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Abstract—This article presents a model predictive control
(MPC) method for redundant robots controlling multiple hierar-
chical tasks formulated as multilayer constrained optimal control
problems (OCPs). The proposed method, named hierarchical in-
cremental MPC (HIMPC), is robust to dynamic uncertainties, un-
tethered from kinematic/algorithmic singularities, and capable of
handling input and state constraints such as joint torque and
position limits. To this end, we first derive robust incremen-
tal systems that approximate uncertain system dynamics with-
out computing complex nonlinear functions or identifying model
parameters. Then, the constrained OCPs are cast as quadratic
programming problems which result in linear MPC, where
dynamically-consistent task priority is achieved by deploying
equality constraints and optimal control is attained under input
and state constraints. Moreover, hierarchical feasibility and recur-
sive feasibility are theoretically proven. Since the computational
complexity of HIMPC drastically decreases compared with non-
linear MPC-based methods, it is implemented under the sampling
frequency of 1 kHz for physical experiments with redundant ma-
nipulator setups, where robustness (high tracking accuracy and en-
hanced dynamic consistency), admissibility of multiple constraints,
and singularity-avoidance nature are demonstrated and compared
with state-of-the-art task-prioritized controllers.

Index Terms—Incremental system, model predictive control
(MPC), redundant robots, task prioritized control, time-delay
estimation.

NOMENCLATURE

R,R≥0,R>0 Real, nonnegative, and positive sets.
I, I>0 Integer, and positive integer sets.
I[a,b] I[a,b] = {x ∈ I : a ≤ x ≤ b}.
I,O,0 Identity matrix, null matrix, and null vector.
col(x1,x2) Stack variable col(x1,x2) := [x�

1 ,x
�
2 ]

�.

Manuscript received 21 July 2023; revised 30 December 2023; accepted 5
February 2024. Date of publication 27 February 2024; date of current version
13 March 2024. This paper was recommended for publication by Associate
Editor F. Ruggiero and Editor P. Robuffo Giordano upon evaluation of the
reviewers’ comments. This work was supported in part by the National Natural
Science Foundation of China under Grant 62303484, and in part by ITECH
R&D programs of MOTIE/KEIT under Grant 20014398 and Grant 20014485.
(Corresponding author: Jinoh Lee.)

Yongchao Wang, Yang Liu, Marion Leibold, and Martin Buss are with the
Chair of Automatic Control Engineering (LSR), Technical University of Munich,
80333 Munich, Germany.

Jinoh Lee is with the Institute of Robotics and Mechatronics, German
Aerospace Center (DLR), 82234 Weßling, Germany, and also with the De-
partment of Mechanical Engineering, Korea Advanced Institute of Science &
Technology (KAIST), Daejeon 34141, South Korea (e-mail: jinoh.lee@dlr.de).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TRO.2024.3370049, provided by the authors.

Digital Object Identifier 10.1109/TRO.2024.3370049

Q � 0 Positive definite matrix Q.
‖x‖ Euclidean norm of vector/matrix x.
‖x‖Q ‖x‖Q =

√
x�Qx for vector x and Q � 0.

λ(Q) Eigenvalue of Q.
λmin(Q) Minimal eigenvalue of Q.
λmax(Q) Maximal eigenvalue of Q.
dom Domain of one function.
id(•) Identify function, i.e., id(x) = x.
•̂ The estimated or approximated value of •.

I. INTRODUCTION

K INEMATICALLYredundant robotic systems (e.g., high
degree-of-freedom robot manipulators and humanoid

robots) are capable of executing several operational space tasks
simultaneously. For example in robotic welding, the primary task
is often to implement accurate trajectory tracking of its welding
torch, i.e., end-effector (EE), and to obtain satisfactory welding
seam additional tasks such as maintaining the orientation of EE
will be performed by deploying degree-of-redundancy of the
robot, e.g., the welding torch is expected to be perpendicular to
the welding surface or maintain a specific angle. Although the
multiple tasks can be controlled by being concatenated into a
single task vector, however, if a control conflict occurs among
tasks, control performance will be adversely affected.

To ensure conflict resolution, the operational space control
was employed to bestow control capability of multiple tasks
in a strictly prioritized manner for redundant robots, mostly
with the null-space projection method [1], [2], [3], [4], [5], [6].
These are called task-prioritized controllers grouped into three
categories [6], where either the desired joint velocities [1], [2],
or accelerations [3], or forces/torques [4], [5] are computed,
respectively. Since most of commercial robots do not allow
for a torque-level control interface, the velocity-based scheme
is preferred in robotic applications. Nevertheless, for tracking
with the second-order dynamics of a rigid body robot system,
the acceleration-based and force/torque-based schemes are more
appealing owing to the explicit incorporation of accelerations.

In particular, the force/torque-based scheme brings significant
advantages in such applications that manipulation in contact
with environments is required, and constraints on torques are
imposed to guarantee safety. In the last few decades, a variety of
force/torque-based methods, such as operational space formula-
tion (OSF) [4], [5], [6], [7], [8], [9], [10], [11], [12], hierarchical
quadratic programming (HQP) [13], [14], [15], [16], and more
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recently model predictive control (MPC) [17], [18], are devel-
oped. Nevertheless, the most practical performance criteria—
robustness, singularity-avoidance, optimality, and constraint
admissibility—have not been simultaneously conquered yet.
Concurrently addressing these issues is challenging given the
inevitable modeling errors, inherent inversion operation in algo-
rithms and limited computing power of systems. Accordingly,
this article aims at developing a task-prioritized control scheme
taking into account all aforementioned criteria.

A. Related Works

1) OSF Schemes: The OSF [4] relying on null-space projec-
tions [19] has been widely used and became a popular tool for
task-prioritized control since it has been introduced to robotics
in late 80s. It offers dynamically-decoupled control of multi-
ple tasks based on a property known as dynamic consistency:
Forces/torques for lower priority tasks do not affect the exe-
cution of high-priority tasks [5], where model-based feedback
linearization is applied on all hierarchical levels and decoupled
control behavior of each task is obtained. Recently, the formal
null-space stability of hierachical control is theoretically ana-
lyzed for a regulation case in [7] and [8] and for a tracking
case in [9], respectively, although this is generally known to be
difficult to be proven [6], [20].

Nevertheless, both the novel hierarchical controller and the
OSF are vulnerable to modeling errors [6] since precisely
identified parameters of the mathematical model are crucial to
attain feedback linearization in the controller design. In practice,
unfortunately, modeling errors are inevitable and moreover,
dynamics terms undergo severe changes especially when the
robotic system carries/releases unknown payloads, which indeed
deteriorate desired control performance.

To deal with modeling errors, adaptive methods [21] and
learning techniques [22] are propitiously employed in opera-
tional space control, where uncertain/unknown functions are
identified or optimal control is found online that maximizes an
immediate reward. However, the computational complexity is
such high that it is difficult to apply in practice. Moreover, pa-
rameters have to be heuristically selected, which also increases
the complexity of these methods. As an alternative, time-delay
estimation (TDE)-based OSF methods were developed in [10],
[11], and [12]. TDE [23], [24], [25], [26], [27] is a model-free
controller design method, which uses time-delayed input and
output signals to estimate system dynamics without a concrete
mathematical model, laborious parameter identification, and lin-
earization around equilibrium points of the system. It results in
enhanced accuracy in terms of dynamic consistency and control
performance along with enhanced computational efficiency.

Another hurdle in the OSF-based methods, typically using
null-space projection [4], [5], [6], [7], [8], [9], [10], [11], [12],
is the singularity problem, especially the algorithmic one which
occurs when tasks conflict significantly; this finally results in
unstable behavior. Although a damping factor [28] and a con-
tinuous null-space projection [29] are introduced to address
the singularity problem, there is a laborious tuning process
of parameters and unavoidable tradeoff between accuracy and

feasibility of the solution. In addition, physical limitations, such
as input and state constraints, are also not considered in all
approaches mentioned so far. Constraints are generally used
to describe safety requirements and should be considered in
safety-critical applications, e.g., close to or in cooperation with
humans.

2) HQP Schemes: Considering input and/or state (motion)
constraints, HQP is developed in the hierarchically-ordered
framework of multiple quadratic programs (QPs) [13], [14],
[15], [16], where the task priority is strictly achieved using the
hierarchical structure of the QPs [2], [30]. In [13], the robustness
of HQP was addressed by sliding mode control (SMC). However,
since this method is based on the null-space projection to design
the sliding variable of hierarchical tasks, a potential risk of
singularity exists.

Without using the null-space projection method, the authors
in [14] implemented the task hierarchy by solving the cascaded
QPs in lexicographic order, while the authors in [15] and [16]
propose that equality constraints are imposed to guarantee strict
task hierarchy. Thus, in [14], [15], and [16], algorithmic singu-
larity is avoided. However, once the Jacobian matrix becomes
singular, Hessian matrices of QPs in [14] and [15] are no
longer positive definite, and kinematic singularity occurs. This
is because, for QP solvers, numerical weakness increases with
the rise of the condition number of the Hessian matrix. When the
Hessian matrix is positive semidefinite, undesired (large-value)
control signals are computed and the system becomes unstable.
Whereas, although the Hessian matrix is always positive definite
in [16], the risk of kinematic singularity still remains because
inverse calculation of the terms with respect to (w.r.t.) Jacobian
matrices is exhibited in the algorithm.

In addition, it is noteworthy that solutions of the HQP are opti-
mal to the current robot configuration, but not w.r.t. global tasks.
In other words, the locally optimal controllers might drive the
controlled robotic systems to disadvantageous configurations in
the context of global tasks [31]. Last, the HQP control structure
may cause torque peaks and oscillations [3], attributed to its
limited (a single step) prediction horizon.

3) MPC Schemes: Model predictive controllers have been
proposed to address drawbacks of locally optimal con-
trollers [31], [32]. Given that control performance is considered
over a finite-time horizon [33], [34], [35], MPC provides a
powerful option to fulfill control objectives of multiple tasks
while constraints are not violated. Nevertheless, in [31] and
[32], the task hierarchy was acquired via a weight-prioritized
optimization problem [36]. It resulted in a soft task-prioritized
inverse kinematics control scheme. When tasks conflict, control
performance of the highest-priority task, which is usually the
primary or safety-related work, will be adversely compromised.
The torque-based task-prioritized MPC schemes were developed
independently in [17] and [18]. A single convex constrained
optimization problem was constructed in [17] where the task
hierarchy is achieved by a quadratic inequality constraint that
tracking errors of high-priority tasks must be less than or equal
to that of low-priority tasks. It still results in a soft task hierarchy.
Besides, the desired joint position and velocities are calculated
using the null-space projection method, resulting again in risk
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of algorithmic singularity. In addition, predictions are generated
based on the nominal model of robotic systems while uncertain-
ties and/or disturbances are not considered.

To improve robustness of MPC, learning-based MPC meth-
ods [37], [38] are developed for a single-task control problem,
where Gaussian processes (GP) and neural networks (NN) are
employed to identify nonlinear models online. Unfortunately,
GP and NN learning techniques further increase the computa-
tional complexity of MPC. In [39], the SMC scheme is combined
with MPC to address modeling errors and external disturbances
with better computational efficiency for a single task. However,
when multiple tasks are considered, task hierarchy will be ad-
versely affected by the compensating SMC method. To guaran-
tee task hierarchy, the task-prioritized sliding variable for each
layer is designed, and then an operational space model predictive
SMC was developed in [18]. Nevertheless, the task-prioritized
sliding variable is designed using the null-space projection
method, which means it still suffers from the risk of algorithmic
singularity. Besides, the aforementioned SMC-based methods
request the nominal mathematical model to be fairly identified.
In addition, when they are applied in task-space control schemes,
due to the introduced pseudocontrol law, constraints imposed
on joint positions, velocities, and torques are nonlinear and
nonconvex, and thus the considered optimal control problems
(OCPs) are general nonlinear programming (NLP) problems
whose convexity is not guaranteed. In the nonconvex program-
ming problem, the solution is easy to fall into local optimum
and is computationally demanding in general.

The permitted sampling period of robotic systems is usually
down to hundredths or even thousandths of a second, and
thus with the general NLP solvers, such as IPOPT [40] and
LOQO [41], it is difficult to guarantee real-time control, finally
causing feedback delays. The most popular and commonly used
method is sequential quadratic programming (SQP) [42], [43],
[44], where a series of approximated QP problems is solved
sequentially until the solution converges. Owing to the efficient
SQP, the computation time is down to the order of milliseconds
or tens of milliseconds [42], [43], [44]. However, due to demands
for high-precision in robotics systems, the fast control frequency,
e.g., 1 kHz, is generally suggested since the control accuracy is
in line with the sampling rate [10], [11], [12], [25], [26], [27],
[45], [46], [47], [48]. To this end, the approximated algorithm
which trades control performance for speed, such as real-time
iteration (RTI) [49] and feasibility-driven differential dynamic
programming (FDDP) [50], are developed to avoid solving NLP
iteratively. In RTI, a single convex QP that locally approxi-
mates the original optimization problem is solved per feedback
step [46]. The gap contraction of FDDP is equivalent to direct
multiple-shooting formulations [50]. However, only equality
constraints can be considered in FDDP. Besides, applications
of RTI and FDDP rely on accurate models of controlled plants
and solver stability problems arise in the presence of reference
changes and/or large external disturbances [51]. In contrast to
NLP solvers, QP solvers which are running at microseconds
deliver solutions in a more reliable and efficient way [52], [53].
Therefore, it is appealing that the task-prioritized MPC scheme

can be formulated into a linear form whose OCP can be cast as
a QP.

B. Method and Contributions

In this article, a task-prioritized control scheme is proposed
for robotic systems modeled by Euler-Lagrange equations and
we call it hierarchical incremental model predictive control
(HIMPC). To improve robustness against uncertainties and dis-
turbances, we first develop a robust incremental model exploit-
ing the TDE method. Then, the HIMPC is formulated with
multilevel constrained OCPs sequentially ordered in accordance
with task priorities. The state predictions are generated from
the discretized incremental model. Task hierarchy is fulfilled
through equality constraints on control signals for lower-priority
tasks, based on the dynamic consistency principle. Moreover,
each constrained OCP of the HIMPC is cast to a QP. The
hierarchical feasibility and recursive feasibility of the HIMPC
are verified theoretically.

The contributions of this article are summarized as follows.
1) Robust: Robustness of the controller in terms of tracking

accuracy and also dynamic consistency is enhanced. Dif-
ferent from existing task-prioritized MPC [17], [18] and
optimization-based methods [2], [13], [14], [15], [16], the
nominal mathematical model of the robotic system will not
be required for the proposed controller. We will approx-
imate both system dynamics and equations of motion of
tasks using TDE. This model-free nature improves robust-
ness against uncertainties and disturbances. Besides, TDE
will allow that task priority constraints are set independent
of the accurate inertia matrix.

2) Computationally Efficient: Relying on the TDE method
will not only improve robustness of the proposed method,
but also simplify nonlinear equations to linear ones. The
proposed HIMPC is essentially a linear MPC and each
constrained OCP can be cast to a QP. Compared with the
nonlinear task-prioritized MPC schemes developed in [17]
and [18], the proposed HIMPC decreases computational
complexity dramatically, which makes it possible to allow
for real-time control in milliseconds.

3) Singularity-Free: The null-space projection idea will not
be employed in this approach, and task hierarchy is
achieved by imposing equality constraints on input signals
for lower-priority tasks. Since no inverse calculation is in-
volved in these equality constraint equations, algorithmic
singularity is avoided. Moreover, the inverse calculation of
terms w.r.t. Jacobian matrices is not required to formulate
the constrained OCPs, and the Hessian matrix of each con-
strained OCP is verified to be positive definite. Thus, the
proposed HIMPC is also a kinematically singularity-free
method.

C. Organization

The rest of this article is organized as follows. In Section II, the
robotic system dynamics and control objective are introduced.
In Section III, equations of motion of tasks and system dynamics
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are approximated by incremental systems using TDE, which do
not need dynamic model parameters. Further, the accuracy of
this approximation method is analyzed. Section IV presents the
HIMPC. The hierarchical and recursive feasibility of HIMPC
is analyzed. In Sections V and VI, the effectiveness of the
proposed method is verified by simulation and experimental
results. Finally, Section VII concludes this article.

II. PRELIMINARIES

This section is devoted to giving the problem statement in
terms of a control objective. Therefore, at first, the robotic system
dynamics and then, the tasks are introduced.

A. Robot Dynamics

The dynamics of ann-link robotic system is given by an Euler-
Lagrange equation [45]

M(q)q̈+C(q, q̇)q̇+G(q) + F(q̇) + τ d = τ (1)

where q, q̇, q̈ ∈ Rn represent the vectors of position, velocity,
and acceleration, respectively. M(q) ∈ Rn×n is the symmetric
inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis/centrifugal ma-
trix,G(q) ∈ Rn contains the gravitational terms exerting on the
robotic system, F(q̇) ∈ Rn denotes viscous friction, τ ∈ Rn is
the vector of torque supplied by the actuators, and τ d ∈ Rn

denotes the unknown disturbance.
The uniform positive definiteness property of M(q) is in-

troduced in the following. Later, we will need this property to
determine design parameters (see Remark 4).

Property 1 (Positive Definite Inertia Matrix [45], [47]): The
inertia matrixM(q) is uniformly positive definite and there exist
constants μ1, μ2 ∈ R>0 such that each eigenvalue of M(q),
denoted by λi(M(q)), satisfies the following:

μ1 ≤ λi (M(q)) ≤ μ2, ∀i ∈ I[1,n].

Note that due to inevitable modeling errors, the inertia matrix
M(q), and other dynamics terms C(q, q̇), G(q), and F(q̇) are
considered to be unknown/uncertain in this article. Besides, to
guarantee the system is controllable, the unknown disturbance
τ d is assumed to be bounded [54].

B. Task Hierarchy, Tasks, and Control Objective

A control task hierarchy including r ∈ I>0 levels is intro-
duced and it is assumed that the ith task has a lower priority
level than all previous (i− 1) tasks [9]. Especially, the first and
rth tasks have the highest and lowest priority level, respectively.
The task-space coordinate xi ∈ Rmi of the ith task is

xi = fi(q), i ∈ I[1,r] (2)

where fi(q) : R
n → Rmi is the task mapping, which is known

exactly and continuously differentiable. With the continuous
differentiable task mapping fi(q), the Jacobian Ji(q) ∈ Rmi×n

corresponding to xi is defined as

Ji(q) =
∂fi(q)

∂q
. (3)

Since fi(q) is exactly known in general, all Jacobians are re-
garded as known functions without uncertainties.

In this article, task i is defined to make xi track a desired
reference trajectory xid and achieve the following target motion
dynamics in free space [10]:

¨̃xi +KVi
˙̃xi +KPi

x̃i = 0 (4)

where x̃i := xi − xid is the tracking error, and KVi
� 0 and

KPi
� 0 denote damping and stiffness matrices, respectively.

Nonsmooth reference trajectories can cause damage to me-
chanical systems due to sharp actuator torque changes. Thus,
xid is assumed to be bounded and smooth.

Assumption 1 (Bounded and Smooth Reference Trajec-
tory, [55]): The reference trajectoryxid is bounded and smooth,
satisfying0 ≤ xi ≤ ‖xid‖ ≤ xi < ∞,0 ≤ ẋi ≤ ‖ẋid‖ ≤ ẋi <
∞, and 0 ≤ ẍi ≤ ‖ẍid‖ ≤ ẍi < ∞.

Note that exact values of xi, xi, ẋi, ẋi, ẍi, and ẍi in
Assumption 1 are not required for the controller design.

We aim to design a strict task-prioritized controller which is
robust yet singularity-free while physical constraints of the robot
manipulator, such as constraints on joint positions, velocities,
and torques, are satisfied. The following box constraints are
considered:

qmin ≤ q ≤ qmax, q̇min ≤ q̇ ≤ q̇max, τmin ≤ τ ≤ τmax

where •min, •max denote specific lower/upper bounds of •.
Remark 1 (Delete an Assumption of Non-Singular Task

Space): In literature, it is common to avoid singularities by
restricting allowed tasks, and one assumption is made that goal
tasks are designed not to include singularities. However, this
assumption delimits the feasible task space of the robotic system.
In this article, to ensure sufficient task space for the robotic
system and to guarantee safety, we will strive for designing a
singularity-free controller. Thus, the assumption on nonsingular
task space is removed.

III. ROBUST INCREMENTAL SYSTEMS

In this section and the following Section IV, a task-prioritized
control scheme is developed. We aim at taking into account
optimality, input and state constraints, strict task hierarchy, and
robustness, simultaneously. To achieve optimality and address
input and state constraints, the control scheme will be developed
in the framework of MPC. Considering the unknown system
dynamics and also mitigating the computational complexity of
the algorithm, the TDE method is used to accurately approximate
equations of motion of tasks and system dynamics to avoid on-
line identification or other time-consuming operations. Besides,
the accuracy of the resulting TDE-based incremental systems is
analyzed.

A. Derivation of Two Incremental Systems

In this subsection, uncertain equations of motion of tasks
and system dynamics will be approximated using TDE, and
incremental systems are obtained, which are used to generate
state predictions.



2132 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

As stated in the control objectives in Section II-B, we aim to
impose constraints on torques. Thus, the torque is selected as the
control variable in the proposed task-prioritized controller. First,
the equations of motion of tasks are derived with the torques
being the inputs. With (1) and (3), the equation of motion of the
ith task is obtained as follows:

ẍi
(3)
= J̇iq̇+ Jiq̈

(1)
= J̇iq̇+ JiM

−1 (τ−C(q, q̇)q̇−G(q)−F(q̇)−τ d) (5)

which includes uncertain system dynamics terms and unknown
disturbance. To deal with these uncertainties and reduce de-
pendency on the concrete mathematical model, the TDE tech-
nique [23], [24], [25], [26], [27] is employed to approximate the
equation of motion (5), which involves the following two steps:

Step 1. Separating Uncertain Terms from Known Terms: It
is observed that uncertainties in the equations of motion (5)
originate from the uncertain system dynamics (1). Thus, we
will investigate (1) first. Introducing a diagonal positive definite
matrix M̄, (1) is transformed into

M̄q̈+
(
M− M̄

)
q̈+C(q, q̇)q̇+G(q) + F(q̇) + τ d︸ ︷︷ ︸

Hq

= τ .

(6)
Using (6), the equation of motion (5) is rewritten as

ẍi = J̇iq̇− JiM̄
−1Hq︸ ︷︷ ︸

Hi

+JiM̄
−1τ , (7)

where Hi is also uncertain/unknown because of the lumped
uncertain nonlinear function Hq in (6).

Step 2. Using the Time-Delayed Signals/Functions to Approx-
imate the Unknown Terms: The value of Hi at the time t is
approximated by that of Hi at (t− L) for a sufficiently small
delay time L [25], [26], [27]

(Hi)t
∼= (Hi)(t−L) . (8)

We abbreviate ẍi,0 := (ẍi)(t−L), τ 0 := τ (t−L), and Ji,0 =
(Ji)(t−L) for simplicity. From (7) and (8), one obtains the TDE
of Hi, i.e., (Hi)(t−L), as follows:

(Hi)(t−L) = ẍi,0 − Ji,0M̄
−1τ 0. (9)

Comparing (7) with (9), we see that the input matricesJiM̄
−1

and Ji,0M̄
−1 are different. We will unify these input matrices

using the continuity property. In practice, a digital system can
be regarded as a continuous system when the sampling rate is
faster than 30 times the system bandwidth [56]. Thus, according
to the continuity property, the variations in the Jacobian Ji

during a short time period are negligible. That is, formally, for
a sufficiently small L

Ji
∼= Ji,0. (10)

With (10), we then have an alternative TDE of Hi, i.e., Ĥi, as
follows:

Ĥi = ẍi,0 − JiM̄
−1τ 0. (11)

Finally, we obtain the incremental version of (5) with the
combination of (7) and (11)

ẍi = ẍi,0 + JiM̄
−1Δτ + εx (12)

where Δτ := τ − τ 0 is the incremental control signal, and
εx := Hi − Ĥi is the TDE error in ith task space which is
considered as a disturbance to the incremental system (12). Note
that only current values of ẍi and τ are used in (11) to get the
approximation while complex and uncertain functions, such as
M(q),C(q, q̇),G(q), andF(q), are not required. To guarantee
the approximation accuracy, we also assume state measurement
errors are sufficiently small.

In accordance with the formal TDE implementation [10],
[11], [12], [23], [24], [25], [26], [27], the sampling period Ts

is selected as L, which guarantees the delay time is sufficiently
small. Then according to the continuity property, εx can be
sufficiently small when we select a sufficiently small delay time
L. For εx = 0, the nominal incremental system for ith task is
obtained as

ẍi = ẍi,0 + JiM̄
−1Δτ . (13)

In what follows, the Euler method is used to obtain a discrete-
time version of (13), which is used to generate predictions of xi.
Since the sampling period is sufficiently small, the discretization
error is ignored. Thus, we have

x̄i(k + 1) = A11x̄i(k) +A12x̄i(k − 1) +B1,iΔτ (k) (14)

where

x̄i := col(xi, ẋi, ẍi), A11 :=

⎡
⎢⎣ I TsI O

O 2I O

O O I

⎤
⎥⎦,

A12 :=

⎡
⎢⎣O O O

O −I O

O O O

⎤
⎥⎦, B1,i :=

⎡
⎢⎣ O

JiM̄
−1Ts

JiM̄
−1

⎤
⎥⎦.

We define a stack variable �xi(k + 1) := col(x̄i(k +
1), x̄i(k)), and rewrite (14) as a canonical linear equation

�xi(k + 1) = A1�xi(k) +B1iΔτ (k) (15)

with A1 :=

[
A11 A12

I O

]
, B1i :=

[
B1,i

O

]
.

It is noteworthy that the approximated equation of motion of
the ith task (13) is general and it is also suitable for posture tasks
which are normally to regulate specific joint positions. Similarly,
the approximated system dynamics can also be obtained, which
will be used to predict joint space behavior (q and q̇) to be able to
evaluate constraints in joint space during predictions. In analogy
to the procedures in Step 1 and Step 2 with the Jacobian matrix
J := I, the following incremental system is obtained:

q̈ = q̈0 + M̄−1 (Δτ + εq) (16)

where εq := (Hq)(t−L) −Hq is the TDE error in joint space.
Let εq = 0 from (16), one can obtain the nominal incremental

system in the joint-space coordinate as follows:

q̈ = q̈0 + M̄Δτ . (17)
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Then, similar to (15), let �q(k + 1) := col(q̄(k + 1), q̄(k)),
q̄ := col(q, q̇) and again a canonical linear equation is obtained

�q(k + 1) = A2�q(k) +B2Δτ (k) (18)

with A2 :=

[
A21 A22

I O

]
, B2 :=

[
B21

O

]
, A21 :=

[
I TsI

O 2I

]
,

A22 :=

[
O O

O −I

]
, B21 :=

[
O

TsM̄
−1

]
.

In brief, using an auxiliary matrix M̄, we found two discrete-
time incremental systems as approximations of equations of
motion and system dynamics (cf. (15) and (18)). We will use
(15) and (18) to generate state predictions over the prediction
horizon.

Remark 2 (The Differences between the TDE Formulation in
this Article and that in [10]): In [10], the TDE approximation
was formulated by using conventional null-space projection,
where task Jacobians are assumed to be full rank, i.e., the
considered task space is nonsingular. Whereas, in the proposed
formulation as seen in (13), inversion of terms involving Jaco-
bian matrices is not required and the assumption on nonsingular
task space is relaxed.

Remark 3 (Why Including J̇iq̇ in the Lumped Function Hi):
It is noteworthy that the inclusion of J̇iq̇ in the lumped function
Hi in (7) enables a canonical linear system approximation (cf.
(15)) plugged into the linear MPC framework as introduced in
Section IV. In fact, since time derivatives of the Jacobian (J̇i)
can be computed from the exact kinematic parameter values and
mapping function fi(q), it is not necessary to include the term
J̇iq̇ in the lumped function Hi. However, this requests a non-
linear MPC framework which is computationally so demanding
that real-time execution is impossible. In addition, the proposed
linear formulation will allow a more indepth and accessible
theoretical analysis of the controller performance. Moreover,
owing to its continuity property, the lumped Hi including J̇iq̇
term can be accurately approximated by time-delayed signals
with a sufficiently high sampling rate; this also saves additional
computation of J̇iq̇.

Remark 4 (How to Determine M̄): In existing TDE-based
control schemes [10], [11], [12], [25], [26], [27], the stability
condition ‖I−M−1M̄‖ ≤ 1 needs to be fulfilled. To avoid
performance deterioration by inappropriate M̄, this stability
condition is also required to be satisfied in this article. For a
specific robotic system, the principle to determine the diagonal
matrix M̄ such that ‖I−M−1M̄‖ ≤ 1 is presented as follows.
According to Property 1, λi(M) is bounded. Suppose M̄i is
the ith diagonal element of M̄, then, ∀i ∈ I[1,n], (1− M̄i

λi
) is

an eigenvalue of (I−M−1M̄). If |1− M̄i

λi
| < 1, i.e., M̄i sat-

isfies 0 < M̄i < 2λi, then ‖I−M−1M̄‖ < 1 holds. This also
implies that the sufficient condition ‖I−M−1M̄‖ < 1 can be
achieved by a small positive M̄i although exact expressions
and eigenvalues of M are unknown [27]. From the nature
of TDE, too small M̄ results in large TDE errors while too
large M̄ causes noisy responses, and vice versa. Accordingly,
the constant M̄ := diag(M̄1, . . . , M̄n) is selected in a manual
tuning process [10]: 1) begin with a sufficiently small positive

M̄i to guarantee stability; and 2) increase M̄i until tracking
performance is satisfactory or the closed-loop system almost
shows a noisy response. In practice, a wide range of M̄ can
be selected [23], [24], [25], [26], [27], since the error (M− M̄)
will be compensated by time-delayed signals (cf. Section III-B).

B. Analysis of Approximation Accuracy

Although the exact mathematical model of the robotic system
is not required, there is a discrepancy between (1) and (5), and
the nominal incremental systems, (13) and (17), because of
inevitable TDE errors. In this subsection, we will show that the
incremental system exhibits a higher approximation accuracy
than the nominal nonlinear mathematical model (abbreviated as
the nominal model in Section III-B).

First, approximation errors for the nominal model cases are
derived. Denote the nominal inertial matrix, Coriolis/centrifugal
matrix, gravitational matrix, and viscous matrix as Mn, Cn,
Gn, and Fn, respectively. In accordance with (1), the following
nominal system dynamics (19) is used to estimateq and q̇, where
q̂nom is the approximation for the nominal model case

¨̂qnom = −M−1
n Nn +M−1

n τ (19)

where Nn := Cnq̇+Gn + Fn is the nominal value of the
lumped nonlinear dynamics term N (N := Cq̇+G+ F). To
obtain the approximation error, we recall the real system dynam-
ics (1) and transform it into the following form using Mn [10]

Mnq̈+ M̃q̈+N+ τ d = τ (20)

where M̃ := M−Mn is the modeling error of M.
From (19) and (20), the system dynamics approximation error

γ := ¨̂qnom − q̈ for the nominal model case is obtained

γ = M−1
n

(
M̃q̈+ Ñ+ τ d

)
(21)

where Ñ := N−Nn is the modeling error of N.
If the nominal model is available, the approximated equation

of motion of the ith task is obtained according to (5)

¨̂xi,nom = J̇iq̇− JiM
−1
n Nn + JiM

−1
n τ (22)

where x̂i,nom is the approximation generated by the nominal
model. Correspondingly, according to (5) and (20), the equation
of motion of the ith task is rewritten as

ẍi = J̇iq̇− JiM
−1
n

(
M̃q̈+N+ τ d

)
+ JiM

−1
n τ . (23)

From (22) with (23), the equation of motion approximation error
βi :=

¨̂xi,nom − ẍi is obtained as

βi = JiM̂
−1
(
M̃q̈+ Ñ+ τ d

)
. (24)

Next, approximation errors for incremental system cases, (13)
and (17), are derived. Comparing (16) with (17), one observes
that the system dynamics approximation error for the incremen-
tal system case is δ defined as δ := M̄−1εq

δ = M̄−1

[ (
M− M̄

)
q̈− (M(t−L) − M̄

)
q̈(t−L)
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+ εN + τ d − (τ d)(t−L)

]
(25)

where εN := N−N(t−L) is the TDE error of N.
Then, comparing (12) with (13), one observes that the approx-

imation error for the incremental system case is the TDE error
εx. Besides, for a sufficiently small sampling period, it holds
that

J̇iq̇ ≈
(
J̇iq̇
)
(t−L)

. (26)

Thus, combining (7), (9), (10), (11), (25), and (26) results in

εx = Hi − Ĥi

(9),(10),(11)≈ Hi − (Hi)(t−L)

(7),(26)≈ Jiδ

(25)
= JiM̄

−1

[ (
M−M̄

)
q̈− (M(t−L)−M̄

)
q̈(t−L)

+ εN + τ d − (τ d)(t−L)

]
. (27)

For the TDE approximation (cf. (25) and (27)), we learn that,
if the delay time L (sampling period Ts) is sufficiently small, the
inertia modeling error (M− M̄)q̈ and disturbance τ d are com-
pensated by their time-delayed values (M(t−L) − M̄)q̈(t−L)

and (τ d)(t−L) effectively, and the smaller the sampling period,
the smaller is the TDE error. For the nominal model, there are
no terms to compensate for modeling errors and disturbances.
Besides, according to the continuity property [56], εN is small
enough, and then its value will be less than that of Ñ, if the
sampling rate is sufficiently high. Therefore, for a sufficiently
small sampling period, the incremental systems derived using
TDE exhibit high approximation accuracy and show strong
robustness against modeling errors and disturbances.

So far, we have derived incremental systems which will be
used to determine state predictions. Further, we verified their
high approximation accuracy if a sufficiently small sampling
period is employed. Next, the task-prioritized MPC scheme will
be developed with robust incremental systems.

Remark 5 (Effects of the Accuracy of Actuators and Sensors):
In practice, there is a difference between the control law τ and
the real supplied torque τ r due to motor dynamics and accuracy.
In Section II-A, this difference is considered as one part of τ d.
From (25) and (27), we learn that if L is sufficiently small, τ d

is compensated by its time-delayed value (τ d)(t−L) effectively.
Hence, the effects of actuator dynamics and accuracy on control
performance are limited. Besides, since incremental systems are
constructed using time derivatives of states, the effect of the
measurement error from the sensor resolution is amplified by
numerical derivatives, thus, noisy responses can be triggered if
the resolution is coarse. In Section VI, simulations are imple-
mented to quantitatively investigate the allowable measurement
resolution for HIMPC.

Remark 6 (Allowable Sampling Periods): The control accu-
racy is in line with the sampling rate, which is generally up
to 1 kHz or even higher for high-precision robotics systems.
Moreover, to guarantee the required approximation accuracy of
the incremental systems, the sampling period has to be chosen
sufficiently small. While there are, unfortunately, no systematic

methods to determine the maximum allowable sampling period,
one can find in [10], [11], [12], [25], [26], and [27], TDE
methods have been successfully demonstrated high-accuracy
approximation capability with sampling periods of 1 and 2 ms for
robot manipulator control. Accordingly, 1 ms sampling period
is considered throughout the article.

IV. HIERARCHICAL INCREMENTAL MPC

In this section, the task-prioritized control scheme, HIMPC,
is developed as a series of constrained OCPs, where appropriate
constraints are used to enforce the task hierarchy. Finally, the
hierarchical and recursive feasibility of the proposed HIMPC is
shown.

A. Method

In this subsection, at first, the stage cost for one task is
introduced as the basis for developing the series of constrained
OCPs. The stage cost is designed to take into account the target
motion dynamics (4) as well as controller oscillations, energy
efficiency, and actuator protection. Thus, the predicted motion
dynamics error and the control signal are considered in the stage
cost.

In accordance with (4), the predicted motion dynamics error
e(�xi,k+j+1|k) at time k is defined as

e(�xi,k+j+1|k) := ¨̃xi,k+j+1|k+KVi
˙̃xi,k+j+1|k+KPi

x̃i,k+j+1|k

= K̄i�xi,k+j+1|k −Kix̄id(k + j + 1). (28)

Here, �xi,k+j+1|k := col(x̄i,k+j+1|k, x̄i,k+j|k), x̃i,k+j|k :=
xi,k+j+1|k − xid(k + j + 1), K̄i := [Ki,O], Ki :=
[KPi

,KVi
, I], x̄id := col(xid, ẋid, ẍid), j ∈ I[0,N−1] is an

intermediate variable for time instance (the same hereinafter),
N is the length of the prediction horizon, and •k+j|k stands
for the predicted variables, in particular, •k|k := •(k), and
xi,k+j+1|k is calculated using the discrete-time incremental
system (15). That is, for all j ∈ I[0,N−1]

�xi,k+j+1|k = A1�xi,k+j|k + B̂j
1iΔτ k+j|k (29)

with �xi,k|k :=col(x̄i,k|k, x̄i,k−1|k) and x̄i,k−1|k := x̄i(k − 1). In
(14), the matrix B1i is derived using the Jacobian Ji which
is a function of the joint position. Similar to the approach
in [31], we simplify calculation by approximating Ji and B1i,
and approximations over the prediction horizon, Ĵj

i,k and B̂j
1i,

are obtained using the optimal joint state predictions at time
k − 1. The optimal joint state prediction q∗

k+j|k−1 is calculated
by the incremental system (18) with the optimal control input
sequence Δτ̄ ∗

k−1 :=[Δτ ∗
k−1|k−1,· · ·,Δτ ∗

k+N |k−1], i.e.,

�q∗
k+j|k−1 = A2�q

∗
k−1+j|k−1 +B2Δτ ∗

k−1+j|k−1. (30)

Here, the incremental control signal Δτ is considered in the
stage cost, since the equations of motion of tasks and system
dynamics are all approximated by incremental systems. Thus,
at time k, the following stage cost for task i is defined:

�
(
�xi,k+j+1|k,Δτ k+j|k

)
= ‖e(�xi,k+j+1|k)‖2Qi

+ ‖Δτ k+j|k‖2Ri
(31)
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where Qi � 0 and Ri � 0 are weighting matrices.
Now the stage costs of all tasks are combined and deliver the

proposed HIMPC framework where a constrained OCP for each
task is introduced, starting with the task 1 as the highest-priority
task. The task hierarchy will be achieved by constraints to the
OCPs of lower-priority tasks.

Defining an admissible control input sequence Δτ̄ 1,k :=
[Δτ 1,k|k, . . . ,Δτ 1,k+N−1|k], the constrained OCP (Problem 1)
for task 1 is introduced.

Problem 1

Δτ̄ ∗
1,k = argmin

Δτ̄1

N−1∑
j=0

�
(
�x1,k+j+1|k,Δτ 1,k+j|k

)
(32a)

s.t.

�x1,k+j+1|k = A1�x1,k+j|k + B̂j
11Δτ 1,k+j|k (32b)

�q1,k+j+1|k = A2�q1,k+j|k +B2Δτ 1,k+j|k (32c)

qmin≤ q1,k+j+1|k ≤ qmax (32d)

q̇min ≤ q̇1,k+j+1|k ≤ q̇max (32e)

τmin ≤ τ 0 +

j∑
s=0

Δτ 1,k+s|k ≤ τmax (32f)

where Δτ̄ ∗
1,k is the optimal control input sequence, �q1,k+j+1|k

is the joint state prediction with Δτ 1,k+j|k. Equality constraints
(32b) and (32c) are employed to generate predictions�x1,k+j+1|k
and �q1,k+j+1|k while constraints (32d)–(32f) are imposed on
joint position, velocity, and torques, respectively. In case there is
only one task, the first column of Δτ̄ ∗

1,k is applied to the system
directly. For multiple tasks, Δτ̄ ∗

1,k is just an auxiliary signal to
the constrained OCPs of lower-priority tasks while only task r,
the lowest priority task, will finally deliver a control input that
is applied to the system.

To achieve task hierarchy, relying on the dynamic consistency
principle [5] (i.e., high-priority tasks will not be affected by the
torques designed for low-priority tasks), the following equality
constraints will be imposed on control signals when Problem i
(i ∈ I[2,r]) is formulated for task i: ∀p ∈ I[1,i−1]

Ĵj
p,kM̄

−1Δτ ∗
p,k+j|k = Ĵj

p,kM̄
−1Δτ i,k+j|k. (33)

Here, Δτ ∗
p,k+j|k and Δτ i,k+j|k are the optimal input and one

admissible counterpart for the pth and ith layer constrained
OCPs, respectively, and Ĵj

p,k is the approximated Jacobian for
task p at time k and is calculated using q∗

k+j|k−1. From (29)
and (33), it is observed that the optimal motion of task p will
not be disturbed by optimal inputs determined for lower-priority
tasks. Here, no null-space projections are used and thus, matrix
inversion to determine the prioritized Jacobian is not necessary.
Thus, the algorithmic singularity is avoided.

With the task priority constraint (33), the following Problem
i for task i (i ∈ I[2,r]) is introduced:

Problem i (i ∈ I[2,r])

Δτ̄ ∗
i,k = argmin

Δτ̄ i

N−1∑
j=0

�
(
�xi,k+j+1|k,Δτ i,k+j|k

)
(34a)

s.t.

�xi,k+j+1|k = A1�xi,k+j|k + B̂j
1iΔτ i,k+j|k (34b)

�qi,k+j+1|k = A2�qi,k+j|k +B2Δτ i,k+j|k (34c)

qmin≤ qi,k+j+1|k ≤ qmax (34d)

q̇min ≤ q̇i,k+j+1|k ≤ q̇max (34e)

τmin ≤ τ 0 +

j∑
s=0

Δτ i,k+s|k ≤ τmax (34f)

Ĵj
p,kM̄

−1Δτ ∗
p,k+j|k = Ĵj

p,kM̄
−1Δτ i,k+j|k, ∀p ∈ I[1,i−1]

(34g)

where �qi,k+j+1|k is the joint state prediction under the action of
Δτ i,k+j|k. The difference between Problem 1 and Problem i
(i ∈ I[2,r]) is the series of equality constraints (34g), which al-
lows to enforce the task hierarchy. Because of the approximated
Jacobian Ĵj

p,k, the equality constraint (34g) is an affine linear
system, which is also the basis for analyzing the existence and
uniqueness of the solution to Problem i.

The optimal control input sequence Δτ̄ ∗
r,k is obtained after

a series of constrained OCPs (from Problem 1 to Problem r)
is solved. Δτ̄ ∗

r,k is not only the optimal solution to Problem r,
but it also guarantees that optimal motion of tasks 1 to (r − 1)
are not affected owing to the equality constraint (34g). Thus,
Δτ̄ ∗

r,k is considered as the optimal control input sequence to the
proposed HIMPC. Combined with the recent control input τ 0,
the first column of Δτ̄ ∗

r,k is applied to the system, i.e., τ (k +
1) = τ 0 +Δτ ∗

r,k|k.
Note that the developed controller is also suitable for other

fixed-base robotic systems. Further, it also can be extended to
mobile robotic systems when kinematics constraints [44] are
considered in the constrained OCP.

As a summary, Fig. 1 visualizes the structure and the control
signal flow of the proposed HIMPC.

Remark 7 (Supplementary Notes to the Approximation in (29)
and (33)): With (18) (or (34c)), over the prediction horizon
Ji can also be updated using the current joint state predic-
tions. However in this case, (29) and (33) will be nonlinear
equations, and consequently a nonlinear MPC framework is
obtained, resulting in higher computational complexity. For
simplicity, in this article over the prediction horizon Ji and
B1i are approximated, and the approximations Ĵj

i,k and B̂j
1i

are determined using previous joint state predictions q∗
k+j|k−1

before solving the constrained OCPs. In this way, (29) and (33)
used to generate predictions of �xi and guarantee task hierarchy,
which are originally nonlinear equations, are approximated by
canonical linear equations. Besides, Δτ̄ ∗

r is the optimal control
input sequence to the proposed hierarchical control scheme, and
thus Δτ̄ ∗

r,k−1 will be used in (30) to generate q∗
k+j|k−1.

Remark 8 (Serial Connection of Constrained OCPs): The
computational complexity of HIMPC increases as the number
of tasks increases. For a task hierarchy with n tasks, there
will be n constrained OCPs to be solved. In this article, the
constrained OCPs are solved by a QP solver which is possible
efficiently. Nevertheless, the computing time increases with an
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Fig. 1. Control structure of the HIMPC, where “TD” denotes time delay of one sampling period, and Δ�τ ∗
i,k := [Δτ̄ ∗

1,k, . . . ,Δτ̄ ∗
i,k]. Problems are solved

sequentially following the task priority order, and the optimal control law can only be obtained after all problems are solved.

increasing number of tasks because of the serial connection of
constrained OCPs. Fortunately, this increase is linear. In [2]
and [57], dedicated solvers were developed to speed up the
calculation of task-prioritized programming problems. How-
ever, the null-space projection idea is adopted and it has the
risk of algorithmic singularity. To expedite calculations, one
possible alternative is to select shorter prediction horizons for
low-priority tasks on the basis of stability. The task hierarchy
will be still guaranteed although the optimality of low-priority
tasks will deteriorate.

B. Analysis

The developed HIMPC framework is only logical if each
constrained OCP is feasible for every time, which means the
set Di (1 ≤ i ≤ r) of admissible input trajectories Δτ̄ i,k for
Problem i is nonempty. In this subsection, this hierarchical
recursive feasibility will be analyzed first.

1) Hierarchical Feasibility: Due to the hierarchical structure
and the equality constraint (34g), admissible sets of low-priority
constrained OCPs are affected by those of high-priority ones. To
analyze the feasibility of this hierarchical MPC, the definition
of hierarchical feasibility is introduced.

Definition 1 (Hierarchical Feasibility, [58]): The hierarchical
MPC (a series of constrained OCPs ordered hierarchically)
admits hierarchical feasibility at time k if the feasibility of
the ith constrained OCP implies the feasibility of the (i+ 1)th
constrained OCP for all i ∈ I[1,r−1].

To prove the hierarchical feasibility of HIMPC, we first show
the existence and uniqueness of solutions to Problem i using
convex optimization theory. Notice that Problem i (1 ≤ i ≤ r)

is a standard QP

min
Ui

U�
i QiUi +U�

i Li (35a)

s.t.

Gi1 = Ci1Ui +Di1 ≤ 0 (35b)

Gi2 = Ci2Ui +Di2 ≤ 0 (35c)

Gi3 = Ci3Ui +Di3 ≤ 0 (35d)

Hip (Ui) = a�ipUi + bip = 0, ∀p ∈ I[1,i−1] (35e)

where Ui := col(Δτ i,k|k, . . . ,Δτ i,k+N−1|k) and (35b)–(35e)
are joint position, velocity, input, and task priority constraints
in (34), respectively. The equality constraints generating pre-
dictions (34b) and (34c) are omitted here since the predictions
of task coordinates �xi and joint angles �q can be expressed by
functions of the input Ui and recent states �xi(k) and �q(k). For
detailed expressions of Hessian matrix Qi, gradient vector Li,
and other parameters in (35), refer to Appendix A. Note that for
i = 1, the task priority constraint (35e) does not exist.

To examine the existence and uniqueness of solutions, the
following lemma about the Hessian matrix Qi is given.

Lemma 1: The Hessian matrix Qi is positive definite.
Proof: As shown in Appendix A, Qi := B̄�

1iQ̄iB̄1i +
R̄i, where Q̄i := diag(K̄�

i QiK̄i, . . . , K̄
�
i QiK̄i) is a positive

semidefinite matrix since Qi � 0. Then, for any vector X ∈
RnN×1, one obtains that

X�B̄�
1iQ̄iB̄1iX =

(
B̄1iX

)�
Q̄i

(
B̄1iX

) ≥ 0.
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Thus, B̄�
1iQ̄iB̄1i is also positive semidefinite. Besides,

R̄i := diag(Ri, . . . ,Ri) � 0 since Ri � 0. Therefore, Qi :=
B̄�

1iQ̄iB̄1i + R̄i is positive definite, i.e., Qi � 0. �
Then, assuming Di is nonempty, we present a theorem about

the properties of the solution to Problem i with the positive
definite Hessian matrix Qi.

Theorem 1 (Existence and Uniqueness of the Solution, [36],
[59]): Given that Di is nonempty, the solution to Problem i
exists and is unique.

Proof: Since Di, the set for the admissible input trajectory
Δτ̄ i, is nonempty, the admissible set U i for the argument Ui of
the QP (35) is also nonempty. In the following, we will use the
convexity of the QP (35) to verify the existence and uniqueness
of the solution to Problem i.

According to (35), the admissible set U i for Ui is

U i =

(
i−1⋂
p=1

domHip

)⋂(
3⋂

l=0

domGil

)
(36)

That is, the admissible set U i is composed of i− 1 hyperplanes
{Ui : a

�
ipUi + bip = 0} (p ∈ I[0,i−1]) and three sublevel sets

{Ui : Gil ≤ 0} (l = 1, 2, 3). The equality constraint functions
Hip(Ui) (p ∈ I[1,i−1]) are linear and affine, and inequality con-
straint functions Gi1, Gi2, and Gi3 are all linear and convex.
Thus, the admissible set U i is convex. In addition, the cost
function U�

i QiUi +U�
i Li is quadratic and convex. Thus, (35)

is a convex optimization problem and solutions exist.
Moreover, since the Hessian matrix Qi is positive definite as

shown in Lemma 1, the cost function U�
i QiUi +U�

i Li is thus
strictly convex. Therefore, the solution to Problem i is unique
given that the admissible set Di is nonempty. �

Finally, the hierarchical feasibility of HIMPC is proven.
Theorem 2 (Hierarchical Feasibility of HIMPC): The pro-

posed HIMPC admits hierarchical feasibility at each time k.
Proof: Assume Problem i is feasible. Then, the admissible

set Di is nonempty, and, in accordance withTheorem 1, there
exists an optimal control input sequence Δτ̄ ∗

i,k such that the
state, input, and task priority constraints (task priority constraints
are not required when i = 1)

Ĵj
p,kM̄

−1Δτ ∗
p,k+j|k = Ĵj

p,kM̄
−1Δτ ∗

i,k+j|k

are not violated for p ∈ I[1,i−1] and j ∈ I[0,N−1].
Next, the feasibility of Problem (i+ 1) will be investigated

by inspecting whether Δτ̄ ∗
i,k is an admissible control input

sequence also for Problem (i+ 1). Substituting Δτ̄ ∗
i,k into

Problem (i+ 1), obviously the state and input constraints,
as well as priority constraints for p ∈ I[1,i−1] are not violated
because these constraints are identical to that in Problem i.
Besides, the priority constraint when p = i is also fulfilled, i.e.,
if Δτ̄ i+1,k = Δτ̄ ∗

i,k, then

Ĵj
i,kM̄

−1Δτ ∗
i,k+j|k ≡ Ĵj

i,kM̄
−1Δτ i+1,k+j|k, ∀j ∈ I[0,N−1].

Hence, no constraints are violated andΔτ̄ ∗
i,k is a feasible control

input sequence for Problem (i+ 1). We conclude that Problem
(i+ 1) is feasible if Problem i is feasible, i.e., the proposed
HIMPC is hierarchically feasible. �

Assume Problem 1 is feasible at time k. By induction, we see
that Problems 2 to r are also feasible at time k. Therefore, from
Theorem 2, it is concluded that the admissible setDi (1 ≤ i ≤ r)
is nonempty if Problem 1 is feasible.

In accordance with Theorems 1 and 2, we conclude that the
solution to HIMPC exists and is unique if Problem 1 is feasible.
In the sequel, recursive feasibility [34], [35] of Problem 1 is
demonstrated.

2) Recursive Feasibility: In this part, recursive feasibility of
Problem 1 in a local region around the reachable reference
trajectory is demonstrated. First, similar to [34], [35], and [45],
the definition of the reachable reference trajectory is introduced.

Definition 2 (Reachable Reference Trajectory, [34], [35],
[45]): The reference trajectory x1d is reachable if it implies the
possible joint variable �qp (satisfying x1d = f( �qp) and ẋ1d =
J1(q

p)q̇p) and the corresponding controller up lie in tight-
ened constraint sets Q̄ and Ū respectively, where Q̄⊕ C4n

s ⊆
Q, Ū⊕ C4n

r ⊆ U, Q := {�q : qmin ≤ q ≤ qmax, q̇min ≤ q̇ ≤
q̇max},U := {u : umin ≤ u ≤ umax}, and⊕ is the Minikowski
sum.

In accordance with the definition of the reachable
reference trajectory (Definition 2) and Lemma 4 in [45],
we obtain that there exists a constant Vmax ∈ R>0

such that optimal solutions from �x1(k) (�x1(k) ∈ D,
D := {�x1, VN (�x1(k), k) ≤ Vmax}) also satisfy �q∗

k+j|k ∈ Q̄
′

and u∗
k+j−1|k ∈ Ū

′ for all j ∈ I[1,N ], where VN (�x1(k), k) :=

minΔτ̄1

∑N−1
j=0 �(�x1,k+j+1|k,Δτ 1,k+j|k) (s.t. constraints

(32b)–(32f)) is the value function, both Q̄
′ and Ū

′ are tightened
constraint sets, i.e., Q̄′ ⊕ C4n

s′ ⊆ Q, Ū′ ⊕ C4n
r′ ⊆ U, s′ and r′

are positive scalars. In other words, the reachable reference
trajectory can be tracked and lies strictly in tightened constraint
sets.

Then, the recursive feasibility of MPC in a local region D

around the reachable reference trajectory will be demonstrated
in Theorem 3, and the main work is to prove the regionally
decreasing property of VN (�x(k), k).

Theorem 3 (Recursive Feasibility): Problem 1 admits recur-
sive feasibility in a local region around the reachable reference
trajectory.

Proof: Because of the task-priority constraint (29), the op-
timal state prediction in task 1, �x1∗

1,k+1|k, will not be dis-

turbed by low-priority tasks, i.e., �x1∗
1,k+1|k = �x∗

1,k+1|k. Selecting
VN (�x∗

1,k+1|k, k + 1) as the auxiliary value function, and then
according to feasibility analysis for MPC without terminal in-
gredients in [34], [35], and [45], we obtain that for a sufficient
long prediction horizon N

VN (�x∗
1,k+1|k, k + 1)− VN (�x(k), k) ≤ −αV (VN (�x(k), k))

(37)
where αV (·) ∈ K∞, αV (·) ≤ id(·). Besides, according to (12),
we have ‖�x∗

1,k+1|k − �x1(k + 1)‖ ≤ ε̄ with ε̄ being a bounded
parameter w.r.t. the TDE error.

Next, according to the Lipschitz continuity property of
VN (�x(k), k) [45], there exists a constant K� ∈ R>0 such that

VN (�x1(k + 1), k + 1)− VN (�x∗
1,k+1|k, k + 1) ≤ K�ε̄. (38)
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In combination of (37) and (38), we obtain the regionally de-
creasing property of VN (�x1(k), k), i.e.,

VN (�x1(k + 1), k + 1)− VN (�x1(k), k)

≤ −αV (VN (�x1(k), k)) + εN (39)

where εN := K�ε̄ is the cumulative error bound.
Finally, based on the regionally decreasing property of

VN (�x(k), k), the recursive feasibility of Problem 1 will be
verified. Assuming the TDE error is sufficiently small (ε̄ ≤
αV (Vmax)/K� and εN ≤ αV (Vmax)), �x1(k) ∈ D, one has

VN (�x1(k + 1), k + 1) ≤ (id − αV )(VN (�x1(k), k)) + εN

≤ (id − αV )(Vmax) + αV (Vmax)

≤ Vmax. (40)

Thus, if �x1(k) ∈ D, then �x1(k + 1) ∈ D. Using induction,
it is shown that VN (�x1(k + j), k + j) ≤ Vmax for all j ∈
I>0. In other words, D is a positive invariant set. Therefore,
VN (�x1(k), k) ≤ Vmax holds recursively. According to the defi-
nition of the reachable reference trajectory, when �x1 ∈ D the
input and state constraints are satisfied. In other words, the
recursive feasibility of Problem 1 in a local region around
the reachable reference trajectory is demonstrated. �

Remark 9 (How to Determine the Prediction Horizon): For
MPC without terminal ingredients, a sufficiently large prediction
horizon is required to guarantee feasibility [34], [35], [45].
However, in the context of the robotic system, the sampling
period is 1 ms. It is challenging to solve OCPs with large
prediction horizons in one sampling period. In [34], [35], and
[45], the minimal prediction horizon is theoretically derived.
Nevertheless, the prediction horizon is normally overestimated.
In [35] and [45], it is discussed that in practice a short prediction
horizon is sufficient for local stability. Through deriving the
required prediction horizon theoretically in [35] and [45], it is
concluded that control performance improves with larger predic-
tion horizons. Thus, it provides a guideline to tune the prediction
horizon, i.e., considering available computing resources, the
prediction horizon is selected as large as possible.

C. Discussion

In this subsection, the advantages of the proposed HIMPC
over state-of-the-art task-prioritized controllers are discussed.
Besides, limitations of the proposed method are also analyzed.

1) Strengths of HIMPC: Low Requirements for Modeling:
In existing MPC based task-prioritized control schemes [17],
[18], state predictions are generated using nominal models.
This requires performing time-consuming identification of the
mathematical model parameters of the plant. The proposed
HIMPC employs incremental systems to obtain state predic-
tions, and thus it is not necessary to identify accurate models.
For incremental systems (cf. (13) and (17)), onlyM̄ is associated
with the dynamics model because M̄ is selected such that ‖I−
M−1M̄‖ < 1. As discussed in Remark 4, ‖I−M−1M̄‖ < 1
holds for a sufficiently small positive M̄i even though the exact
expression of the inertia matrix M is unknown. Therefore, the
proposed HIMPC has low requirements for modeling.

Robustness: As shown in Section III-B, the incremental sys-
tems show high approximation accuracy and strong robust-
ness against inertia modeling errors and external disturbances.
This is because the inertia modeling error and external distur-
bances are compensated by time-delayed signals. The robustness
of this proposed method is also reflected in terms of dynamic
consistency. In [16], a nominal M is used to construct equality
constraints [similar to (34g)], and it is obvious that dynamic
consistency deteriorates when there are inertia modeling er-
rors. In HIMPC, M is replaced by a predetermined M̄ in the
task priority constraint (34g). Thus, enhanced dynamic con-
sistency is received. This advantage of HIMPC is also visible
in the simulations and experiments presented in Sections V
and VI.

Computational Efficiency: The TDE method not only im-
proves robustness of the control scheme, but also simplifies
equations of motion of tasks and system dynamics. As shown in
(15) and (18), both, equations of motion and system dynamics,
are approximated by linear systems, where online calculation
of the complex nonlinear system dynamics terms is not re-
quired. As a result, each constrained OCP is a QP problem, and
computational complexity will decrease dramatically, allowing
for real-time control in milliseconds. In comparison, the MPC
frameworks in [17] and [18] are nonlinear since nonlinear equa-
tions are employed to generate state predictions. For a general
NMPC scheme, heavy computational complexity restricts its
real-time application [49].

Singularity Handling: Different from null-space projection
based methods [4], [5], [6], [7], [8], [9], [10], [11], [12], we
employ equality constraint (34g) to guarantee task hierarchy.
No matrix inversion is required and algorithmic singularity is
avoided. Besides, also kinematic singularity is avoided. In our
approach, the cost function (31) is designed relying on target
motion dynamics (4), where inverse calculation of the terms
w.r.t. Jacobian matrices is not necessary. In contrast, e.g., in [16],
Cartesian forces calculated using the equivalent Cartesian mass
matrix (JM−1J�)−1 are involved in stage costs, and kinematic
singularity occurs when the Jacobian matrix loses its rank. Also,
different from the approaches in [14] and [15], Hessian matrices
of the constrained OCPs are always positive definite (see Lemma
1). This allows to relax the common assumption that singularity-
free tasks are defined and gives more flexibility in defining
tasks. The simulations and experiments in Sections V and VI
will further discuss singularity handling. In [60], kinematic
singularity was avoided by adding a manipulability constraint to
the constrained OCP. Nevertheless, the constrained OCP in [60]
can only be cast to a general NLP problem which is in addition
nonconvex because of the introduced nonlinear manipulability
constraint. In this article, no constraints are imposed in the con-
sidered OCP to avoid kinematic singularity and the constrained
OCP is convex and is cast to a QP.

Weighting Matrices are Determined without Considering Ref-
erence Trajectories: The weighted control signal in (31) not
only allows for energy efficiency and attenuates controller os-
cillations, but also renders the Hessian matrix positive-definite.
The result is similar to regularization [61], which is used to
avoid kinematic singularity. We will verify that the incremental
control structure exhibits superior control performance in terms
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of parameter adjustment. If, as an alternative, the torque τ is con-
sidered, and the stage cost is designed: �(�xi,k+j+1|k, τ k+j|k) =
‖e(�xi,k+j+1|k)‖2Qi

+ ‖τ k+j|k‖2Ri
. The term ‖τ k+j|k‖Ri

is
used to achieve the Hessian matrix regularization. However, τ
is not always equal to zero even the system is in equilibrium,
since nonzero τ is required to maintain the configuration and
compensate for gravity. To guarantee tracking accuracy, we need
to scale the term ‖τ k+j|k‖Ri

to be roughly the same size to
the tracking error term ‖e(�xi,k+j+1|k)‖Qi

. Thus, Ri should
be tuned manually according to the target trajectory [61], and
Ri should be readjusted when the reference trajectory changes.
This is the main limitation of the regularization method. In
comparison, the standard cost function for tracking MPC (see (7)
in [35]) involves the difference between the control signal and
the reference counterpart, and the difference lies inside a small
neighborhood around the origin for any reference signal. Thus,
Ri can be determined without considering reference signals.
Unfortunately, for a redundant robot manipulator, the reference
control signal is not determined priorly. This is the main reason
for the limitation of the regularization method when it is applied
to a redundant robotic system. In this article, the cost function
(31) is similar to the standard stage cost for the tracking control
scheme where the most recent control signal τ 0 is considered
as the reference counterpart. Therefore, Ri can be determined
without considering reference trajectories, owing to the incre-
mental control structure.

2) Limitations of HIMPC—TDE Error: In the constrained
OCPs from Section IV-A, equality constraints (cf. (34g)) are
imposed on control signals to achieve task hierarchy. However,
the TDE error is ignored in the nominal incremental system
(13). Consequently, task hierarchy will inevitably deteriorate,
which is also visible in simulation and experimental results, see
Sections V and VI. In addition, given that the TDE error and
measurement noise are ignored in this article, there are state
prediction errors. As a result, the system suffers from the risk
of state constraint violation. After all, huge deterioration of task
hierarchy and strongly violating state constraints are avoided.
This is because incremental systems exhibit high approximation
accuracy as analyzed in Section III-B. A widely used method
to deal with uncertainties and to guarantee strict state con-
straint satisfaction is tube-based MPC [62]. However, in this
article, we control task-space variables and impose constraints
on joint-space variables. In addition, the cost function does not
involve terms w.r.t. joint-space variables since the considered
robot manipulator is redundant and the reference signals for
joint-space variables cannot be determined priorly. As a result,
the optimal initial joint-space variable cannot be obtained, and
then tube-based MPC cannot be implemented. A practical alter-
native is to use the data-driven method to estimate the uncertainty
distribution and then employ stochastic MPC [63] to enhance the
robustness of MPC in terms of strict state constraint satisfaction.

V. EXPERIMENT ON A THREE-DOF ROBOT MANIPULATOR

The effectiveness of HIMPC is investigated in experiments. It
is therefore compared to other state-of-the-art controllers, such
as OSF [9], TDE enhanced OSF (TDEOSF) [10], and HQP [16].

Fig. 2. Experimental setup of the robot manipulator with hardware and soft-
ware architectures and its kinematic structure (l1 = l2 = l3 = 0.3 m).

TABLE I
TASK DEFINITIONS AND CONTROL GAINS IN EXPERIMENTS

A. Experimental Setup

A custom-built three-DoF planar robot manipulator is used
for the experimental verification as shown in Fig. 2. See [48]
for the system dynamics of the robot manipulator. Note that
the identified system dynamics is not used for TDEOSF and
HIMPC because they allow for model-free controller design.
The manipulator is actuated by three torque-controlled (Maxon)
motors with a turn ratio of 1:100. Mounted on each motor, the
incremental encoders offer a joint position measurement with
a resolution of 1.25×10−3deg. Using a peripheral component
interconnect communication card, the sensors and actuators
are connected with an Intel CoreTM (i7 8086K @4.0 GHz)
CPU computer. The executable algorithm is created by MATLAB

2017a in Ubuntu 14.04 LTS, using a first-order solver with a
sampling rate of 1 kHz.

A task hierarchy with two priority levels is implemented. The
task definitions and control gains are shown in Table I. For HQP
and HIMPC, qpOASES [52] is used to solve the constrained
OCPs. For HIMPC, weighting matrices are Qi = 200I and
Ri = 10I for i =1,2. The lower (upper) bounds of joint position,
velocity, and torques are −150 (+150)◦, -100 (+100)◦/s, and
−4 (+4) N · m. For TDEOSF and HIMPC, M̄ = diag(0.033,
0.033, 0.033) is tuned, as addressed in Remark 4. On the premise
of ensuring real-time control, we increase the prediction horizon
as much as possible to receive satisfactory control performance.
In the context of the hardware setup and requirements on safety,



2140 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 3. Reference trajectories RT1 and RT2. xd and yd are reference signals
for coordinates x and y of the EE in task space, respectively, and the reference
geometric curve of the EE is a circle. q1,d1 and q1,d2 are reference signals for
q1. RT1 includes xd, yd, and q1,d1, and RT2 involves xd, yd, and q1,d2.

N = 5 is selected. The effects of the prediction horizon on the
system will be investigated by simulations in Section VI.

Two scenarios are implemented to verify the performance
of the proposed method w.r.t. control accuracy, optimality, task
hierarchy, singularity handling, and constraint handling.

B. Scenario 1: Control Accuracy and Optimality

1) Setting: The reference trajectory RT1 (see Fig. 3) is used
and the initial configuration is q0 = [0, 90, –90]�deg.

a) Control Accuracy: OSF, HQP, TDEOSF, and HIMPC are
implemented for comparison. The discrepancy between
the identified and the real mathematical model is consid-
ered as a disturbance. The robustness of tracking perfor-
mance is analyzed by investigation of control accuracy.

b) Optimality (qualitative): We take into account tracking
errors and control signals in the cost function (31). Thus,
tracking error and control signals are inspected to in-
vestigate the optimality of the control methods. We will
first compare HIMPC and TDEOSF and analyze how
optimality in HIMPC improves performance. Then, we
introduce HIQP, i.e., an acronym of hierarchical incremen-
tal QP control which denotes HIMPC with the prediction
horizon N = 1, and compare this to HIMPC with N = 5
to investigate local optimality of the controller. Note that
HIQP is merely implemented in Section V-B.

c) Optimality (quantitative): We will calculate the average
cost when applying each of the controllers. With the stage
cost for the predictions, see (31), we now introduce the
average cost (41) for tasks to evaluate the closed-loop per-
formance during a period [0, ts] (iterations Nt = ts/Ts)
where ts is the terminal time.

Ci =
1

Nt

Nt∑
k=0

(‖e(xi(k))‖2Qi
+ ‖Δτ (k)‖2Ri

)
(41)

where Ci is the average cost for task i. Note that e(xi(k))
in (41) is calculated using measurements, not predictions.

2) Results: The results are shown in Figs. 4–8.

Fig. 4. Experimental results of Scenario 1: Tracking errors of OSF, HQP,
TDEOSF, and HIMPC.

Fig. 5. Experimental results of Scenario 1: Tracking errors of TDE-based
methods (TDEOSF, HIQP, and HIMPC).

TABLE II
EXPERIMENTAL RESULTS OF SCENARIO 1: ROOT-MEAN-SQUARE-ERRORS

(RMSE) OF DIFFERENT CONTROLLERS

a) All of the controllers, OSF, HQP, TDEOSF, and HIMPC,
allow to complete the two hierarchic tasks, but the tracking
accuracy is different. As shown in Fig. 4 and Table II,
tracking performance of the model-based methods (OSF
and HQP) is inferior. This is because of the model discrep-
ancy. Tracking performance of OSF and HQP might still be
improved with a more accurate model, though its accurate
identification is time consuming and modeling errors are
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Fig. 6. Experimental results of Scenario 1: Control signals of TDEOSF and
HIMPC.

Fig. 7. Experimental results of Scenario 1: Control signals of HIQP and
HIMPC.

Fig. 8. Experimental results of Scenario 1: Average cost (41) of HIMPC,
TDEOSF, and HIQP.

inevitable as we analyzed in Section I-A. TDE-based
methods (TDEOSF and HIMPC) are model-free ones.
Thus, they are not sensitive to the model discrepancy and
exhibit strong robustness against disturbances. This allows
for high tracking precision.

b) For further analysis, the tracking errors of TDEOSF and
HIMPC are again displayed in Fig. 5, and we conclude
that tracking performance of both methods is satisfactory.

The tracking errors of TDEOSF are the smallest. This is
because, in HIMPC, the cost function (31) does not only
take into account the desired tracking error dynamics, but
also the control signal to avoid controller oscillations and
to achieve energy efficiency and actuator protection. Thus,
the superiority of HIMPC is visible when we in addition
look at input trajectories. In Fig. 6, it is observed that in
comparison to TDEOSF, control signals of HIMPC are
smoother. There are many “glitches” in the control signal
trajectories of TDEOSF. This is because the control signal
of HIMPC is obtained through solving OCPs. In contrast,
for TDEOSF, the control signal is calculated from analytic
expressions, focusing on addressing tracking errors, while
optimality is not considered.
A final comparison between HIQP and HIMPC analyzes
the local optimality of the controller, and experimental
results are shown in Figs. 5 and 7. For HIQP and HIMPC,
the tracking errors of task 1 are very similar. However, for
task 2, the tracking errors of HIQP are larger than those of
HIMPC during some periods (e.g., [2 s, 3s]). In addition,
we observe that the control signals of HIMPC are smoother
than those of HIQP (see rectangular symbols in Fig. 7).
This is because control signals of HIMPC are obtained
by solving OCPs over a longer prediction horizon, while
HIQP only takes into account a one-step-ahead prediction
resulting in torque peaks and oscillations, especially for a
noisy environment.

c) Fig. 8 shows that the average cost of tasks 1–2 is the lowest
for HIMPC, which quantitatively verifies the superior
optimality. Although the control signals of HIQP are also
obtained through solving constrained OCPs, the average
cost of task 2 under the action of HIQP is even higher
than that of TDEOSF. Due to its one-step prediction, the
HIQP controller is locally optimal. Thus, over a time
horizon, the average cost of HIQP may be even higher
than that of TDEOSF, though optimality is not considered
for TDEOSF controller design.

C. Scenario 2: Task Hierarchy, Constraint Admissibility, and
Singularity Handling

1) Setting: The reference trajectories RT2 and RT3 (see,
Figs. 3 and 9, respectively) are considered in this scenario.
The initial configuration is q0 = [0, 90, –90]�deg when RT2
is considered, while for RT3, q0=[0, 0, 0]�deg is chosen.

a) Task Hierarchy and Constraint Admissibility: As long as
the amplitude of the reference trajectory of task 2 (q1) is
small, task 1 and task 2 are nonconflicting. With increasing
amplitude, tasks become more and more conflicting. We
verify task hierarchy by investigating whether tracking
performance of high-priority tasks will be affected when
high and low-priority tasks conflict, and the reference
trajectory RT2 is employed. RT2 is also used to inves-
tigate the capability of HIMPC to guarantee that input and
state constraints are not violated.

b) Algorithmic Singularity Handling: RT2 is used to demon-
strate that algorithmic singularity is avoided in HQP and
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Fig. 9. Reference trajectory RT3. The reference curve of the EE consists of
two tangent circles. At t = 0 s, 8 s, and 16 s, the reference configuration of the
planar robot manipulator is straightened.

Fig. 10. Experimental results of Scenario 2: Tracking errors of HQP and
HIMPC (the reference trajectory is RT2).

HIMPC. Null-space projection based methods (OSF and
TDEOSF) are likely to have algorithmic singularity prob-
lems when tasks conflict. For safety, OSF and TDEOSF
are implemented in simulations when RT2 is employed.

c) Kinematic Singularity Handling: Moreover, RT3 is used
to verify that kinematic singularity is avoided in HIMPC.
For RT3, the robot manipulator is straightened and is
kinematically singular at the start, end, and intersection
between two circles.

2) Results: The results are shown in Figs. 10–15.
a) Tracking errors of HQP and HIMPC are displayed in

Fig. 10, and we observe that tracking errors of q1
(task 2) are large in the time period [3.2 s, 6s]. This is
because, during this period, tasks conflict. The low-priority
task (task 2) has to “sacrifice” itself to guarantee satisfac-
tory tracking performance of the high-priority task. Thus,
for HQP and HIMPC, task hierarchy is guaranteed. Be-
sides, because HQP is a model-based method, the tracking
error of HQP is higher than that of HIMPC. This further
verifies the robustness of HIMPC.
Besides, dynamic consistency can be verified by investi-
gating whether tracking errors of the highest-priority task
(task 1) are affected when different reference trajectories

Fig. 11. Experimental results of Scenario 2: Tracking errors of task 1 (RT1
and RT2 are employed).

Fig. 12. Experimental results of Scenario 2: Torque inputs of three joints with
the reference trajectory RT2, where b1,2 denotes the corresponding bounds.

(RT1 and RT2) are employed. For the convenience of com-
parison, tracking errors of task 1 when RT1 and RT2 are
employed are summarized in Fig. 11, where one observes
that for HQP, tracking performance of task 1 deteriorates
when tasks conflict. This is because the nominalM is used
in HQP to construct task priority constraints and dynamic
consistency is adversely affected by the inertia modeling
error. In contrast, for HIMPC, tracking performance of task
1 is nearly not affected no matter whether tasks conflict or
not. This is because the TDE method is used to approxi-
mate equations of motion of tasks and M is replaced by a
predetermined M̄ in the task priority constraints [compare
(34g)]. Thus, enhanced dynamic consistency of HIMPC is
obtained due to the TDE approximation.
In Fig. 12 it is shown that input constraints are not violated.
During the period [3.5 s, 5.2s], the input torques of HIMPC
are relatively large. This is because here tasks conflict.
The control signal not only needs to guarantee the priority
of task 1, but it also regulates tracking performance of
low-priority tasks as well as possible. As we discussed
in Section IV-C, the TDE error and measurement noise
are not considered for state predictions in HIMPC, and
it results in small prediction errors, see Fig. 13, where
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Fig. 13. Experimental results Scenario 2: Joint velocities of three joints with
the reference trajectory RT2, where b1,2 denotes the corresponding bounds.

Fig. 14. Experimental results of Scenario 2: Stroboscopic motion of the robot
manipulator using the proposed HIMPC. The reference trajectory is RT3, and
the posture is kinematically singular at the 1st, 10th, and 19th points.

Fig. 15. Experimental results of Scenario 2: Tracking errors of HIMPC (the
reference trajectory is RT3).

joint velocity constraints are slightly violated for short
periods. This is common in MPC for uncertain systems
with measurement noises. Though, at least we observe in
our study that state constraints are not strongly violated.
This is because the incremental systems exhibit high ap-
proximation accuracy.

TABLE III
COMPARISON BETWEEN THE PROPOSED HIMPC AND STATE-OF-THE-ART

CONTROLLERS

b) As stated in Section I-A, null-space projection based
methods, such as OSF and TDEOSF, are likely to suf-
fer from algorithmic singularity when tasks conflict. For
safety, we did numerical simulations to implement OSF
and TDEOSF. Consistent with theoretical analysis, the
values of J2|pM−1J�

2|p and J2|pM̄−1J�
2|p (J2|p is the

prioritized Jacobian matrix) under the action of OSF and
TDEOSF tend to be 0 at around 3.3 s. In other words,
J2|p loses its rank (and is a null vector here). Then,
(J2|pM−1J�

2|p)
−1 and (J2|pM̄−1J�

2|p)
−1, tend to infinity

and undesired (large-value) control signals are obtained.
As a result, the system will be unstable. Note that in the
context of task definitions (see Table I), J2=[1, 0, 0] is
a constant vector. Thus, at this moment the system is not
kinematically singular, but it is attributed to the prioritized
Jacobian matrix (null-space projection idea), i.e., the algo-
rithmic singularity occurs. For HQP and HIMPC, equality
constraints are employed to achieve task hierarchy, and no
prioritized inertia matrices are involved. Thus, algorithmic
singularity is avoided in HQP and HIMPC.

c) We finally verify that HIMPC can control even if the
manipulator passes the kinematically singular configura-
tion in Scenario 2, and RT3 (see Fig. 9) is considered.
OSF, TDEOSF, and HQP cannot be implemented because
of kinematic singularity in the initial configuration. The
experimental results are shown in Figs. 14–15. As shown in
Fig. 15, tracking accuracy of HIMPC is still high. It verifies
that HIMPC is kinematically singularity-free. Note that
tracking errors of tasks (especially ey shown in Fig. 15)
are slightly larger at the beginning and around 8 s. On the
one hand, this is because the control degrees of freedom are
partially lost when the robot manipulator is kinematically
singular, and on the other hand, the reference trajectory is
nonsmooth at 8 s. Thus, this task is challenging and it also
evaluates the ability of this method to handle input and
state constraints. Nevertheless, HIMPC guarantees that
the system passes the singular and also nonsmooth region
safely.

Finally, we summarize the experimental results in Table III .

VI. SIMULATION OF A SEVEN-DOF KUKA ROBOT

The effectiveness of HIMPC is now in addition validated by
simulations for a higher-DoF robot manipulator that allows for
a task hierarchy with more than two task levels.
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Fig. 16. Simulation setup of the seven-DoF manipulator (KUKA LBR iiwa)
with three-level task hierarchy.

TABLE IV
TASK DEFINITIONS AND CONTROL GAINS FOR SIMULATIONS

A. Simulation Setup

We simulate a seven-DoF KUKA LBR iiwa 14 R820 [64]
using the MATLAB Robotics System Toolbox [65] on a PC with
Intel CoreTM CPU (i7 9700 K @3.60 GHz). The sampling rate is
1 kHz. A task hierarchy with three priority levels (see Fig. 16) is
implemented with task definitions and control gains in the target
motion dynamics (4) from Table IV. We introduce the tool center
point (TCP) and x, y, and z denote its Cartesian coordinates in
the body frame, while oX , oY , and oZ are its orientation w.r.t.
the X−, Y - and Z-axes. The initial configuration is q0 = [0,
60, 0, 60, 0, 0, 0 ]�deg. Qi = 200I and Ri=10I for i = 1,
2, 3. Constraints for joint position, velocity, and torques are
chosen according to [64]. The constrained OCPs in HIMPC
are solved by qpOASES. According to Remark 4, the diagonal
matrix is chosen as M̄ = diag(0.1, 0.21, 0.033, 0.042, 0.001,
0.001, 0.0003).

The reference trajectory RT4 is considered in the sim-
ulation. The reference curve of TCP is a “circle” with a
radius of 10 cm (level 1), i.e., reference signals for Carte-
sian coordinates xd = 0.2637− 0.1 sin(0.5πt− 0.5π), yd =
−0.1 sin(0.5πt), and zd = 1.096− 0.1(0.5πt). The orientation
of TCP is assigned to be maintained (level 2), i.e., oX = oY =
oZ = 0◦. Moreover, q1 is commanded to move in a range of
180◦ (level 3), i.e., q1,d = 90 + 90 sin (0.5πt− 0.5π)deg. Three
scenarios are considered to verify the feasibility of HIMPC
for higher-DoF robotic systems, to investigate effects of the
prediction horizon on the system, to verify reasonability of

Fig. 17. Simulation results of Scenario 1: Tracking errors of HIMPC for the
seven-DoF KUKA robot.

approximation of Jacobians over the prediction horizon, and
to investigate effects of the measurement resolution on control
performance.

B. Scenario 1: Feasibility for Higher-DoF Robotic Systems

1) Setting: RT4 is designed such that low-priority tasks con-
flict with high-priority tasks. Task hierarchy is investigated by
measuring whether tracking performance of high-priority tasks
is affected by low-priority tasks. Also, it is verified that singular-
ities are successfully avoided. The prediction horizon of HIMPC
isN = 5 in this scenario. In addition, to further verify robustness
of the developed HIMPC against inertia matrix modeling errors,
an additional simulation is conducted with a disturbed inertia
matrix. Each diagonal element of the inertia matrix is either
reduced or increased by 20% of its nominal value, following the
order −−++−++.

2) Simulation Results of Scenario 1: The results are dis-
played in Fig. 17. We observe that the low-priority task “sac-
rifices” itself to guarantee the task hierarchy, while tracking per-
formance of high-priority tasks is almost not affected. For [3.8 s,
4s], tracking errors of level 2 tasks (especially the orientation of
TCP w.r.t. Y-axis) slightly increase. It is mainly because joint
positions are constrained.

However, for OSF, TDEOSF, and HQP, the system is un-
stable. It is because, in the initial configuration, the system is
kinematically singular, i.e., the Jacobian matrix loses its rank
(rank(col(J1,J2,J3)) = 6 < 7). For HIMPC, we see that track-
ing errors of the level 3 task (q1) are slightly larger in the first
0.2 s. This is because the robot manipulator is kinematically
singular and control degrees of freedom of the system are
partially lost during this time period. Nevertheless, the system
passes the singular region safely. For a disturbed inertia matrix
(see Table V), we see that control accuracy (RMSE) and dynamic
consistency are nearly not affected. This is in line with the
theoretical analysis in Section III-B, i.e., the incremental systems
and controller tolerate inertia modeling errors.
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TABLE V
SIMULATION RESULTS OF SCENARIO 2: RMSE OF HIMPC FOR SYSTEMS WITH NOMINAL AND DISTURBED INERTIA MATRICES

Fig. 18. Simulation results of Scenario 2: Tracking errors of TCP positions
in X-axis under the action of HIMPC with N = 5, 10, 20, 30.

Fig. 19. Simulation results of Scenario 2: Tracking errors of TCP positions
in X-axis under the action of HIMPC and NHIMPC with N = 10, 20.

C. Scenario 2: Investigating Effects of the Prediction Horizon
and Verifying Reasonability of Constraint Simplifications

1) Setting: In order to investigate effects of the length of
the prediction horizon on the system, larger prediction horizons
(N = 10, 20, 30) are used for HIMPC in this scenario. To further
investigate reasonability of constraint simplifications and verify
computational efficiency, a nonlinear hierarchical incremental
model predictive control (NHIMPC) scheme is introduced,
where the Jacobian matrices over the prediction horizon are
updated by current joint state predictions, i.e., simplification
in (29) and (33) are suspended in NHIMPC, which is also
the only difference between HIMPC and NHIMPC, aiming for
objective of comparison simulations. The constrained OCPs
in the NHIMPC scheme is solved by an efficient NLP tool-
box, CasADi [66], where the SQP method is employed. The
computational complexity of the algorithms is investigated by
monitoring the computing time for each prediction step.

2) Simulation Results of Scenario 2: For the investigated
tasks (see Fig. 16), the Jacobian of task 3 is constant. Thus, the
simplifications in (29) and (33) affect performance of levels 1
and 2 tasks mostly. Due to space limitations, we will only display
tracking errors of x in this scenario. The simulation results are
shown in Figs. 18–19 and Tables VI–VII.

As expected from the theory of MPC without terminal ingre-
dients, the tracking performance becomes better with the rise of

TABLE VI
SIMULATION RESULTS OF SCENARIO 2: RMSE OF HIMPC AND NHIMPC

(10−4m)

TABLE VII
SIMULATION RESULTS OF SCENARIO 2: COMPUTING TIME OF HIMPC AND

NHIMPC WITH N = 5

Fig. 20. Simulation results of Scenario 2: Average computing time of HIMPC
per iteration with different prediction horizons.

prediction horizons, see Fig. 18. A comparison between HIMPC
and NHIMPC is shown in Table VI. Although the Jacobian is
updated over the prediction horizon, RMSE of NHIMPC and
HINPC are almost equal. Besides, during time periods [0.16 s,
0.2s] and [0.4 s, 0.5s] (see Fig. 19), tracking performance of
NHIMPC is even worse. Due to the updated Jacobian, convexity
of the constrained OCPs in NHIMPC is not guaranteed. For
nonconvex programming problems, it may happen that only
a local optimum is found that might be much worse than the
global one. In addition, the computing time of the nonconvex
programming problems are significantly higher (cf. Table VII).
As shown in Fig. 20, the average computing time of HIMPC
increases exponentially with the rise of the prediction horizon,
and it is much less than that of NHIMPC. Thus, the simplification
in (29) not only guarantees convexity of the constrained OCPs,
but also decreases computational complexity of the algorithm.
It is worth to notice that the average computing time of HIMPC
with N = 5 (8.05×10−3s) is longer than the sampling period
(1 ms). It means the sampling time is to be higher to guarantee
the real-time control for the considered seven-DoF manipulator
with three task levels in the current controller implementation.
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TABLE VIII
SIMULATION RESULTS OF SCENARIO 3: CURVE SMOOTHNESS VALUES OF

CONTROL SIGNAL CURVES WITH DIFFERENT RESOLUTIONS

Fig. 21. Simulation results of Scenario 3: Control signals with the measure-
ment resolution of 5×10−3deg.

To apply HIMPC on higher-DoF systems, yet to keep a small
sampling period (e.g., 1 ms) in the same hardware setup, more
practical implementation effort will be devoted to developing
faster QP solvers [67] and approximation solutions.

D. Scenario 3: Investigating Effects of the Measurement
Resolution on Control Performance

1) Setting: The prediction horizon N = 5, and a series
of measurement resolution from 0.5×10−3deg to 1×10−2° is
selected. For a coarse resolution, the noisy response is trig-
gered and control signal chattering will be observed. The noisy
response is analyzed by investigating smoothness of control
signal curves. The smoothness of curves is measured using
the concept of curve smoothness, which is defined as: S =√
(
∑Nt

k=0 ‖c(k)− c̄(k)‖2)/Nt, where c̄(k) denotes the control
signal for the benchmark, generated with the resolution of
1×10−5deg in this simulation.

2) Simulation Results of Scenario 3: The results are shown in
Table VIII. The curve smoothness decreases when the resolution
is coarser. Because of space limitation, we take τ1 for example.
We learn that when the curve smoothness is greater than 10 N
· m, the control signal chattering is observed (see Fig. 21). In
the example, to avoid excessive wear of actuators and guaran-
tee great control performance, it is suggested that the encoder
measures the joint angle more precisely than 5×10−3deg. For
instance, one can consider the encoder with a resolution of 16 b
attached after the gear, or that with 10 b at the motor shaft with
a gear ratio of 100.

VII. CONCLUSION

In this article, a HIMPC is proposed for robot manipulators
to execute multiple tasks simultaneously. To reduce dependency
on an accurate mathematical model, equations of motion and
system dynamics are approximated by incremental systems us-
ing TDE. It improves the robustness of the controller in terms of
high tracking accuracy and enhanced dynamics consistency. For
HIMPC, a series of constrained OCPs is developed, where task
hierarchy is achieved by equality constraints, which are set based

on the dynamic consistency principle instead of using null-space
projections. Besides, inversion of terms that include Jacobians is
not needed and all Hessian matrices of the constrained OCPs are
positive definite. As a result, the proposed HIMPC is algorith-
mically and kinematically singularity-free. In addition, HIMPC
results in a linear MPC. Compared with nonlinear MPC, the
computational complexity of HIMPC dramatically decreases,
which enables the controller to run with a sampling time of
1 ms. Finally, simulations and experiments were conducted, and
the efficacy of HIMPC is validated.

Future research will be devoted to studying HIMPC with strict
state constraints and it will be addressed by the computationally
efficient data-driven disturbance estimation algorithm and the
stochastic MPC method.

APPENDIX A
PARAMETERS IN (35)

Qi := B̄�
1iQ̄iB̄1i + R̄i; Li := 2B̄�

1iQ̄i(Ā1�xi(k)−
Xid); Q̄i := diag(K̄�

i QiK̄i, . . . , K̄
�
i QiK̄i); B̄1i :=⎡

⎢⎢⎢⎢⎣
B̂0

1i

A1B̂
0
1i B̂1

1i

A2
1B̂

0
1i A1B̂

1
1i B̂2

1i

· · ·
AN−1

1 B̂0
1i AN−2

1 B̂1
1i AN−3

1 B̂2
1i . . . B̂N−1

1i

⎤
⎥⎥⎥⎥⎦; Xid :=

col(x̄id(k + 1), . . . , x̄id(k +N)); R̄i := diag(Ri, . . . ,Ri);
K̄i := [Ki,O]; Ā1 := col(A1,A

2
1, · · · ,AN

1 ); Ci1 :=

col(−ci1, ci1); Di1 :=

[
−L̄1�q(k) + q̄min

L̄1�q(k)− q̄max

]
; ci1 :=⎡

⎢⎢⎢⎢⎣
L1B2

L1A2B2 L1B2

L1A
2
2B2 L1A2B2 L1B2

· · ·
L1A

N−1
2 B2 L1A

N−2
2 B2 L1A

N−3
2 B2 . . . L1B2

⎤
⎥⎥⎥⎥⎦;

L̄1 := col(L1A2,L1A
2
2, · · · ,L1A

N
2 ); q̄min :=

col(qmin, . . . ,qmin); q̄max := col(qmax, . . . ,qmax);
L1 := [I,O,O,O]; Ci2 := col(−ci2, ci2); Di2 :=[
−L̄2�q(k) + ¯̇qmin

L̄2�q(k)− ¯̇qmax

]
; L̄2 := col(L2A2,L2A

2
2, · · · ,L2A

N
2 );

L2 := [O, I,O,O]; ¯̇qmin := col(q̇min, . . . , q̇min);
¯̇qmax := col(q̇max, . . . , q̇max); Ci3 := col(−Ī, Ī); ci2 :=⎡
⎢⎢⎢⎢⎣
L2B2

L2A2B2 L2B2

L2A
2
2B2 L2A2B2 L2B2

· · ·
L2A

N−1
2 B2 L2A

N−2
2 B2 L2A

N−3
2 B2 . . . L2B2

⎤
⎥⎥⎥⎥⎦;

Di3 :=

[
−τ̄ 0 + τ̄min

τ̄ 0 − τ̄max

]
; Ī :=

⎡
⎢⎢⎢⎣

I

I I

· · ·
I I · · · I

⎤
⎥⎥⎥⎦;

τ̄ 0 := col(τ 0, . . . , τ 0); τ̄min := col(τmin, . . . , τmin);
τ̄max := col(τmax, . . . , τmax); a�ip := J̄p,k; bip :=

J̄p,kU
∗
p; J̄p,k := diag(Ĵ0

p,kM̄
−1, . . . , ĴN−1

p,k M̄−1); U∗
p :=

col(Δτ ∗
p,k|k, . . . ,Δτ ∗

p,k+N−1|k).
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