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A B S T R A C T

An advanced light scattering model for Total Internal Reflection Microscopy (TIRM) is presented. The model
considers the specific TIRM geometry and deals with the scattering by an axisymmetric particle of arbitrary
orientation placed in a stratified medium and the imaging of the scattered field. The scattered field is computed
by truncating the scattered and internal field expansions and by using spherical and plane wave expansions
for the free-space dyadic Green’s function. While the first expansion is valid outside a sphere enclosing the
particle, the second one is valid outside the tangent planes bounding the particle from above and below. We
demonstrate that in both cases, the results are the same, and thus, that the restrictive condition according to
which the interface should not intersect the particle’s circumscribed sphere is not relevant. The image of the
scattered field is computed by using the Debye diffraction integral and fast Fourier transform, while for a better
reconstruction of the particle orientation, an image processing step consisting in a contour extraction and ellipse
fitting is considered. The numerical simulations dealing with scattering by a prolate spheroid provide evidence
of the remarkably sensitivity of the geometric parameters of the image ellipse to the particle orientation angles,
as well as, of the integral response of the detector to the distance between the particle and the interface.
1. Introduction

Nano- to micrometer scale ‘colloidal’ particles regularly interact
with nearby surfaces including neighboring particles and boundaries
via weak 𝑘𝑇 scale interactions [1,2]. These surface interactions are
responsible for a wide variety of important phenomena, including
particle deposition [3–5] and the rheological response of a colloidal
suspension [6–10]. Robust experimental techniques, including the Col-
loidal Probe Atomic Force Microscope and the Surface Force Apparatus,
have been developed and adopted to measure surface interactions, but
are limited due to the feature that force is measured via the mechanical
manipulation of two surfaces relative to each other. Total Internal Re-
flection Microscopy (TIRM) was developed to infer the potential energy
landscape and associated weak surface forces experienced by a particle
undergoing thermal fluctuations very near a boundary [11–13]. TIRM
has since been used to measure a variety of both conservative (path
independent, e.g. electrostatics) and non-conservative (path dependent,
e.g. hydrodynamics) surface interactions for spheres [14–18]. More
recent work on Scattering Morphology Resolved TIRM has started to
extend this technique to non-spherical particles by extracting reporters

∗ Corresponding author.
E-mail address: dmitry.efremenko@dlr.de (D.S. Efremenko).

of a particle’s position and orientation via analysis of the morphology
of light scattered by a particle [19–21].

The TIRM setup is illustrated in Fig. 1. It consists of a linearly
polarized incident beam, a hemispherical glass prism, a microfluidic
cell, a microscope objective, and a CCD camera. Note a dovetail prism
is often used during TIRM, but recent work has shown a hemispherical
prism can be used to systematically adjust azimuthal angle of the
incident beam [22]. The sample is suspended in an aqueous solution
inside the microfluidic cell. The cell, placed on top of the prism using
refractive index matching oil, is made of a thick microscope slide at
the bottom and a thin cover slide at the top. Although not necessary,
a thin coating is often deposited on the bottom microscope slide of
the cell to measure the influence of particular materials on the surface
interactions experienced by a particle. The scattered light of isolated
particles attached to the glass surface is collected with a microscope
objective directly above the sample, and then analyzed by a CCD
camera.

In Doicu et al. [19], we described a mathematical model for TIRM.
In Yan et al. [21], Vasilyeva et al. [23] it was compared with ex-
periments for investigating the scattering morphology of a spherical
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Fig. 1. Simplified TIRM setup.

particle. The model treats the scattering by an axisymmetric particle
of arbitrary orientation near a plane surface, and the imaging of the
scattered field. In the present paper, we intend to design a more realistic
model that better reproduces the TIRM setup. More precisely, we want
to take into account the fact that the particle is not near a plane
surface separating two half-spaces, but rather in a stratified medium.
As in Doicu et al. [19], we aim to consider both the scattering by an
axisymmetric particle situated in a stratified medium and the imaging
of the scattered field via microscope optics.

The paper is organized as follows. In Section 2 we describe the
mathematical model for TIRM, in Section 3 we present a numerical
analysis regarding the possibility to measure the particle orientation
angles and the separation distance, and in Section 4 we formulate some
conclusions and discuss a few feature goals.

2. Theory

In this section, we analyze the scattering by a particle in a stratified
medium and describe the imagining of the scattered field.

2.1. Scattering by a particle in a stratified medium

A python package for the simulation of light scattering by multiple
particles near or between planar interfaces was designed by Egel et al.
[24]. The software package uses the T-matrix method for analyzing
the individual particle scattering and the scattering matrix formalism
for analyzing the electromagnetic field propagation through planar
interfaces. Although the basic ideas are the same, we prefer to develop
our own formalism which extends the one presented in Doicu et al. [19]
and is devoted to the concrete TIRM geometry we are analyzing.

In our model, the stratified medium is a succession of air–glass–
immersion-coating–glass interfaces, in which the “immersion” layer is
an aqueous solution. The incident field propagates in the glass prism,
the particle is placed in the immersion layer, and the outmost layers
are semi-infinite in size. The multiple scattering problem is solved by
the superposition method. To develop a scattering model we need to
understand the interaction process of the radiation with the particle.
The incident field strikes the particle either directly or after interacting
with the layer system. The resulting field is the incident field in the
immersion. On the other hand, the fields scattered by the particle also
interact with the layer system and strike the particle again. In this
regard, the total field in the immersion layer (containing the particle)
2

can be decomposed into a sum of three constituents:
Fig. 2. Geometry of the layer system. The particle is placed in layer 2, and the outmost
layers 0 and 4 are semi-infinite in size.

1. the incident field in the immersion layer,
2. the field scattered by the particle, and
3. the layer system response to the scattered field.

By convention, the layer system response to the scattered field will be
called the interacting field. The incident field in the immersion layer
together with the interacting field make the excitation field. The layer
system responses are first computed as plane wave expansions after
which, they are transformed into regular spherical wave expansions.
As a result, a series representation for the excitation field in terms of
regular spherical waves is obtained. The spherical wave expansion co-
efficients of the scattered field are then linked to those of the excitation
field through the transition matrix of the particle.

We consider the layer system illustrated in Fig. 2. The absolute
refractive index and the wavenumber in medium 𝑗 are denoted by n𝑗
and 𝑘𝑗 = n𝑗𝑘, respectively, where 𝑘 = 2𝜋∕𝜆 and 𝜆 are the wavenumber
and the wavelength in vacuum, respectively. An axisymmetric particle
of arbitrary orientation is placed in layer 2. The Cartesian coordinate
system 𝑂𝑥𝑦𝑧 centered at the particle and having the 𝑧-axis perpendic-
ular to the layer interfaces represents the global coordinate system.
The orientation of the particle is described by the Euler orientation
angles (𝛼p, 𝛽p) and we denote by 𝑂𝑥p𝑦p𝑧p the particle (local) coordinate
system. To deal with an arbitrary particle orientation, the rotation
addition theorem for vector spherical vector functions will be used.
In general, if the particle coordinate system 𝑂𝑥p𝑦p𝑧p is obtained by
a rigid-body rotation of the global coordinate system 𝑂𝑥𝑦𝑧 with the
Euler angles (𝛼p, 𝛽p, 𝛾p), the addition theorem for vector spherical wave
functions under coordinate rotations is [25]

𝐌1,3
𝑚𝑛(𝑘𝑟, 𝜃, 𝜑) =

𝑛
∑

𝑚1=−𝑛
𝐷𝑛

𝑚1𝑚
(𝛼p, 𝛽p, 𝛾p)𝐌1,3

𝑚1𝑛
(𝑘𝑟, 𝜃p, 𝜑p), (1)

𝐍1,3
𝑚𝑛(𝑘𝑟, 𝜃, 𝜑) =

𝑛
∑

𝑚1=−𝑛
𝐷𝑛

𝑚1𝑚
(𝛼p, 𝛽p, 𝛾p)𝐍1,3

𝑚1𝑛
(𝑘𝑟, 𝜃p, 𝜑p), (2)

where 𝐷𝑛
𝑚𝑚′ are the Wigner 𝐷-function, (𝑟, 𝜃, 𝜑) are the spherical coordi-

ates of a point in the global coordinate system 𝑂𝑥𝑦𝑧, and (𝑟, 𝜃p, 𝜑p) are
the spherical coordinates of the same point in the particle coordinate
system 𝑂𝑥p𝑦p𝑧p. Some basic results that will be used frequently in what
follows are given in appendices. In particular, the expressions of the
vector spherical wave functions and vector plane waves, as well as the
transformations between them are given in Appendix A, while the main
relations describing the scattering in a stratified medium and which are
relevant for computing the interacting field are given in Appendix B.
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2.1.1. The incident field in the immersion layer (layer 2)
The incident field is a plane electromagnetic wave propagating in

the half-space 4, the azimuthal plane 𝛼inc and the direction 𝜋 − 𝛽inc,
where 𝛽inc is the angle of incidence. In the global coordinate system
𝑂𝑥𝑦𝑧, the incident field in the half-space 4, is given by

𝐄4inc(𝐫) = (cos 𝛼pol�̂�4 + sin 𝛼pol�̂�4)e
j𝐤−4 ⋅𝐫

= 𝐴𝐌(𝐫,𝐤−4 ) + 𝐵𝐍(𝐫,𝐤−4 ), (3)

where 𝐌(𝐫,𝐤−4 ) and 𝐍(𝐫,𝐤−4 ) are the vector plane waves defined in
Appendix A, 𝐤−4 = (𝑘4, 𝜋 − 𝛽inc, 𝛼inc) = 𝐤⟂ − 𝑘(4)z �̂�, 𝑘(4)z = 𝑘4 cos 𝛽inc,
�̂�4 = �̂�(̂𝐤−4 ), �̂�4 = �̂�(̂𝐤−4 ), �̂�−4 = 𝐤−4 ∕𝑘4, 𝐴 = j sin 𝛼pol, 𝐵 = −cos 𝛼pol,
and 𝛼pol is the polarization angle.

In Appendix B it is shown that for an external excitation represented
by the vector plane waves propagating downward in the half-space 4,
𝐄−
4 = 𝐌(𝐫,𝐤−4 ) and 𝐄−

4 = 𝐍(𝐫,𝐤−4 ), the total upward propagating fields
in layer 2 are 𝐄+

2tot = 𝑆+
⟂𝐌(𝐫,𝐤+2 ) and 𝐄+

2tot = 𝑆+
∥ 𝐍(𝐫,𝐤

+
2 ), respectively,

while the total downward propagating field are 𝐄−
2tot = 𝑆−

⟂𝐌(𝐫,𝐤−2 )
and 𝐄−

2tot = 𝑆−
∥ 𝐍(𝐫,𝐤

−
2 ), respectively. The expressions for the scattering

coefficients 𝑆+
X and 𝑆−

X , X =⟂, ∥, are given by Eqs. (B.15) and (B.16),
respectively. As a result, we deduce that in layer 2, the incident field
exciting the particle is

𝐄2inc(𝐫) = +𝐌(𝐫,𝐤+2 ) +−𝐌(𝐫,𝐤−2 )

+ +𝐍(𝐫,𝐤+2 ) + −𝐍(𝐫,𝐤−2 ), (4)

where

+ = 𝐴𝑆+
⟂ , − = 𝐴𝑆−

⟂ , + = 𝐵𝑆+
∥ , − = 𝐵𝑆−

∥ . (5)

Making use of the spherical wave expansions of the upward and down-
ward propagating vector plane waves as given by Eqs. (A.19)–(A.20)
and (A.23)–(A.24), respectively, and taking into account Eqs. (A.21)–
(A.22), we find

𝐄2inc(𝐫) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
𝐶𝑛[𝐴𝑚𝑛𝐌1

𝑚𝑛(𝑘2𝐫) + 𝐵𝑚𝑛𝐍1
𝑚𝑛(𝑘2𝐫)], (6)

where 𝐌1
𝑚𝑛(𝑘2𝐫) = 𝐌1

𝑚𝑛(𝑘𝟸𝑟, 𝜃, 𝜑) and 𝐍1
𝑚𝑛(𝑘2𝐫) = 𝐍1

𝑚𝑛(𝑘𝟸𝑟, 𝜃, 𝜑) are the
regular vector spherical wave functions defined in Appendix A,

𝐴𝑚𝑛 = 𝐶𝑛{+𝜏|𝑚|𝑛 (𝛽2) +−𝜏|𝑚|𝑛 (𝜋 − 𝛽2)

+ 𝑚[+𝜋|𝑚|
𝑛 (𝛽2) + −𝜋|𝑚|

𝑛 (𝜋 − 𝛽2)]}e−j𝑚𝛼inc , (7)
𝐵𝑚𝑛 = 𝐶𝑛{𝑚[+𝜋|𝑚|

𝑛 (𝛽2) +−𝜋|𝑚|
𝑛 (𝜋 − 𝛽2)]

+ +𝜏|𝑚|𝑛 (𝛽2) + −𝜏|𝑚|𝑛 (𝜋 − 𝛽2)}e−j𝑚𝛼inc , (8)

and

𝐶𝑛 =
4j𝑛+1

√

2𝑛(𝑛 + 1)
. (9)

In Eqs. (7)–(8), the angle of refraction 𝛽2 corresponds to the angle of
incidence 𝛽inc, i.e., cos 𝛽2 = ±

√

1 − (n4∕n2)2 sin
2 𝛽inc, with Im(cos 𝛽2) ≥

0. Finally, application of the rotation addition theorem for vector spher-
ical wave functions (cf. Eqs. (1)–(2)) yields the following expansion of
the incident field in the particle coordinate system 𝑂𝑥𝚙𝑦𝚙𝑧𝚙:

𝐄2inc(𝐫) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
[𝑎𝑚𝑛𝐌1

𝑚𝑛(𝑘2𝑟, 𝜃𝚙, 𝜑𝚙) + 𝑏𝑚𝑛𝐍1
𝑚𝑛(𝑘2𝑟, 𝜃𝚙, 𝜑𝚙)], (10)

where

𝑎𝑚𝑛 =
𝑛
∑

𝑚1=−𝑛
𝐷𝑛

𝑚𝑚1
(𝛼𝚙, 𝛽𝚙, 0)𝐴𝑚1𝑛, 𝑏𝑚𝑛 =

𝑛
∑

𝑚1=−𝑛
𝐷𝑛

𝑚𝑚1
(𝛼𝚙, 𝛽𝚙, 0)𝐵𝑚1𝑛, (11)

or in matrix form,
[

𝑎𝑚𝑛
𝑏𝑚𝑛

]

= D∞

[

𝐴𝑚1𝑛
𝐵𝑚1𝑛

]

, D∞ =

[

𝐷𝑛
𝑚𝑚1

(𝛼𝚙, 𝛽𝚙, 0) 0
0 𝐷𝑛

𝑚𝑚1
(𝛼𝚙, 𝛽𝚙, 0)

]

.

3

(12)
.1.2. The scattered field in the immersion layer (layer 2)
In the global coordinate system 𝑂𝑥𝑦𝑧, the Stratton–Chu formula for

the scattered field gives

𝐄2sct(𝐫) = ∮𝑆p

{[∇×𝐆0(𝑘2, 𝐫, 𝐫1)]⋅𝐞int(𝐫1)+j𝜔𝜇0𝐆0(𝑘2, 𝐫, 𝐫1)⋅𝐡int(𝐫1)} d2𝐫1,

(13)

where 𝐆0(𝑘2, 𝐫, 𝐫1) is the free-space dyadic Green’s function with wave-
number 𝑘2, 𝐞int and 𝐡int are the tangential components of the electric
nd magnetic internal fields (inside the particle), respectively, 𝜔 is the
requency, 𝜇0 is the magnetic permeability in vacuum, and the integra-
ion is performed over the particle surface 𝑆p. Specific representations
or the scattered field can be obtained by expanding the dyadic Green’s
unction 𝐆0(𝑘2, 𝐫, 𝐫1) in terms of vector spherical wave functions or

vector plane waves. In the following we consider the spherical wave
expansion, i.e.,

𝐆0(𝑘2, 𝐫, 𝐫1) = − 1
𝑘22

𝛿(𝐫 − 𝐫1)�̂� ⊗ �̂�

+
j𝑘2
𝜋

∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐌1
𝑚𝑛(𝑘2𝐫)⊗𝐌3

−𝑚𝑛(𝑘2𝐫1) + 𝐍1
𝑚𝑛(𝑘2𝐫)⊗ 𝐍3

−𝑚𝑛(𝑘2𝐫1),
𝑟 < 𝑟1

𝐌3
𝑚𝑛(𝑘2𝐫)⊗𝐌1

−𝑚𝑛(𝑘2𝐫1) + 𝐍3
𝑚𝑛(𝑘2𝐫)⊗ 𝐍1

−𝑚𝑛(𝑘2𝐫1),
𝑟 > 𝑟1

.

(14)

he derivation based on the plane wave expansion of the dyadic Green’s
unction is given in Appendix C. For a field point 𝐫 lying on a sphere
ith radius 𝑅 enclosing the particle, the expansion of the dyadic
reen’s function yields the series representation

2sct (𝐫) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
[𝐹𝑚𝑛𝐌3

𝑚𝑛(𝑘2𝐫) + 𝐺𝑚𝑛𝐍3
𝑚𝑛(𝑘2𝐫)]. (15)

or a numerical implementation, we truncate the infinite series (15)
y letting 𝑚 = −𝑀rank,… ,𝑀rank and 𝑛 = max(1, |𝑚|),… , 𝑁rank, where
rank and 𝑀rank are the maximum expansion and azimuthal orders,

espectively. To simplify the writing, the finite summation ∑𝑀rank
𝑚=−𝑀rank

𝑁rank
𝑛=max(1,|𝑚|) will be written as ∑𝑁

(𝑚,𝑛)=1, where the multi-index 𝜈 = (𝑚, 𝑛)
anges from 1 to 𝑁 , when 𝑚 ranges from −𝑀rank to 𝑀rank, and 𝑛
rom max(1, |𝑚|) to 𝑁rank. In other words, we consider an approximate
cattered field expressed as a (finite) linear combination of radiating
ector spherical wave functions

𝑁
2sct (𝐫) =

𝑁
∑

(𝑚,𝑛)=1
[𝐹𝑁

𝑚𝑛𝐌
3
𝑚𝑛(𝑘2𝐫) + 𝐺𝑁

𝑚𝑛𝐍
3
𝑚𝑛(𝑘2𝐫)], (16)

hich in the particle coordinate systems 𝑂𝑥𝚙𝑦𝚙𝑧𝚙, takes the form

𝑁
2sct (𝐫) =

𝑁
∑

(𝑚,𝑛)=1
[𝑓𝑁

𝑚𝑛𝐌
3
𝑚𝑛(𝑘2𝑟, 𝜃𝚙, 𝜑𝚙) + 𝑔𝑁𝑚𝑛𝐍

3
𝑚𝑛(𝑘2𝑟, 𝜃𝚙, 𝜑𝚙)], (17)

here

𝐹𝑁
𝑚1𝑛

=
min(𝑛,𝑀rank)

∑

𝑚=−min(𝑛,𝑀rank)
𝐷𝑛

𝑚1𝑚
(0,−𝛽𝚙, 𝛼𝚙)𝑓𝑁

𝑚𝑛,

𝑁
𝑚1𝑛

=
min(𝑛,𝑀rank)

∑

𝑚=−min(𝑛,𝑀rank)
𝐷𝑛

𝑚1𝑚
(0,−𝛽𝚙, 𝛼𝚙)𝑔𝑁𝑚𝑛, (18)

or in matrix form,
[

𝐹𝑁
𝑚1𝑛

𝐺𝑁
𝑚1𝑛

]

= D−1

[

𝑓𝑁
𝑚𝑛

𝑔𝑁𝑚𝑛

]

, D−1 =

[

𝐷𝑛
𝑚1𝑚

(0,−𝛽𝚙, 𝛼𝚙) 0

0 𝐷𝑛
𝑚1𝑚

(0,−𝛽𝚙, 𝛼𝚙)

]

.

(19)

Note that the upper index 𝑁 indicates that the expansion coefficients

depend on the truncation indices 𝑀rank and 𝑁rank.
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In the half-space 𝑧 > 0, the radiating vector spherical wave functions
can be expressed as integrals over upward propagating vector plane
waves (cf. Eqs. (A.13)–(A.14))

𝐌3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐴SP

𝑚𝑛(𝛽, 𝛼)𝐌(𝐫,𝐤+2 ) + 𝐵SP
𝑚𝑛(𝛽, 𝛼)𝐍(𝐫,𝐤

+
2 )] sin 𝛽d𝛽d𝛼,

(20)

𝐍3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐵SP

𝑚𝑛(𝛽, 𝛼)𝐌(𝐫,𝐤+2 ) + 𝐴SP
𝑚𝑛(𝛽, 𝛼)𝐍(𝐫,𝐤

+
2 )] sin 𝛽d𝛽d𝛼,

(21)

where 𝐤+2 = (𝑘2, 𝛽, 𝛼), and the amplitudes 𝐴SP
𝑚𝑛(𝛽, 𝛼) and 𝐵SP

𝑚𝑛(𝛽, 𝛼) are
given by Eqs. (A.15) and (A.16), respectively. Inserting Eqs. (20)–(21)
in Eq. (16), and interchanging the order of summation and integration,
gives an integral representation for the scattered field in terms of
upward propagating vector plane waves,

𝐄𝑁
2sct (𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐹+(𝛽, 𝛼)𝐌(𝐫,𝐤+2 ) + 𝐺+(𝛽, 𝛼)𝐍(𝐫,𝐤+2 )] sin 𝛽d𝛽d𝛼,

(22)

where

𝐹+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐹𝑁

𝑚𝑛𝐴
SP
𝑚𝑛(𝛽, 𝛼) + 𝐺𝑁

𝑚𝑛𝐵
SP
𝑚𝑛(𝛽, 𝛼)], (23)

𝐺+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐹𝑁

𝑚𝑛𝐵
SP
𝑚𝑛(𝛽, 𝛼) + 𝐺𝑁

𝑚𝑛𝐴
SP
𝑚𝑛(𝛽, 𝛼)], (24)

re the amplitudes of the vector plane waves. Similarly, in the half-
pace 𝑧 < 0, we use the integral representations (cf. Eqs. (A.17)–(A.18))

3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐴SP

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐌(𝐫,𝐤−2 )

+ 𝐵SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐍(𝐫,𝐤−2 )] sin 𝛽d𝛽d𝛼, (25)

𝐍3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐵SP

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐌(𝐫,𝐤−2 )

+ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐍(𝐫,𝐤−2 )] sin 𝛽d𝛽d𝛼, (26)

where 𝐤−2 = (𝑘2, 𝜋 − 𝛽, 𝛼), and obtain an integral representation for the
scattered field in terms of downward propagating vector plane waves,

𝐄𝑁
2sct (𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐹−(𝛽, 𝛼)𝐌(𝐫,𝐤−2 ) + 𝐺−(𝛽, 𝛼)𝐍(𝐫,𝐤−2 )] sin 𝛽d𝛽d𝛼,

(27)

where

𝐹−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐹𝑁

𝑚𝑛𝐴
SP
𝑚𝑛(𝜋 − 𝛽, 𝛼) + 𝐺𝑁

𝑚𝑛𝐵
SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)], (28)

𝐺−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐹𝑁

𝑚𝑛𝐵
SP
𝑚𝑛(𝜋 − 𝛽, 𝛼) + 𝐺𝑁

𝑚𝑛𝐴
SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)]. (29)

Relying on the analysis presented by Egel et al. [26,27] we make the
following comment. Let 𝑧 = 𝑧max < 𝑅 be a tangent plane bounding the
particle from above. The spherical wave expansion of the scattered field
(15) can diverge in the region 𝑧max ≤ 𝑧 < 𝑅. If we would work with
the infinite series (15), we would obtain the spectral representation for
the scattered field (22), in which the amplitudes 𝐹+(𝛽, 𝛼) and 𝐺+(𝛽, 𝛼)
would be represented as in Eqs. (23) and (24), respectively, but by infi-
nite instead of finite series. In this case, the spectral representation (22)
would not to be valid in a part of the region inside the circumscribed
sphere. The reason is due to the change of the order of integration and
summation when inserting Eqs. (20)–(21) in Eq. (15). This operation is
justified for 𝑧 ≥ 𝑅, but it is not allowed for 𝑧 → 𝑧max. In this region, the
convergence is not uniform but only point-wise. However, in a practical
implementation of the method, the expansion (15) must be truncated,
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in which case, the order of integration and summation plays no role. For
this reason, we considered from the beginning an approximate scattered
field represented by the finite series (16).

2.1.3. The interacting field in the immersion layer (layer 2)
Each vector plane wave in Eqs. (22) and (27), that is, 𝐌(𝐫,𝐤+2 ),

𝐍(𝐫,𝐤+2 ), 𝐌(𝐫,𝐤−2 ), and 𝐍(𝐫,𝐤−2 ), will interact with the layer system.
ecause we have two integral representations for the radiating vector
pherical wave functions (for 𝑧 > 0 and 𝑧 < 0), we will treat these cases
eparately.

1. In Appendix B it is shown that for an external excitation repre-
sented by the vector plane waves propagating upward in layer
2, 𝐄+

2 = 𝐌(𝐫,𝐤+2 ) and 𝐄+
2 = 𝐍(𝐫,𝐤+2 ), the reflected upward

propagating fields in layer 2 are 𝐄+
2R = 𝑆++

⟂ 𝐌(𝐫,𝐤+2 ) and 𝐄+
2R =

𝑆++
∥ 𝐍(𝐫,𝐤+2 ), respectively, while the reflected downward prop-

agating fields in layer 2 are 𝐄−
2R = 𝑆+−

⟂ 𝐌(𝐫,𝐤−2 ) and 𝐄−
2R =

𝑆+−
∥ 𝐍(𝐫,𝐤−2 ), respectively. The expressions of the scattering co-

efficients 𝑆++
X and 𝑆+−

X , X =⟂, ∥, are given by Eqs. (B.17) and
(B.18), respectively. Using this result in Eq. (22), we infer that
the interacting field is

𝐄𝑁+
int (𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
{𝐹+(𝛽, 𝛼)[𝑆++

⟂ 𝐌(𝐫,𝐤+2 ) + 𝑆+−
⟂ 𝐌(𝐫,𝐤−2 )]

+ 𝐺+(𝛽, 𝛼)[𝑆++
∥ 𝐍(𝐫,𝐤+2 ) + 𝑆+−

∥ 𝐍(𝐫,𝐤−2 )]} sin 𝛽d𝛽d𝛼. (30)

2. In Appendix B it is shown that for an external excitation rep-
resented by the vector plane waves propagating downward in
layer 2, 𝐄−

2 = 𝐌(𝐫,𝐤−2 ) and 𝐄−
2 = 𝐍(𝐫,𝐤−2 ), the reflected up-

ward propagating fields in layer 2 are 𝐄+
2R = 𝑆−+

⟂ 𝐌(𝐫,𝐤+2 ) and
𝐄+
2R = 𝑆−+

∥ 𝐍(𝐫,𝐤+2 ), respectively, while the reflected downward
propagating fields in layer 2 are 𝐄−

2R = 𝑆−−
⟂ 𝐌(𝐫,𝐤−2 ) and 𝐄−

2R =
𝑆−−
∥ 𝐍(𝐫,𝐤−2 ), respectively. The expressions of the scattering co-

efficients 𝑆−+
X and 𝑆−−

X , X =⟂, ∥, are given by Eqs. (B.20) and
(B.21), respectively. Employing this result in Eq. (27), we deduce
that the interacting field is

𝐄𝑁−
int (𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
{𝐹−(𝛽, 𝛼)[𝑆−+

⟂ 𝐌(𝐫,𝐤+2 ) + 𝑆−−
⟂ 𝐌(𝐫,𝐤−2 )]

+ 𝐺−(𝛽, 𝛼)[𝑆−+
∥ 𝐍(𝐫,𝐤+2 ) + 𝑆−−

∥ 𝐍(𝐫,𝐤−2 )]} sin 𝛽d𝛽d𝛼. (31)

The (total) interacting field produced by the scattered field is then

𝐄𝑁
int (𝐫) = 𝐄𝑁+

int (𝐫) + 𝐄𝑁−
int (𝐫)

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[+(𝛽, 𝛼)𝐌(𝐫,𝐤+2 ) + −(𝛽, 𝛼)𝐌(𝐫,𝐤−2 )

+ +(𝛽, 𝛼)𝐍(𝐫,𝐤+2 ) + −(𝛽, 𝛼)𝐍(𝐫,𝐤−2 )] sin 𝛽d𝛽d𝛼, (32)

where

+(𝛽, 𝛼) = 𝐹+(𝛽, 𝛼)𝑆++
⟂ + 𝐹−(𝛽, 𝛼)𝑆−+

⟂ , (33)

−(𝛽, 𝛼) = 𝐹+(𝛽, 𝛼)𝑆+−
⟂ + 𝐹−(𝛽, 𝛼)𝑆−−

⟂ , (34)

+(𝛽, 𝛼) = 𝐺+(𝛽, 𝛼)𝑆++
∥ + 𝐺−(𝛽, 𝛼)𝑆−+

∥ , (35)

−(𝛽, 𝛼) = 𝐺+(𝛽, 𝛼)𝑆+−
∥ + 𝐺−(𝛽, 𝛼)𝑆−−

∥ . (36)

Inserting the expansions of the upward and downward propagating
vector plane waves in terms of regular vector spherical wave func-
tions as given by Eqs. (A.19)–(A.20) and (A.23)–(A.24), respectively,
in Eq. (32), we obtain the following series representation for the
interacting field:

𝐄𝑁
int (𝐫) =

𝑁
∑

(𝑚1 ,𝑛1)=1
[𝐹𝑁

I𝑚1𝑛1
𝐌1

𝑚1𝑛1
(𝑘2𝐫) + 𝐺𝑁

I𝑚1𝑛1
𝐍1
𝑚1𝑛1

(𝑘2𝐫)], (37)

where

𝐹𝑁
I𝑚1𝑛1

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[+(𝛽, 𝛼)𝐴PS

𝑚1𝑛1
(𝛽, 𝛼) + −(𝛽, 𝛼)𝐴PS

𝑚1𝑛1
(𝜋 − 𝛽, 𝛼)

+ PS − PS
+  (𝛽, 𝛼)𝐵𝑚1𝑛1
(𝛽, 𝛼) +  (𝛽, 𝛼)𝐵𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)] sin 𝛽d𝛽d𝛼, (38)
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[

𝐺𝑁
I𝑚1𝑛1

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[+(𝛽, 𝛼)𝐵PS

𝑚1𝑛1
(𝛽, 𝛼) + −(𝛽, 𝛼)𝐵PS

𝑚1𝑛1
(𝜋 − 𝛽, 𝛼)

+ +(𝛽, 𝛼)𝐴PS
𝑚1𝑛1

(𝛽, 𝛼) + −(𝛽, 𝛼)𝐴PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)] sin 𝛽d𝛽d𝛼, (39)

and 𝐴PS
𝑚1𝑛1

(𝛽, 𝛼) and 𝐵PS
𝑚1𝑛1

(𝛽, 𝛼) are given by Eqs. (A.21) and (A.22),
respectively. In the particle coordinate systems 𝑂𝑥𝚙𝑦𝚙𝑧𝚙, the spherical
wave expansion of the interacting field reads as

𝐄𝑁
int (𝐫) =

𝑁
∑

(𝑚1 ,𝑛1)=1
[𝑓𝑁

I𝑚1𝑛1
𝐌1

𝑚1𝑛1
(𝑘2𝑟, 𝜃, 𝜑) + 𝑔𝑁I𝑚1𝑛1

𝐍1
𝑚1𝑛1

(𝑘2𝑟, 𝜃, 𝜑)], (40)

where

𝑓𝑁
I𝑚1𝑛1

=
min(𝑛1 ,𝑀rank)

∑

𝑚2=−min(𝑛1 ,𝑀rank)
𝐷𝑛1

𝑚1𝑚2
(𝛼𝚙, 𝛽𝚙, 0)𝐹𝑁

I𝑚2𝑛1
,

𝑔𝑁I𝑚1𝑛1
=

min(𝑛1 ,𝑀rank)
∑

𝑚2=−min(𝑛1 ,𝑀rank)
𝐷𝑛1

𝑚1𝑚2
(𝛼𝚙, 𝛽𝚙, 0)𝐺𝑁

I𝑚2𝑛1
, (41)

or in matrix form,
[

𝑓𝑁
I𝑚1𝑛1

𝑔𝑁I𝑚1𝑛1

]

= D
⎡

⎢

⎢

⎣

𝐹𝑁
I𝑚2𝑛1

𝐺𝑁
I𝑚2𝑛1

⎤

⎥

⎥

⎦

, D =

[

𝐷𝑛1
𝑚1𝑚2

(𝛼𝚙, 𝛽𝚙, 0) 0

0 𝐷𝑛1
𝑚1𝑚2

(𝛼𝚙, 𝛽𝚙, 0)

]

.

(42)

2.1.4. The interaction matrix
The interaction matrix relates the expansion coefficients of the

interacting field (𝑓𝑁
I𝑚1𝑛1

and 𝑔𝑁I𝑚1𝑛1
) to the expansion coefficients of the

scattered field (𝑓𝑁
𝑚𝑛 and 𝑔𝑁𝑚𝑛) in the particle coordinate system.

In a first step, we relate the expansion coefficients of the interacting
field (𝐹𝑁

I𝑚1𝑛1
and 𝐺𝑁

I𝑚1𝑛1
) to the expansion coefficient of the scattered

field (𝐹𝑁
𝑚𝑛 and 𝐺𝑁

𝑚𝑛) in the global coordinate system. For doing this,
we note that expansions of the spectral amplitudes +(𝛽, 𝛼), −(𝛽, 𝛼),
+(𝛽, 𝛼), and −(𝛽, 𝛼) in terms of the scattering field coefficients 𝐹𝑁

𝑚𝑛
and 𝐺𝑁

𝑚𝑛 can be obtained by combining Eqs. (23), (24), (28), and (29)
with Eqs. (33)–(36). The result is

+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 1+

𝑚𝑛𝐹
𝑁
𝑚𝑛 + G 1+

𝑚𝑛 𝐺
𝑁
𝑚𝑛), (43)

−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 1−

𝑚𝑛𝐹
𝑁
𝑚𝑛 + G 1−

𝑚𝑛 𝐺
𝑁
𝑚𝑛), (44)

+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 2+

𝑚𝑛𝐹
𝑁
𝑚𝑛 + G 2+

𝑚𝑛 𝐺
𝑁
𝑚𝑛), (45)

−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 2−

𝑚𝑛𝐹
𝑁
𝑚𝑛 + G 2−

𝑚𝑛 𝐺
𝑁
𝑚𝑛), (46)

with

F 1+
𝑚𝑛 = 𝑆++

⟂ 𝐴SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−+

⟂ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (47)

G 1+
𝑚𝑛 = 𝑆++

⟂ 𝐵SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−+

⟂ 𝐵SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (48)

F 1−
𝑚𝑛 = 𝑆+−

⟂ 𝐴SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−−

⟂ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (49)

G 1−
𝑚𝑛 = 𝑆+−

⟂ 𝐵SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−−

⟂ 𝐵SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (50)

and

F 2+
𝑚𝑛 = 𝑆++

∥ 𝐵SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−+

∥ 𝐵SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (51)

G 2+
𝑚𝑛 = 𝑆++

∥ 𝐴SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−+

∥ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (52)

F 2−
𝑚𝑛 = 𝑆+−

∥ 𝐵SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−−

∥ 𝐵SP
𝑚𝑛(𝜋 − 𝛽, 𝛼), (53)

G 2−
𝑚𝑛 = 𝑆+−

∥ 𝐴SP
𝑚𝑛(𝛽, 𝛼) + 𝑆−−

∥ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼). (54)

Then, substituting Eqs. (43)–(46) in Eqs. (38)–(39), yields
[

𝐹𝑁
I𝑚1𝑛1
𝑁

]

= R
[

𝐹𝑁
𝑚𝑛
𝑁

]

, (55)
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𝐺I𝑚1𝑛1
𝐺𝑚𝑛
where the elements of the matrix

R =

[

𝑅11
𝑚1𝑛1 ,𝑚𝑛

𝑅12
𝑚1𝑛1 ,𝑚𝑛

𝑅21
𝑚1𝑛1 ,𝑚𝑛

𝑅22
𝑚1𝑛1 ,𝑚𝑛

]

(56)

are given by

𝑅11
𝑚1𝑛1 ,𝑚𝑛

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[F 1+

𝑚𝑛𝐴
PS
𝑚1𝑛1

(𝛽, 𝛼) + F 1−
𝑚𝑛𝐴

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)

+ F 2+
𝑚𝑛𝐵

PS
𝑚1𝑛1

(𝛽, 𝛼) + F 2−
𝑚𝑛𝐵

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)] sin 𝛽d𝛽d𝛼, (57)

𝑅12
𝑚1𝑛1 ,𝑚𝑛

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[G 1+

𝑚𝑛 𝐴
PS
𝑚1𝑛1

(𝛽, 𝛼) + G 1−
𝑚𝑛 𝐴

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)

+ G 2+
𝑚𝑛 𝐵

PS
𝑚1𝑛1

(𝛽, 𝛼) + G 2−
𝑚𝑛 𝐵

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)] sin 𝛽d𝛽d𝛼, (58)

𝑅21
𝑚1𝑛1 ,𝑚𝑛

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[F 1+

𝑚𝑛𝐵
PS
𝑚1𝑛1

(𝛽, 𝛼) + F 1−
𝑚𝑛𝐵

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)

+ F 2+
𝑚𝑛𝐴

PS
𝑚1𝑛1

(𝛽, 𝛼) + F 2−
𝑚𝑛𝐴

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)] sin 𝛽d𝛽d𝛼, (59)

𝑅22
𝑚1𝑛1 ,𝑚𝑛

= ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[G 1+

𝑚𝑛 𝐵
PS
𝑚1𝑛1

(𝛽, 𝛼) + G 1−
𝑚𝑛 𝐵

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)+

+ G 2+
𝑚𝑛 𝐴

PS
𝑚1𝑛1

(𝛽, 𝛼) + G 2−
𝑚𝑛 𝐴

PS
𝑚1𝑛1

(𝜋 − 𝛽, 𝛼)] sin 𝛽d𝛽d𝛼. (60)

The expressions of the matrix elements 𝑅𝑖𝑗
𝑚1𝑛1 ,𝑚𝑛, 𝑖, 𝑗 = 1, 2 can be

simplified by making use of the expressions of 𝐴SP
𝑚𝑛(𝛽, 𝛼), 𝐵SP

𝑚𝑛(𝛽, 𝛼),
𝐴PS
𝑚1𝑛1

(𝛽, 𝛼) and 𝐵PS
𝑚1𝑛1

(𝛽, 𝛼) as given by Eqs. (A.15), (A.16), (A.21) and
(A.22), respectively, and by integrating over the azimuth angle 𝛼; we
find

𝑅11
𝑚1𝑛1𝑛

= ∫

𝜋∕2−j∞

0
𝐶𝑛1𝑛{F̂

1+
𝑚1𝑛

(𝛽)𝜏|𝑚1|
𝑛1 (𝛽) + F̂ 1−

𝑚1𝑛
(𝛽)𝜏|𝑚1|

𝑛1 (𝜋 − 𝛽, 𝛼)

+ 𝑚1[F̂ 2+
𝑚1𝑛

(𝛽)𝜋|𝑚1|
𝑛1 (𝛽) + F̂ 2−

𝑚1𝑛
(𝛽)𝜋|𝑚1|

𝑛1 (𝜋 − 𝛽)]} sin 𝛽d𝛽, (61)

𝑅12
𝑚1𝑛1𝑛

= ∫

𝜋∕2−j∞

0
𝐶𝑛1𝑛{Ĝ

1+
𝑚1𝑛

(𝛽)𝜏|𝑚1|
𝑛1 (𝛽) + Ĝ 1−

𝑚1𝑛
(𝛽)𝜏|𝑚1|

𝑛1 (𝜋 − 𝛽, 𝛼)

+ 𝑚1[Ĝ 2+
𝑚1𝑛

(𝛽)𝜋|𝑚1|
𝑛1 (𝛽) + Ĝ 2−

𝑚1𝑛
(𝛽)𝜋|𝑚1|

𝑛1 (𝜋 − 𝛽)]} sin 𝛽d𝛽, (62)

𝑅21
𝑚1𝑛1𝑛

= ∫

𝜋∕2−j∞

0
𝐶𝑛1𝑛{𝑚1[F̂ 1+

𝑚1𝑛
(𝛽)𝜋|𝑚1|

𝑛1 (𝛽) + F̂ 1−
𝑚1𝑛

(𝛽)𝜋|𝑚1|
𝑛1 (𝜋 − 𝛽)]

+ F̂ 2+
𝑚1𝑛

(𝛽)𝜏|𝑚1|
𝑛1 (𝛽) + F̂ 2−

𝑚1𝑛
(𝛽)𝜏|𝑚1|

𝑛1 (𝜋 − 𝛽, 𝛼)} sin 𝛽d𝛽, (63)

𝑅22
𝑚1𝑛1𝑛

= ∫

𝜋∕2−j∞

0
𝐶𝑛1𝑛{𝑚1[Ĝ 1+

𝑚1𝑛
(𝛽)𝜋|𝑚1|

𝑛1 (𝛽) + Ĝ 1−
𝑚1𝑛

(𝛽)𝜋|𝑚1|
𝑛1 (𝜋 − 𝛽)]

+ Ĝ 2+
𝑚1𝑛

(𝛽)𝜏|𝑚1|
𝑛1 (𝛽) + Ĝ 2−

𝑚1𝑛
(𝛽)𝜏|𝑚1|

𝑛1 (𝜋 − 𝛽, 𝛼)} sin 𝛽d𝛽, (64)

where

𝐶𝑛1𝑛 =
2j𝑛1−𝑛

√

𝑛𝑛1(𝑛 + 1)(𝑛1 + 1)
, (65)

nd
1̂+
𝑚1𝑛

(𝛽) = 𝑆++
⟂ (𝛽)𝜏|𝑚1|

𝑛 (𝛽) + 𝑆−+
⟂ (𝛽)𝜏|𝑚1|

𝑛 (𝜋 − 𝛽), (66)

Ĝ 1+
𝑚1𝑛

(𝛽) = 𝑚1[𝑆++
⟂ (𝛽)𝜋|𝑚1|

𝑛 (𝛽) + 𝑆−+
⟂ (𝛽)𝜋|𝑚1|

𝑛 (𝜋 − 𝛽)], (67)
1̂−
𝑚1𝑛

(𝛽) = 𝑆+−
⟂ (𝛽)𝜏|𝑚1|

𝑛 (𝛽) + 𝑆−−
⟂ (𝛽)𝜏|𝑚1|

𝑛 (𝜋 − 𝛽), (68)

Ĝ 1−
𝑚1𝑛

(𝛽) = 𝑚1[𝑆+−
⟂ (𝛽)𝜋|𝑚1|

𝑛 (𝛽) + 𝑆−−
⟂ (𝛽)𝜋|𝑚1|

𝑛 (𝜋 − 𝛽)], (69)

2̂+
𝑚1𝑛

(𝛽) = 𝑚1[𝑆++
∥ (𝛽)𝜋|𝑚1|

𝑛 (𝛽) + 𝑆−+
∥ (𝛽)𝜋|𝑚1|

𝑛 (𝜋 − 𝛽)], (70)

Ĝ 2+
𝑚1𝑛

(𝛽) = 𝑆++
∥ (𝛽)𝜏|𝑚1|

𝑛 (𝛽) + 𝑆−+
∥ (𝛽)𝜏|𝑚1|

𝑛 (𝜋 − 𝛽), (71)
2̂−
𝑚1𝑛

(𝛽) = 𝑚1[𝑆+−
∥ (𝛽)𝜋|𝑚1|

𝑛 (𝛽) + 𝑆−−
∥ 𝜋|𝑚1|

𝑛 (𝜋 − 𝛽)], (72)

Ĝ 2−
𝑚1𝑛

(𝛽) = 𝑆+−
∥ (𝛽)𝜏|𝑚1|

𝑛 (𝛽) + 𝑆−−
∥ (𝛽)𝜏|𝑚1|

𝑛 (𝜋 − 𝛽). (73)

In the second step, we derive the expression for the interaction
atrix by combining Eqs. (19), (42), and (55); we obtain

𝑓𝑁
I𝑚1𝑛1
𝑁

]

= A

[

𝑓𝑁
𝑚𝑛
𝑁

]

, (74)

𝑔I𝑚1𝑛1

𝑔𝑚𝑛
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where

A = DRD−1 =
[

𝐴𝑚1𝑛1 ,𝑚𝑛

]

=

[

𝐴11
𝑚!𝑛! ,𝑚𝑛

𝐴12
𝑚!𝑛! ,𝑚𝑛

𝐴21
𝑚!𝑛! ,𝑚𝑛

𝐴22
𝑚!𝑛! ,𝑚𝑛

]

(75)

s the interaction matrix whose elements are given explicitly by

11
𝑚!𝑛! ,𝑚𝑛

=
min(𝑛1 ,𝑀rank)

∑

𝑚2=−min(𝑛1 ,𝑀rank)
𝐷𝑛1

𝑚1𝑚2
(𝛼𝚙, 𝛽𝚙, 0)𝑅11

𝑚2𝑛1𝑛
𝐷𝑛

𝑚2𝑚
(0,−𝛽𝚙, 𝛼𝚙), (76)

12
𝑚!𝑛! ,𝑚𝑛

=
min(𝑛1 ,𝑀rank)

∑

𝑚2=−min(𝑛1 ,𝑀rank)
𝐷𝑛1

𝑚1𝑚2
(𝛼𝚙, 𝛽𝚙, 0)𝑅12

𝑚2𝑛1𝑛
𝐷𝑛

𝑚2𝑚
(0,−𝛽𝚙, 𝛼𝚙), (77)

𝐴21
𝑚!𝑛! ,𝑚𝑛

=
min(𝑛1 ,𝑀rank)

∑

𝑚2=−min(𝑛1 ,𝑀rank)
𝐷𝑛1

𝑚1𝑚2
(𝛼𝚙, 𝛽𝚙, 0)𝑅21

𝑚2𝑛1𝑛
𝐷𝑛

𝑚2𝑚
(0,−𝛽𝚙, 𝛼𝚙), (78)

𝐴22
𝑚!𝑛! ,𝑚𝑛

=
min(𝑛1 ,𝑀rank)

∑

𝑚2=−min(𝑛1 ,𝑀rank)
𝐷𝑛1

𝑚1𝑚2
(𝛼𝚙, 𝛽𝚙, 0)𝑅22

𝑚2𝑛1𝑛
𝐷𝑛

𝑚2𝑚
(0,−𝛽𝚙, 𝛼𝚙), (79)

2.1.5. The T-matrix equation
In the particle coordinate system, the scattered field coefficients are

related to the expansion coefficients of the fields exciting the particle
through the transition matrix T = [𝑇𝑚𝑛,𝑚1𝑛1 ]. Taking into account that
the field exciting the particle sums the contributions of the incident and
interacting fields, and truncating the spherical wave expansion of the
incident field (10), we find the T-matrix equation:
[

𝑓𝑁
𝑚𝑛

𝑔𝑁𝑚𝑛

]

= T
([

𝑎𝑁𝑚1𝑛1

𝑏𝑁𝑚1𝑛1

]

+

[

𝑓𝑁
I𝑚1𝑛1

𝑔𝑁I𝑚1𝑛1

])

, (80)

and further, by making use of Eq. (74),

(I − TA)
[

𝑓𝑁
𝑚𝑛

𝑔𝑁𝑚𝑛

]

= T
[

𝑎𝑁𝑚1𝑛1

𝑏𝑁𝑚1𝑛1

]

. (81)

In the above equations, the matrices are of dimension 2𝑁max × 2𝑁max,
where

𝑁max = 𝑁rank +𝑀rank(2𝑁rank −𝑀rank + 1), (82)

and it is apparent that the transition matrix of the system particle–
stratified medium is

Tsystem = (I − TA)−1T = (T−1 − A)−1. (83)

The transition matrix can be calculated with any method devoted to
this purpose, and in particular, with the null-field method with discrete
sources [28]. After solving the T-matrix equation for the scattered
field coefficients in the particle coordinate system (𝑓𝑁

𝑚𝑛 and 𝑔𝑁𝑚𝑛), the
scattered field coefficients in the global coordinate system (𝐹𝑁

𝑚𝑛 and
𝐺𝑁
𝑚𝑛) are computed by means of Eq. (18) (or Eq. (19)).

2.1.6. The scattered field in half-space 0
We consider the expressions of the scattered field in layer 2 as given

by Eq. (22) for 𝑧 > 0 and Eq. (27) for 𝑧 < 0. As before, we distinguish
the following situations.

1. In Appendix B it is shown that for an external excitation repre-
sented by the vector plane waves propagating upward in layer
2, 𝐄+

2 = 𝐌(𝐫,𝐤+2 ) and 𝐄+
2 = 𝐍(𝐫,𝐤+2 ), the transmitted downward

propagating fields in the half-space 0 are 𝐄−
0T = 𝑆+

⟂𝐌(𝐫,𝐤−0 )
and 𝐄−

0T = 𝑆+
∥ 𝐍(𝐫,𝐤

−
0 ), respectively, where the expression of the

scattering coefficient 𝑆+
X , X =⟂, ∥, is given by Eq. (B.19). As a

result, and by using Eqs. (23)–(24), we find

𝐄𝑁+
0sct(𝐫) =

𝑁
∑

(𝑚,𝑛)=1
∫

2𝜋

0 ∫

𝜋∕2−j∞

0
{[𝐴SP

𝑚𝑛(𝛽, 𝛼)𝑆
+
⟂ (𝛽)𝐌(𝐫,𝐤−0 )

+ 𝐵SP
𝑚𝑛(𝛽, 𝛼)𝑆

+
∥ (𝛽)𝐍(𝐫,𝐤

−
0 )]𝐹

𝑁
𝑚𝑛

+
2𝜋 𝜋∕2−j∞

[𝐵SP(𝛽, 𝛼)𝑆+(𝛽)𝐌(𝐫,𝐤−)
6

∫0 ∫0 𝑚𝑛 ⟂ 0
+ 𝐴SP
𝑚𝑛(𝛽, 𝛼)𝑆

+
∥ (𝛽)𝐍(𝐫,𝐤

−
0 )]𝐺

𝑁
𝑚𝑛} sin 𝛽d𝛽d𝛼. (84)

2. In Appendix B it is shown that for an external excitation repre-
sented by the vector plane waves propagating upward in layer
2, 𝐄−

2 = 𝐌(𝐫,𝐤−2 ) and 𝐄−
2 = 𝐍(𝐫,𝐤−2 ), the transmitted downward

propagating fields in the half-space 0 are 𝐄−
0T = 𝑆−

⟂𝐌(𝐫,𝐤−0 )
and 𝐄−

0T = 𝑆−
∥ 𝐍(𝐫,𝐤

−
0 ), respectively, where the expression of the

scattering coefficient 𝑆−
X , X =⟂, ∥, is given by Eq. (B.22). As a

result, and by using Eqs. (28)–(29), we find

𝐄𝑁−
0sct(𝐫) =

𝑁
∑

(𝑚,𝑛)=1
∫

2𝜋

0 ∫

𝜋∕2−j∞

0
{[𝐴SP

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝑆−
⟂ (𝛽)𝐌(𝐫,𝐤−0 )

+ 𝐵SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)𝑆−

∥ (𝛽)𝐍(𝐫,𝐤
−
0 )]𝐹

𝑁
𝑚𝑛

+ ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐵SP

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝑆−
⟂ (𝛽)𝐌(𝐫,𝐤−0 )

+ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)𝑆−

∥ (𝛽)𝐍(𝐫,𝐤
−
0 )]𝐺

𝑁
𝑚𝑛} sin 𝛽d𝛽d𝛼. (85)

To compute the integrals in Eqs. (84)–(85) we use the stationary phase
method. Specifically, for 𝐫 = (𝑟, 𝜃0, 𝜑) with 𝜃0 > 𝜋∕2, we use the results
Appendix D

∫

2𝜋

0 ∫

𝜋
2 −j∞

0
𝑔(𝛽, 𝛼)�̂�(̂𝐤−0 )e

j𝐤−0 ⋅𝐫 sin 𝛽d𝛽d𝛼 ≈ −j 2𝜋
𝑘0𝑟

𝑔(𝛽2s, 𝜑)ej𝑘0𝑟�̂�(�̂�), (86)

∫

2𝜋

0 ∫

𝜋
2 −j∞

0
𝑔(𝛽, 𝛼)𝜷 (̂𝐤−)ej𝐤−⋅𝐫 sin 𝛽d𝛽d𝛼 ≈ −j 2𝜋

𝑘0𝑟
𝑔(𝛽2s, 𝜑)ej𝑘0𝑟�̂�(�̂�), (87)

here

2s = arcsin
(n0

n2
sin 𝜃0

)

. (88)

mploying the above results in Eqs. (84)–(85) and using the expressions
f 𝐴SP

𝑚𝑛(𝛽, 𝛼) and 𝐵SP
𝑚𝑛(𝛽, 𝛼) as given by Eqs. (A.15) and (A.16), respec-

ively, we find that the far-field pattern 𝐄𝑁∞
0sct (𝜃0, 𝜑) of the scattered field

n the half-space 0, defined through the relation

𝑁
0sct(𝐫) = 𝐄𝑁+

0sct(𝐫) + 𝐄𝑁−
0sct(𝐫) =

ej𝑘0𝑟

𝑟
𝐄𝑁∞
0sct (𝜃0, 𝜑), (89)

is

𝐄𝑁∞
0sct (𝜃0, 𝜑) = 𝐸𝑁∞

0𝜃 (𝜃0, 𝜑)�̂�0 + 𝐸𝑁∞
0𝜑 (𝜃0, 𝜑)�̂�, (90)

where �̂�0 = �̂�(�̂�), �̂� = �̂�(�̂�),

𝑁∞
0𝜃 (𝜃0, 𝜑) = j 1

𝑘0

𝑁
∑

(𝑚,𝑛)=1
𝐶𝑛{𝑚[𝜋|𝑚|

𝑛 (𝛽2s)𝑆+
∥ (𝛽2s) + 𝜋|𝑚|

𝑛 (𝜋 − 𝛽2s)𝑆−
∥ (𝛽2s)]𝐹𝑁

𝑚𝑛

+ [𝜏|𝑚|𝑛 (𝛽2s)𝑆+
∥ (𝛽2s) + 𝜏|𝑚|𝑛 (𝜋 − 𝛽2s)𝑆−

∥ (𝛽2s)]𝐺𝑁
𝑚𝑛}e

j𝑚𝜑, (91)

𝑁∞
0𝜑 (𝜃0, 𝜑) = − 1

𝑘0

𝑁
∑

(𝑚,𝑛)=1
𝐶𝑛{[𝜏|𝑚|𝑛 (𝛽2s)𝑆+

⟂ (𝛽2s) + 𝜏|𝑚|𝑛 (𝜋 − 𝛽2s)𝑆−
⟂ (𝛽2s)]𝐹𝑁

𝑚𝑛

+ 𝑚[𝜋|𝑚|
𝑛 (𝛽2s)𝑆+

⟂ (𝛽2s) + 𝜋|𝑚|
𝑛 (𝜋 − 𝛽2s)𝑆−

⟂ (𝛽2s)]𝐺𝑁
𝑚𝑛}e

j𝑚𝜑, (92)

nd

𝑛 =
1

j𝑛+1
1

√

2𝑛(𝑛 + 1)
. (93)

The main steps of the algorithm for computing the expansion coef-
icients of the scattered field are illustrated in Fig. 3. Some remarks can
e made here.

1. For a numerical computation of the integrals in Eqs. (61)–
(64), we set 𝑆𝑢𝑣

X = e2j𝑘(2)z 𝑧3𝑆𝑢𝑣
X for 𝑢, 𝑣 = +,− and X =⟂, ∥,

in Eqs. (66)–(73), where the expressions of 𝑆𝑢𝑣
X are given by

Eqs. (B.27)–(B.30). Consequently, each integrand in Eqs. (61)–
(64) will contain the factor

e2j𝑘(2)z 𝑧3 = e2j𝑘2𝑧3 cos 𝛽 ,

and so, the integrals in Eqs. (61)–(64) will be of the form

𝐼 =
𝜋∕2−j∞

𝑓 (cos 𝛽)ej𝑞 cos 𝛽 sin 𝛽 d𝛽, (94)
∫0
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Fig. 3. Algorithm for computing the expansion coefficients of the scattered field. Here,
WE stands for plane wave expansion, SWF1 for regular spherical wave expansion, and
WF3 for radiating spherical wave expansion.

where 𝑓 (𝑡) is a relatively slowly varying function and 𝑞 = 2𝑘2𝑧3.
The standard path of integration 𝐶 for 𝛽 is the union of the
lines 𝐿1 = {(Re(𝛽), Im(𝛽)) ∣ 0 ≤ Re(𝛽) ≤ 𝜋∕2, Im(𝛽) = 0} and
𝐿2 = {(Re(𝛽), Im(𝛽)) ∣ Re(𝛽) = 𝜋∕2, −∞ < Im(𝛽) ≤ 0}. By the
change of variable 𝑘⟂ = 𝑘2 sin 𝛽, the integral (94) becomes a
Sommerfeld-type integral,

𝐼 = ∫

∞

0
𝑓
(𝑘(2)z
𝑘2

)

ej𝑞(𝑘(2)z ∕𝑘2)
𝑘⟂d𝑘⟂
𝑘2𝑘

(2)
z

, (95)

where 𝑘(2)z =
√

𝑘22 − 𝑘2⟂. The computation of the integral (95)
along the real axis is not a trivial task. This is because, in
the neighborhood of the wave-guide mode singularities and
the branch-point singularity (at 𝑘⟂ = 𝑘2), the integrand is
a rapidly varying function of 𝑘⟂, and so, a fine sampling of
the integrand would be required to achieve a good enough
accuracy. A straightforward and robust approach for computing
the integral (95) along the segment [0, 𝑘⟂max] was proposed in
Refs. [24,29]. It is a direct numerical quadrature (e.g., using
the trapezoidal rule) in combination with an integration con-
tour 𝐶1 deflected into the negative complex half-plane [30].
Because the wave-guide mode singularities and the branch-point
singularity associated with the square root are located in the
positive complex half-plane [24,29], the integrand is an an-
alytic function in the negative complex half-plane. Therefore,
according to Cauchy’s theorem, the integral along the deflected
contour 𝐶1 is identical to the integral along the real axis, but the
numerical instabilities are avoided. On the other hand, Bobbert
and Vlieger [31,32] considered the change of variable 𝑥 =
−j𝑞(cos 𝛽 − 1), yielding

𝐼 = 𝑒j𝑞

j𝑞 ∫

∞

0
𝑓
(

1 − 𝑥
j𝑞

)

e−𝑥 d𝑥, (96)

and used a Gauss–Laguerre quadrature for an efficient calcula-
tion of this integral. It should be pointed out that by the above
change of variable, the contour of integration is not 𝐶 = 𝐿1∪𝐿2,
but rather a contour 𝐶2 that starts at the point (0, 0) (for 𝑥 = 0)
and goes to the point at infinity (Re(𝛽) → 𝜋∕2, Im(𝛽) → −∞) (for
7

I

𝑥 → ∞), without passing through the critical point (𝜋∕2, 0). The
standard integration contour 𝐶 together with the two deflected
integration contours 𝐶1 and 𝐶2 are shown in Fig. 4. As an
example, we illustrate in Fig. 5, the integrands of Eqs. (95) and
(96) for computing the matrix element 𝐼 = 𝑅11

𝑚1𝑛1𝑛
. The plots

show that in the first case and in the neighborhood of the critical
point 𝜅 = 1, the integrand is a rapidly varying function of 𝜅 =
𝑘⟂∕𝑘2 = sin 𝛽, while in the second case, the integrand is a smooth
function of 𝑥 = −𝑗𝑞(cos 𝛽 − 1). Actually, in the second case, we
have 𝜅 = sin 𝛽 =

√

(𝑥∕𝑞)2 − 2j(𝑥∕𝑞), showing that Im(𝜅) < 0; thus,
the contour 𝐶2 avoids the vicinity of the singularities. For this
reason, the deflected integration contour 𝐶2 was adopted in our
analysis.

2. The convergence of the algorithm depends on the choice of
the maximum expansion and azimuthal orders 𝑁rank and 𝑀rank,
respectively, as well as, on the number of Laguerre quadrature
points 𝑁int. In practice, we may check the convergence of the
differential scattering cross sections for parallel and perpendicu-
lar polarizations 𝜎∥(𝜃0) and 𝜎⟂(𝜃0), respectively, at 11 equidistant
values of the scattering angle 𝜃0 in the range [90◦, 270◦] for the
pairs (𝑁rank,𝑀rank), (𝑁rank−1,𝑀rank), and (𝑁rank,𝑀rank−1) [33].
Note that for a prolate spheroid with semi-major axis 𝑎, 𝜎∥(𝜃0)
and 𝜎⟂(𝜃0) are defined, respectively by

𝜎∥(𝜃0) =
|𝐸𝑁∞

0𝜃 (𝜃0, 𝜑 = 0)|2

𝜋𝑎2
, 𝜎⟂(𝜃0) =

|𝐸𝑁∞
0𝜑 (𝜃0, 𝜑 = 0)|2

𝜋𝑎2
. (97)

Alternatively, we may check the convergence of the integral
response of the detector (defined below) for the same pairs of
expansion and azimuthal orders.

3. The system 𝑇 matrix was obtained by truncating the scattered
field expansion and by considering an expansion of the dyadic
Green’s function in terms of vector spherical wave functions. The
derivation relying on a truncation of the internal field and an
expansion of the dyadic Green’s function in terms vector plane
waves is given in Appendix C. Note that the spherical wave
expansion is valid outside a sphere enclosing the particle, i.e., for
𝑧 ≥ 𝑅, while the plane wave expansion is valid outside the
tangent planes bounding the particle from above and below,
i.e., for 𝑧 ≥ 𝑧max and 𝑧 ≤ 𝑧min, respectively. In both cases we
obtained the same result (cf. Eqs. (83) and (C.43)). Therefore, we
may conclude that for truncated field expansions, the condition
𝑧3 ≥ 𝑅 does not play a role.

Two simplified scattering problems can be modeled by particulariz-
ng the above formalism.

1. The scattering by a particle placed in the lower half-space and
being illuminated by an incident field propagating in the upper
half-space (Fig. 2). This problem can be modeled by setting
n0 = n1 = n2 and n3 = n4. In such a case, the expressions
of the scattering coefficients are given by Eqs. (B.31)–(B.37) of
Appendix B, and the entire mathematical formalism reduces to
the one presented in Ref. [19].

2. The scattering by a particle placed in the lower half-space and
being illuminated by an incident field propagating from the glass
prism to the lower half-space through the coating layer (Fig. 2).
This problem can be modeled by setting n0 = n1 = n2 and n3 ≠
n4. In such a case, the expressions of the scattering coefficients
are given by Eqs. (B.39)–(B.42) of Appendix B. The scattering
problem is considerably simplified in the sense that it does not
take into account the presence of the immersion cell. (cf. Fig. 1).

.2. Imagining of the scattered field

The imaging system of the scattered field is illustrated in Fig. 6.
t consists of a pair of lenses which are placed such that their foci
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Fig. 4. Standard 𝛽-integration contour 𝐶 (left), deflected 𝜅-integration contour 𝐶1 proposed in Refs. [24,29], where 𝜅 = 𝑘⟂∕𝑘2 = sin 𝛽 (middle), and the deflected 𝛽-integration
ontour 𝐶2 proposed in Refs. [31,32] (right).
Fig. 5. The integrand of Eq. (95) as a function of 𝜅 = 𝑘⟂∕𝑘2 (upper panel) and the integrand of Eq. (96) as a function of 𝑥 (lower panel) for computing the matrix element
= 𝑅11

𝑚1𝑛1𝑛
. In the first case, we considered 3000 equidistant quadrature points in the interval [0, 𝑘⟂max] with 𝑘⟂max = 3𝑘2, while in the second case, we considered 80 Laguerre

uadrature points. The simulations correspond to 𝑚1 = 1, 𝑛1 = 𝑛 = 𝑁rank = 35, and n0 = 1.0003, n1 = 1.515, n2 = 1.33, n3 = 1.42, and n4 = 1.515.
oincide, for both illumination and image formation. The particle is
laced in the front focal plane of the first lens with the focal distance 𝑓o,
nd the corresponding image field is formed in the back focal plane of
he second lens with the focal distance 𝑓i. The image space is assumed
o be a medium with absolute refractive index ni and wavenumber
i = ni𝑘. The aperture angle in the object space (the polar angle under
hich the Gaussian reference sphere is observed at the focus of the

ollector lens) is

o = arcsin(NAo∕n0),

here NAo is the numerical aperture of the collector lens, the aperture
ngle in the image space is computed as

i = arctan
(

𝑓o
𝑓i

tan𝛩o

)

,

nd the numerical aperture of the detector lens is NAi = ni sin𝛩i. In
Fig. 6, 𝐴i𝐵i is the image of the object 𝐴𝐵 through the optical system,
nd the coordinate system 𝑂i𝑥i𝑦i is the image of the coordinate system

𝑂𝑥𝑦. The right-hand side coordinate system 𝑂i𝑋𝑌𝑍, centered at the
focal point of the detector lens, was chosen in order to compute the
focus field by means of the Debye diffraction integral. This coordinate
system has the positive 𝑌 and 𝑍 axes in the opposite direction to
he positive 𝑦𝑖 and 𝑧𝑖 axes, respectively. To calculate the image of
he scattered field we compute (i) the scattered field on the Gaussian
eference sphere of the collector lens, (ii) the transmitted field on
he Gaussian reference sphere of the detector lens, and (iii) the focus
8

field by means of the Debye diffraction integral. The image is then
processed in order to extract some useful information about the particle
orientation angles. These computational steps are summarized below.

1. The Gaussian reference sphere of the collector lens is a sphere
of radius 𝑓o centered at the focal point. In view of Eq. (89), the
scattered field on this sphere is given by

𝐄𝑁
0sct(𝜃0, 𝜑) =

ej𝑘0𝑓o

𝑓0
𝐄𝑁∞
0sct (𝜃0, 𝜑). (98)

An important scattering characteristics is the integral response
of the detector. This is defined as the integral of the Poynting
vector over the lower Gaussian hemi-sphere and is computed as

𝑃 = ∫

2𝜋

0 ∫

𝜋

𝛩o

[|𝐸𝑁∞
0𝜃 (𝜃0, 𝜑)|

2 + |𝐸𝑁∞
0𝜑 (𝜃0, 𝜑)|

2] sin 𝜃0d𝜃0d𝜑. (99)

2. To determine the transmitted field in the image space, we as-
sume that a ray propagating in the object space in the direction
(𝜃0, 𝜑) is deflected into a ray that propagates in the image space
in the direction (𝜃i, 𝜑i); the polar angles in the image space are
computed as

𝜃i = arctan[(𝑓o∕𝑓i) tan(𝜃0 − 𝜋)], (100)

𝜑i = 2𝜋 − 𝜑. (101)



Journal of Quantitative Spectroscopy and Radiative Transfer 320 (2024) 108964A. Doicu et al.

𝐴
c
𝑌

Fig. 6. The imagining system of the scattered field is represented by the two sections of
the Gaussian reference spheres of the collector and detector lens, 𝑃o and 𝑃i, respectively.

i𝐵i is the image of the object 𝐴𝐵 and the coordinate system 𝑂i𝑥i𝑦i is the image of the
oordinate system 𝑂𝑥𝑦. The right-hand side coordinate system 𝑂i𝑋𝑌𝑍 has the positive

and 𝑍 axes in the opposite direction to the positive 𝑦𝑖 and 𝑧𝑖 axes, respectively.

Similarly, the polar unit vectors �̂�0 and �̂� are deflected into the
polar unit vectors �̂�i and �̂�𝑖, for which we have the computa-
tional formulas

�̂�i = cos 𝜃i cos𝜑i�̂� + cos 𝜃i sin𝜑i�̂� − sin 𝜃i�̂�, (102)

�̂�𝑖 = �̂� = − sin𝜑i�̂� + cos𝜑i�̂�, (103)

where (�̂�, �̂�, �̂�) are the Cartesian unit vectors in the coordinate
system 𝑂i𝑋𝑌𝑍. The Gaussian reference sphere of the detector
lens is a sphere of radius 𝑓i centered at the focal point. The
transmitted field on this sphere is

𝐄𝑁
i (𝜃i, 𝜑i) =

ej𝑘i𝑓i

𝑓i
[𝑇𝜃𝐸𝑁∞

0𝜃 (𝜃i, 𝜑i)�̂�i + 𝑇𝜑𝐸
𝑁∞
0𝜑 (𝜃i, 𝜑i)�̂�𝑖], (104)

where

𝐸𝑁∞
0𝜃 (𝜃i, 𝜑i) = 𝐸𝑁∞

0𝜃 (𝜃0(𝜃i), 𝜑(𝜑i)) and 𝐸𝑁∞
0𝜑 (𝜃i, 𝜑i) = 𝐸𝑁∞

0𝜑 (𝜃0(𝜃i), 𝜑(𝜑i))

(105)

with 𝜃0(𝜃i) = 𝜋 − arctan[(𝑓i∕𝑓0) tan 𝜃i] and 𝜑 = 2𝜋 − 𝜑i. The
quantities 𝑇𝜃 = 𝑇𝜃(𝜃i, 𝜑i) and 𝑇𝜑 = 𝑇𝜑(𝜃i, 𝜑i) in Eq. (104) are
the transmission coefficients of the imagining system for parallel
and perpendicular polarization, respectively. These parameters,
which are input parameters of the algorithm, take into account
accumulated phase distortions (aberrations at the principal plane
of the detector lens) and attenuations (amplitude factors).

3. The computation of the focus field by means of the Debye
diffraction integral was outlined in Doicu et al. [19] by following
the results established in Leutenegger et al. [34]. Essentially, the
9

electric field 𝐄 at a point (𝑋, 𝑌 ,𝑍) is calculated as

𝐄(𝑋, 𝑌 ,𝑍) = −j
𝑓i
𝜆 ∫

2𝜋

0

× ∫

𝛩i

0
𝐄𝑁

i (𝜃i, 𝜑i)ej(𝑘iX𝑋+𝑘iY𝑌+𝑘iZ𝑍) sin 𝜃id𝜃id𝜑i

(106)

= −j
𝑓i

𝜆𝑘2i
∫𝐷k

𝐄𝑁
i (𝜃i, 𝜑i)
cos 𝜃i

ej𝑘i𝑍 cos 𝜃i ej(𝑘iX𝑋+𝑘iY𝑌 )d𝑘iXd𝑘iY,

(107)

where 𝛩i is the aperture angle of the detector lens. In the last
equation above, we used the relations 𝑘iX = 𝑘i sin 𝜃i cos𝜑i, 𝑘iY =
𝑘i sin 𝜃i sin𝜑i, and 𝑘iZ = 𝑘i cos 𝜃i, and defined the domain 𝐷k as

𝐷k = {(𝑘iX, 𝑘iY) ∣
√

𝑘2iX + 𝑘2iY ≤ 𝐾}, (108)

where 𝐾 = 𝑘i sin𝛩i = 𝑘NAi. Assuming 𝑀 sampling points over
𝐾, and considering an equidistant sampling 𝑘iX = 𝑚𝛥𝐾 and
𝑘iY = 𝑛𝛥𝐾, where 𝛥𝐾 = 𝐾∕𝑀 and 𝑚, 𝑛 = −𝑀,… ,𝑀 , we find
that the sampling polar angles are

𝜃i𝑚𝑛 = arcsin
(𝛥𝐾

𝑘i

√

𝑚2 + 𝑛2
)

, (109)

𝜑i𝑚𝑛 = arccos
( 𝑚
√

𝑚2 + 𝑛2

)

. (110)

As a result, the numerical implementation of the integral (107)
is

𝐄(𝑋, 𝑌 ,𝑍) = −j
𝑓i𝛥𝐾2

𝜆𝑘2i

𝑀
∑

𝑚=−𝑀

𝑀
∑

𝑛=−𝑀

𝐄𝑁
i (𝜃i𝑚𝑛, 𝜑i𝑚𝑛)
cos 𝜃i𝑚𝑛

ej𝑘i𝑍 cos 𝜃i𝑚𝑛ej𝛥𝐾(𝑚𝑋+𝑛𝑌 ),

(111)

with the convention

𝐄𝑁
i (𝜃i𝑚𝑛, 𝜑i𝑚𝑛) = 0 for

√

𝑚2 + 𝑛2 > 𝑀.

The double sum in Eq. (111) is computed by means of a fast
Fourier transform (FFT) by choosing the number of FFT sampling
points per transformed dimension as 𝑁 = 2𝑠 ≥ 4𝑀 . To ensure
this condition, the aperture matrix is enlarged by zero padding
before performing the Fourier transform, while a cropping of
the transform output eliminates the padding. The algorithm is
summarized below.

(a) in the axial plane 𝑍, compute the aperture matrix

𝐄A𝑚1𝑛1 (𝑍) = −j
𝑓i𝛥𝐾2

𝜆𝑘2i

𝐄𝑁
i (𝜃i𝑚1−𝑀,𝑛1−𝑀 , 𝜑i𝑚1−𝑀,𝑛1−𝑀 )

cos 𝜃i𝑚1−𝑀,𝑛1−𝑀
ej𝑘i𝑍 cos 𝜃i𝑚1−𝑀,𝑛1−𝑀 ,

(112)

for 𝑚1, 𝑛1 = 0,… , 𝑁 − 1, with the convention

𝐄A𝑚1𝑛1 (𝑍) = 0 for
√

(𝑚1 −𝑀)2 + (𝑛1 −𝑀)2 > 𝑀 ; (113)

(b) compute the Fourier transform of the aperture matrix,

𝐄F𝑚1𝑛1 (𝑍) =  (𝐄A𝑚1𝑛1 (𝑍)); (114)

(c) at the sampling points 𝑋𝑚2
= 𝑚2𝛥𝑋 and 𝑌𝑛2 = 𝑛2𝛥𝑌 ,

where 𝛥𝑋 = 𝛥𝑌 = 2𝜋∕(𝑁𝛥𝐾), compute the focus field
𝐄 as

𝐄(𝑋𝑚2
, 𝑌𝑛2 , 𝑍) = 𝐄F𝑚2+𝑁∕2−1,𝑛2+𝑁∕2−1(𝑍), (115)

for 𝑚2, 𝑛2 = −𝑁∕2 + 1,… , 𝑁∕2;
(d) for 𝑁c < 𝑁 , cut the matrix 𝐄(𝑋𝑚2

, 𝑌𝑛2 , 𝑍) outside the
range 𝑚 , 𝑛 = −𝑁 ∕2 + 1,… , 𝑁 ∕2;
2 2 c c
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Fig. 7. Differential scattering cross sections for (i) a particle in a stratified medium with n0 = n1 = n2 = 1.33 and n3 = n4 = 1.515, and (ii) a particle near a substrate. The incidence
angles are 𝛽inc = 0◦ (left) and 𝛽inc = 72◦ (right). The results correspond to parallel polarization and a particle azimuthal orientation angle 𝛼p = 45◦.
r

(e) compute the intensity at the sampling points 𝑋𝑚2
= 𝑚2𝛥𝑋

and 𝑌𝑛2 = 𝑛2𝛥𝑌 as

𝐼𝑚2𝑛2 (𝑍) = |𝐸X(𝑋𝑚2
, 𝑌𝑛2 , 𝑍)|2+|𝐸Y(𝑋𝑚2

, 𝑌𝑛2 , 𝑍)|2+|𝐸Z(𝑋𝑚2
, 𝑌𝑛2 , 𝑍)|2,

(116)

for 𝑚2, 𝑛2 = −𝑁c∕2 + 1,… , 𝑁c∕2;
(f) for a better interpretation of the information related to

the particle orientation, the image is transformed into
a binary image, the outer contour is extracted, and an
ellipse is fitted to the data (by least squares fitting).

3. Numerical simulations

In our numerical simulations we choose the wavelength in vacuum
𝜆 = 0.635 μm, and the refractive indices of the layers as n0 = 1.0003
(air), n1 = 1.515 (glass), n2 = 1.33 (water), n3 = 1.42 (poly(L-lysine)-
poly(ethylene glycol), PLL-PEG [35]), and n4 = 1.515 (glass). The
thicknesses of the coating layer, immersion cell, and glass slide are
chosen as 𝑑coating = 0.02 μm, 𝑑cell = 2.0 × 103 μm, and 𝑑glass = 1.0 ×
103 μm, respectively. If not stated otherwise, the separation distance
between the particle and the coating layer is 𝑧3 = 2.4 μm. The other
distances to the different interfaces are computed with the formulas
𝑧0 = −(𝑑cell + 𝑑glass) + 𝑧3, 𝑧1 = −𝑑cell + 𝑧3, and 𝑧4 = 𝑧3 + 𝑑coating.
The particle is a prolate spheroid with semi-major axis 𝑎 = 2.0 μm,
semi-minor axis 𝑏 = 1.0 μm, refractive index np = 1.591, and zenith
orientation angle 𝛽p = 90◦. The polarization angle of the incident wave
is 𝛼pol = 45◦. The refractive index in the image space is ni = 1.0003
(air), the transversal magnification MT = 𝑓i∕𝑓o = 60, and the numerical
aperture in the object space NAo = 1.0. In the simulations, the number
of Laguerre quadrature points is 𝑁int = 80, and for 𝑧3 = 2.4 μm,
the maximum expansion and azimuthal orders are 𝑁rank = 35 and
𝑀rank = 30, respectively. The critical angle required to achieve total
internal reflection in a glass–water interface (n4 = 1.515 and n2 = 1.33)
is 𝛽crit = 61◦. Accordingly, the cases of a bright-field (𝛽inc = 0◦) and an
evanescent wave (𝛽inc > 𝛽crit) illuminations will be considered in the
following.

3.1. Model analysis

In a first test we check the accuracy of the newly developed code.
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For this purpose we take the results corresponding to the scattering by i
a particle placed in the lower half-space and being illuminated by an
incident field propagating in the upper half-space (i.e., n0 = n1 = n2
and n3 = n4) as a Ref. [19]. The results illustrated in Fig. 7 show a
complete agreement between the scattering curves.

In a second test we check the accuracy of the simplified model
corresponding to the scattering by a particle placed in the lower half-
space and being illuminated by an incident field propagating from the
glass prism to the lower half-space through the coating layer (i.e., n0 =
n1 = n2 and n3 ≠ n4). The results illustrated in Fig. 8 show that
there is a disagreement between the scattering curves, and so, between
the integral responses of the detector. In the case of evanescent wave
scattering, the integral response is reduced by about 50%.

The immersion layer and the lower glass slide have a thickness
in the millimeter scale, and we can think to model such thick layers
incoherently, i.e., in terms of intensity transmission instead of (com-
plex) amplitude transmission. Incoherent scattering can be simulated
by assuming the above simplified stratified medium with n0 = n1 = n2,
and n3 ≠ n4, and by taking into account the transmission between the
layers 2 and 0. In particular, referring to Eqs. (89)–(92), we set

𝐄𝑁±
0sct(𝐫) =

ej𝑘0𝑟

𝑟
𝐄𝑁±∞
0sct (𝜃0, 𝜑), (117)

𝐄𝑁±∞
0sct (𝜃0, 𝜑) = 𝐸𝑁±∞

0𝜃 (𝜃0, 𝜑)�̂�0 + 𝐸𝑁±∞
0𝜑 (𝜃0, 𝜑)�̂�, (118)

where 𝐸𝑁+∞
0𝜃 is as in Eq. (91) but contains only the terms depending on

𝑆+
∥ (𝛽2s), 𝐸𝑁−∞

0𝜃 is as in Eq. (91) but contains only the terms depending
on 𝑆−

∥ (𝛽2s), while 𝐸𝑁+∞
0𝜑 and 𝐸𝑁−∞

0𝜑 are defined in a similar manner
from Eq. (92). The differential scattering cross sections and the integral
response of the detector are then computed as

𝜎∥(𝜃0) =
|𝑇02∥𝐸𝑁+∞

0𝜃 (𝜃0, 𝜑 = 0)|2 + |𝑇02∥𝐸𝑁−∞
0𝜃 (𝜃0, 𝜑 = 0)|2

𝜋𝑎2
, (119)

𝜎⟂(𝜃0) =
|𝑇02⟂𝐸𝑁+∞

0𝜑 (𝜃0, 𝜑 = 0)|2 + |𝑇02⟂𝐸𝑁−∞
0𝜑 (𝜃0, 𝜑 = 0)|2

𝜋𝑎2
, (120)

and

𝑃 = ∫

2𝜋

0 ∫

𝜋

𝛩o

[|𝑇02∥𝐸𝑁+∞
0𝜃 (𝜃0, 𝜑)|

2 + |𝑇02∥𝐸
𝑁−∞
0𝜃 (𝜃0, 𝜑)|

2

+ |𝑇02⟂𝐸
𝑁+∞
0𝜑 (𝜃0, 𝜑)|

2 + |𝑇02⟂𝐸
𝑁−∞
0𝜑 (𝜃0, 𝜑)|

2] sin 𝜃0d𝜃0d𝜑, (121)

espectively, where (cf. Eqs. (B.4) and (B.5)) 𝑇02X = 𝑇01X𝑇12X, X =⟂, ∥,

s the transmission between the layers 2 and 0. In Fig. 9 we show the
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Fig. 8. Differential scattering cross sections for a particle placed in (i) a simplified stratified medium with n0 = n1 = n2 = 1.33, n3 = 1.42, and n4 = 1.515, and (ii) a realistic
tratified medium with n0 = 1.0003, n1 = 1.515, n2 = 1.33, n3 = 1.42, and n4 = 1.515. The incidence angles are 𝛽inc = 0◦ (left) and 𝛽inc = 62◦ (right). The results correspond to parallel
olarization and a particle azimuthal orientation angle 𝛼p = 45◦. The aperture angle in the object space is 𝛩o = 60◦, and the vertical lines at 180◦ − 𝛩o and 180◦ + 𝛩o define the
ngular scattering domain analyzed by the detector.
Fig. 9. Differential scattering cross sections for parallel (left) and perpendicular (right) polarizations corresponding to a coherent and an incoherent scattering model. The particle
is placed in a simplified stratified medium with n0 = n1 = n2 = 1.33, n3 = 1.42, and n4 = 1.515, and the incidence angle is 𝛽inc = 62◦.
differential scattering cross sections for a simplified stratified medium
with n0 = n1 = n2 and n3 ≠ n4, computed by using a coherent and
an incoherent scattering model. As expected, the incoherent scattering
curves are smoother. However, as compared to a realistic stratified
medium and a coherent treatment of the thick layers, the integral re-
sponse is still smaller (by about 45%). The explanation of this decrease
in the integral response (regardless of whether we use a coherent or
an incoherent scattering model) is that in the case of a simplified
stratified medium, we do not take into account the field reflected by
the lower glass slide. This field increases the interacting field, and so,
the scattered field (even in the case of evanescent scattering).
11
3.2. Measuring the particle orientation angles

In our analysis we consider the focus intensity distribution 𝐼𝑚2𝑛2 (0)
at the sampling points 𝑋𝑚2

= 𝑚2𝛥𝑋 and 𝑌𝑛2 = 𝑛2𝛥𝑌 for 𝑚2, 𝑛2 =
−𝑁∕2+1,… , 𝑁∕2, that is, the intensity distribution in the plane 𝑍 = 0.
The number of sampling points over the horizontal wavenumber 𝐾
is 𝑀 = 120, and the number of FFT sampling points is 𝑁 = 512.
The original image is cropped by cutting the image 𝐼𝑚2𝑛2 (0) outside
the range 𝑚2, 𝑛2 = −𝑁c∕2 + 1,… , 𝑁c∕2, where 𝑁c = 128, and then
filtered out by setting 𝐼𝑚2𝑛2 (0) = 0 if 𝐼𝑚2𝑛2 (0) < 𝛿LPF𝐼max(0), where
𝐼 (0) = max 𝐼 (0) and 𝛿 = 10−1 is a low-pass filter tolerance.
max 𝑚2 ,𝑛2 𝑚2𝑛2 LPF
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Fig. 10. Image processing step: intensity distribution 𝐼∕𝐼max (upper panel), outer
contour of the image (middle panel), and fitted ellipse (lower panel). The simulations
correspond to the incidence angle 𝛽inc = 0◦ and the azimuthal orientation angle 𝛼p = 0◦.

In the image processing step, we transform the image into a binary
image (i.e., we set 𝐼𝑚2𝑛2 (0) = 1 if 𝐼𝑚2𝑛2 (0) > 0 for all 𝑚2, 𝑛2 =
−𝑁c∕2+1,… , 𝑁c∕2), extract the outer contour, and fit an ellipse to the
data (Fig. 10). Specifically, the ellipse fitting is a least squares fitting
over (i) the semi-major and semi-minor axes of the ellipse, (ii) the
center coordinates, and (iii) the orientation angle of the major axis with
respect to the 𝑥-axis.

In Figs. 11 and 12 we illustrate some simulated images in the case
of bright-field and evanescent wave illuminations, respectively. The
results can be interpreted as follows.
12
Table 1
Ellipse orientation angle in degree for different low-pass filter tolerances 𝛿LPF. The
particle azimuthal orientation angle is 𝛼p = 45◦.

𝛿LPF Bright field illumination Evanescent wave illumination
(𝛽inc = 0◦) (𝛽inc = 62◦)

10−1 44.35 42.65
5 × 10−2 44.63 38.21
10−2 44.18 34.56
5 × 10−3 44.22 27.25
10−3 46.68 25.22

1. The dependence of the ellipse orientation angle 𝛼ellipse on the
particle azimuthal orientation angle 𝛼p is shown in Fig. 13.
The plots make clear that the orientation angle of the ellipse
reproduces the azimuthal orientation angle of the particle. The
dependence is almost linear in the case of bright-field illumina-
tion and approximately linear in the case of evanescent wave
illumination. Actually, in the latter case, the curve of variation
depends on the choice the low-pass filter tolerance 𝛿LPF. From
Table 1, we see that the deviations from the azimuthal orienta-
tion angle of the particle are more pronounced for lower values
of 𝛿LPF. However, this is not a critical problem. Choosing the
same tolerance as that which is used for analyzing the measured
TIRM images, we can theoretically determine the variation of
𝛼ellipse as a function of 𝛼p, i.e., 𝛼ellipse = 𝛼ellipse(𝛼p).

2. The variation of the ellipse aspect ratio 𝜀ellipse, defined as the
ratio of the semi-major to the semi-minor axis, with the particle
azimuthal orientation angle 𝛼p is shown in Fig. 14. For these
simulations, the particle zenith orientation angle is 𝛽p = 90◦. As
before, it is apparent that the particle aspect ratio 𝜀p = 𝑎∕𝑏 = 2
is well reproduced by the ellipse aspect ratio 𝜀ellipse in the case
of bright-field illumination, and less so in the case of evanescent
wave illumination. In practice, when the dimensions of the par-
ticle, and thus, the aspect ratio 𝜀p are known, the ellipse aspect
ratio 𝜀ellipse is used to determine the particle zenith orientation
angle 𝛽p according to the relation 𝛽p = arcsin(𝜀ellipse∕𝜀p). Note
that even in the case of evanescent wave illumination, it is pos-
sible to determine a theoretical curve of variation of 𝜀ellipse as a
function of 𝛼p and 𝛽p, i.e., 𝜀ellipse = 𝜀ellipse(𝛼p, 𝛽p). Consequently,
if the functions 𝛼ellipse = 𝛼ellipse(𝛼p) and 𝜀ellipse = 𝜀ellipse(𝛼p, 𝛽p)
are not multi-valued, the particle orientation angles 𝛼p and 𝛽p
can be recovered. This technique was used in Rashidi et al. [20].

3.3. Measuring the separation distance

An important advantage of TIRM is that the integral response of the
detector is very sensitive to the separation distance between the particle
and the substrate (coating layer). This fact is highlighted in Figs. 15
and 16. The results show that the integral response of the detector
decreases rapidly with increasing the separation distance 𝑧3. As seen
in Fig. 16, this is not only valid for a realistic stratified medium but
also for a simplified stratified medium with n0 = n1 = n2 and n3 ≠ n4.
An interesting fact that should be mentioned is that for any separation
distance 𝑧3, the integral response for a realistic stratified medium is
approximately twice as big as the integral response for a simplified
stratified medium (the scale factor varies between 1.95 and 2.05). This
result, which suggests that the presence of the immersion cell translates
into a reduction of the integral response by a factor independent of the
separation distance, requires a more detailed analysis in the future.

It should be pointed out that the algorithm also converged in the
case 𝑧3 < 𝑅, where 𝑅 = 2.0 μm is the radius of the circumscribed
sphere, that is, for an interface situated inside the circumscribed sphere.
Convergence was achieved for (𝑁rank = 56,𝑀rank = 50) in the case
𝑧 = 1.4 μm, (𝑁 = 50,𝑀 = 45) in the case 𝑧 = 1.6 μm, (𝑁 =
3 rank rank 3 rank
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Fig. 11. Intensity distributions 𝐼∕𝐼max (left columns) and fitted ellipses (right columns). The results correspond to the azimuthal orientation angles 𝛼p = 0◦ (first row), 45◦ (second
row), 90◦ (third row), and 135◦ (fourth row). The incidence angle is 𝛽inc = 0◦.
45,𝑀rank = 40) in the case 𝑧3 = 1.8 μm, and (𝑁rank = 35,𝑀rank = 30) in
the case 𝑧3 ≥ 2.0 μm. This shows that possible failures of the algorithm,
especially for large size parameters, are due to numerical instability.
13
Along this line it should be pointed out that an important results was
derived in Ref. [27]. Considering the integral (94) along the segment
[0, 𝑘⟂max], the authors found that a large 𝑘⟂max, leads to a decrease in
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Fig. 12. Intensity distributions 𝐼∕𝐼max (left columns) and fitted ellipses (right columns). The results correspond to the azimuthal orientation angles 𝛼p = 0◦ (first row), 45◦ (second
row), 90◦ (third row), and 135◦ (fourth row). The incidence angle is 𝛽inc = 62◦.
the numerical stability. Actually, for a fixed expansion order 𝑁rank, the
overall numerical accuracy first improves with growing 𝑘⟂max, and then
drops rapidly.

3.4. Uncertainties in layer thicknesses

In our model, the thick layers (the immersion layer of thickness
𝑑 , and the lower glass slide of thickness 𝑑 are treated coher-
14

cell glass
ently, i.e., in terms of field amplitudes. The reason is that in order
to determine the image of the scattered field, we used the Debye
diffraction integral (which involves field amplitudes) for focus field
calculation. However, a correct coherent simulation requires that the
thicknesses 𝑑cell and 𝑑glass be know with wavelength-scale precision.
This conclusion follows immediately by looking at the phase terms
which appear in the expressions of the scattering coefficients (listed
in Appendix B). Because the thickness tolerances are of the order of
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Fig. 13. Ellipse orientation angle versus particle azimuthal orientation angle for
bright-field (𝛽inc = 0◦) and evanescent wave (𝛽inc = 62◦) illuminations.

Fig. 14. Ellipse aspect ratio versus particle azimuthal orientation angle for bright-field
(𝛽inc = 0◦) and evanescent wave (𝛽inc = 62◦) illuminations. The results correspond to
the particle zenith orientation angle 𝛽p = 90◦.

10 μm, it is desirable to analyze the influence of the layer thickness
uncertainties on the detector signal. For this purpose, we

1. assume that 𝑑cell and 𝑑glass are independent random variables
with uniform distributions,

2. generate 𝑁𝑑 samples 𝑑𝑘 = (𝑑cell𝑘, 𝑑glass𝑘), 𝑘 = 1,… , 𝑁𝑑 in the
domain [𝑑cell − 𝛿cell, 𝑑cell + 𝛿cell] × [𝑑glass − 𝛿glass, 𝑑glass + 𝛿glass],
where 𝑑 is the mean, 𝛿 the tolerance, and 𝜎 = 𝛿∕

√

3 the standard
deviation, and

3. compute the average of an energetic scattering quantity 𝑓 (dif-
ferential scattering cross section, integral response of the detec-
tor, focus intensity in the image space) over the thickness real-
izations 𝑑𝑘, 𝑘 = 1,… , 𝑁𝑑 , i.e., compute 𝑓 (𝑑) = (1∕𝑁𝑑 )

∑

𝑘 𝑓 (𝑑𝑘)

In particular, our intention is to compare 𝑓 (𝑑) with 𝑓 (𝑑). In Fig. 17 we
llustrate the differential scattering cross sections 𝜎X(𝑑) and 𝜎X(𝑑) for
=⟂, ∥. In this simulation, we choose 𝑁𝑑 = 1000, 𝑑cell = 2.0 × 103 μm,

𝑑glass = 1.0 × 103 μm, and 𝛿cell = 𝛿glass = 10 μm. Actually, we used a
Python script which serves as a wrapper for the original Fortran model;
this employs shell commands to manage the output files from different
processes and generates input files for each case. We leveraged the
parallelization capabilities of Python’s joblib library, distributing tasks
across 12 servers, each with 80 cores, allowing for the simultaneous
15
Fig. 15. Differential scattering cross sections for different separation distances 𝑧3
between the particle and the coating layer. The upper plot corresponds to a bright-
field illumination (𝛽inc = 0◦), while the lower plot corresponds to an evanescent wave
llumination (𝛽inc = 62◦). In the first case, the curves are indistinguishable. The results

correspond to parallel polarization and a particle azimuthal orientation angle 𝛼p = 45◦.

Fig. 16. Integral response of the detector versus the separation distance 𝑧3 in the case
f evanescent wave illumination (𝛽inc = 62◦). The results correspond to (i) a simplified

stratified medium with n0 = n1 = n2 = 1.33, n3 = 1.42, and n4 = 1.515, and (ii) a realistic
stratified medium with n0 = 1.0003, n1 = 1.515, n2 = 1.33, n3 = 1.42, and n4 = 1.515.
The particle azimuthal orientation angle is 𝛼p = 45◦.

execution of approximately 960 cases. However, given the shared RAM
and corresponding limitations on the number of concurrent processes,
we were actually able to run about 300 cases at the same time.
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Fig. 17. Differential scattering cross sections 𝜎X(𝑑) (denoted by DSCS(𝑑)) and 𝜎X(𝑑)
denoted by DSCS(𝑑)) for parallel (X =∥) and perpendicular (X =⟂) polarizations. The

particle is placed in a stratified medium with n0 = 1.0003, n1 = 1.515, n2 = 1.33,
3 = 1.42, and n4 = 1.515, and the separation distance, the particle azimuthal orientation
ngle, and the incidence angle are 𝑧3 = 2.4 μm, 𝛼p = 45◦, and 𝛽inc = 62◦, respectively.
he vertical lines at 120◦ and 240◦ define the angular scattering domain analyzed by
he detector.

ompleting the full set of 1,000 simulations took 40 min. The results
how that 𝜎X(𝑑) is a smoothed version of 𝜎X(𝑑), and that in the angular

scattering domain analyzed by the detector, the curves are very close.
As a result, the integral responses of the detector are almost the same,
i.e., 𝑃 (𝑑) = 22.210 and 𝑃 (𝑑) = 22.227. Note that because in the image
processing step, the fitted ellipses are obtained by an image filtering,
a binary-image transformation, and a contour extraction, they remain
practically unchanged through the averaging process. These results are
not shown here.

4. Conclusions

An advanced light scattering model for TIRM was described herein.
The model treats (i) the scattering by an axisymmetric particle of ar-
bitrary orientation situated in a stratified medium and (ii) the imaging
of the scattered light.

The important tasks related to the scattering analysis include the
calculation of (i) the layer system responses to the incident and scat-
tered fields, (ii) the interaction matrix, and (iii) the transition matrix
of an isolated particle. The layer system responses were computed as
plane wave expansions and then transformed into regular spherical
wave expansions, while the transition matrix was calculated with the
null-field method. To deal with an arbitrary particle orientation, the
addition theorem for vector spherical wave functions under coordinate
rotations was used. An important theoretical development was the
computation of the interaction matrix, and so of the system 𝑇 matrix
by (i) truncating the scattered and internal field expansions and (ii)
employing spherical and plane wave expansions for the dyadic Green’s
function. While the spherical wave expansion is valid outside a sphere
enclosing the particle, the plane wave expansion is valid outside the
tangent planes bounding the particle. We showed that in both cases,
the expressions of the interaction matrix were the same. This results
demonstrates that the restrictive condition according to which the
sphere enclosing the particle should be at most tangent to the interface
is not required.

The image of the scattered field was obtained by computing (i) the
scattered field on the Gaussian reference sphere of the collector lens, (ii)
the transmitted field on the Gaussian reference sphere of the detector
lens, and (iii) the focus field by means of the Debye diffraction integral
and fast Fourier transform. In addition, for a better reconstruction of the
16
particle orientation, an image processing step consisting in a contour
extraction and ellipse fitting was considered.

In the case of a prolate spheroid, the numerical simulations were
focused on a model validation and an analysis of

1. a simplified stratified medium with coherent and incoherent
scattering,

2. the influence of the layer thickness uncertainties on the signal,
and

3. the model ability to recover the particle orientation angles and
separation distance.

The latter simulations were not exhaustive. They were only intended to
show the exquisite sensitivity of the geometric parameters of the image
ellipse to the particle orientation angles. A more detailed analysis,
with the specification of the variation curves 𝛼ellipse = 𝛼ellipse(𝛼p) and
𝜀ellipse = 𝜀ellipse(𝛼p, 𝛽p), is an ongoing work. In the future we intend to
mprove the algorithm by

1. including the invariant embedding method [36–38], in order to
compute the transition matrix of particles with complex geome-
tries, such as capped spheres and biconcave discs,

2. incorporating a Gaussian beam illumination by using the plane
wave representation of a third-order Davis beam [39],

3. modeling chiral particles as in Ref. [28], in order to study
chiroptical effects for a circularly polarized incident wave,

4. adding a second incident wave, in order to avoid the multi-
valued nature of the functions 𝛼ellipse = 𝛼ellipse(𝛼p) and 𝜀ellipse =
𝜀ellipse(𝛼p, 𝛽p),

5. fitting a two-dimensional Gaussian to the particle image (as in
Ref. [20]), in order to improve the reconstruction process of the
particle orientation angles,

6. computing the integral (96) by means of a trapezoidal quadra-
ture rule along a reduced domain of integration, e.g., [0, 𝑥max],
and determining a relationship between 𝑥max and 𝑁rank (as in
Ref. [27]), in order to increase the numerical stability of the
method for particles with large size parameters situated very
close to the substrate.
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ppendix A. Vector spherical wave functions and vector plane
aves

The vector spherical wave functions are defined by
1,3
𝑚𝑛(𝑘𝐫) = 𝑧1,3𝑛 (𝑘𝑟)𝐦𝑚𝑛(𝜃, 𝜑),

𝐍1,3
𝑚𝑛(𝑘𝐫) =

√

𝑛(𝑛 + 1)
𝑧1,3𝑛 (𝑘𝑟)

𝑘𝑟
𝐥𝑚𝑛(𝜃, 𝜑) +

[𝑘𝑟𝑧1,3𝑛 (𝑘𝑟)]′

𝑘𝑟
𝐧𝑚𝑛(𝜃, 𝜑), (A.1)
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where 𝐫 = (𝑟, 𝜃, 𝜑), 𝑧1𝑛 designates the spherical Bessel functions 𝑗𝑛, 𝑧3𝑛
tands for the spherical Hankel functions of the first order ℎ(1)𝑛 ,

𝐥𝑚𝑛(𝜃, 𝜑) =
1
√

2
𝑃 |𝑚|
𝑛 (cos 𝜃)ej𝑚𝜑�̂�,

𝐧𝑚𝑛(𝜃, 𝜑) =
1

√

2𝑛(𝑛 + 1)
[𝜏|𝑚|𝑛 (𝜃)�̂� + j𝑚𝜋|𝑚|

𝑛 (𝜃)�̂�]ej𝑚𝜑,

𝐦𝑚𝑛(𝜃, 𝜑) =
1

√

2𝑛(𝑛 + 1)
[j𝑚𝜋|𝑚|

𝑛 (𝜃)�̂� − 𝜏|𝑚|𝑛 (𝜃)�̂�]ej𝑚𝜑 (A.2)

re the spherical harmonic vectors, (�̂�, �̂�, �̂�) are the spherical unit
ectors, 𝑃 |𝑚|

𝑛 (cos 𝜃) the associated Legendre functions, and

|𝑚|
𝑛 (𝜃) =

𝑃 |𝑚|
𝑛 (cos 𝜃)
sin 𝜃

and 𝜏|𝑚|𝑛 (𝜃) = d
d𝜃 𝑃

|𝑚|
𝑛 (cos 𝜃), (A.3)

the standard angular functions.
The scalar plane wave functions, otherwise known as the Weyl plane

wave functions, are defined by

𝜒(𝐫,𝐤±) = exp(j𝐤± ⋅ 𝐫) = exp[j(𝐤⟂ ⋅ 𝐫⟂ ± 𝑘z(𝑘⟂)𝑧)], (A.4)

where

𝐤± = 𝐤⟂ ± 𝑘z(𝑘⟂ )̂𝐳, (A.5)

𝐫 = 𝐫⟂ + 𝑧�̂�, (A.6)

and

𝐫⟂ = 𝑥�̂� + 𝑦�̂�, (A.7)

𝐤⟂ = 𝑘x�̂� + 𝑘y �̂�, (A.8)

𝑘z(𝑘⟂) =
√

𝑘2 − 𝑘2⟂, Im(𝑘z) ≥ 0, (A.9)

𝑘⟂ =
√

𝑘2x + 𝑘2y , (A.10)

with (�̂�, �̂�, �̂�) being the Cartesian unit vectors. These scalar functions can
be used to represent upward and downward propagating waves, as well
as, upward and downward evanescent waves. In Eq. (A.9), 𝑘⟂, and so,
𝑘x and 𝑘y are real, but 𝑘z can be complex if 𝑘 is real and 𝑘 < 𝑘⟂, or
𝑘 is complex. The vector plane wave functions 𝐌(𝐫,𝐤±) and 𝐍(𝐫,𝐤±)
are transverse vector functions and are defined in terms of scalar plane
wave functions by

𝐌(𝐫,𝐤±) = −j�̂�(̂𝐤±)𝜒(𝐫,𝐤±), (A.11)

𝐍(𝐫,𝐤±) = −�̂�(̂𝐤±)𝜒(𝐫,𝐤±), (A.12)

where (̂𝐤±, �̂�(̂𝐤±), �̂�(̂𝐤±)) are the spherical unit vectors.
In the half-space 𝑧 > 0, the radiating vector spherical wave functions

can be expressed in terms of upward propagating vector plane waves
as

𝐌3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐴SP

𝑚𝑛(𝛽, 𝛼)𝐌(𝐫,𝐤+2 ) + 𝐵SP
𝑚𝑛(𝛽, 𝛼)𝐍(𝐫,𝐤

+
2 )] sin 𝛽d𝛽d𝛼,

(A.13)

𝐍3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐵SP

𝑚𝑛(𝛽, 𝛼)𝐌(𝐫,𝐤+2 ) + 𝐴SP
𝑚𝑛(𝛽, 𝛼)𝐍(𝐫,𝐤

+
2 )] sin 𝛽d𝛽d𝛼,

(A.14)

where 𝐤+2 = (𝑘2, 𝛽, 𝛼), and the amplitudes 𝐴SP
𝑚𝑛(𝛽, 𝛼) and 𝐵SP

𝑚𝑛(𝛽, 𝛼) are
given respectively, by

𝐴SP
𝑚𝑛(𝛽, 𝛼) =

1
2𝜋j𝑛+1

1
√

2𝑛(𝑛 + 1)
𝜏|𝑚|𝑛 (𝛽)ej𝑚𝛼 , (A.15)

𝐵SP
𝑚𝑛(𝛽, 𝛼) =

1
2𝜋j𝑛+1

1
√

2𝑛(𝑛 + 1)
𝑚𝜋|𝑚|

𝑛 (𝛽)ej𝑚𝛼 . (A.16)

In the half-space 𝑧 < 0, we have the representations

𝐌3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐴SP

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐌(𝐫,𝐤−2 )

+ 𝐵SP(𝜋 − 𝛽, 𝛼)𝐍(𝐫,𝐤−)] sin 𝛽d𝛽d𝛼, (A.17)
17

𝑚𝑛 2
𝐍3
𝑚𝑛(𝑘2𝐫) = ∫

2𝜋

0 ∫

𝜋∕2−j∞

0
[𝐵SP

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐌(𝐫,𝐤−2 )

+ 𝐴SP
𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐍(𝐫,𝐤−2 )] sin 𝛽d𝛽d𝛼, (A.18)

here 𝐤−2 = (𝑘2, 𝜋 − 𝛽, 𝛼).
The upward propagating vector plane waves can be expanded in

terms of regular vector spherical wave functions as

𝐌(𝐫,𝐤+2 ) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
[𝐴PS

𝑚𝑛(𝛽, 𝛼)𝐌
1
𝑚𝑛(𝑘2𝐫) + 𝐵PS

𝑚𝑛(𝛽, 𝛼)𝐍
1
𝑚𝑛(𝑘2𝐫)], (A.19)

𝐍(𝐫,𝐤+2 ) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
[𝐵PS

𝑚𝑛(𝛽, 𝛼)𝐌
1
𝑚𝑛(𝑘2𝐫) + 𝐴PS

𝑚𝑛(𝛽, 𝛼)𝐍
1
𝑚𝑛(𝑘2𝐫)], (A.20)

where

𝐴PS
𝑚𝑛(𝛽, 𝛼) =

4j𝑛+1
√

2𝑛(𝑛 + 1)
𝜏|𝑚|𝑛 (𝛽)e−j𝑚𝛼 , (A.21)

𝐵PS
𝑚𝑛(𝛽, 𝛼) =

4j𝑛+1
√

2𝑛(𝑛 + 1)
𝑚𝜋|𝑚|

𝑛 (𝛽)e−j𝑚𝛼 . (A.22)

or downward propagating vector plane waves, we have the expansions

(𝐫,𝐤−2 ) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
[𝐴PS

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐌1
𝑚𝑛(𝑘2𝐫) + 𝐵PS

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐍1
𝑚𝑛(𝑘2𝐫)],

(A.23)

𝐍(𝐫,𝐤−2 ) =
∞
∑

𝑛=1

𝑛
∑

𝑚=−𝑛
[𝐵PS

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐌1
𝑚𝑛(𝑘2𝐫) + 𝐴PS

𝑚𝑛(𝜋 − 𝛽, 𝛼)𝐍1
𝑚𝑛(𝑘2𝐫)].

(A.24)

Appendix B. Scattering in a stratified medium

A stratified medium is a collection of layers filled with a homoge-
neous medium and separated by 𝑧-surfaces. The scattering in a stratified
medium was described by Egel [29] by following the prescriptions
given by Ko and Sambles [40]. Specifically, in each layer, the electric
field is expanded in terms of upward and downward propagating vector
plane waves, relative to a local coordinate system with the origin at
the bottom of the layer. Reflection at a layer interface relates the
upward propagating wave to its downward propagating counterpart.
This relation is expressed in matrix form, by organizing the coefficients
of the upward and downward propagating vector plane waves into a
two-dimensional vector (for each state of polarization). The coefficient
vectors for two neighboring layers are linked by a transfer matrix,
which is computed from the boundary conditions for the electromag-
netic fields. The transfer matrix of the layer system is then calculated
as the product of the individual transfer matrices corresponding to
all neighboring layers. However, for evanescent field propagation, the
transfer matrix scheme is numerically unstable. A numerically more
stable algorithm is the scattering matrix formalism. The scattering
matrix of a layer system relates the coefficients of the outgoing vector
plane waves to the incoming amplitudes, and is computed by using
the iterative scheme described by Ko and Sambles [40]. Subsequently,
the scattering matrix scheme was used by Egel to compute the waves
generated inside the layer system by a scattering center.

In this section we give the main formulas describing the scattering
in the assumed stratified medium, which are relevant for computing
the interacting and the scattered fields. Instead of using the iterative
approach described in Ko and Sambles [40], we will use a direct
approach based on the superposition method. The use of this approach
is facilitated by the fact that the geometry of the layer system is not
very complicated.

Let us consider the layer system illustrated in Fig. 2, where n𝑗
and 𝑘𝑗 = n𝑗𝑘 are the absolute refractive index and the wavenumber
in medium 𝑗, respectively, and 𝑘 is the wavenumber in vacuum. The

different angles of incidence and refraction are determined by Snell’s
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n0 sin 𝛽0 = n1 sin 𝛽1 = n2 sin 𝛽2 = n3 sin 𝛽3 = n4 sin 𝛽4, (B.1)

where 𝛽𝑗 ∈ [0, 𝜋∕2 − j∞). For example, in the case of a plane electro-
magnetic wave propagating in medium 2 at the angle of incidence 𝛽2,
we compute cos 𝛽𝑗 = ±

√

1 − (n2∕n𝑗 )2 sin
2 𝛽2, 𝑗 = 0, 1, 3, 4 and choose the

sign of the square root, such that Im(cos 𝛽𝑗 ) ≥ 0. In this way, we guar-
antee that the amplitudes of the upward and downward propagating
waves will tend to zero with increasing |𝑧|. The 𝑧-components of the
wavenumbers are then calculated as 𝑘(𝑗)z = 𝑘𝑗 cos 𝛽𝑗 . The amplitudes
of the refracted waves are computed by using the Fresnel equations.
In general, for a plane electromagnetic wave traveling from medium 1
into medium 2, the reflection and transmission Fresnel coefficients for
perpendicular (⟂) and parallel (∥) polarizations are given respectively,
by

𝑅21⟂ =
𝑘(1)z − 𝑘(2)z

𝑘(1)z + 𝑘(2)z
, (B.2)

𝑅21∥ =
𝑘22𝑘

(1)
z − 𝑘21𝑘

(2)
z

𝑘22𝑘
(1)
z + 𝑘21𝑘

(2)
z

=
n2
2𝑘

(1)
z − n2

1𝑘
(2)
z

n2
2𝑘

(1)
z + n2

1𝑘
(2)
z

, (B.3)

and

𝑇21⟂ =
2𝑘(1)z

𝑘(1)z + 𝑘(2)z
, (B.4)

𝑇21∥ =
2𝑘1𝑘2𝑘

(1)
z

𝑘22𝑘
(1)
z + 𝑘21𝑘

(2)
z

=
2n1n2𝑘

(1)
z

n2
2𝑘

(1)
z + n2

1𝑘
(2)
z

. (B.5)

Note that the lower indices in the expressions of Fresnel’s coefficients
are read from right to left, i.e., 21 stands for a wave traveling from
medium 1 into medium 2.

In a first step, we consider the layer system 𝑎 consisting of the layer
and the half-space 4, and the layer system 𝑏 consisting of the half-

pace 0 and the layer 1. The layer systems 𝑎 and 𝑏 are bounded from
elow and from above by a half-space with the refractive index n2
orresponding to the layer 2, respectively. We consider the following
ituations.

1. The half-space 2 and the layer system 𝑎. For an external excita-
tion represented by the vector plane waves propagating upward
in the half-space 2 (Fig. B.18a),

𝐄+
2 = 𝐌(𝐫,𝐤+2 ) and 𝐄+

2 = 𝐍(𝐫,𝐤+2 ),

the transmitted fields in the half-space 4 are

𝐄+
4T = 𝑆+

𝑎⟂𝐌(𝐫,𝐤+4 ) and 𝐄+
4T = 𝑆+

𝑎∥𝐍(𝐫,𝐤
+
4 ),

respectively, while the reflected fields in the half-space 2 are

𝐄−
2R = 𝑆−

𝑎⟂𝐌(𝐫,𝐤−2 ) and 𝐄−
2R = 𝑆−

𝑎∥𝐍(𝐫,𝐤
−
2 ),

respectively. The scattering coefficients 𝑆+
𝑎X and 𝑆−

𝑎X, X =⟂, ∥, are
given respectively, by

𝑆+
𝑎X = ej[𝑘(2)z −𝑘(3)z ]𝑧3

43X
1 −23X43X

𝑇32X, (B.6)

𝑆−
𝑎X = e2j𝑘(2)z 𝑧3𝑅32X + ej[𝑘(2)z −𝑘(3)z ]𝑧3

23X43X
1 −23X43X

𝑇32X, (B.7)

where

23X = e−2j𝑘(3)z 𝑧3𝑅23X, 23X = ej[𝑘(2)z −𝑘(3)z ]𝑧3𝑇23X, (B.8)

43X = e2j𝑘(3)z 𝑧4𝑅43X, 43X = ej[𝑘(3)z −𝑘(4)z ]𝑧4𝑇43X. (B.9)

If the external excitation is represented by the vector plane
waves propagating downward in the half-space 4 (Fig. B.18b),

𝐄−
4 = 𝐌(𝐫,𝐤−4 ) and 𝐄−

4 = 𝐍(𝐫,𝐤−4 ),

the transmitted fields in the half-space 2 are

𝐄− = 𝑆− 𝐌(𝐫,𝐤−) and 𝐄− = 𝑆− 𝐍(𝐫,𝐤−),
18

2T 𝑎⟂ 2 2T 𝑎∥ 2
Fig. B.18. The layer system 𝑎 consisting of the layer 3 and the half-space 4, and the
layer system 𝑏 consisting of the half-space 0 and the layer 1. The external excitation
s represented by vector plane waves propagating upward in the half-space 2 (a),
ownward in the half-space 4 (b), and downward in the half-space 2 (c).

where

𝑆−
𝑎X = ej[𝑘

(3)
z −𝑘(4)z ]𝑧4

23X
1 −43X23X

𝑇34X. (B.10)

2. The half-space 2 and the layer system 𝑏. For an external excita-
tion represented by the vector plane waves propagating down-
ward in the half-space 2 (Fig. B.18c),

𝐄−
2 = 𝐌(𝐫,𝐤−2 ) and 𝐄−

2 = 𝐍(𝐫,𝐤−2 ),

the reflected fields in the half-space 2 are

𝐄+
2R = 𝑆+

𝑏⟂𝐌(𝐫,𝐤+2 ) and 𝐄+
2R = 𝑆+

𝑏∥𝐍(𝐫,𝐤
+
2 ),

respectively, while the transmitted fields in the half-space 0 are

𝐄−
0T = 𝑆−

𝑏⟂𝐌(𝐫,𝐤−0 ) and 𝐄−
0T = 𝑆−

𝑏∥𝐍(𝐫,𝐤
−
0 ),

respectively. The scattering coefficients 𝑆+
𝑏X and 𝑆−

𝑏X, X =⟂, ∥, are
given respectively, by

𝑆+
𝑏X = e−2j𝑘(2)z 𝑧1𝑅12X + ej[𝑘(1)z −𝑘(2)z ]𝑧1

21X01X
1 −21X01X

𝑇12X, (B.11)

𝑆−
𝑏X = ej[𝑘(1)z −𝑘(2)z ]𝑧1

01X
1 −21X01X

𝑇12X, (B.12)
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Fig. B.19. Geometry for computing the incident field. The external excitation is
epresented by vector plane waves propagating downward in the half-space 4.

where

01X = e−2j𝑘(1)z 𝑧0𝑅01X, 01X = ej[𝑘(0)z −𝑘(1)z ]𝑧0𝑇01X, (B.13)

21X = e2j𝑘(1)z 𝑧1𝑅21X, 21X = ej[𝑘(1)z −𝑘(2)z ]𝑧1𝑇21X. (B.14)

We come now to the layer system shown in Fig. 2, in which the
layer 2 is of finite vertical extent. To characterize the incident field,
we consider as external excitation the vector plane waves propagating
downward in the half-space 4 (Fig. B.19),

𝐄−
4 = 𝐌(𝐫,𝐤−4 ) and 𝐄−

4 = 𝐍(𝐫,𝐤−4 ).

In this case, the total upward propagating fields in layer 2 are

𝐄+
2tot = 𝐄+

2R = 𝑆+
⟂𝐌(𝐫,𝐤+2 ) and 𝐄+

2tot = 𝐄+
2R = 𝑆+

∥ 𝐍(𝐫,𝐤
+
2 ),

respectively, while the total downward propagating fields are

𝐄−
2tot = 𝐄−

2T + 𝐄−
2R = 𝑆−

⟂𝐌(𝐫,𝐤−2 ) and 𝐄−
2tot = 𝐄−

2T + 𝐄−
2R = 𝑆−

∥ 𝐍(𝐫,𝐤
−
2 ),

respectively. The scattering coefficients 𝑆+
X and 𝑆−

X , X =⟂, ∥, are given
respectively, by

𝑆+
X =

𝑆−
𝑎X𝑆

+
𝑏X

1 − 𝑆−
𝑎X𝑆

+
𝑏X

, (B.15)

𝑆−
X =

𝑆−
𝑎X

1 − 𝑆−
𝑎X𝑆

+
𝑏X

. (B.16)

To compute the interaction matrix and to characterize the scattered
field, we consider two situations.

1. The external excitation is represented by the vector plane waves
propagating upward in layer 2 (Fig. B.20a),

𝐄+
2 = 𝐌(𝐫,𝐤+2 ) and 𝐄+

2 = 𝐍(𝐫,𝐤+2 ).

In this case, the reflected upward propagating fields in layer 2
are

𝐄+
2R = 𝑆++

⟂ 𝐌(𝐫,𝐤+2 ) and 𝐄+
2R = 𝑆++

∥ 𝐍(𝐫,𝐤+2 ),

respectively, the reflected downward propagating fields in layer
2 are

𝐄−
2R = 𝑆+−

⟂ 𝐌(𝐫,𝐤−2 ) and 𝐄−
2R = 𝑆+−

∥ 𝐍(𝐫,𝐤−2 ),

respectively, and the transmitted downward propagating fields
in the half-space 0 are

𝐄−
0T = 𝑆+

⟂𝐌(𝐫,𝐤−0 ) and 𝐄−
0T = 𝑆+

∥ 𝐍(𝐫,𝐤
−
0 ),

respectively. The scattering coefficients 𝑆++
X , 𝑆+−

X , and 𝑆+
X , X =⟂

, ∥, are given respectively, by

𝑆++
X =

𝑆−
𝑎X𝑆

+
𝑏X

1 − 𝑆−
𝑎X𝑆

+
𝑏X

, (B.17)

𝑆+−
X =

𝑆−
𝑎X
− + , (B.18)
19

1 − 𝑆𝑎X𝑆𝑏X
Fig. B.20. Geometry for computing the interaction matrix and the scattered field. The
external excitation is represented by vector plane waves propagating upward (a) and
downward (b) in layer 2.

𝑆+
X =

𝑆−
𝑎X𝑆

−
𝑏X

1 − 𝑆−
𝑎X𝑆

+
𝑏X

. (B.19)

2. The external excitation is represented by the vector plane waves
propagating downward in layer 2 (Fig. B.20b),

𝐄−
2 = 𝐌(𝐫,𝐤−2 ) and 𝐄−

2 = 𝐍(𝐫,𝐤−2 ).

In this case, the reflected upward propagating fields in layer 2
are

𝐄+
2R = 𝑆−+

⟂ 𝐌(𝐫,𝐤+2 ) and 𝐄+
2R = 𝑆−+

∥ 𝐍(𝐫,𝐤+2 ),

respectively, the reflected downward propagating fields in layer
2 are

𝐄−
2R = 𝑆−−

⟂ 𝐌(𝐫,𝐤−2 ) and 𝐄−
2R = 𝑆−−

∥ 𝐍(𝐫,𝐤−2 ),

and the transmitted downward propagating fields in the half-
space 0 are

𝐄−
0T = 𝑆−

⟂𝐌(𝐫,𝐤−0 ) and 𝐄−
0T = 𝑆−

∥ 𝐍(𝐫,𝐤
−
0 ),

respectively. The scattering coefficients 𝑆−+
X , 𝑆−−

X , and 𝑆−
X , X =⟂

, ∥, are given respectively, by

𝑆−+
X =

𝑆+
𝑏X

1 − 𝑆−
𝑎X𝑆

+
𝑏X

, (B.20)

𝑆−−
X = 𝑆++

X =
𝑆−
𝑎X𝑆

+
𝑏X

1 − 𝑆−
𝑎X𝑆

+
𝑏X

, (B.21)

𝑆−
X =

𝑆−
𝑏X
− + . (B.22)
1 − 𝑆𝑎X𝑆𝑏X
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In order to compute the elements of the interaction matrix by using
Gauss–Laguerre quadrature, we need to factorize the term exp(2j𝑘(2)z 𝑧3)
in the expressions of the scattering coefficients 𝑆𝑢𝑣

X , i.e.,

𝑆𝑢𝑣
X = e2j𝑘(2)z 𝑧3𝑆𝑢𝑣

X , 𝑢, 𝑣 = +,−, X =⟂, ∥ . (B.23)

For doing this, we set in Eqs. (B.7) and (B.11)

𝑆−
𝑎X = e2j𝑘(2)z 𝑧3𝑆−

𝑎X, 𝑆+
𝑏X = e−2j𝑘(2)z 𝑧1𝑆+

𝑏X, (B.24)

with

𝑆−
𝑎X = 𝑅32X + e2j𝑘(3)z (𝑧4−𝑧3)

1 − e2j𝑘(3)z (𝑧4−𝑧3)𝑅23X𝑅43X

𝑇23X𝑅43X𝑇32X, (B.25)

𝑆+
𝑏X = 𝑅12X + e−2j𝑘(1)z (𝑧0−𝑧1)

1 − e−2j𝑘(1)z (𝑧0−𝑧1)𝑅21X𝑅01X

𝑇21X𝑅01X𝑇12X, (B.26)

and obtain

𝑆++
X =

e−2j𝑘(2)z 𝑧1𝑆−
𝑎X𝑆

+
𝑏X

1 − e2j𝑘(2)z (𝑧3−𝑧1)𝑆−
𝑎X𝑆

+
𝑏X

, (B.27)

𝑆+−
X =

𝑆−
𝑎X

1 − e2j𝑘(2)z (𝑧3−𝑧1)𝑆−
𝑎X𝑆

+
𝑏X

, (B.28)

𝑆−+
X =

e−2j𝑘(2)z (𝑧1+𝑧3)𝑆+
𝑏X

1 − e2j𝑘(2)z (𝑧3−𝑧1)𝑆−
𝑎X𝑆

+
𝑏X

, (B.29)

𝑆−−
X = 𝑆++

X =
e−2j𝑘(2)z 𝑧1𝑆−

𝑎X𝑆
+
𝑏X

1 − e2j𝑘(2)z (𝑧3−𝑧1)𝑆−
𝑎X𝑆

+
𝑏X

. (B.30)

Referring to Fig. 2, we distinguish two particular scattering prob-
lems.

1. The scattering by a particle placed in the lower half-space and
being illuminated by an incident field propagating in the upper
half-space. This problem, which corresponds to the scattering by
a particle near a substrate (a plane surface separating two half-
spaces), can be modeled by choosing n0 = n1 = n2 and n3 = n4.
In this case, Eqs. (B.6)–(B.7), (B.11)–(B.12), and (B.10) reduce
to

𝑆+
𝑎X = ej[𝑘(2)z −𝑘(3)z ]𝑧3𝑇32X, 𝑆−

𝑎X = e2j𝑘(2)z 𝑧3𝑅32X, (B.31)

𝑆+
𝑏X = 0, 𝑆−

𝑏X = 1, and (B.32)

𝑆−
𝑎X = ej[𝑘(2)z −𝑘(3)z ]𝑧3𝑇23X, (B.33)

respectively, Eqs. (B.15)–(B.16) to

𝑆+
X = 0. 𝑆−

X = ej[𝑘(2)z −𝑘(3)z ]𝑧3𝑇23X, (B.34)

Eqs. (B.17)–(B.18) and (B.20)–(B.21) to

𝑆++
X = 0, 𝑆+−

X = e2j𝑘(2)z 𝑧3𝑅32X, and (B.35)

𝑆−+
X = 𝑆−−

X = 0, (B.36)

respectively, and Eqs. (B.19) and (B.22) to

𝑆+
X = e2j𝑘(2)z 𝑧3𝑅32X and 𝑆−

X = 1, (B.37)

respectively.
2. The scattering by a particle placed in the lower half-space and

being illuminated by an incident field propagating from the glass
prism to the lower half-space through the coating layer. This
problem can be modeled by choosing n0 = n1 = n2. In this case,
Eqs. (B.6)–(B.7) and (B.10) remain valid, but Eqs. (B.11)–(B.12),
reduce to

𝑆+
𝑏X = 0, 𝑆−

𝑏X = 1, (B.38)

Eqs. (B.15)–(B.16) to

𝑆+ = 0. 𝑆− = 𝑆− , (B.39)
20

X X 𝑎X
Eqs. (B.17)–(B.18) and (B.20)–(B.21) to

𝑆++
X = 0, 𝑆+−

X = 𝑆−
𝑎X, and (B.40)

𝑆−+
X = 𝑆−−

X = 0, (B.41)

respectively, and Eqs. (B.19) and (B.22) to

𝑆+
X = 𝑆−

𝑎X and 𝑆−
X = 1, (B.42)

respectively.

ppendix C. The system 𝑻 matrix for a plane wave expansion of
he dyadic Green’s function

Let 𝑧 = 𝑧max and 𝑧 = 𝑧min be two tangent planes bounding the
article from above and below, respectively, and

𝐆0(𝑘2, 𝐫, 𝐫1) = − 1
𝑘22

𝛿(𝐫 − 𝐫1 )̂𝐳⊗ �̂�

+
j𝑘2
8𝜋2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫
[

𝐌(𝐫,𝐤+2 )⊗𝐌(−𝐫1,𝐤+2 ) + 𝐍(𝐫,𝐤+2 )⊗ 𝐍(−𝐫1,𝐤+2 )
] d2𝐤⟂
𝑘2𝑘

(2)
z

,

𝑧 > 𝑧1

∫
[

𝐌(𝐫,𝐤−2 )⊗𝐌(−𝐫1,𝐤−2 ) + 𝐍(𝐫,𝐤−2 )⊗ 𝐍(−𝐫1,𝐤−2 )
] d2𝐤⟂
𝑘2𝑘

(2)
z

,

𝑧 < 𝑧1

.

(C.1)

the representation for the free-space dyadic Green’s function in term of
vector plane waves.

For a field point with 𝑧 ≥ 𝑧max > 𝑧1, substitution of Eq. (C.1) in
q. (13), yields the integral representation (22), with the amplitudes

+(𝛽, 𝛼) =
j𝑘22
8𝜋2 ∮𝑆p

[

𝐍(−𝐫1,𝐤+2 ) ⋅ 𝐞int(𝐫1) + j
√

𝜇0

𝜀2
𝐌(−𝐫1,𝐤+2 ) ⋅ 𝐡int(𝐫1)

]

d2𝐫1,

(C.2)

𝐺+(𝛽, 𝛼) =
j𝑘22
8𝜋2 ∮𝑆p

[

𝐌(−𝐫1,𝐤+2 ) ⋅ 𝐞int(𝐫1) + j
√

𝜇0

𝜀2
𝐍(−𝐫1,𝐤+2 ) ⋅ 𝐡int(𝐫1)

]

d2𝐫1.

(C.3)

pproximating the tangential fields 𝐞int(𝐫1) and 𝐡int(𝐫1) in the global
oordinate system by a (finite) linear combination of regular vector
pherical wave functions, i.e.

𝐞𝑁int(𝐫1) =
𝑁
∑

(𝑚,𝑛)=1
{𝐶𝑁

𝑚𝑛[𝐧(𝐫1) ×𝐌1
𝑚𝑛(𝑘p𝐫1)] +𝐷𝑁

𝑚𝑛[𝐧(𝐫1) × 𝐍1
𝑚𝑛(𝑘p𝐫1)]}, (C.4)

𝑁
int(𝐫1) = −j

√

𝜀p

𝜇0

𝑁
∑

(𝑚,𝑛)=1
{𝐶𝑁

𝑚𝑛[𝐧(𝐫1) × 𝐍1
𝑚𝑛(𝑘p𝐫1)] +𝐷𝑁

𝑚𝑛[𝐧(𝐫1) ×𝐌1
𝑚𝑛(𝑘p𝐫1)]},

(C.5)

here 𝑘p and 𝜀p are the wavenumber and the electric permittivity of
he particle, respectively, we obtain (compare with Eqs. (23)–(24))

+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐶𝑁

𝑚𝑛𝑞
11
𝑚𝑛(𝛽, 𝛼) +𝐷𝑁

𝑚𝑛𝑞
12
𝑚𝑛(𝛽, 𝛼)], (C.6)

𝐺+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐶𝑁

𝑚𝑛𝑞
21
𝑚𝑛(𝛽, 𝛼) +𝐷𝑁

𝑚𝑛𝑞
22
𝑚𝑛(𝛽, 𝛼)], (C.7)

here

11
𝑚𝑛(𝛽, 𝛼) =

j𝑘22
8𝜋2 ∮𝑆p

{

[𝐧(𝐫1) ×𝐌1
𝑚𝑛(𝑘p𝐫1)] ⋅ 𝐍(−𝐫1,𝐤+2 )

+

√

𝜀p

𝜀2
[𝐧(𝐫1) × 𝐍1

𝑚𝑛(𝑘p𝐫1)] ⋅𝐌(−𝐫1,𝐤+2 )
}

d2𝐫1, (C.8)

12
𝑚𝑛(𝛽, 𝛼) =

j𝑘22
2 ∮

{

[𝐧(𝐫1) × 𝐍1
𝑚𝑛(𝑘p𝐫1)] ⋅ 𝐍(−𝐫1,𝐤+2 )
8𝜋 𝑆p
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𝑞

𝑞



a
o

W

𝐹

t

+

√

𝜀p

𝜀2
[𝐧(𝐫1) ×𝐌1

𝑚𝑛(𝑘p𝐫1)] ⋅𝐌(−𝐫1,𝐤+2 )
}

d2𝐫1, (C.9)

21
𝑚𝑛(𝛽, 𝛼) =

j𝑘22
8𝜋2 ∮𝑆p

{

[𝐧(𝐫1) ×𝐌1
𝑚𝑛(𝑘p𝐫1)] ⋅𝐌(−𝐫1,𝐤+2 )

+

√

𝜀p

𝜀2
[𝐧(𝐫1) × 𝐍1

𝑚𝑛(𝑘p𝐫1)] ⋅ 𝐍(−𝐫1,𝐤+2 )
}

d2𝐫1, (C.10)

22
𝑚𝑛(𝛽, 𝛼) =

j𝑘22
8𝜋2 ∮𝑆p

{

[𝐧(𝐫1) × 𝐍1
𝑚𝑛(𝑘p𝐫1)] ⋅𝐌(−𝐫1,𝐤+2 )

+

√

𝜀p

𝜀2
[𝐧(𝐫1) ×𝐌1

𝑚𝑛(𝑘p𝐫1)] ⋅ 𝐍(−𝐫1,𝐤+2 )
}

d2𝐫1, (C.11)

To simplify the expressions for the coefficients 𝑞𝑖𝑗𝑁,𝑚𝑛(𝛽, 𝛼), 𝑖, 𝑗 = 1, 2,
given by Eqs. (C.4)–(C.11), we use the expansions

𝐌(−𝐫,𝐤+2 ) = 8𝜋
∞
∑

𝑛1=1

𝑛1
∑

𝑚1=−𝑛1

[𝐴SP
𝑚1𝑛1

(𝛽, 𝛼)𝐌1
−𝑚1𝑛1

(𝑘2𝐫) + 𝐵SP
𝑚1𝑛1

(𝛽, 𝛼)𝐍1
−𝑚1𝑛1

(𝑘2𝐫)],

(C.12)

𝐍(−𝐫,𝐤+2 ) = 8𝜋
∞
∑

𝑛1=1

𝑛1
∑

𝑚1=−𝑛1

[𝐵SP
𝑚1𝑛1

(𝛽, 𝛼)𝐌1
−𝑚1𝑛1

(𝑘2𝐫) + 𝐴SP
𝑚1𝑛1

(𝛽, 𝛼)𝐍1
−𝑚1𝑛1

(𝑘2𝐫)],

(C.13)

and obtain

𝑞11𝑚𝑛(𝛽, 𝛼) =
𝑁
∑

(𝑚1 ,𝑛1)=1
[𝐴SP

𝑚1𝑛1
(𝛽, 𝛼)11

11𝑚1𝑛1 ,𝑚𝑛
+ 𝐵SP

𝑚1𝑛1
(𝛽, 𝛼)21

11𝑚1𝑛1 ,𝑚𝑛
], (C.14)

𝑞12𝑚𝑛(𝛽, 𝛼) =
𝑁
∑

(𝑚1 ,𝑛1)=1
[𝐴SP

𝑚1𝑛1
(𝛽, 𝛼)12

11𝑚1𝑛1 ,𝑚𝑛
+ 𝐵SP

𝑚1𝑛1
(𝛽, 𝛼)22

11𝑚1𝑛1 ,𝑚𝑛
], (C.15)

𝑞21𝑚𝑛(𝛽, 𝛼) =
𝑁
∑

(𝑚1 ,𝑛1)=1
[𝐵SP

𝑚1𝑛1
(𝛽, 𝛼)11

11𝑚1𝑛1 ,𝑚𝑛
+ 𝐴SP

𝑚1𝑛1
(𝛽, 𝛼)21

11𝑚1𝑛1 ,𝑚𝑛
], (C.16)

𝑞22𝑚𝑛(𝛽, 𝛼) =
𝑁
∑

(𝑚1 ,𝑛1)=1
[𝐵SP

𝑚1𝑛1
(𝛽, 𝛼)12

11𝑚1𝑛1 ,𝑚𝑛
+ 𝐴SP

𝑚1𝑛1
(𝛽, 𝛼)22

11𝑚1𝑛1 ,𝑚𝑛
], (C.17)

where

11
11𝑚1𝑛1 ,𝑚𝑛

=
j𝑘22
𝜋 ∮𝑆p

{

[𝐧 ×𝐌1
𝑚𝑛(𝑘p⋅)] ⋅ 𝐍1

−𝑚1𝑛1
(𝑘2⋅)

+
𝑘p

𝑘2
[𝐧 × 𝐍1

𝑚𝑛(𝑘p⋅)] ⋅𝐌1
−𝑚1𝑛1

(𝑘2⋅)
}

d2𝐫1, (C.18)

12
11𝑚1𝑛1 ,𝑚𝑛

=
j𝑘22
𝜋 ∮𝑆p

{

[𝐧 × 𝐍1
𝑚𝑛(𝑘p⋅)] ⋅ 𝐍1

−𝑚1𝑛1
(𝑘2⋅)

+
𝑘p

𝑘2
[𝐧 ×𝐌1

𝑚𝑛(𝑘p⋅)] ⋅𝐌1
−𝑚1𝑛1

(𝑘2⋅)
}

d2𝐫1, (C.19)

21
11𝑚1𝑛1 ,𝑚𝑛

=
j𝑘22
𝜋 ∮𝑆p

{

[𝐧 ×𝐌1
𝑚𝑛(𝑘p⋅)] ⋅𝐌1

−𝑚1𝑛1
(𝑘2⋅)

+
𝑘p

𝑘2
[𝐧 × 𝐍1

𝑚𝑛(𝑘p⋅)] ⋅ 𝐍1
−𝑚1𝑛1

(𝑘2⋅)
}

d2𝐫1, (C.20)

22
11𝑚1𝑛1 ,𝑚𝑛

=
j𝑘22
𝜋 ∮𝑆p

{

[𝐧 × 𝐍1
𝑚𝑛(𝑘p⋅)] ⋅𝐌1

−𝑚1𝑛1
(𝑘2⋅)

+
𝑘p

𝑘2
[𝐧 ×𝐌1

𝑚𝑛(𝑘p⋅)] ⋅ 𝐍1
−𝑚1𝑛1

(𝑘2⋅)
}

d2𝐫1. (C.21)

Actually, the matrix

11 =
[

11𝑚1𝑛1 ,𝑚𝑛

]

=
⎡

⎢

⎢

⎣

11
11𝑚1𝑛1 ,𝑚𝑛

12
11𝑚1𝑛1 ,𝑚𝑛

21
11𝑚1𝑛1 ,𝑚𝑛

22
11𝑚1𝑛1 ,𝑚𝑛

⎤

⎥

⎥

⎦

, (C.22)

ppears in the null-field method and relates the expansion coefficients
f the approximate scattered field to those of the internal field in the
21
global coordinate system, i.e.,
[

𝐹𝑁
𝑚1𝑛1

𝐺𝑁
𝑚1𝑛1

]

= 11

[

𝐶𝑁
𝑚𝑛

𝐷𝑁
𝑚𝑛

]

. (C.23)

In summary, by considering expansions of the dyadic Green’s function
in terms of vector spherical wave functions and vector plane waves, we
obtain the spectral representation for the scattered field (22). In the first
case, the Green’s function expansion is valid outside a sphere enclosing
the particle, i.e., for 𝑧 ≥ 𝑅, and the spectral amplitudes depend on
the expansion coefficients of the scattered field approximation (cf.
Eqs. (23)–(24)). In the second case, the Green’s function expansion
is valid outside a tangent plane bounding the particle from above,
i.e., for 𝑧 ≥ 𝑧max, and the spectral amplitudes depend on the expansion
coefficients of the internal field approximation (cf. Eqs. (C.6)–(C.7)).

For a field point with 𝑧 ≤ 𝑧min < 𝑧1, we employ similar arguments.
e obtain the integral representation (27) with

−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐶𝑁

𝑚𝑛𝑞
11
𝑚𝑛(𝜋 − 𝛽, 𝛼) +𝐷𝑁

𝑚𝑛𝑞
12
𝑚𝑛(𝜋 − 𝛽, 𝛼)], (C.24)

𝐺−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
[𝐶𝑁

𝑚𝑛𝑞
21
𝑚𝑛(𝜋 − 𝛽, 𝛼) +𝐷𝑁

𝑚𝑛𝑞
22
𝑚𝑛(𝜋 − 𝛽, 𝛼)]. (C.25)

Further we proceed as in the case of a spherical wave expansion of
he dyadic Green’s function.

1. In the global coordinate system, we obtain the series representa-
tion (37) for the interacting field with the expansion coefficients
𝐹𝑁
I𝑚1𝑛1

and 𝐺𝑁
I𝑚1𝑛1

as given by Eqs. (38) and (39), respectively,
while in the local coordinate system, we obtain the series repre-
sentation (40) with the expansion coefficients 𝑓𝑁

I𝑚1𝑛1
and 𝑔𝑁I𝑚1𝑛1

as given by Eq. (42)
2. Expansions of the spectral amplitudes +(𝛽, 𝛼), −(𝛽, 𝛼), +(𝛽, 𝛼),

and −(𝛽, 𝛼) in terms of the internal field coefficients 𝐶𝑁
𝑚𝑛 and

𝐷𝑁
𝑚𝑛 are obtained in the form

+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 1+

𝑚𝑛𝐶
𝑁
𝑚𝑛 + G 1+

𝑚𝑛 𝐷
𝑁
𝑚𝑛), (C.26)

−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 1−

𝑚𝑛𝐶
𝑁
𝑚𝑛 + G 1−

𝑚𝑛 𝐷
𝑁
𝑚𝑛), (C.27)

+(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 2+

𝑚𝑛𝐶
𝑁
𝑚𝑛 + G 2+

𝑚𝑛 𝐷
𝑁
𝑚𝑛), (C.28)

−(𝛽, 𝛼) =
𝑁
∑

(𝑚,𝑛)=1
(F 2−

𝑚𝑛𝐶
𝑁
𝑚𝑛 + G 2−

𝑚𝑛 𝐷
𝑁
𝑚𝑛), (C.29)

where

F 1+
𝑚𝑛 = 𝑆++

⟂ 𝑞11𝑚𝑛(𝛽, 𝛼) + 𝑆−+
⟂ 𝑞11𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.30)

G 1+
𝑚𝑛 = 𝑆++

⟂ 𝑞12𝑚𝑛(𝛽, 𝛼) + 𝑆−+
⟂ 𝑞12𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.31)

F 1−
𝑚𝑛 = 𝑆+−

⟂ 𝑞11𝑚𝑛(𝛽, 𝛼) + 𝑆−−
⟂ 𝑞11𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.32)

G 1−
𝑚𝑛 = 𝑆+−

⟂ 𝑞12𝑚𝑛(𝛽, 𝛼) + 𝑆−−
⟂ 𝑞12𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.33)

and

F 2+
𝑚𝑛 = 𝑆++

∥ 𝑞21𝑚𝑛(𝛽, 𝛼) + 𝑆−+
∥ 𝑞21𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.34)

G 2+
𝑚𝑛 = 𝑆++

∥ 𝑞22𝑚𝑛(𝛽, 𝛼) + 𝑆−+
∥ 𝑞22𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.35)

F 2−
𝑚𝑛 = 𝑆+−

∥ 𝑞21𝑚𝑛(𝛽, 𝛼) + 𝑆−−
∥ 𝑞21𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.36)

G 2−
𝑚𝑛 = 𝑆+−

∥ 𝑞22𝑚𝑛(𝛽, 𝛼) + 𝑆−−
∥ 𝑞22𝑚𝑛(𝜋 − 𝛽, 𝛼), (C.37)

3. Substituting Eqs. (C.26)–(C.29) in Eqs. (38)–(39), yields
[

𝐹𝑁
I𝑚1𝑛1
𝑁

]

= R11

[

𝐶𝑁
𝑚𝑛
𝑁

]

, (C.38)

𝐺I𝑚1𝑛1

𝐷𝑚𝑛
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and then,
[

𝑓𝑁
I𝑚1𝑛1

𝑔𝑁I𝑚1𝑛1

]

= AQ11

[

𝑐𝑁𝑚𝑛
𝑑𝑁𝑚𝑛

]

, (C.39)

where Q11 = D11D−1 is the matrix which relates the expansion
coefficients of the approximate scattered field to those of the in-
ternal field in the particle coordinate system. On the other hand,
from the null-field equation relating the expansion coefficients of
the internal field to those of the external excitation,

Q31

[

𝑐𝑁𝑚𝑛
𝑑𝑁𝑚𝑛

]

= −

([

𝑎𝑁𝑚1𝑛1

𝑏𝑁𝑚1𝑛1

]

+

[

𝑓𝑁
I𝑚1𝑛1

𝑔𝑁I𝑚1𝑛1

])

, (C.40)

we find

(Q31 + AQ11)

[

𝑐𝑁𝑚𝑛
𝑑𝑁𝑚𝑛

]

= −

[

𝑎𝑁𝑚1𝑛1

𝑏𝑁𝑚1𝑛1

]

, (C.41)

and then, using the relation T = −Q11Q−1
31 ,

[

𝑓𝑁
𝑚1𝑛1

𝑔𝑁𝑚1𝑛1

]

= Q11

[

𝑐𝑁𝑚𝑛
𝑑𝑁𝑚𝑛

]

= T(I − AT)−1
[

𝑎𝑁𝑚1𝑛1

𝑏𝑁𝑚1𝑛1

]

. (C.42)

hus, the transition matrix of the system particle–stratified medium is
iven by

system = T(I − AT)−1 = (T−1 − A)−1. (C.43)

his is exactly Eq. (83), and we deduce that both representations for
he dyadic Green’s function lead to the same result.

ppendix D. Stationary phase evaluation of multidimensional in-
egrals

In this appendix we discuss the stationary phase method for com-
uting the 𝑛-dimensional integral

= ∫R𝑛
𝑔(𝚡)ej𝑘𝑓 (𝚡)d𝑛

𝚡, (D.1)

n the limit 𝑘 → ∞, where by assumption, 𝑔(𝚡) is a slowly varying
function on 𝚡 = (𝑥1,… , 𝑥𝑛). Let 𝚡𝚜 be a stationary point of 𝑓 (𝚡),
i.e., ∇𝑓 (𝚡𝚜) = 0, and consider the Taylor expansion around 𝚡𝚜,

𝑓 (𝚡) = 𝑓 (𝚡𝚜) +
1
2
(𝚡 − 𝚡𝚜)𝑇 𝙷(𝚡𝚜)(𝚡 − 𝚡𝚜), (D.2)

where

𝙷(𝚡𝚜) = [
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝚡𝚜)] (D.3)

is the Hessian matrix of 𝑓 at 𝚡𝚜. Set �̃� = 𝚡 − 𝚡𝚜, to obtain

(𝚡 − 𝚡𝚜)𝑇 𝙷(𝚡𝚜)(𝚡 − 𝚡𝚜) = �̃�𝑇 𝙷(0)�̃�. (D.4)

Assume that the Hessian is positive definite, i.e., that 𝚡𝚜 is a local
minimum. Because 𝙷 is symmetric and positive definite, its eigenvalues
are positive, and we have the eigendecomposition

𝙷(0) = 𝚅𝛬𝚅𝑇 , (D.5)

where 𝚅 is the orthonormal matrix of the eigenvectors, and 𝛬 is the
diagonal matrix of the eigenvalues, 𝛬 = [diag(𝜆𝑖)]. By the change of
variable 𝚢 = 𝚅𝑇 �̃�, we obtain

(𝚡 − 𝚡𝚜)𝑇 𝙷(𝚡𝚜)(𝚡 − 𝚡𝚜) = 𝚢𝑇𝛬𝚢. (D.6)

From �̃� = 𝚅𝚢 and |det(𝚅)| = 1, we deduce that the determinant of the
Jacobian matrix 𝜕�̃�∕𝜕𝑦 is one, i.e.,

| det( 𝜕�̃�
𝜕𝚢

)| = |det(𝚅)| = 1, (D.7)

nd so, that the coordinates transformation is

𝑛
�̃� = | det( 𝜕�̃� )|d𝑛

𝚢 = d𝑛
𝚢. (D.8)
22

𝜕𝚢
Because by assumption, 𝑔(𝚡) is a slowly varying function on 𝚡, we find

≈ 𝑔(𝚡𝚜)ej𝑘𝑓 (𝚡𝚜)
∫R𝑛

ej 12 𝑘�̃�
𝑇 𝙷(0)�̃�d𝑛

�̃�

= 𝑔(𝚡𝚜)ej𝑘𝑓 (𝚡𝚜)
∫R𝑛

ej 12 𝑘𝚢
𝑇 𝛬𝚢d𝑛

𝚢 =
( 2𝜋

𝑘

)𝑛∕2 𝑔(𝚡𝚜)
√

∏

𝜆𝑖
ej𝑘𝑓 (𝚡𝚜)+j 𝑛𝜋4 , (D.9)

where we made use of the result

∫

∞

−∞
ej 12 𝜎𝑦

2
d𝑦 =

√

2𝜋
𝜎

ej 𝜋4 . (D.10)

Finally, taking into account that
∏

𝑖
𝜆𝑖 = det(𝛬) = det[𝙷(0)] > 0, (D.11)

we end up with

𝐼 ≈
( 2𝜋

𝑘

)𝑛∕2 𝑔(𝚡𝚜)
√

det[𝙷(𝚡𝚜)]
ej𝑘𝑓 (𝚡𝚜)+j 𝑛𝜋4 . (D.12)

f 𝚡𝚜 is a saddle point for 𝑓 , then the Hessian matrix has both positive
nd negative eigenvalues. In this case, the stationary phase approxima-
ion is

≈
( 2𝜋

𝑘

)𝑛∕2 𝑔(𝚡𝚜)
√

|

|

|

det[𝙷(𝚡𝚜)]
|

|

|

ej𝑘𝑓 (𝐱0)+j 𝜎𝜋4 , (D.13)

where 𝜎 the signature of the Hessian matrix (the number of positive
eigenvalues minus the number of negative eigenvalues).

Consider now the integral

𝐼 = ∫

2𝜋

0 ∫

𝜋
2 −j∞

0
𝑔(𝛽, 𝛼)ej𝑘𝐬(𝛽,𝛼)⋅𝐫 sin 𝛽d𝛽d𝛼, (D.14)

ith

(𝛽, 𝛼) = sin 𝛽 cos 𝛼�̂� + sin 𝛽 sin 𝛼�̂� + cos 𝛽�̂�,
𝐫 = 𝑟(sin 𝜃 cos𝜑�̂� + sin 𝜃 sin𝜑�̂� + cos 𝜃�̂�).

he stationary point (𝛽𝚜, 𝛼𝚜) of the function

(𝛽, 𝛼) = �̂�(𝛽, 𝛼) ⋅ 𝐫 = 𝑟[cos 𝛽 cos 𝜃 + sin 𝛽 sin 𝜃 cos(𝜑 − 𝛼)]

s

𝚜 = 𝜃, 𝛼𝚜 = 𝜑,

nd the Hessian matrix is

(𝛽𝚜, 𝛼𝚜) =
[

−𝑟 0
0 −𝑟 sin2 𝜃

]

.

ence, the signature and the determinant of 𝙷 are 𝜎 = −2 and
et[𝙷(𝛽𝚜, 𝛼𝚜)] = 𝑟2 sin2 𝜃, respectively, and we get

≈ −j 2𝜋
𝑘𝑟

𝑔(𝜃, 𝜑)ej𝑘𝑟. (D.15)
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