,9 63,5 

Regensburg 57,9 45,9 55,7 50,1 52,4 

Wuerzburg 60,1 52,7 60,6 54,6 57 

Table 4:Annual citywide average tropospheric NO2 levels (2019-2022) 
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6.1.2 NO2 Variability in Wuerzburg 

6.1.2.1 Visualizing Annual NO2 Trends in Wuerzburg 

Figure 18 displays the annual average tropospheric NO2 concentrations in Wuerzburg for 

the years 2019 to 2022. The raster cell size is 1113.2 meters. To ensure comparability 

across the four years, a consistent range from 49 to 62 µmol/m² is applied. A visual 

assessment reveals that areas with elevated concentrations are primarily situated within 

the city's urban core. In contrast, the outskirts of Wuerzburg tend to show lower 

concentrations, underlining a noticeable spatial differentiation in tropospheric NO2 levels 

across the city. It is worth noting that the average values presented in Table 5 are slightly 

different from those obtained through Google Earth Engine Table 4, due to the larger 

analysis area covered in the R-based calculations. However, these values are 

characterized by narrow minimum and maximum ranges for the analysed years 2019 to 

2022. The year 2020 specifically showed the lowest average concentrations across all the 

cities when compared to the other years in the dataset. 

 

Metric / Year 2019 2020 2021 2022 

Min 53.4 43.2 50.5 49.2 

Max 61.3 49.7 61.8 56.4 

Avg 57.4 46.5 56.2 52.8 

Table 5: Summary of annual minimum, maximum and average  

NO2 concentrations in Wuerzburg (2019-2022) 
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Figure 18: Annual average tropospheric NO2 concentrations for Wuerzburg (2019-2022) 
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6.1.2.2 Temporal Consistency of NO2 Concentrations in Wuerzburg 

The Correlation Analysis was conducted using the Pearson method, and the results are 

displayed in Figure 19. The matrix employs a colour gradient that ranges from -1, 

represented in red, to +1, depicted in green. This matrix serves to illustrate the correlation 

between the average NO2 values for the years 2019, 2020, 2021, and 2022. The analysis 

reveals a mixed pattern of correlations among the datasets; notably, the NO2 levels in 

2022 and 2021 have a correlation coefficient of -0.135, the levels in 2022 and 2020 show 

a correlation coefficient of -0.223, and the levels in 2022 and 2019 exhibit a correlation 

coefficient of -0.798. Meanwhile, the correlation coefficient for NO2 levels in 2021 and 

2020 is 0.996, the coefficient for levels in 2021 and 2019 is -0.489, and the coefficient 

for levels in 2020 and 2019 is -0.410. These results suggest a lack of consistent positive 

correlation between the average NO2 levels across the years studied. 

 

 

Figure 19: Result of the Pearson Correlation analysis (2019-2022) 
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The focal correlation analysis shown in Figure 20 provides insight into the relationship 

between the tropospheric NO2 concentrations in the years 2019 to 2022. The correlation 

coefficient calculated using a 5x5 moving window, ranges from -1 to 1, where -1 indicates 

a perfect negative correlation, one indicates a perfect positive correlation, and 0 indicates 

no correlation. The maps display a spatial representation of the relationship between the 

tropospheric NO2 levels, highlighting areas where the concentrations tend to change in 

similar or opposite directions. It is crucial to note that the resultant correlation raster maps 

exhibit a smaller spatial footprint compared to the original NO2 datasets. This reduction 

is due to the averaging of values over the 5x5 pixel area by the moving window, thereby 

eliminating some peripheral data and resulting in a compact dataset. The results of the 

analysis reveal distinct spatial patterns in correlation coefficients. For the 2019-2020 map, 

negative correlations are evident in the areas of Steinbachtal, Frauenland, Sanderau, and 

Altstadt. The 2020-2021 map displays the highest density of negative correlation pixels, 

particularly concentrated in centralized districts of the city. Lastly, the 2021-2022 map 

shows negative correlations exclusively in the City Centre Altstadt and in Heuchelhof. In 

all three maps, the northern and southern outskirts, which are more rural in character, 

consistently exhibit positive correlations. Within the city, negative and near-zero values 

predominate. Importantly, near-zero correlation coefficients, indicative of little to no 

relationship between NO2 concentrations, are the most frequent values across all maps, 

covering over 100 of the total 206 pixels. 

 

 

 

 



47 

 

 

 

 



48 

 

 

Figure 20: Result of the Focal Correlation analysis (2019-2022) 
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6.1.3 Zonal Statistical Analysis: Wuerzburg’s Districts 

6.1.3.1 District Ranking 

Figure 21 shows a cartographic representation of the 13 Würzburg districts, providing the 

spatial information for the following statistical analyses. The districts are subjected to a 

ranking procedure as well as an analysis of variance (ANOVA) to explore both the spatial 

and seasonal variations in tropospheric NO2 concentrations. 

 

Figure 21: Districts of Wuerzburg [66]. Base-Map: Google Satellite 2023 [67] 

 

 

Figure 22 reveals minimal intra-annual and inter-annual variation in mean tropospheric 

NO2 levels across all thirteen districts of Wuerzburg. This consistency in data points to a 

stable NO2 presence over the observed period. An exception to this pattern is observed 

in the year 2020, where mean tropospheric NO2 were noticeably lower. 
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Figure 22: Mean tropospheric NO2 by district and year (2019-2022) 

 

Figure 23 presents the aggregated data for all years to facilitate the ranking of 

Wuerzburg's districts based on their overall mean tropospheric NO2 levels. The figure 

reiterates the minor variations in NO2 concentrations across districts, confirming a pattern 

of consistency over the study's entire time frame. Spatially, it is notable that districts with 

the highest mean NO2 levels are concentrated in the central part of Wuerzburg. 

 

Figure 23: Mean tropospheric NO2 by district (Aggregated 2019-2022) 
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Figure 24 displays the aggregated seasonal data, providing a more detailed look at the 

spatiotemporal variations in tropospheric NO2 levels across Wuerzburg. The data reveal 

seasonal fluctuations, with summer levels ranging from 30 to 37 µmol/m² and winter 

levels spanning from 50 to 90 µmol/m² over the years studied. The spatial distribution of 

these concentrations aligns with the patterns observed in Figure 23 that districts situated 

in the central part of the city consistently exhibit higher tropospheric NO2 levels, while 

those further from the city centre show lower concentrations. 

 

 

Figure 24: Seasonal Mean tropospheric NO2 by district (Aggregated 2019-2022) 
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6.1.3.2 Correlation Based on NO2 Exposure 

6.1.3.2.1 Seasonal Differences 

Table 6 displays the Analysis of Variance (ANOVA) results used to quantify seasonal 

variations in mean tropospheric NO2 levels. The F-Statistic is 230.4 and the p-Value is 

less than 2-16. 

Parameter Value 

F-Statistic (F) 230.4 

p-Value (Pr(>F)) <2-16 

Table 6: ANOVA results for seasonal differences in tropospheric NO2 

 

6.1.3.2.2 District-Level Seasonal Differences 

Table 7 illustrates the findings of the ANOVA conducted to investigate if mean NO2 

concentrations differ by district during different seasons. The table reveals an F-Statistic 

of 1.865 and a p-Value of 0.173. 

Parameter Value 

F-Statistic (F) 1.865 

p-Value (Pr(>F)) 0.173 

Table 7: ANOVA results for seasonal and district wise differences in tropospheric NO2 
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6.1.3.2.3 Monthly Differences 

Table 8 outlines the ANOVA results for exploring monthly fluctuations in mean NO2 

levels. The data shows an F-Statistic of 86.609 and a p-Value less than 2-16. 

Parameter Value 

F-Statistic (F) 86.609 

p-Value (Pr(>F)) <2-16 

Table 8: ANOVA results for monthly differences in tropospheric NO2 
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6.1.4 Urban Atlas Classes and their NO2 Profile 

6.1.4.1 NO2 Patterns across different Land-Use Classes 

Figure 25 visualizes the Urban Atlas land-use classes from 2018, along with the mean 

tropospheric NO2 levels measured in µmol/m² (averaged for the years 2019 to 2022) 

overlaid on top. The range of tropospheric NO2 levels falls between 50 and 57 µmol/m². 

Each pixel, with dimensions of 1113.2 m x 1113.2 m, encompasses a mix of different 

land-use classes. Elevated NO2 levels are observed in the central area of the city.  

 

Figure 25:Yearly mean tropospheric NO2 concentration for Wuerzburg (Aggregated 2019-2022) overlayed by Urban 

Atlas classes. Base-Map: CartoDB Inc. [44] 

 

To address the challenges of mixed land-use categories within the NO2 pixels, clusters 

were formed as outlined in Table 3. These clusters were then sorted based on their mean 

tropospheric NO2 measurements from 2019 to 2022. Table 9 outlines the mean, median, 

and standard deviation of tropospheric NO2 levels across different Urban Atlas clusters. 

The data shows minimal variation in average NO2 levels among the aggregated land-use 

categories. 
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Cluster Mean  Median  SD 

Urban / Built-up 54.9 55.2 1.30 

Industrial Areas 54.5 54.7 1.42 

Transport 54.5 54.5 1.07 

Vegetation 54.3 54.5 1.45 

Other / Uncategorized 54.2 54.5 1.29 

Table 9: Tropospheric NO2 by Urban Atlas Cluster (Aggregated 2019-2022)  

 

Figure 26 provides a violin plot illustrating the minimum, mean, and maximum 

tropospheric NO2 concentrations for each of the four examined clusters. The plot shows 

that Industrial Areas have a minimum tropospheric NO2 level of 49.7 µmol/m², a mean 

of 54.5 µmol/m², and a maximum of 56.9 µmol/m². The Transport cluster exhibits a 

minimum concentration of 51.0 µmol/m², a mean of 54.5 µmol/m², and a maximum of 

56.9 µmol/m². Lastly, Urban/Built-up areas have a minimum of 49.7 µmol/m², a mean of 

54.9 µmol/m², and a maximum of 56.9 µmol/m². Similarly, the Vegetation cluster shows 

a minimum level of 49.5 µmol/m², a mean of 54.3 µmol/m², and a maximum of 56.9 

µmol/m². 

 

Figure 26: Tropospheric NO2 by Urban Atlas Cluster (Aggregated 2019-2022) - Violin Plot 
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6.1.5 Topographical Influence on NO2 Distribution 

6.1.5.1 Elevation-NO2 Correlation Analysis 

The elevation range of the processed DEM spans approximately from 165 to 360 meters 

above sea level. Over the four-year period from 2019 to 2022, mean tropospheric NO2 

concentrations were observed to vary within a narrow range, approximately 49.5 to 57 

µmol/m². Figure 27 offers a three-dimensional representation of Wuerzburg's elevation 

zones, reclassified at 5-meter vertical intervals. These zones are color-coded according to 

NO2 concentration, transitioning from low (purple) to high (red). The visualization shows 

that higher tropospheric NO2 levels are predominantly associated with lower elevation 

zones. 

 

Figure 27: 3-Dimensional view of tropospheric NO2 concentration by height (Aggregated 2019-2022) 

 

In Figure 28, a scatterplot visualizes the results of the linear regression model. The 

intercept is approximately 55.10, serving as the estimated mean NO2 level at an elevation 

of 165 meters. The slope for the elevation variable is -0.0813, indicating that as elevation 

rises by five meters, the mean tropospheric NO2 levels correspondingly decrease by about 

0.0813 µmol/m². The multiple R-squared value stands at 0.2262, revealing that elevation 

accounts for 22.62% of the variance in the mean NO2 levels.  
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High F-statistic and a p-value less than 2.2-16 affirm the statistical significance of the 

model. Additionally, the scatter of residuals around the regression line is minimal, 

suggesting a good fit of the model to the data. 

 

 

Figure 28: Regression Analysis of tropospheric NO2 and elevation 
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6.2 Low-cost Sensor Systems 

This section presents an analytical overview of the performance metrics obtained from 

the self-developed low-cost sensor systems. Several metrics, such as root mean square 

error (RMSE) and coefficient of determination (R2), were evaluated to assess the sensors' 

reliability and accuracy. 

6.2.1 Sensor to Sensor Performance:  

Figure 29 displays the calculated R2 results for the four PMSA300I low-cost sensors that 

operated simultaneously. Data was gathered on February 9, 2023, over a span of 24 hours. 

Calculations for all possible sensor pairings were conducted. The R2 values ranged 

between 0.9109 and 0.9251, indicating low variability between the sensors during the 

study period. 

PM10_1 and PM10_2: R-squared = 0.9177  PM10_2 and PM10_3: R-squared = 0.9161 

PM10_1 and PM10_3: R-squared = 0.9251  PM10_2 and PM10_4: R-squared = 0.9109 

PM10_1 and PM10_4: R-squared = 0.9176  PM10_3 and PM10_4: R-squared = 0.9203 

 

Figure 29. Sensor to sensor performance 
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6.2.2 Sensor 2 Reference Performance 

In this paragraph, the performance of the low-cost sensors is evaluated by comparing it 

with the values of the reference station Satdtring Süd. The root mean square error (RMSE) 

was calculated to quantify the average difference between each low-cost sensor and the 

reference station on an hourly basis, after the sensor data was averaged hourly to align 

with the reference station data. The RMSE scores for the air pollutant PM10 from each 

sensor vs. the reference station are as follows: 

RMSE PM10_1_Mean = 19.23607  RMSE PM10_2_Mean = 17.94657 

RMSE PM10_3_Mean = 19.42284  RMSE PM10_4_Mean = 16.16234 

 

High RMSE values indicate poor agreement between the low-cost sensors and the 

reference station. A separate analysis was conducted to evaluate the relationship between 

the Low-cost Sensors and the reference station Wuerzburg Stadtring using a linear model. 

Despite the sensors showing high consistency among themselves, the relationship 

between the low-cost sensors and the reference station is only moderate aligned. This is 

indicated by an R2 value of 0.441 and visualised in Figure 30. 

 

Figure 30: Sensor to reference station performance without calibration 
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6.2.3 Sensor Calibration  

A calibration model was implemented utilizing a random forest algorithm. The model 

integrated PM10 concentrations, ambient temperature, and relative humidity data from 

the reference station with PM10_Mean readings from all four low-cost sensors. The result 

of the corrected dataset is visualized in Figure 31 and Figure 32. Post-calibration, the 

coefficient of determination (R2) improved to 0.83. 

 

Figure 31:Comparison of raw and. corrected sensor readings 

 

 

Figure 32: Sensor to reference station performance with calibration 
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6.3 PM10 Analysis: Static and official Monitors 

Figure 33 illustrates the 24-hour PM10 levels recorded from February 5 to February 9, 

2023. It includes data from Monitor 2 (depicted in red) and Monitor 3 (in green), aligned 

with readings from two official monitoring stations in Wuerzburg: Kopfklinik (blue) and 

Stadtring Süd (purple). Monitor 4 was excluded from the visualization due to an excess 

of missing values in its dataset. 
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Figure 33: LCS aligned with official monitors 
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6.4 Analysis of mobile Air Quality Monitoring 

6.4.1 Variation in PM10 Levels: A Spatio-Temporal Examination 

During the first day of recording on February 5, 2023, unforeseen issues with the SD-

Card Module led to incomplete data for the first tour. Figure 34 presents the three 

individual tours conducted each day, with starting times around 8 am, 1 pm, and 7 pm. 

The PM10 levels ranged from a minimum of approximately 10 µg/m³ to a maximum of 

around 150 µg/m³ across all days. 
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Figure 34: Mobile field collection of PM10 concentration 
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6.4.2 Mobile Sensor 2 fixed Sensor Quality Check 

Figure 35 evaluates the performance discrepancy between the mobile monitoring system 

and the static Monitors 2, 3, and 4 during the three daily field trips. The graph commences 

with blue bars representing the initial PM10 measurements taken by the mobile system at 

the start of each tour in Altstadt, compared to the static Monitor 3. Subsequently, green 

bars depict the mobile system's readings when in proximity to Monitor 3 located in 

Steinbachtal. Yellow bars correspond to the mobile system near Monitor 2 in Frauenland, 

and orange bars signify the end of each tour, aligned with Monitor 4's data. Some bars 

are absent due to missing data, as indicated in Figure 35. 
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Figure 35: Mobile compared to static sensors (05.02.2023 to 09.02.2023) 
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VII  Discussion  

Key Findings 

The central focus addressed in this study is the enduring poor air quality within the 

European Union, particularly in cities. Although official measuring stations provide 

localized and reliable data, their spatial limitation restricts the comprehensiveness of their 

findings over entire urban areas. The question aimed to answer was whether combining 

air quality related datasets from official sources, satellite-based remote sensing data from 

the Sentinel 5P system, and self-developed stationary and mobile low-cost sensors can 

provide a more detailed understanding of air pollution distribution in urban spaces. The 

analysis of satellite-based remote sensing data revealed that the selected Bavarian cities 

Munich, Regensburg, Nuremberg, Augsburg, and Wuerzburg vary in their geographical 

locations and areas but exhibit minimal fluctuations in their tropospheric NO2 average 

levels over the study period. Munich was the weakest performer with an average of 70 

µmol/m², whereas Regensburg had the least polluted air with an average of 52.4 µmol/m² 

from 2019 to 2022. Upon a detailed temporal analysis, a clear seasonal component was 

identified, indicating that tropospheric NO2 levels rise in colder months and decline in 

warmer periods, corroborating the significant role meteorology plays in air quality [68]. 

Spatially, elevated levels of tropospheric NO2 were confined to urban areas and 

dissipated towards rural regions, as confirmed by a Focal Correlation analysis. The urban 

core was particularly marked by spatiotemporal contrasts. While individual district 

analyses revealed minimal discrepancies in average tropospheric NO2 levels, a consistent 

ranking pattern emerged over the study period. This pattern affirms that districts closer to 

the urban centre generally experience higher tropospheric NO2 concentrations. Delving 

into the seasonal differences, Table 5 presents an extremely low p-value (<2-16), which is 

significantly below the standard significance level of 0.05. This strongly supports the 

rejection of the null hypothesis, suggesting no significant differences in mean NO2 values 

across seasons. This assertion is further strengthened by a high F-statistic of 230.4, 

emphasizing that the variance in mean NO2 values between seasons substantially exceeds 

the variance within seasons. 
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Turning our attention to district-level seasonal differences, the data from Table 6 reveals 

a p-value of 0.173, which is above the threshold of 0.05. Thus, we cannot dismiss the null 

hypothesis, suggesting that significant variations in NO2 concentrations among districts 

on a seasonal basis may not be present. When examining monthly differences at the 

district scale, Table 7 shows a p-value of < 2-16, far below the accepted significance level. 

This leads to the rejection of the null hypothesis, which posits no substantial differences 

in tropospheric NO2 mean values among months. This underscores the existence of 

significant fluctuations in tropospheric NO2 concentrations on a monthly basis. The 

results from Figure 25, which illustrates the Urban Atlas land-use classes overlaid with 

mean tropospheric NO2 levels, show elevated tropospheric NO2 concentrations in the 

city's central areas, potentially a result of higher traffic or industrial activities. However, 

the observations are derived from averaged data, and transient factors may have 

influenced these readings. In Figure 26, the violin plot reveals the distribution of 

tropospheric NO2 concentrations for the four examined clusters. The mean values for 

Industrial Areas, Transport, Urban/Built-up, and Vegetation clusters are closely grouped, 

all within the range of 54.3 to 54.9 µmol/m². Notably, the Urban/Built-up cluster has a 

significant number of datapoints in the _max concentration areas. The close grouping of 

NO2 values across diverse land-use types indicates a spatial coarseness in the dataset. 

This lack of granularity means that the dataset may not effectively differentiate the 

nuanced effects of land-use on tropospheric NO2 dispersion. The overlapping mean 

values between the Urban/Built-up and Vegetation clusters, for example, further stress 

the necessity for a dataset with finer spatial resolution. Linear regression analysis, 

comparing air quality with topographical data from a Digital Elevation Model (DEM), 

indicated that despite marginal differences in NO2 levels from an averaged dataset of 

2019 to 2022, a correlation exists. Pollution levels declined with increasing elevation; for 

each 5-meter elevation zone, the NO2 content decreased by 0.083 µmol/m². The results 

from the elevation-NO2 correlation analysis provide insights into the topographical 

factors that might be affecting air quality in Wuerzburg. The data suggests an association 

between higher tropospheric NO2 levels and lower elevations, which could be seen in 

Figure 27. One possible explanation for this observation is the accumulation of emissions 

in valleys or lower-lying areas due to certain atmospheric conditions. This relationship is 

further quantified by the scatterplot in Figure 28, indicating that with an increase in 

elevation, there is a decrease in mean tropospheric NO2 levels. The multiple R-squared 
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value shows that elevation can account for approximately 22.62% of the variance in NO2 

levels. However, this also indicates that a large portion of the variance is still unexplained. 

While elevation appears to be a significant factor in determining NO2 levels, it is not the 

only determinant. The limited scatter of residuals around the regression line indicates that 

the model fits the observed data well. However, the remaining unexplained variance 

suggests the presence of other influencing factors. Potential variables might include 

factors such as wind speed, temperature, or localized sources of NO2 emission that might 

not have a direct correlation with elevation. Seasonal variations and elevation, or 

topography, were confirmed as valuable parameters for assessing urban spaces using 

Sentinel 5P data. Analysis of TROPOMI data for Bavaria, with a particular focus on 

Wuerzburg, as depicted in Table 4, Table 5, and Figure 22, Figure 23, reveals a marked 

reduction in tropospheric NO2 levels. It is plausible that this decrease is attributed to the 

impacts of the Covid-19 pandemic and the subsequent lockdown measures implemented 

[69]. One of the key findings of the study is the high correlation between the self-

developed low-cost sensors, evidenced by R² values, which revolve around 0.9109 to 

0.9251, suggest a high degree of consistency between the different low-cost sensors. 

Specifically, the pairings like PM10_1 and PM10_3 showing the highest R-squared value 

of 0.9251 suggests that these two sensors were the most aligned in their readings during 

the study duration. Nevertheless, these sensors exhibited high RMSE values between 16 

to 19 when compared to the reference station, with an R² of 0.441. This suggests that the 

sensors could only deliver "moderate" quality data and are not readily usable in their 

current state. An approach to calibrate the measurements of the low-cost sensors against 

a reference station using a Random Forest model yielded promising results. This 

calibration improved the R² value to 0.83 (Figure 31and Figure 32), bringing the data 

closer to real-world conditions. The necessity of calibration is highlighted by the 

identified unreliability of the raw data logs during winter. External factors such as 

temperature and humidity have a pronounced effect on the readings of low-cost 

particulate matter sensors. This observation is supported by existing literature [70]. The 

focus on the stationary low-cost sensors showed no discernible, recurring temporal 

pattern in PM10 levels during the study period. Additionally, the variance between the 

low-cost systems themselves and among the official systems was less than that between 

the two types of systems. However, caution is advised when interpreting these data 

without appropriate prior calibration. The low-cost sensor data provided reasonable 
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hourly-averaged PM readings even without calibration. Location-based calibration over 

an extended period could significantly improve the data quality of these sensors, thereby 

contributing to the cost-effective expansion of the existing monitoring network. The 

analysis of data collected through the bicycle-mounted sensors also did not reveal clear 

trends in the temporal distribution of PM10 levels. The only exception was around 

midday, during the second tour of each data collection day, where the mobile data showed 

comparatively lower pollution levels. In terms of spatial distribution, elevated 

concentrations of PM10 were noted near the city Stadtring, a high-traffic area, as well as 

in the district Altstadt. The performance analysis of the bicycle-mounted mobile system 

compared to the static low-cost sensors indicated that the mobile sensor readings are 

consistently higher than the stationary ones during the same time periods. Data collected 

at the start of each mobile session were generally close to those from Monitor 4, unlike 

the readings taken at the end of each tour. The discrepancy in the readings at the end of 

each tour may be attributed to possible issues with the sensor housing. For instance, if the 

measuring chamber is not adequately ventilated, it might not exchange air with high PM 

concentrations effectively, leading to skewed readings. The study yielded mixed results, 

aligning with some predictions while revealing new insights. The Sentinel-5P Offline 

NO2 satellite data were adept at identifying meteorological and topographical factors 

impacting air quality. Nonetheless, their coarse grid resolution meant that they couldn't 

provide intricate spatial insights. As anticipated, urban zones, given their dense traffic 

and industrial activities, showcased elevated tropospheric NO2 profiles. Moreover, 

topographical nuances did influence concentration metrics. Interestingly, certain low-

elevated regions that were also deficient in ventilation exhibited heightened tropospheric 

NO2 levels. This concurred with preliminary assumptions and underscores the 

multifaceted nature of urban air pollution dynamics. Turning to the sensor evaluations, 

the low-cost sensors' performance was found to range from moderate to subpar. This 

echoed expectations, underscoring the need for further calibration. Intriguingly, bicycle-

mounted sensors consistently recorded higher PM10 values than their stationary 

counterparts during equivalent timespans, even accounting for adaptation periods. Such 

discrepancies could potentially stem from issues related to sensor housing. 
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Learned Limitations 

Throughout the study's progression, valuable lessons learned illuminated additional 

limitations that had not been initially considered. One of the key findings was the 

significant improvement in the accuracy of the low-cost sensors after calibration, 

highlighting their potential for more reliable air quality monitoring. This progress notably 

altered my initial assessment of these sensors' limitations and underscores their utility 

when properly calibrated. However, even the calibrated mobile sensors failed to capture 

the expected daily variations in PM10 concentrations, particularly during high-traffic 

commuting hours. This unexpected result complicates the interpretation of the data and 

its application for public policy decisions. Furthermore, the influence of topography on 

tropospheric NO2 levels, initially not a primary focus of the study, emerged as a factor 

warranting further scrutiny. Another unexpected observation was the lack of distinct 

PM10 concentration trends in high-traffic areas compared to residential zones, calling 

into question the robustness of the methodologies applied. These newfound limitations 

not only serve as cautionary notes for the interpretation of this study's results but also 

pinpoint specific areas that merit deeper investigation in future research. The absence of 

multiple linear regression analysis with relevant parameters, for instance, may limit the 

depth of interpretation of the relationships among different variables. This leaves room 

for questions related to the true impact of variables like topography, time of day, and 

specific geographic locations on air quality levels. Budgetary and methodological 

constraints, particularly concerning the spatial resolution of the Sentinel 5P data and the 

limitations of low-cost sensors, shaped the scope of the study.  
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VIII  Conclusion 

 

The findings from this study underscore that satellite-based remote sensing, especially 

the Sentinel-5P system, is a potent tool for discerning large-scale seasonal fluctuations in 

urban locales and gaining insights into how topographical attributes influence air quality. 

While the spatial resolution of the Sentinel-5P data may not be optimal for intricate, 

district-level analysis or the granularities showcased by platforms like the Urban Atlas 

land cover classifications, the patterns and trends observed in the data were 

unambiguously evident and aligned with initial expectations. This suggests that while the 

raw data might not be perfectly suited for hyper-localized analysis, it still offers 

meaningful insights into broader air quality dynamics. Earth observation data emerges as 

a precious asset, offering pertinent parameters like the Normalized Difference Vegetation 

Index (NDVI) and Land Surface Temperature (LST), which deepen our grasp of micro-

scale air quality shifts. Established governmental monitoring frameworks offer consistent 

and trustworthy data but come with substantial costs, hindering their ubiquitous adoption. 

Their data presentation, often in hourly averages, poses challenges for instantaneous 

evaluations. Low-cost sensors emerge as budget-friendly additions, enhancing both the 

geographical spread and time-bound precision of measurements. Their swift 

manufacturability, deployability, and easy replacement in the event of malfunctions make 

them indispensable. Yet, precise calibration remains pivotal, relying on trustworthy data 

about ambient conditions and reference frameworks. Prolonged engagement might shed 

light on the enduring accuracy of calibrated data and the recalibration periodicity. The 

mobile data collection methodology introduced challenges when trying to compare its 

results with stationary datasets. When sensors were placed at fixed reference points for 

extended durations, the readings did not consistently match those from uncalibrated 

measurements. The study faced limitations in collecting comprehensive data via bicycle-

mounted systems due to time and personnel constraints. Combining data from Earth 

observation, in situ governmental measurements, and low-cost sensors (both mobile and 

static) offers a comprehensive perspective on urban air quality dynamics. By integrating 

these different layers, a more detailed and holistic insight into the factors influencing air 

quality can be obtained. This integrated approach is particularly valuable in evaluating 
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the progression of air quality management strategies, assessing the effectiveness of 

current measures, and making necessary adjustments when needed. In summary, this 

research provides insights into air quality dynamics across selected Bavarian urban areas, 

especially in Wuerzburg, highlighting the significant roles of time, topography, and land 

use. Furthermore, the potential of calibrating low-cost sensors for enhanced air quality 

monitoring stands out as a promising avenue for future developments in the field. 
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