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Abstract 
Polycentricity refers to the existence of more than one center in urban conurbations. While it 
is a fuzzy concept with no clear definition, it is often approached from a socio-economic  
perspective using information on the spatial distribution of jobs derived from employment 
data (EMP). The heterogeneity and shortage of such EMP data  is a challenge to the study of  
polycentricity. Remote sensing of urban morphology could provide a globally available  
surrogate in the form of TanDEM-X-derived urban mass concentrations (UMC). However, the 
extent to which UMC are suited to substitute EMP has not yet been systematically analyzed. 

To fill this gap, I detect and compare UMC-centers and EMP-centers in four city regions in the 
United States. I consider the EMP-based centers as a baseline and analyse the degree to which 
the UMC-centers are congruent with them. In a threefold analysis I quantify the general  
agreement between UMC and EMP-centers (1), identify morphological patterns and causes of 
disagreement (2), and assess the feasibility of calculating various measures of polycentricity 
using UMC data (3). 

I find that the UMC approach is able to detect major EMP-centers, although with disagree-
ments that often take the form of spatial overestimations. (1) Agreement is much better in  
economic (number of jobs) than in spatial (area) terms. (2) The mismatches between UMC- and 
EMP-centers can in many cases be plausibly explained by a nonlinear relationship between 
employment density and building volume. (3) Employment-based measures of polycentricity 
show fair agreement, but most spatial measures suffer from estimations errors. 

Altogether, the vast majority of job concentrations is detected by UMC, but precise analyses of 
distributions are hindered by spatial disagreement. Hence, the results support the careful use 
of UMC as a substitute for EMP in certain analyses of polycentricity. 
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1. Introduction 
1.1 Polycentricity 
Polycentricity has become a pivotal concept in the study of cities. It refers to the existence of 

multiple centers within a conurbation (Riguelle, Thomas, and Verhetsel 2007). The term  

monocentricity, in contrast, describes an urban region with a clear hierarchy between a single 

urban center and its clearly subordinate hinterland (Krehl 2016a). For most of the 20th century, 

variations of such monocentric models were used to describe and understand the spatial  

nature of cities, particularly in the North American region (Davoudi 2003). But over the past 

decades it has become evident that these standard monocentric models no longer reflect the 

urban spatial structure of today’s metro regions. Still, there is no consensus on what is taking 

the place of the monocentric structure (Taubenböck et al. 2017; Lee 2007). Some authors  

consider the possibility of a trend toward total dispersion of economic activity and population 

(Gordon and Richardson 1996; Lang and LeFurgy 2003). Others believe the most likely  

development to be the emergence of polycentric structures (Krehl, Siedentop, and Münter 

2016). In such polycentric regions, the dominance of the traditional core city decreases as its 

functions are distributed among several surrounding subcenters (Anas, Arnott, and Small 

1998). The debate continues about the future development of our cities. Will they become  

monocentric, polycentric, or dispersed (Lee 2007)? And is one of these courses politically or 

economically preferable (Davoudi 2003)? A large number of empirical studies attempt to  

resolve these pivotal questions by analyzing centers of urban regions (Krehl 2015b). 

But although extensive research has been carried out on urban centers, what exactly  

constitutes such a center is not at all clear. Reviewing the state of research, (Krehl 2016a) finds 

that the term subcenter might be an umbrella term used to refer to several different types of 

urban spatial densifications which may vary in functional profile, location, or history. The  

absence of a standard, accepted operational definition of a center diminishes the generaliza-

bility and comparability of much published research on the issue of polycentricity (Agarwal, 

Giuliano, and Redfearn 2012). Consequently, despite its widespread currency (Davoudi 2003), 

and increasing rigour in research (Roca Cladera, Marmolejo Duarte, and Moix 2009), urban  

polycentricity is still considered a concept that is at best versatile, at worst vague, and fuzzy 

(Taubenböck et al. 2017; Meijers 2008; Burger and Meijers 2012). Neither a clear definition, nor 
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a robust theoretical framework have so far emerged (Davoudi 2003). Instead, analyses of  

polycentricity vary on a number of points (Figure 1): 

1) geographic scale 

2) concept of polycentricity  

3) method for detection and analysis 

4) data basis 

1) Scholars have observed and analyzed polycentricity at various scales, from intra-city scales 

to trans-regional and even inter-national scales (Xingjian Liu and Wang 2016; Veneri and 

Burgalassi 2012). The scale is not simply a matter of the size and ambition of the study (Arri-

bas-Bel, Ramos, and Sanz-Gracia 2015) as polycentricity is not scale-invariant. What appears 

as polycentricity at a regional scale might 

be consistent with monocentricity at a  

local scale (Agarwal, Giuliano, and Red-

fearn 2012). And, as (Anas, Arnott, and 

Small 1998) observe, an organized system 

of subcenters might look like apparently 

unorganized urban sprawl at a different 

scale. Concretely, centers may take the 

form of metro regions at a national scale. 

At a local scale, centers may take the form 

of towns. Metro regions and town are af-

fected in their centrality by  

factors which are unlikely to be scale-invariant. Hence, the choice of the scale likely has a direct 

impact on the outcome of a study, and not merely its interpretation. 

2) So far, there has been no agreement on the conceptualization of polycentricity (Taubenböck 

et al. 2017). Functional, morphological, or integrated concepts have been discussed (Veneri and 

Burgalassi 2012; Burger and Meijers 2012). From a morphological perspective, centrality is ob-

served on the place-based notions of spatial distribution of economic activity (Krehl 2016a). 

The morphological centers are commonly explored defined from a socio-economic  

perspective. In this place-based notion, a region’s centers are those places where its economic 

Figure 1: Variations across polycentricity analyses in the lit-
erature. 
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activity culminates (Krehl 2016a). This culmination can take the form of local densification of 

employment (Giuliano and Small 1991). In contrast, the functional perspective observes  

centrality on flows of goods, people and information (Veneri and Burgalassi 2012). The  

functional and morphological concepts of centers do not exclude each other and could be, to 

some extent, positively correlated (Veneri and Burgalassi 2012) such that functional centers 

correspond to morphological centers. 

3) Most analyses of polycentricity include the algorithmic detection of centers. A considerable 

amount of literature on the topic has not converged in an agreement on methodologies, but 

rather produced a large variety of different approaches (Arribas-Bel and Sanz-Gracia 2014). 

While multiple authors (Krehl 2016a; Grubesic, Wei, and Murray 2014; Agarwal, Giuliano, and 

Redfearn 2012; Roca Cladera, Marmolejo Duarte, and Moix 2009; Xuejun Liu et al. 2019) have 

suggested categories of subcenter detection algorithms, so far, no taxonomy has emerged as 

dominant. For the purpose of this thesis, I synthesize the following three-group categorization:  

 Local Indicators of Spatial Association (LISA). LISA are a group of exploratory approaches 

which are developed for the general detection of clusters or hotspots in spatial data.  

Variations of LISA have been used for urban center detection, for example by Arribas-Bel, 

Ramos, and Sanz-Gracia (2015). 

 Threshold or cut-off methods, which identify centers based on fixed thresholds of minimum 

size or density. Such thresholds can be defined by experts based on prior knowledge of the 

study area, or dynamically set based on values in the study area. These are among the 

oldest and simplest methods of center detection but remain widely used (Giuliano and 

Small 1991; Arribas-Bel and Sanz-Gracia 2014; Taubenböck et al. 2017; Lv et al. 2020). 

 Model-based approaches, such as the approaches by McMillen (D. McMillen 2001; D. P. 

McMillen 2004) are based on fitting a model to the distribution of a variable and identifying 

those objects as centers which offer the greatest statistical support for the fitted model. 

Often, flexible variants of regressions are used as the basis of these models. Derivatives of 

such approaches have been applied to the detection of urban centers, e.g. by (Lee 2007; Sun 

2020; Krehl et al. 2016; Garcia-López 2010). 

The choice of algorithm is not trivial, as it can heavily affect a study’s outcome (Anas, Arnott, 

and Small 1998; Krehl 2016b). Indeed, a meta-analysis by Agarwal, Giuliano, and Redfearn 
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(2012) shows that even within the same region the number and extent of detected centers  

varies drastically across applied methods. In this way, the absence of an accepted standard 

creates a problem for generalizing and comparing results (Taubenböck et al. 2017). Despite 

this issue, clear criteria by which to select the appropriate algorithm for a certain application 

are still lacking. 

4) Finally, there is no unambiguous data basis for the study of polycentricity. Previous studies 

have used a variety of proxies for economic activity, such as data on employment or  

population density, productivity, rents, or wages. Out of these, employment density has been 

identified as  the most suitable proxy for economic center detection by McDonald (1987) and 

Giuliano and Small (1991). However, traditional sources of employment data are rarely  

available in a comparable and uniform manner. Consequently, detailed studies have so far 

been limited to a few case study regions (Heider and Siedentop 2020). To date, there are few 

studies that have systematically investigated inter-regional and international differences in 

polycentric development (Heider and Siedentop 2020; Standfuß et al. 2020). Thereby, issues of 

data heterogeneity, limited data availability and methodological differences still limit our  

understanding of urban polycentricity. 

1.2 Remote sensing of economic activity 
A promising solution to the lack of a consistent data basis is the estimation of economic  

parameters using surrogates derived from remote sensing of physical properties. Over the past 

decades, advances in remote sensing technology and processing algorithms have been made 

and allow for the gathering of large-scale information on Earth’s land surface, including the 

expanding urbanized land. 

Multiple studies show that it is possible to estimate economic indicators such as GDP using 

remotely sensed land cover (Faisal and Shaker 2014; Ma and Xu 2010) or night-time light  

imagery (Doll, Muller, and Elvidge 2000; Doll, Muller, and Morley 2006; Noor et al. 2008;  

Sutton, Elvidge, and Ghosh 2007; Yue, Gao, and Yang 2014). Keola, Andersson, and Hall (2015) 

provide an overview of measuring economic development from space. The studies differ in 

accuracy and operate only at the very coarse scale of administrative regions, which is much 

too coarse to study intra-urban polycentricity. 
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Another way to objectively estimate economic parameters is via urban morphology which can 

be understood as the combined characteristics of the urban area that are immediately derived 

from their physical properties. Urban morphology can be measured using built-up density, 

height, or volume (Geiß et al. 2019). 

That economy and urban morphology are directly linked is intuitive (Krehl 2015b): Much 

economic activity is happening at dedicated workplaces, which are often located mainly inside 

buildings, which in turn shape a city’s morphology. While two-dimensional measures of  

morphology have been used in urban studies, three dimensional measures, notably the built-

up volume, provide increased value for the study of polycentricity (Krehl et al. 2016). Several 

studies have explored the linkage between built-up volume and job concentrations (Krehl 

2015b; Taubenböck et al. 2017; Fina et al. 2014; Krehl et al. 2016). These studies used volume 

information from 3D city models derived from airborne laser scanning (Fina et al. 2014) or 

urban mass concentrations (UMC) derived from high resolution stereoscopic data combined 

with building footprints derived from digital topographic maps (Wurm et al. 2014). These 

products are highly resolved and well suited for small scale studies with high accuracy.  

Descriptive analyses by Krehl (2015b) and Krehl et al. (2016) explored the interaction between 

these datasets and socioeconomic indicators and found them to display limited similarities. 

However, the input data is expensive and not available for larger regions. This creates a  

challenge for the transfer of these approaches to larger study areas.  

New methods promise the derivation of UMC from globally available datasets: Geiß et al. 

(2015) developed a method to derive UMC at the resolution of 12 m from TanDEM-X radar 

data. While the spatial accuracy of these UMCs can not compete with highly resolved building 

models, their potentially global availability makes them highly attractive for large-scale 

studies of urban regions. The suitability of this data to detect morphological polycentricity has 

already been investigated in a test case (Standfuß et al. 2020).  

Yet, no study has, so far, systematically explored whether this TanDEM-X derived UMC data 

reflects the socioeconomic reality and, by extension, whether the centers detected based on 

such data correspond to real economic centers. Hence, it remains unclear in which ways  

TanDEM-X-derived UMC data can be truly used as a surrogate for the socioeconomic data 

that is traditionally used in analyses of polycentricity.  
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1.3 Outline and research objectives 
In this study, therefore, I aim to investigate the agreement of employment center detection 

based on direct employment measurements to detection based on indirect UMC data  

surrogates. 

To accomplish this, I detect employment centers using a set of acknowledged center-detection 

algorithms on both TanDEM-X derived UMC data and survey-derived employment data for 

four city regions in the United States.  

I select the United States as the geographical region for this study, as it is where a vast majority 

of research on urban subcenters stems from (Heider and Siedentop 2020; Davoudi 2003).  

Previous studies using morphological concepts (Giuliano and Small 1991; Giuliano et al. 2007; 

Lee 2007; McMillen 2004; McMillen 2001; McMillen 2003; Arribas-Bel, Ramos, and Sanz-Gracia 

2015; Liu et al. 2019; McDonald 1987) have gathered extensive evidence of polycentricity for 

metropolitan areas throughout the United States (Agarwal, Giuliano, and Redfearn 2012) 

where availability of economic data is for such analyses is good (Krehl 2016b; Arribas-Bel and 

Sanz-Gracia 2014). 

As no center detection method has gained full acceptance in literature, I use a set of three 

acknowledged center detection methods instead of a single method, one from each of the 

identified categories: LISA, threshold-based, and model-based. Those algorithms are  

separately applied to the EMP and UMC data to identify centers. 

After the centers are detected, I consider the employment-based centers as a baseline and 

examine the extent to which the morphologic centers are congruent with them. This  

comparison of morphological- and employment-based results is also threefold (Table 1). Each 

part of the analysis is tailored to accomplish a specific research objective: 

A) How well can employment centers be detected using UMC data? In an evaluation of agreement, 

I visually assess and quantify the general agreement between detected employment and  

morphologic centers. 

B) Which morphologic or geographic characteristics favor or hinder agreement between morphologic-

centers and employment-centers? In a systematic analysis of error causes, I examine the 
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morphological and geographic properties of correctly and incorrectly detected centers for 

characteristic patterns. 

C) Which analyses of polycentricity are feasible using purely UMC data? In a feasibility assessment 

I compare the agreement between employment and morphologic data specifically for various 

acknowledged measures of urban center structure. 

In conjunction, these analyses target the overarching research question: 

In which ways can urban mass concentrations (UMC), derived from globally available TanDEM-X 

data, be used as a surrogate for employment data (EMP) in the analysis of urban polycentricity? 

Throughout the thesis, I aim for transferability and scalability, wherever possible employing 

such methods which can potentially be applied globally. I also aim for breadth, employing a 

variety of methods that have been used in other studies of polycentricity, and applying them 

to multiple test sites. Thereby, I aim to ensure that the findings will be and remain relevant 

beyond the specific scope of this study. In this way, I attempt to mitigate the issue of  

comparability that I outlined in the review (Taubenböck et al. 2017; Agarwal, Giuliano, and 

Redfearn 2012). 

Table 1: Components of the three-fold analysis 

Part Focus Research Question 
A) Evaluation of agreement between 
detected EMP- and UMC-centers 

General 
agreement 

How well can employment centers be  

detected using morphologic data? 

B) Systematic analysis of morphological 
properties of correctly and incorrectly 
detected employment centers 

Error 
causes 

Which morphologic or geographic  

characteristics favor or hinder agreement 

between morphologic-centers and 

employment- 

centers? 

C) Feasibility assessment of  
analyzing job distributions in city 
regions using UMC data 

Feasibility  Which analyses of polycentricity are 

feasible using purely morphologic data? 
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The remainder of this thesis is structured as follows: Chapter 2 introduces the study areas as 

well as the input data. Chapter 3 presents the three methods of center detection and the three 

analysis components while Chapter 4 presents their results. Chapter 5 discusses implications 

of the results and their interpretation and evaluates the influence of the choice of algorithm. 

Lastly, Chapter 6 provides a concluding summary of the study and gives an outlook to future 

work.  

 

 
Figure 2: Outline of the thesis. 
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2. Material 
Four cities in the United States were chosen as sites for the study. For each city, I delineated a 

study area and prepared morphologic and economic data for use in the analysis. 

2.1 Study Areas 
This thesis is a contribution to the project "Where are the jobs? Stadtregionale Zentrenstrukturen 

im internationalen Vergleich” (engl. ‘Where are the jobs? International comparison of urban-regional 

center structures’) of the Deutsche Forschungsgemeinschaft (DFG), which has been funded 

since 2018 (for more information see DFG 2021). The project has a dedicated focus on the study 

of urban regions in the United States and Germany. Up to this point, most literature on  

polycentricity focused on the United States (Heider and Siedentop 2020). It was, thus, decided 

to only consider cities in the United States for this thesis. Criteria for the selection of test sites 

were the presence of monocentrism, moderate to strong growth, the availability of  

fine-grained information on total employment, and geographic diversity across sites.  

Following these criteria, the urban areas of Atlanta, Dallas, Pittsburgh, and Seattle were 

selected by the project committee as test sites for the thesis (Figure 3). In this section, I will 

briefly describe each of these test sites from a geographic and economic perspective. 

Atlanta is the largest city of Georgia and also its capital. It is a major financial and cultural 

force in the American Southeast, where it has assumed an important position in national and 

international commerce (Advameg, Inc 2021). The city has emerged as a banking center and 

boasts the third largest concentration of Fortune 500 companies in the USA (City of Atlanta 

2021). In the past two decades, the population of Atlanta metropolitan area has experienced 

unprecedented growth from 2,9 million to 4,1 million people (City of Atlanta 2021). Hartsfield-

Jackson Atlanta International Airport is the world's busiest in daily passenger flights, and  

beyond its significance as a transport hub, it is also a major employer with more than 63 000 

jobs on-site (City of Atlanta 2020). Direct flights to Europe, South America, and Asia have 

made Atlanta easily accessible to the more than 1 000 international businesses (City of Atlanta 

2021). 

Located in the rolling prairies of north-central Texas, Dallas is separated from its western 

neighbor Fort Worth by less than 50 kilometers. While each retains a distinct identity, the two 

cities and their surrounding suburbs are often considered a linked metroplex (Advameg, Inc 
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2021). The city features a diversified economy and is the world headquarters of the U.S. Army 

and Air Force Exchange Service. Beside this, wholesale and retail trade combine with services 

to form the backbone of Dallas’ economy. Dallas is also a major transportation hub 

(Encyclopaedia  

Britannica 2021a) and the Dallas/Fort Worth international airport is one of the largest in the 

world (DFW 2021). Multiple industrial and commercial zones exist in the metro area, such as 

the business hub around Addison (DestinationDFW 2013) or the Telecom Corridor, a strip about 

three miles long on Highway 75 that is home to more than 600 technology companies 

(Advameg, Inc 2021; REDP 2021). Dallas shows a clear radial expansion, particularly in the 

northern and western direction, where it connects to its smaller neighbor Fort Worth. 

Pittsburgh is nestled among the forested hills of southwestern Pennsylvania at the point 

where the Allegheny and Monongahela Rivers meet to form the Ohio (Advameg, Inc 2021). 

The city, which was formerly known as a major industrial center, was forced to reinvent itself 

after the decline of the steel industry in the second half of the nineteenth century. In the 

process, the city changed its economic base as its industries and businesses retooled and  

diversified (VisitPittsburgh 2015). Research, development, and the service sector became  

increasingly important. By the mid-1980s and again throughout the 2000s, Pittsburgh had 

gained the reputation as the United States’ most livable city (VisitPittsburgh 2015). Moreover, 

Pittsburgh remains a leading transportation center not least due to the significance of its large 

inland port (Encyclopaedia Britannica 2021b). The region shows numerous examples of recent 

development of retail and business parks along its transport and water routes. The city itself 

has over 70 miles of urban riverfront—more than any other inland port city in America 

(Advameg, Inc 2021). Geographically, the city is shaped by the relatively strong terrain with 

steep hills flanking the three major valleys around the core city. 

At the southeastern shore of Puget Sound, a deep inland arm of the northern Pacific Ocean, 

lies the densely populated metropolitan area of Seattle (Encyclopaedia Britannica 2021c). 

While Seattle has in the past been largely dependent on the aerospace industry (Advameg, Inc 

2021), an economic shift occurred when Boeing headquarters relocated to Chicago in 2001. 

From that point on, tech companies began to have a bigger impact on the city's economy, 

driving a sharp increase in population (City of Seattle 2021). Among the region’s most 

important economic assets are the ports at Elliot Bay and Tacoma which together form the 
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fourth largest container gateway in North America (Port of Tacoma 2014). The city is built on 

hills and around water, much shaped in its form by the surrounding geography of Puget 

Sound in the west, and the Olympic and Cascade mountain ranges to the east and west (City 

of Seattle 2021). 

Beyond the choice of the test sites itself, the choice of the extent of the study area can have 

great influence on the numerical results of the analysis and their interpretation (Taubenböck 

et al. 2019). As many center algorithms define a center by its relative density compared to its 

geographical environment, the definition of what to include in the environment will have an 

indirect effect on the detection of centers. For this reason, the choice of the study areas should 

not be arbitrary. From the transferability which I aspired to in this study resulted certain  

requirements for a study area. Firstly, the area should reflect the area of influence of an 

urbanized area rather than a strict geospatial buffer zone. Further, the study area should not 

be  

defined by historical or political delineations and rather should be dynamically created for any 

city which may be analysed. These requirements were fulfilled by isochrones of 60-minute 

travel times, which were created on the basis of transport infrastructure and central points 

representing the central business district (CBD). The 60 minutes isochrone threshold was 

judged by the project committee to best reflect the functional extent of the selected study areas. 

The location of the CBD was uniformly determined using the coordinates representing the 

geographic midpoints in Open Street Map. 
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Figure 3: Overview of the test sites. 

 

2.2 Data 
At its heart, this analysis is a comparison of two data sources, one of which is morphologic, 

the other economic. Therefore, I used two distinct datasets in this analysis. Firstly, I used 

information on built-up volume, which was derived from a combination of remote sensing 

data. Secondly, as a baseline to compare the morphologic information to, I used information 

on total employment, which was derived from the LEHD Origin-Destination Employment 

Statistics (LODES, see Graham et al. 2014). Both datasets were provided to me within the 

project “Where are the jobs? Stadtregionale Zentrenstrukturen im internationalen Vergleich” and are 

briefly described in this section. 
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Morphologic Data 

To approximate the urban 

morphology, I used a processed 

normalized digital elevation model 

(nDSM) which comprises elevation 

information of objects above ground. 

This data was derived from the 

globally available TanDEM-X digital 

elevation model (Zink et al. 2014) 

using a method developed and 

validated by Geiß et al. (2015, 2019). 

In this method, progressive 

morphological filtering is firstly 

applied to generate from the DEM a 

nDSM. Subsequently, pixels 

containing non-urban objects are 

masked out using the Global Urban 

Footprint (Esch et al. 2017), a 

TanDEM-X-derived binary building 

mask, as well as vegetation masks 

derived from Sentinel-2 imagery. 

The result is a normalized model of 

urban built-up heights in a raster format with a spatial resolution of 0.4 arcseconds (i.e.,∼12 

m). Multiplying the height of a pixel with its footprint then results in a continous topographic 

model of the urban built-up volumes (Figure 4a). Geiß et al. (2019) validated the data by 

comparing it with LoD-1 building models of major European cities and found it to have 

overestimations in build-up density in areas with high buildings and underestimations in 

areas with low buildings, such as suburban areas. They also reported that the method 

consistently underestimated built-up heights. Yet, altogether, the relative distributions of 

built-up volumes represented the morphologic structure of the cities well. Further, Geiß et al. 

Figure 4: Input data over downtown Atlanta.: 
a) TanDEM-X-derived built-up volumes; 
b) Census blocks; 
c) LODES-derived total employment. 
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(2019) demonstrate the data’s ability distinguish several morphologic classes. This 

underscores its viability for the purposes of my study. 

Economic data 

As a counterpart and benchmark to compare this morphologic data to, I required a similarly 

fine-grained proxy for economic activity. In the United States, annual figures on employment 

numbers are available even in great detail and at very fine spatial units of aggregation via  

the Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics 

(LODES, see Graham et al. 2014). LODES data is generated from a variety of administrative 

and survey data and provides information on the number of employees at the level of census 

blocks. In this context, jobs are assigned to census blocks based on the location of the place of 

work, which is in turn defined by the physical or mailing address reported by employers. The 

LODES dataset excludes certain types of employment, such as the military and other security-

related federal agencies, postal workers, some employees at nonprofit and religious 

institutions, informal workers, and the self-employed (Graham et al. 2014). The census blocks, 

which serve as the dataset’s spatial reference units, are delineated using an automated process 

based on physical features rather than population or employment. Therefore, there are many 

census blocks without any population (Rossiter 2011) and the size of the census blocks is varied 

and often irregular (compare Figure 4b). Nonetheless, the spatial granularity and level of detail 

make the LODES dataset an appropriate counterpart to the remotely sensed morphologic data. 

The timespans of the acquisitions of morphologic and economic data overlap. The TanDEM-

X elevation model was generated using data acquired between December 12, 2010 and January 

16, 2015 while the Sentinel 2 imagery was acquired between 2014 and 2016. The selected 

LODES data refers to the year 2015. While all jobs in the LODES snapshot are presumed to be 

held on April 1, some job characteristics may have a different timeframe (Graham et al. 2014). 

Altogether, the acquisition times of morphologic and economic data are in rough, if not  

perfect, agreement, that I deem sufficient to support a study for the year 2015. 

To make the two datasets more comparable for the purpose of center detection, I applied 

additional preprocessing. Both this preprocessing and the center detection will be described 

in the next chapter. 
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3. Methods 

To provide a regular spatial unit for this study, I aggregated both datasets to a spatial grid. To 

detect centers, I subsequently applied three center detection algorithms on each test site, on 

both total employment (EMP) and building volume (UMC) per grid cell. On the detected 

centers, I performed a threefold analysis, each part intended to answer one of my three 

research questions. 

In the first section of this chapter, I present the creation of the spatial grids (section 3.1). In the 

second section I present and compare the algorithms (section 3.2). In the third and final section, 

I present the methods of analysis (section 3.3). 

3.1 Grids 
To begin with, I aggregated both data sources, UMC and EMP, to a uniform spatial basis in 

the form of a regular square grid. Due to their regularity, grids mitigate effects the modifiable 

areal unit problem (MAUP, see Openshaw 1983) to an extent. Nevertheless, they are still 

subject to zoning and scale effects. Using the spatial level of grid cells has several other 

advantages: It makes it easier to recognize patterns in the data rather than local peculiarities 

in the spatial unit (Madelin et al. 2009). Furthermore, Krehl (2016) points out additonal 

advantages for the study of polycentricity: Firstly, political considerations and administrative 

trajectories which may result in varying sizes of spatial units are mitigated. Secondly, the notion 

of absolute numbers (employees per grid cell) and densities (employees per km²) is identical, 

thus allowing comparisons of the results among all test sites. Finally, as Geiß et al. (2019) note, 

the effect of aggregating morphologic data into larger grid cells can have an averaging effect 

which mitigates error levels, albeit at a loss of spatial granularity. 

I created a regular grid of square cells with an area of 1 km² each for each study area and 

limited the extent of the grids to the extent of the isochrones around the respective test sites. If 

the centroid of a grid cell intersected with isochrone, the grid cell was included. The remainder 

of the study operated on the level of these urban grids within which the 1 km² grid cells were 

the basic spatial unit. I aggregated both the economic and morphologic data into these grid 

cells.  
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These grids match the INSPIRE guidelines which specify a grid of 1 km² cell size as common 

data basis for spatial analysis in the European Union (INSPIRE 2014). The INSPIRE grid has 

been used by previous studies in the European region (Krehl 2016a). By sticking close to its 

spatial structure, I ensured comparability with previous and future studies which use data at 

the level of INSPIRE grid cells (Taubenböck et al. 2017; Krehl 2015b; Wurm et al. 2014). The 

detail of a 1 km² grid, Krehl (2016) points out, while not fine-grained enough to detect planned 

locations at an urban scale, is still well suited to detect regional spatial patterns such as 

polycentricity. 

I aggregated both datasets into the grids, weighting cells or census blocks at the edges of grid 

cells proportionally to the intersectional area. I subsequently summed up the built-up volume 

and employment numbers within each grid cell, generating aggregated morphology and  

employment values for each grid cell.  

Table 2: Descriptive statistics of the test sites. 

Study Area Area 
 

[km²] 

Employment 
density 
[n/km²] 

Building volume 
density 

[km³/km²] 

Total  
employment 

[n] 

Total building 
volume 
[km³] 

Atlanta 9.745 215,4694 0,000286 2.099.750 2,7902 

Dallas 14.558 189,6577 0,000150 2.761.037 2,1848 

Pittsburgh 3.939 213,1167 0,000366 839.467 1,4406 

Seattle 3.107 474,1575 0,000769 1.473.207 2,3896 

Exploratory statistics of the input data reflect the test sites’ diversity. The isochrones of the 

radially expanding Atlanta and Dallas cover much larger areas than Seattle which is much 

constrained by its geography and exceeds the other sites’ densities by far (Figure 5). The total 

employment within the grids also varies, from between 839.467 employees in the Pittsburgh 

area to 2.761.037 in the Dallas area (Table 2). 
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Figure 5: Overview of the test sites’ employment (EMP) and built-up volumes (UMC) per grid cell. Note that to 
enhance detail, the sites are not displayed at matching scales. 

To test if the correlation between volume and employment (Krehl 2015b) also holds for 

American cities, I calculated the correlations on a per-grid cell basis. Across all test sites 

(excluding cells which contain zeros) the correlation between total built-up volume and 

employment  

exists and is highest compared to any other tested morphological variable (Figure 6). This  

supports the prior assumption that there is a link between built-up volumes and employment 

also for our test sites. Henceforth, I only use total built-up volume as the morphologic variable 

and, following the example of Wurm et al. (2014), I refer to this type of information on building 

volume as urban mass concentration, UMC. Likewise, I refer to the aggregated total 

employment per cell as EMP.  

 

Figure 6: Correlations between total employment per grid cell and statistics of morphological properties per grid 
cell. 
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3.2 Algorithms for center detection 
Within this harmonized data, I then algorithmically detected those cells which represented 

UMC-centers or EMP-centers. To accommodate the diversity of approaches found in 

literature, I separately applied three distinct center detection algorithms. I chose each 

algorithm to represent one of the previously identified categories: 

 Local indicators of spatial association (LISA) 

 Threshold approaches 

 Model-based approaches 

Compared to the use of a single algorithm (Krehl 2015b), my use of multiple algorithms better 

reflected the diversity of approaches found in literature. Wherever possible, I implemented 

the algorithms as they were described in previous publications and chose their parameter 

settings as they are reported by the seminal article, or in absence of such reporting, in the spirit 

of the article. I only made changes when they were necessary to maintain comparability  

between the algorithms. My goal was neither to select, create, nor tailor algorithms that were 

optimized for the task at hand. Rather, I aimed to truthfully represent the approaches as they 

are described in the literature.  

I – Local Moran’s I 

Local Moran’s I (MI) is a commonly used method from the family of Local Indicators of Spatial 

Association (LISA). It is the local component of the Moran’s I statistic of spatial autocorrelation 

(Anselin 1996). 

Local Moran’s I was developed as a general exploratory method to find patterns in spatial 

distributions. It has been used for a wide range of applications in different fields, including 

image segmentation (Johnson and Xie 2011), Forestry (Fu et al. 2014), Health (Jacquez and 

Greiling 2003), and Urban Studies (Krehl 2015b). Building on the works of the latter, I used the 

algorithm as one method to detect urban centers. It is a flexible approach that is capable of 

identifying two different center concepts which are based on high clusters (HH) and high  

outliers (HL) respectively. I presumed that in the context of urban structure, high clusters 

reflect large spatial concentrations of employment that are noteworthy due to their ability to 

attract and stimulate concentration also in adjacent areas. High outliers, on the other hand, 
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reflect local concentrations of workplaces which are noteworthy due to their local significance 

within areas of comparative economic weakness.  

Figure 7 displays how I used Moran’s I for the detection of centers. In the first step (Figure 7a) 

the local Moran’s I statistic relates every cell to its neighbourhood via a weighted cross-product 

between the value of the cell (V) and the values of the cell’s neighborhood (lagged variable, 

VLag). High values of this statistic indicate co-occurrence of similar values (high or low) at this 

location while low values of this statistic indicate dissimilar values (Anselin 1995). The  

significance of this local autocorrelation is analyzed through comparison with a reference 

distribution that is derived through permutation of the inputs (Figure 7b). Based on the 

relation of value of the cell to its global mean, and the relation of the lagged variable to its 

global mean, the algorithm is capable of detecting four significant types (Figure 7c): Cells with 

a  

significantly high local autocorrelation are clusters of either high (HH) or low values (LL). 

Cells with a significantly low local autocorrelation are outliers of either high (HL) or low  

values (LH). Finally, all cells which are of type HH or HL that are also significant are output 

as centers (Figure 7d). 

Implementations of local Moran’s I are available in a range of softwares, such as ArcGIS, 

CrimeStat, GeoDA, Python, and R (Bivand and Wong 2018). While Bivand and Wong (2018) find 

that differences between software implementations of local Moran’s I exist, to the best of my 

understanding these are negligible for the purposes of my analysis. In this study, I used the 

implementation provided by the R package spdep (Bivand, Pebesma, and Gomez-Rubio 2013; 

R Core Team 2020).  

As an exploratory method, local Moran’s I does not require any prior information about the 

study area or the distribution of the value (Arribas-Bel, Ramos, and Sanz-Gracia 2015). As with 

any use of a LISA, the spatial weights that are chosen a priori are very influential (Bivand and 

Wong 2018) as they determine the considered neighbourhood. I opted for a first order  

queen-contiguity neighbourhood, meaning that the neighbourhood of every grid-cell  

consisted of its immediate neighbours with which it shared a corner or edge. An advantage of 

working on a regular grid is that this neighbourhood is equally large (eight neighbors) for 
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every cell, except for the comparatively few edge cells. While the effects of the neighbourhood 

choice were not eliminated, in this way, they were spatially homogenous. 

 
Figure 7: Workflow of the local Moran's I approach to center detection in grids. 

The only numeric parameters that need to be defined a priori are the significance threshold 

and the number of permutations to calculate the reference distribution. I use a significance 

threshold of 95% computed over 500 permutations as this is the default setting of the R package 

spdep. Due to the large and varying number of grid cells, I considered a Bonferroni-correction 

of the p-value to be impractical (Anselin 1995). I also considered a correction based on the 

number of neighbors, as offered by spdep, to be ineffective in my approach, because of the 

aforementioned homogeneous neighborhood size. 

II – Combined threshold approach 

The combined threshold approach (CB) was developed by Taubenböck et al. (2017) 

specifically for the purpose of identifying urban centers based on building volume. 

Threshold (or cut-off) approaches have a long history in urban studies and are widely used 

(Liu et al. 2019). They function by identifying all those spatial objects as centers for which either 

the value of interest or the density of this value exceeds a certain threshold. This threshold can 

be set in various ways. Fixed thresholds, which are chosen by an analyst based on prior 

knowledge or intuition (Giuliano and Small 1991), are often favoured for their simplicity, but 

come at the cost of lacking transferability between cities. An alternative are dynamic  

thresholds (see, for example, Garcia-López and Muñiz 2010; Lv et al. 2020), which are based 
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on a statistic such as the mean, median, or standard deviation of the value of interest within 

the region (Lv et al. 2020). These approaches, however, risk that the threshold could be  

dominated by the influence of few, relatively strong outliers such as a dominant core city. To 

overcome the shortcomings of individual threshold-based methods, Taubenböck et al. (2017) 

developed the combined threshold approach (CB). 

Unlike the generic Moran’s I statistic, the combined threshold approach was specifically 

designed for the purpose of subcenter identification via their morphologic characteristics. Its 

two components correspond to two concepts of such centers. The first one, represented by the  

regional component, is spatially agnostic and defines centers as concentrations that are 

substantially high compared to the rest of the region. It makes no prior assumptions about the 

spatial structure and thus functions well for cities that are more polycentric or develop 

asymmetrically. However, a dominant core city, should it exist, may have dominating 

influence on the threshold, and as a result prevent the identification of smaller centers. This is 

the  

justification for the distance-based threshold. This distance-based threshold is based on the 

prior assumption that while monocentrism is prevalent, smaller subcenters in the periphery 

are still relevant. Reflecting this, it evaluates local densifications not in a regional context but 

within the context of rings with a similar distance from the core city. Thus, it is capable of 

detecting centers whose values are lower than those of the main center, provided that they 

exceed typical values of other cells in a similar context defined by the cell’s ring. However, the 

creation of the distance-rings requires that the location of the center of the core city is already 

defined ex-ante. Within those constrains, the combination of two thresholds results in a robust 

approach that is both simply and transferable to different regions. 

In practice, this combined approach utilizes two dynamic thresholds in disjunction. The first 

(regional) threshold is derived from the values of all cells in the region (Figure 8a). For the 

second (distance) threshold, cells are grouped into rings based on their distance to the city 

center, and the threshold is derived for each ring separately (Figure 8b). In both cases, the 

thresholds are determined as standard derivations above the mean. A cell can qualify as a 

center by meeting either one of these thresholds. A factor applied to the standard deviation 

can serve to adjust the algorithm. From another perspective, this factor itself can be considered 
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the threshold which is applied to the z-scores of the cell, which in turn are calculated twice, 

once within the regional and once within the distance-ring-based reference population. 

In a further processing step, neighboring centers are joined into clusters using a queen 

contiguity neighborhood. All clusters which fail to each the minimum size of 2 km² are then  

eliminated (Figure 8c). All remaining clusters are considered centers (Figure 8d). 

I implemented the algorithm in R. I determined the center location using the coordinates 

representing the geographic midpoints in OpenStreetMap (OpenStreetMap contributors 2020). 

It is possible that distance-rings at the very center or at the edges of the region may only 

contain few values, reducing the robustness of the distance-based threshold in those areas. 

  

Figure 8: Workflow of the combined threshold approach to center detection in grids. 

As the study of Taubenböck et al. (2017), I opted for z-score threshold factors of 1,3 in both the 

regional and distance-based groups, and use distance-rings of 1 km width. However, I did not 

adopt the additional, fixed threshold, which in the original implementation was intended to 

exclude sparsely built residential areas. As the threshold was originally derived for test sites 

in Germany, and no plausible fixed threshold likewise applies to UMC and EMP data, I  

decided that its adoption was not feasible. 

III - Locally weighted regression  

The locally weighted regression approach (LR) by McMillen (2001) is an example of 

theoretical (Krehl 2016b) and model-based approaches. It has been used in multiple studies of 

urban structure (Garcia-López, Hémet, and Viladecans-Marsal 2017; Muniz, Galindo, and 
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Garcia 2003) and notably by Krehl (2016) who adapted it, with some modifications, for the 

detection of economic centers in German city regions. 

This approach is grounded in economic theory (Krehl 2016b). Unlike the generic Moran’s I and 

the morphology-targeted combined approach, the LR approach is specifically designed to 

identify economic subcenters. McMillen (2001) defines an employment subcenter as a  

concentration of firms large enough to have significant effects on the overall spatial 

distribution of population, employment, and land prices. To detect such centers 

algorithmically, it is necessary to not just look at the values of the centers themselves, but also 

at values in a window surrounding them, and infer the cell’s influence on this window. 

Concretely, the approach aims to detect subcenters which fulfil two criteria: Firstly, they  

display significantly higher values than their surroundings. Secondly, they are significantly 

influential within the city. To identify such centers within a spatial dataset, McMillen (2001) 

developed a two-step procedure in which the first step identifies likely candidate subcenters 

and the second one iteratively eliminates candidates with insufficient explanatory power. 

In the first step, a locally weighted regression is used with a large window size to fit a relatively 

smooth surface to the distribution of the value over the city. In McMillen’s original  

implementation (McMillen 2001) this value is the density of employment. When applied to a 

grid, due to the regularity of the cells, the notions of density and count are identical. Cells with 

significant positive residuals on the smoothed surface are then considered subcenter  

candidates. To reduce patches of neighbouring candidates to their center, a maximum filter 

excludes all candidates whose predicted log-employment densities are not the highest in a 

three-mile radius (Figure 9a). 

In the second step, a semi-parametric regression is again used to fit a surface. This time, a much 

smaller window results in a much more variable surface. Iteratively, the candidate subcenters 

with the lowest coefficients are removed and the regression is repeated, until only significantly 

influential subcenters remain (Figure 9b). 

To allow for comparability with the other two algorithms, I empirically made two 

modifications. Firstly, in step one, I did not filter candidates using the predicted employment 

density but rather using their initial values. I found that this created a more robust result that 
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was less reliant on the fit. Secondly, after step two, I reactivated candidates removed by this 

filter as long as they were spatially connected with a remaining candidate (Figure 9c). They 

were then considered part of the spatial extent of the identified subcenter, provided that it was 

identified as significant in step two. This allowed me to identify the geographical area covered 

by the subcenter, rather than just the central grid cell, as the final center extent (Figure 9d). 

 
Figure 9: Workflow of the locally weighted regression approach to center detection in grids. 

I used the R package McSpatial (McMillen 2013) to calculate the regression within the 

framework of my own modifications. 

While the approach assumes the presence of a CBD, it does not enforce monocentricity and it 

allows for locally significant subcenters to be detected, especially if smaller window sizes are 

used. While the regression model that this approach uses is flexible, the algorithm as a whole 

requires the definition of a number of parameters, such as the window sizes in the first and in 

the second step, as well as the p-value to declare significance. Despite that, as Krehl (2016b) 

points out, it does not require local knowledge of the region that is analysed. Hence, the  

parameters, once chosen, require no tuning to the test sites. I chose my parameters as in 

McMillen’s original model but made two modifications to the window sizes in accordance 
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with Krehl (2016) using window sizes of 25% and 5% instead of 50% and 25% in the first and 

second step respectively. This adaptation allowed for the identification of more locally 

relevant subcenters that my data supports and, thus, a more finely grained view of the city. 

Comparison of the Algorithms 

All three algorithms are similar in that they can be used to detect urban (sub-)centers. 

However, differences in their workings reflect different concepts of centers. 

The local Moran’s I approach evaluates the significance of a cells relationship with their 

neighborhood in a regional context. From this perspective, it allows for the identification of 

subcenters in the form of neighbourhoods which are significantly different from their regional context. 

The combined threshold approach compares values within their regional and distance-based 

contexts. In either context, it identifies cells that exceed the normal variance substantially as 

centers. From this perspective, it allows for the identification subcenters in the form of cells 

which are substantially higher than either their regional context or other cells in a similar distance to 

the main center. 

The locally weighted regression approach identifies cells with both significantly high values 

and significant explanatory power for the overall distribution of values within the region 

(McMillen 2001). From this perspective, it allows for the identification of subcenters in the 

form of cells which have a significant effect on the region. 

Because of these differences it is to be expected that the three algorithms produce different 

results. As each algorithm is able to identify a particular concept of center in our data, 

considering all of them may enable a richer and more well-rounded view of the city that is still 

neither complete, nor absolute. A particular benefit of my method is that it allows me to 

attribute patterns more clearly to differences between the UMC and EMP datasets, rather than 

effects of the chosen algorithm or study site. 
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3.3 Analysis methods 
Each of the algorithms yielded a binary classification on a grid cell basis, meaning that each 

cell was assigned to be either a center or not a center. The application of three algorithms on 

two data sources and four test sites resulted in a total of 24 binary classifications. Twelve of 

these contain morphologic centers (UMC-centers) to be evaluated by the twelve matching  

economic centers (EMP-centers). After the centers were identified in this way, I performed a 

threefold analysis, each intended to answer one of my three research questions: 

A) How well can employment centers be detected using UMC data? To answer this question, I  

performed a visual inspection and quantified the agreement between detected EMP- and 

UMC-centers. 

B) Which morphologic or geographic characteristics favor or hinder agreement between morphologic-

centers and employment-centers? I systematically assessed morphological properties of correctly 

and incorrectly detected employment centers. 

C) Which analyses of polycentricity are feasible using purely UMC data? To answer this question, I 

performed a feasibility assessment of the analysis of economic polycentricity in the test sites 

using UMC data. 

Across these analyses, I considered variations and consistencies across algorithms and test 

sites. My primary goal was to identify patterns which hold true across all algorithms and test 

sites and are thus likely to reflect some underlying general relationship between UMC and 

EMP.  

A secondary aim was to identify characteristics, strengths, and weaknesses particular to each 

algorithm. 

A) Evaluation of agreement between detected employment and morphologic centers 

Question: How well can employment centers be detected using UMC data? 

In the first part of the analysis, I quantified the overlap between the UMC-based and EMP-

based centers. I treated the center detection analogous to a classification problem in which the 

UMC-based centers are the prediction and the EMP-based centers are the ground truth. I find 

it worth noting that certain flaws of the approach (both in terms of data processing and 
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algorithm) can apply not just to the UMC but also to the EMP. Therefore, the term ground 

“truth” should not be taken in its most literal sense. Rather, the EMP-based centers are a 

benchmark to which the UMC-based centers are compared. If UMC are a suitable surrogate 

for EMP, then the spatial distributions of both datasets’ values (UMC and EMP) should be 

similar, and the overlap between UMC-based centers and EMP-based centers should also be 

maximal. 

Just as for the detection of clusters itself, various ways have been used for quantifying its  

accuracy (Grubesic, Wei, and Murray 2014; Huang, Pickle, and Das 2008; Cai, Huang, and 

Song 2017). I captured cluster accuracy on basis of individual grid cells by relying on metrics 

of precision, recall, intersection over union (IoU), and Cohen’s Kappa. Recall, also called 

completeness or producer’s accuracy (Wurm et al. 2014), relates to the ability of a cluster 

technique to identify an object of a class as such. It is inversely related to the error of omission. 

In my  

application, a large number of undetected EMP-centers would result in a low recall. However, 

recall alone does not capture the complexity of the agreement’s quality. Notably, the creation 

of a center map with a recall of 100% would be possible by simply classifying all grid cells as 

centers (Figure 10a). Thus, the precision and IoU scores are a valuable and necessary addition: 

Precision, also called correctness or user’s accuracy (Wurm et al. 2014), relates to the ability of 

a technique to separate a class object from non-class objects. It is inversely related to the error 

of commission. A large number of falsely committed center cells would result in a low  

precision (Figure 10b). The IoU is a commonly used metric in computer vision that considers 

both false commissions and omissions (Figure 10c) and is, thus, well suited to quantify how 

well a classification result overlaps with the ground truth (Csurka et al. 2004).  
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Figure 10: Illustration of recall (a), precision (b), and IoU (c) for different scenarios. The intersection between 
UMC-centers and EMP-centers generates the cases of true positives (TP), false negatives (FN) and false positives 
(FP). Cases which do not factor into the calculation of the measure are greyed out. Note how precision and recall 
can report perfect accuracies even if the agreement is not absolute.  
Top row: Secenarios in which the measure returns poor values. 
Bottom row: Scenarios in which the measure returns good values. 

Based on the agreement between the UMC- and EMP-based center detection, I assigned every 

cell to be either a true negative (TN), true positive (TP), false negative (FN), or false positive 

(FP). This was done once for each of the three applied algorithms. From the relation between 

the counts of those cases (NTN, NTP, NFN, and NFP respectively), I calculated the metrics of recall, 

precision, and IoU. As all cells are equally large, these metrics can also be considered to reflect 

the agreement in terms of area: 

Area-based precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛஺௥௘௔ =
𝑁்௉

𝑁்௉ + 𝑁ி௉
 

(Eq. 1 ) 

Area-based recall: 

𝑅𝑒𝑐𝑎𝑙𝑙஺௥௘௔ =
𝑁்௉

𝑁்௉ + 𝑁ிே
 

(Eq. 2 ) 

Area-based intersection over union: 

𝐼𝑜𝑈஺௥௘௔ =
𝑁்௉

𝑁்௉ + 𝑁ி௉ + 𝑁ிே  
 

 

(Eq. 3 ) 
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I supplemented the purely cell-based metrics by employment-based measures of precision and 

recall. These alternative metrics PrecisionEMP and RecallEMP and IoUEMP consider the number of 

employees captured by the cases TP, FN, and FP, rather than the cell count. Thereby I was able 

to effectively mitigate the effect of cells that contained little economic activity. 

Employment-based precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ாெ௉ =
𝐸𝑀𝑃்௉

𝐸𝑀𝑃்௉ + 𝐸𝑀𝑃ி௉   
(Eq. 4 ) 

Employment-based recall: 

𝑅𝑒𝑐𝑎𝑙𝑙ாெ௉ =
𝐸𝑀𝑃்௉

𝐸𝑀𝑃்௉ + 𝐸𝑀𝑃ிே
 

 

(Eq. 5 ) 

Employment-based intersection over union: 

𝐼𝑜𝑈ாெ௉ =
𝐸𝑀𝑃்௉

𝐸𝑀𝑃்௉ + 𝐸𝑀𝑃ி௉ + 𝐸𝑀𝑃ிே 
 

 

(Eq. 6 ) 

Where EMPX is the sum of all the EMP-values of a certain case X (either FP, TP, FN, or FN) at 

the site. 

I further calculated the Cohen’s kappa, a common metric of interrater reliability (McHugh 2012) 

that has already been used to evaluate the accuracy of urban center detection (Cai, Huang, and 

Song 2017). I do not calculate an employment based variant, as the kappa is only intended for 

categorical variables (Revelle 2020). The kappa can thus be seen as an additional metric of area-

based accuracy, and a complement to the 𝐼𝑜𝑈஺௥௘௔ . 

Cohen’s kappa: 

𝜅 =
𝑃𝑟௔ − 𝑃𝑟௘

1 −  𝑃𝑟௘  
(Eq. 7 ) 

Where Pr(a) represents the actual observed agreement, and Pr(e) represents chance agreement 

(McHugh 2012). 

By using multiple quantitative measures, I reinforced the results of the analysis and increased 

their comparability with the outcomes of future studies.  
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As described in the introduction, the identification of cells as belonging to a center is not the 

final goal. Rather, it is a necessary processing step for the analyses of the centers. For this  

reason, it was further necessary to evaluate patterns of error causes (Question B) and the 

feasibility of the actual analysis methods (Question C). 

B) Systematic analysis of morphological properties of correctly and incorrectly detected  

employment centers 

Question: Which morphologic or geographic characteristics favor or hinder agreement between 

morphologic-centers and employment-centers? 

In the second part of the analysis, my aim was to identify which morphological properties 

facilitate the correct (TP, TN) or incorrect (FP, FN) detection of centers. 

For this purpose, I firstly investigated the statistical distributions of morphologic and  

economic properties for each case to identify whether there are clear patterns that are 

particular to certain types of error. In addition to the UMC and EMP properties, I also used 

measures of height and built-up density from the TanDEM-X nDSM. I computed height values 

as the 90% quantile of nDSM pixel values per grid cell, and built-up density as the share of 

nonzero nDSM pixels. 

These measures were then used in explorative methods. For a first investigation, I compared 

the median values of the height, built-up density, UMC, and EMP measures across the  

different cases. I further compared the distribution of these metrics in boxplots. My goal in this 

step was to identify characteristic differences in these measures’ distributions between the 

cases TP, FN, and FP. My presumption was that if the correct detection of a cell was influenced 

by its own local properties, this may have resulted in a characteristic signature for each of the 

three cases’. This signature would be reflected in the statistic distributions of the analyzed 

measures for these cases. However, a purely grid-cell based measure does not adequately  

capture spatial relations of centers and their environment.  

Therefore, I additionally performed a visual screening of the urban regions as a whole but also 

individual centers in detail, using optical imagery and ancillary data sources to characterize 

them. In this way, I qualitatively examine the direct influence of the centers’ morphologic, 

economic, and geographic characteristics on their delineation. For such analyses, some 
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normativity and subjectivity cannot be ruled out (Taubenböck et al. 2017) but complements 

the statistical approach well. 

C) Feasibility assessment of analyzing job distributions in city regions using UMC data 

Question: Which analyses of polycentricity are feasible using purely UMC data? 

In the third part of the analysis, I selected various established measures of polycentricity  

analysis. I calculated each measure on a EMP and UMC basis. Then I inspected to what extent 

there was agreement between the two calculated measures. If spatial UMC concentrations 

reflected spatial EMP concentrations, then I expected that similar statements about the center 

structures of a city region would be preserved whether I use UMC or EMP-centers. If I detected 

differences, I additionally investigated if these are systematic and if it is feasible to derive 

correction factors for these discrepancies. If there was a systematic and consistent difference 

over test sites, the use of UMC as a surrogate is likely possible with the additional application 

of a correction factor to the measure. 

As pointed out in the introduction, there is a plethora of measures to quantify various concepts 

of polycentricity. Based on the literature, I identified categories of measures and selected for 

each category an expressive and simple representative measure. My goal was not to simulate 

a complete analysis of polycentricity, but rather to test the feasibility of substituting EMP by 

UMC for these measures. 

 Importance of centers: I calculated the share of a test site’s total employment (EMP-

share) and the share of a test site’s total area (area-share) which are located within the 

test site’s UMC- and EMP-centers respectively (Krehl 2016b). A high value of these 

measures indicates that the identified centers as a whole are important within a city 

region. Firstly, I compare the EMP-shares of UMC-centers to those of EMP-centers to 

determine whether they agree in economic importance. Secondly, I compare the area-

shares of UMC-centers to those of EMP-centers to determine whether they agree in 

their spatial extent. Thirdly, I compare the EMP-shares to the area-shares to determine 

differences between the two measures. 

 Centrality: I calculated a largest patch index (LPI) of area as a simple method of  

quantifying the dominance of the city region’s largest center. In analogy to Taubenböck 
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et al. (2017) the LPI was calculated as a percentage of the area covered by the largest 

connected center divided by the area of all centers.  

𝐿𝑃𝐼 = 100 ∗
𝐴𝑟𝑒𝑎௟௔௥௚௘௦௧೎೐೙೟೐ೝ

𝐴𝑟𝑒𝑎௔௟௟೎೐೙೟೐ೝೞ

 (Eq. 8 ) 

A high value of the LPI suggests dominance of the spatially largest center. 

 Hierarchy: An established method to analyze urban hierarchies is the application of 

Zipf’s law and the corresponding rank-size rule (Krehl 2015a; Taubenböck et al. 2017). 

I created logarithmic rank size plots and visually evaluated them with regard to Zipf’s 

law (Standfuß et al. 2020). The relation of the plotted centers to the idealised Zipf  

distribution line allows identification of centers and regions which do conform to 

Zipf’s law.  

 Spatial distribution of centers: In analogy to Taubenböck et al. (2017) I chose the mean 

nearest neighbor distance (MNND) as a measure for location-based site-specific  

pattern analysis. Distances are calculated as the shortest distance between two patches, 

and they are understood as measures to evaluate whether centers are spatially  

clustered or dispersed. I calculated the nearest-neighbor distance for each center. The 

mean of this value across all centers is the mean nearest neighbor distance which serves 

as a simple measure of the spatial distribution of centers. Specifically, this value can be 

defined as 

𝑀𝑁𝑁𝐷 =
∑ 𝑑௠௜௡೔ೕ

௡
௜ୀଵ

𝑛
 (Eq. 9 ) 

where 𝑑௠௜௡೔ೕ 
stands for the nearest neighbor center to-center distance and n for the 

number of connected centers. A high value of this measure indicates that centers tend 

to be seperated by larger distances, suggesting dispersion. I calculate the MNND twice, 

once on distances between patch centroids and once on distances between patch edges. 

The former better considers the location of patches while the latter further considers 

their extent. 

 Clusteredness: Lastly, I used the global Moran’s I measure as a general measure of 

clusteredness, which in the urban context can distinguish compactness from sprawl 

(Tsai 2005). It is defined as 

𝐼 =  
∑ ∑ 𝜔௜௝𝑧௜.

𝑧௝

𝑆଴
௝௜

∑ 𝑧௜
ଶ

௜

𝑛

 (Eq. 10 ) 



 

33 
 

with 𝜔௜௝  as the elements of the spatial weights matrix, 𝑆଴ =  ∑ ∑ 𝜔௜௝ ௝௜ as the sum of all 

the weights, and n as the number of observations (Anselin 2020). A high I measure 

suggests clustering of similar values in the study area. 

Notably, this measure does not consider the detected centers and is computed directly 

on the input UMC or EMP values. As (Krehl 2015b) finds that local and global measures 

are feasible for the objective to detect urban spatial structure, the inclusion of global 

Moran’s I is a valuable addition.  

I calculated each of the five measures for each of the four test sites and, except for the global 

Moran’s I, for each of the three algorithms. For the calculation of LPI, MNND and the creation 

of Zipf plots, I grouped adjacent grid cells into centers based on first order queen contiguity, 

meaning that cells were considered part of a common center if they share a line or corner.  

This chapter has described the study’s methods of data processing and analysis of which 

Figure 11 provides a graphical overview. The next chapter will present the results of this 

threefold analysis. Both the methods and the results will be discussed in chapter 5. 
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Figure 11: Workflow of the study. 
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4. Results 

As described in the previous section, my analysis is threefold: 

 General agreement between detected EMP and UMC-centers. 

 Systematic analysis of morphological properties of correctly and incorrectly detected 

employment centers. 

 Feasibility assessment of analyzing job distributions/structure in city regions using 

morphologic data. 

Accordingly, this results section is organised in three consecutive parts, each corresponding 

to one part of the analysis. The section concludes with a summary of all findings. Throughout, 

I refer to patches of cells detected as centers via the UMC data as UMC-centers. Likewise, I 

refer to patches of cells detected as centers via the EMP data as EMP-centers. When not 

qualified, the generic term “centers” refers to the economic concept outside the scope of the  

algorithmic results. 

4.1 Evaluation of agreement between detected EMP- and UMC-centers  

Question: How well can employment centers be detected using UMC data? 

Initially, I map the detected centers for all test sites and for all algorithms (Figures 12 & 13): 

the local Moran’s I approach (MI), the combined threshold approach (CB), and the locally 

weighted regression approach (LR). The visual analysis reveals several spatial patterns. 
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Figure 12: Detected centers by algorithm and test site. Atlanta, Dallas. MI: Local Moran's I approach; CB: combined 
threshold approach; LR: locally weighted regression. 
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Figure 13: Detected centers by algorithm and test site. Pittsburgh and Seattle. MI: Local Moran's I approach; CB: 
combined threshold approach; LR: locally weighted regression. 
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I find that across all algorithms and all sites, there is agreement between EMP-centers and 

UMC-centers at the location of the core city and the major subcenters. Often the UMC-centers 

overestimate the area of the EMP-centers, particularly the largest center that contains the  

central business district (CBD) of the city. Agreement appears to be worse for the smaller and 

outlying centers. 

In addition to these similarities, there are also notable differences between the patterns 

produced by the different algorithms. In the case of MI, the false positives (FP) form large,  

connected patches that often match the general location of an EMP-center, but overestimate its 

extent. Compared to the other algorithms, the CB identifies larger numbers of both UMC- and 

EMP-centers in peripheral areas, while the more central EMP- and UMC-centers appear  

fragmented. Most EMP- and UMC-centers identified by the LR are smaller, and beyond the 

primary centers they consist of individual patches of 

one to three cells. 

I supplement the visual impression by counts of the 

EMP-center cells and UMC-center cells. For complete 

counts per site, I refer to appendix A. 

In line with my visual observation, all algorithms 

identify a remarkable gap between UMC-center and 

EMP-center counts (Figure 14). Consistently, the 

UMC-center counts are noticeably higher. It is 

interesting that this gap in counts is smallest for the 

CB. 

Of course, counts of the two groups alone, without reference to their spatial location, only 

paint an incomplete picture. Hence, in addition, it is important to investigate whether the two 

groups agreed spatially. To quantify this agreement, I use the recall, precision, kappa, and IoU 

metrics of accuracy (Figure 15). 

  

Figure 14: Total number of the study-wide 
sum of center cells as detected by each algo-
rithm. For comparison, the total number of 
cells within all grids is 23247. 
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Again, several patterns emerge independently of the algorithm: 

Even a cursory glance reveals a striking difference between the cellcount-based metrics and 

the employment-based metrics. The latter are consistently much higher. This indicates that the 

errors are much less significant in terms of employment than in the area they cover. 

Comparing the cell-based metrics IoUArea, precisionArea, and recallArea reveals that the errors 

vary considerably by metric. The recallArea is high, thus suggesting that the omission errors are 

few in number. It follows that of the EMP-center cells, most were captured by the UMC-

centers. On the flipside, the comparatively low precisionArea does indicate that commission  

errors are considerably more common. There are, apparently, many UMC-centers which 

falsely include cells that are not detected as EMP-centers.  

Both of these findings align with my visual impression that while the cores of the centers are 

rarely not detected by the UMC-centers, the extent of the EMP-centers is often overestimated. 

Figure 15: Cell-based accuracies as Intersection over Union (IoU), precision, recall, and kappa. For IoU, preci-
sion, and recall, the employment-based accuracies are indicated by pale bars and blue lines. 
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Turning now to the employment-based precisionEMP and recallEMP, I find that they do not  

display a similar disparity as their cell-based counterparts precisionArea and recallArea. The  

difference between the former is not substantial. Likewise, they express much lower 

differences between test sites. 

By contrast, the cellcount-based accuracies are subject to considerable differences in agreement 

between test sites, as measured by IoUArea and Kappa. The highest agreement is reached for 

Dallas, with values of 39.1%, 35.0%, and 31.7% for MI, CB, and LR respectively. The lowest 

agreement was found for Seattle, with IoUArea values of 19.6%, 16.1%, and 14.0%. The kappa 

values confirm this pattern. An important observation is that no single algorithm outperforms 

both others in terms of accuracy. As measured by IoUArea, the MI performed best for Atlanta 

and Dallas while the CB performed best for Pittsburgh and Seattle. The CB is also the most 

robust of the algorithms, with the lowest variation across test sites, and the smallest differences 

between precision and recall.  

So far, I used the cases of true positives (TP), false positives (FP), and false negatives (FN) 

merely to calculate measures of accuracy. In the next part of the analysis, I consider them and 

their characteristics in more detail. 

4.2 Systematic analysis of morphological properties of correctly and incorrectly 
detected employment centers 

Question: Which morphologic or geographic characteristics favor or hinder agreement between  

morphologic-centers and employment-centers? 

Each case of a TP, FP, or FN is a square kilometer of urban fabric with its own morphologic 

characteristics and geographic situation. There can be little doubt that each of these cells  

contains elements and patterns that facilitate or hinder algorithmic detection of EMP-centers. 

By examining the characteristics of these cells in detail, I seek to reveal these elements. 
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Table 3: Economic (blue) and morphologic (red) properties of the processed cells  

  

case  number of cells 
 

[n] 

90% height 
quantile 

[m] 

built-up 
 density 

[%] 

UMC  
 

[m³] 

EMP 
 

[n] 

MI 

FN 195 (G) 7,66 (F) 0,11   453.040 (B)  1.624 
FP 2.189 9,45 0,18 943.768 326 

TN 27.824 4,68 0,01 25.808 9 
TP 1141 (G) 9,16 (F) 0,25 1.156.905  (B)  1.819 

 

CB 

FN 856 7,05 0,12 483.438 978 
FP 1.373 (D) 11,08 (E) 0,20 1.135.929 264 

TN 28.206 4,73 0,01 28.321 9 
TP 914 (D) 10,18 (E) 0,26   (A) 1.313.805   (A) 1.795 

 

LR 

FN 186 8,16 0,20 836.831 2.691 
FP 593 11,99 0,28 (C)  1.614.996 845 

TN 30.330 5,02 0,01 42.364 12 
TP 240 11,88 0,34 (C)  1.939.354 4.421 

 

Firstly, without consideration for the spatial situation, I calculate the different cases’ median 

values of morphologic and economic characteristics on a cell basis, again, by algorithm (Table 

3). Comparing morphological and economic characteristics of TP, FP and FN reveals a pattern 

which can be clearly seen across all algorithms: Correctly detected center cells (TP) exhibit 

both a pronounced morphology as well as high employment (e.g. Table 3, A). The cases of 

omission errors, the FN, differ in that they also exhibited high (though slightly lower)  

employment numbers, (e.g. Table 3, B)  but with much weaker morphology than TP or FP. By 

contrast, the FP, cases of commission errors, exhibit a strong morphology that is almost as high 

as for TP (e.g. Table 3, C), but contained lower numbers of jobs than TP or FN.  

What is interesting is that the FP actually surpass the TP in height, but not in density (e.g. Table 

3, E). Also, the comparative morphologic deficiency of FN is expressed in density and volume 

(e.g. Table 3, F) much more than in height (e.g. Table 3, G).  

As aggregating morphologic and employment properties of a large number of cells to their 

median is a simplification that may conceal crucial insights, I further examine the full  

distributions in boxplots. For brevity, I only present the aggregated distributions across all 

sites in Figure 16. The full distributions for each of the test site can be found in appendix B. 
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Figure 16: Distribution of morphological and employment properties of true positive (TP), false positive (FP), and 
false negative cells (FN). 

This inspection of the distributions further confirms the previous findings. The TP display 

strong morphologic and economic properties, while, comparatively, the FP exhibit lower  

employment and the FN manifest lower morphologic measures. This pattern holds for all test 

sites and across all algorithms. An exception is found only for the Pittsburgh site, where, in 

the case of MI and LR, the built-up density distributions of the FP and FN centers are not as 

clearly separable.  

In addition, the boxplots reveal noteworthy outliers: Particularly, there are multiple cases of 

FP centers which contained very low numbers (0-10) of employees. Some of the FN contain 

built-up densities of close to zero, meaning that they do not contain any significant measured 

built structures. 
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The explorative analysis of statistical properties, morphologic and economic, already reveals 

several patterns, such as the FP’s tendency toward built-up areas with little employment. But 

it only provides first hints of understanding. What do these patterns look like in reality? And 

which geographic environment produced them? Answering these questions requires a more 

detailed examination that goes beyond local statistics. To illustrate my findings in sufficient 

detail, I present for each of the cases TP, FN, and FP a set of three sites (Figure 17), which 

exemplify morphological properties that may contribute to agreement or disagreement 

between UMC and EMP-centers.  

 

 
Figure 17: Locations of the example sites. 

I begin with three sites which show representative examples of agreement (TP). 
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Figure 18: Example sites of true positive centers. 

The central business district (CBD) of Pittsburgh (a in Figure 18-1) lies at the confluence of two 

major rivers and features high rise buildings and a dense transport network. East of the CBD 

lies a secondary center, the neighborhood of Oakland (b in Figure 18-1). EMP numbers are 

high for census blocks in these two areas, which also contain large, connected patches of high 

UMC.  

Addison, Dallas (Figure 18-2) is a major business hub where, due to commuting, the daytime 

population noticeably exceeds the residential population (Destination DFW 2013; 

Cleargov.org 2021). Addison’s built-up areas are not particularly high, but they are expansive. 

Census blocks within these built-up areas also show moderate to high employment numbers. 

Perimeter Center (c in Figure 18-3) is a large commercial center north of Atlanta. Lying at the 

interchange of two important highways, it displays all the signs of an edge city, down to its 
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name (Garreau 1992). A mix of well connected, expansive low rise retail buildings and high 

rise, spaced out office buildings provides workplaces for several thousand employees. All  

algorithms show agreement between UMC-centers and EMC-centers for the Perimeter Center 

east of the highway (19), the MI further shows agreement for the central axis of the town of 

Sandy Springs (d).  

These three cases exemplify a typical pattern that is consistent across all algorithms: Most cases 

of correct detection are significant commercial hubs, concentrations of economic activity that 

are mirrored morphologically in concentrations of mid-rise to high-rise buildings. Particularly 

the core areas of these centers are usually well identified, while differences between algorithms 

exist in the quality at the fringes of these centers, where all algorithms output several FP and 

FN. 

 
Figure 19: Example sites of false negative centers. 
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The second set of sides illustrates errors of omission, the FN. Issaquah (Figure 19-4) is a town 

located in a mountainous area southeast of Seattle. Along the highway at the western valley 

floor (e) lie the town’s commercial areas surrounded by urban green– with high employment 

numbers compared to the other parts of the town. Densely built residential neighborhoods 

with very little employment lie on the surrounding hills (f). All algorithms fail to correctly 

detect the commercial areas as centers based on UMC data. It is remarkable that instead, they 

consistently falsely identify the build-up residential areas in the proximity as centers. 

Dallas/Fort Worth International Airport (DFW, Figure 19-5, one of the busiest airports in the 

world (DFW 2021) with its own zip code, police, and fire departments, covers an expansive 

(~70 km²) area. Built-up volume is concentrated on the terminals. EMP values are high for the 

airport. While the eastern terminals report few to no jobs, a single census block, which includes 

multiple km² of the unbuilt western runways in addition to one western terminal, contains 

most of the jobs of the airport. It appears that, while built-up volumes are concentrated at the 

terminal’s location, employment numbers are registered for the whole area covered by this 

large census block. In all algorithms, many cells covering this block are FN, and only some 

cells which include parts of additional built-up structures are identified as FP.  

Decatur (g in Figure 19-6) is a city approximately 9 km east of Atlanta and the seat of DeKalb 

County. The downtown of Decatur presents itself as a smaller concentration of built-up  

volume in the form of low-rise and mid-rise buildings, intersected by parking spaces. In 

addition to retail and services, downtown Decatur notably registers the high number of 6 000  

employees in DeKalb County’s administration building (DeKalb County 2019). Other  

commercial areas are found in North Decatur (h) and its eastern neighbor Scottdale (i). All  

algorithms consider Decatur and North Decatur to be EMP-centers, but only MI also  

recognizes it as an UMC-center, while CB and LR produce falsely negative detections.  

I find that FNs tend to be situated in spaces where a significant number of jobs was registered 

for relatively few, rather scattered buildings which are intersected by non-built-up areas, such 

as parking lots and green spaces. These configurations appear to be common for smaller,  

peripheral centers that are of administrative, logistic, or cultural significance. With remarkable 

frequency, FNs are also located in proximity to other morphological densifications. 
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Figure 20: Example sites of false positive centers. 

The last set of cases exemplifies the errors of comission, the FP. The South Hill neighborhoods 

of Pittsburgh (Figure 20-7) lie south of the CBD (compare a in Figure 20-1) and are covered 

with expansive residential areas. While the latter are not particularly dense, very high building 

heights result in comparatively high UMC values per cell. Most census blocks report no  

employment. Across all algorithms, I find these residential neighborhoods to be extensive 

patches of FP. 

On the other side of Pittsburgh, 20 km north of the CBD, lies the community of Wexford (j) 

along a highway (Figure 20-8). While the residential areas are sparsely built and interspersed 

with greenery, the commercial and retail areas which lie on a strip along the highway reach 

very high UMC densities as well as heights comparable to Pittsburgh’s CBD, but at most  

moderate employment. This strip is falsely committed as a center by all algorithms. Only CB 

recognizes parts of it also as an EMP-center. 
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Tacoma (Figure 20-9) is a port city southwest of Seattle, at the southwestern edge of the Seattle 

study area. Tacoma covers many km² of purely residential neighborhoods that are made up of 

buildings of moderate height arranged along regular street patterns. Most census blocks in the 

residential areas report no employment, although employers such as schools and local retail 

exist along the main roads. A major employer in the region is the Port of Tacoma (k in Figure 

20-9, Port of Tacoma 2014) and much of Tacoma’s economy is situated along the transport axes 

connected to the port. As in the South Hill neighborhoods of Pittsburgh (Figure 20-7) parts of 

the residential land are falsely positive. The picture varies depending on the algorithm, with 

the MI producing a large, connected patch of FP, the CB producing scattered patches of FP 

around correctly identified centers, and the LR only detecting comparatively few cells. 

My review of the FP reveals that they often are areas with high to moderately high buildings 

at a moderate built-up density. These are often surprisingly homogenous in their structure 

and occur in a variety of different settings. FP can occur at the fringes of true economic centers, 

where they appear like an overestimation of its area. However, they also occur, even in large 

patches, in settings where no significant economic centers are present. Among algorithms, the 

MI approach appears the most prone to producing the latter. Residential suburbs are the most 

common representative of this type of setting. In some cases, individual cells appear as single, 

isolated commission errors. These are most commonly produced by the LR. 

In conclusion, the analysis of the morphological and geographical properties reveals that true 

positives combine strong morphology with high employment and are common in CBDs or 

edge cities. There, economically relevant buildings are densely packed, often over large areas. 

False positives exhibit only high morphology with few jobs and are often produced by  

residential suburbs. These suburbs can contain surprising built-up heights and often register 

no employees. False negatives exhibit high employment with comparatively weak or disperse 

morphology, common for peripheral subcenters of logistic or administrative significance. In 

these subcenters, buildings are still of considerable height, but they are often interspaced with 

non-built-up areas such as parks and parking lots. 

So far, the analysis of the results focused mainly on the qualities of the center detection. In the 

next section I finally consider the application for which the centers are detected in the first 

place: The analysis of polycentricity. 
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4.3 Feasibility assessment of analyzing job distributions in city regions using 
UMC data 

Question: Which analyses of polycentricity are feasible using purely UMC data? 

As explained in the introduction, there are many different ways to approach polycentricity 

and, accordingly, a vast number of measures to analyze the center structure of cities has been 

developed over the years. In this study, I calculate one representative measure for each of the 

following center structure characteristics: 

 Importance of centers, as measured by the share of a site’s employment captured by 

its centers. 

 Centrality, as measured by the largest patch index (LPI). 

 Center structure and hierarchy, evaluated by the center’s rank-size distribution 

compared to Zipf’s law. 

 Spatial distribution of centers, as measured by the mean nearest neighbor distance. 

 Clusteredness, as measured by global Moran’s I. 

All these measures can be calculated on the basis of both UMC and EMP data. The primary 

focus of this assessment is the agreement between the two results as the key indicator of  

feasibility. Only if the two results are similar across test sites and across algorithms, UMC may 

be an adequate substitute to EMP for a certain measure. Differences which are systematic 

across test sites could be compensated for by a correction factor. Thus, such systematicity is a 

secondary result. Context for the scale of the differences and consistencies between EMP-

measures and UMC-measures is provided by the measure’s variability across test-sites, which 

ideally is much higher. The leading question could thus also be phrased as: For which measures 

is the variability between EMP and UMC clearly lower than the variability across test sites?  

Importance of centers 

Firstly, I compare the EMP-shares of UMC-centers to those of EMP-centers (Figure 21). A large 

share of employment numbers is captured within both UMC- and EMP-centers in all test sites. 

Agreement between the EMP-share of UMC-centers and EMP-centers is, in most cases,  

moderate to good. Although some differences between the two exist, these differences are 

much more consistent than the measure’s variations across cities and algorithms. Amongst 
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algorithms, the MI overestimates the importance of centers, as indicated by the EMP-share of 

UMC-centers being higher than the EMP-share of EMP-centers, while the CB underestimates 

it. The LR shows remarkably good agreement, with the exception of Seattle, which shows 

among the largest disagreements also for MI and CB.  

 
Figure 21: Shares of employment and area covered by centers. 

Secondly, I compare the area-shares of UMC-centers and EMP-centers. Unlike the good 

agreement in EMP-share, the area-share shows large differences between the two sets of 

centers: The area-share of UMC-centers is commonly more than two times higher than the 

area-share of EMP-centers.  

Thirdly, I compare the employment-share measure to the area-share measure. The agreement 

between UMC and EMP is much better for the former (Figure 21). That the area-based measure 
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displays higher disagreement between EMP and UMC inputs is in line with the previous 

finding (compare section 4.1) that employment-based accuracy metrics report much higher 

accuracy than cellcount-based metrics. Further, I consistently observe that the center’s area 

share is much lower than their employment-share. For instance, the EMP-share of UMC-

centers detected by MI in Dallas is 73,0% while the corresponding area-share is only 10,7%. 

Both UMC-centers and EMP-centers capture remarkable shares of employment in 

comparatively small areas, suggesting that the identified centers have high employment 

densities. 

Altogether, this measure shows that, across algorithms, the UMC-centers and EMP-centers are 

comparable in economic importance. This supports, though not explicitly, the feasibility of 

direct estimation of employment-share via UMC. 

Centrality 

As a complement to the general importance of centers, the 

LPI measures the importance of the largest center. Again, 

similar values of the UMC-based LPI and the EMP-based 

LPI would support the idea that the dominance of the  

largest center can be measured by UMC as well as EMP. 

But no such similarity can be consistently observed. As is 

apparent from the Figure 22, for all algorithms, there are 

obvious gaps between the UMC-based LPI (red) and the 

EMP-based LPI (blue). Furthermore, there is obvious  

variation also between the algorithms as well as between 

test sites. In some cases, the UMC based LPI is clearly larger 

(CB Pittsburgh, MI Atlanta), while in other cases (Dallas 

CB, Dallas LR) the EMP based LPI is larger. Overall, these 

results display great variation and little consistent agreement 

between UMC and EMP. 

  

Figure 22: Largest patch index (LPI) for 
each algorithm and test site. The LPI is 
defined as the share of the area largest 
center among the area of all centers. 
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Center structure and hierarchy 

In the plots of rank-size distributions, the degree of alignment between the centers and the 

idealized Zipf line indicates to what degree the detected centers follow Zipf’s law of  

polycentricity. If centers lie above the line, that is an indicator for polycentricity; vice-versa, 

centers below the line indicate monocentricity with a dominance of the core city. Figure 23 

presents the Zipf plots by the EMP value and EMP rank per center.  

 

Figure 23: Rank size distributions on a per-center basis, for each algorithm and test site. The line indicates a 

distribution according to Zipf's law. 

My findings generally indicate that distributions based on EMP-centers and those based on 

UMC-centers do not display similar relationships with regard to Zipf’s law. In almost all cases, 

the majority of points (centers) lie below the line, thus indicating monocentricity. Yet, despite 

this apparent agreement, the  distributions are still subject to high variations. In the case of LR-

Dallas, the EMP-centers lie clearly below the line, suggesting monocentricity, while the  

distribution of the larger UMC-centers fits the Zipf line very well, suggesting polycentricity. 

In the case of LR-Pittsburgh, both the EMP-base and UMC-based center distributions are 

clearly monocentric. Due to such differences in results across algorithms and sites, the  

dissimilarity can also not be considered systematic. Appendix C contains alternative rank-size 

distributions by area and UMC. In no case, however, do consistently similar patterns for EMP-

centers and UMC-centers appear.  
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Spatial Distribution of centers 

The mean nearest neighbor distance 

(MNND) was calculated once between the 

center’s centroids (Figure 24a)  and once 

between their edges (Figure 24b). 

Results show that, consistently, EMP-

centers are spaced further apart than 

between UMC-centers. 

Interestingly, agreement is much better for 

the centroid-based MNND than for the 

edge-based MNND.  

Differences between algorithms are also 

much lower for the distance-based MNND 

than for the edge-based MNND. which shows great differences between the CB and the LR 

results, with CB centers being, on average, much closer than the LR centers. 

Altogether, the agreement between EMP and UMC is not consistent for the edge-based MNND 

and better and more consistent for the centroid-based MNND.  

Clusteredness 

Independently from the detected centers, I tested whether the 

spatial distribution of EMP or UMC is rather dispersed or 

clustered using the global Moran’s I. The results reveal that 

UMC (I of 0.3 to 0.5) are more clustered than EMP (I of 0.5 to 

0.6). The magnitude of this relationship is not consistent 

across sites, however. Hence, it does not provide sufficient 

evidence of agreement between EMP and UMC. While the 

overestimation displays a certain consistency, it can not be 

assumed to be systematic. 

Figure 24: Mean nearest neighbor distances for each  
algorithm and test site.  

Figure 25: Global Moran's I statistic 
for each test site. 
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The results in this chapter indicate that some measures show fair, though imperfect, agreement 

between EMP-based and UMC-based measures. For other measures, the variabilities far  

exceed the consistencies. 

 

The most salient findings of the results section can be summarized as follows: 

Question: How well can employment centers be detected using UMC data? 

1. More UMC-centers than EMP-centers are detected. 

2. The commission error greatly exceeds the omission error, suggesting overestimation 

of centers. 

3. Errors are much less significant in terms of employment than in area. 

4. No algorithm exceeded all others in accuracy consistently across all test sites. 

Question: Which morphologic or geographic characteristics favor or hinder agreement between 

morphologic-centers and employment-centers? 

5. True positives combine strong morphology with high employment. False positives 

manifested only high morphology; false negatives exhibited only high employment. 

6. True positives are common in downtowns or edge cities. False positives are produced 

by dense suburban neighborhoods, while most false negatives correspond to  

peripheral subcenters of logistic or administrative significance. 

Question: Which analyses of polycentricity are feasible using purely UMC data? 

7. Most measures show only limited consistency between UMC-centers and EMP-centers. 

8. Employment-based measures, and, to a lesser extent, location-based measures show 

fair and consistent agreement. 

Altogether, the results in this chapter indicate that agreement between EMP-based and UMC-

based clustering is dependent on both methodology and geography, as well as the chosen 

measure. In the next chapter, therefore, I discuss the interpretation of the results under 

consideration of these aspects. 
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5. Discussion 
The goal of this study was to explore whether remotely sensed UMC are a suitable surrogate 

for employment data in the analysis of urban polycentricity. Previous studies (Krehl 2015b; 

Taubenböck et al. 2017; Standfuß et al. 2020) explored the feasibility of polycentricity analyses 

based on morphologic data. They showed the potential of remote sensing to detect centers on 

a morphological basis. However, the degree to which the distribution of remotely sensed  

morphology indeed matches that of employment data, was, so far, unknown. To fill this 

knowledge gap, the present study detected centers based on UMC and EMP data and  

compared the resulting spatial distribution in a three-fold analysis. 

Overall, I find that a large proportion of centers are detected by the morphological approach. 

There is, however, a significant spatial overestimation which negatively affects measures of 

area and polycentricity. Location-based and employment-based metrics, on the other hand, 

are in much better agreement, and indicate that major economic centers are well identified. 

In the following sections, I will address each part of the analysis in turn. Unless otherwise 

specified, I only discuss patterns which are consistently found across all algorithms.  

Differences between the algorithms will be specifically discussed in section 5.4. 

5.1 Evaluation of agreement between detected EMP- and UMC-centers 
The first part of the analysis explored whether UMC-centers generally agree with, or overlap, 

EMP-centers. To this purpose, I used quantitative metrics of agreement supplemented by a 

visual analysis.  

Table 4: Key findings of the evaluation of agreement 

This visual analysis reveals that the main center and the major subcenters at every site are 

always well identified: Their locations plausibly align with the background information I 

Ouestion: How well can employment centers be detected using UMC data? 

1. More UMC-centers than EMP-centers are detected. 

2. The commission error greatly exceeds the omission error, suggesting 

overestimation of centers. 

3. Errors are much less significant in terms of employment than in area. 

4. No algorithm exceeded all others in accuracy consistently across all test sites. 



 

56 
 

gathered on the test sites (compare Section 2.1). Nonetheless, it is apparent that the extent of 

centers is usually overestimated by the UMC approach. 

The quantitative results concur with this visual impression of overestimation. Firstly, the 

simple count of UMC-center cells is much higher than its EMP equivalent. Secondly, the 

comparison of the cellcount-based accuracy metrics shows a recallArea which is consistently 

much higher than the precisionArea, particularly for the results of the MI. This means that while 

the UMC approach omits only few economic centers, it also falsely identifies many other cells 

as centers. Does this trade-off constitute a good agreement? As to my knowledge, no other 

study has attempted a quantitative validation of morphologic data with economic reference 

data, I cannot make direct comparisons. However, results of center detection have been 

validated in various cases. One possible benchmark is the study by Cai, Huang, and Song 

(2017) who use a combination of nighttime imagery and social media check-in maps. They 

report a recall of 83.3% - 88.2 % by comparing the centers detected by their method with 

governmental master plans. Further, via an additional validation on POI points they report 

best kappa values of 0.49. This is exceeded by the best kappa values in my study which reach 

up to 0.53, which indicate moderate agreement according to Landis and Koch (1977) and weak 

agreement  

according to McHugh (2012). Another possible benchmark is provided by Grubesic, Wei, and 

Murray (2014) who evaluate the performance of cluster algorithms on a synthetic dataset. For 

most algorithms they test in their idealized environment, the precision and recall reach over 

90%. Such high levels of recallArea are reached by my study in some cases, such the MI’s  

detection on the Dallas site. Yet, in contrast to the benchmark study, this high recallArea 

coincides with a comparatively low precisionArea of under 50% that indicates comparatively 

high numbers of commission errors. 

The results of the cellcount-based metrics stand in contrast with the strikingly good 

employment-based accuracies, which regularly exceed them more than twofold (Figure 15). 

Of  

particular note is the good precisionEMP. What to make of this discrepancy between spatial and 

economic accuracy? One interpretation is that the spatial disagreements between EMP-centers 

and UMC-centers are much less significant when seen through an economic lens. In particular, 

the spatial overestimation does not seem to have great economic relevance in terms of 
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employment numbers. By extension, this also suggests that in reality, many cases of the  

aforementioned commission errors are cells with little economic activity. And indeed, my 

findings of the morphological analysis (section 4.2) confirm this by finding FP predominantly 

in exclusively residential areas of surprising density. But further, even the erroneously omitted 

EMP-centers (FN) are, at large, less economically strong than the correctly detected EMP-

centers (TP), as is indicated by the recallEMP being higher than the recallArea. Altogether, the 

contrast between the cellcount-based and employment-based metrics strongly indicates that 

despite considerable spatial disagreement, the detection is actually good for the major  

economic centers, and, vice versa, that most of the errors are of lower economic than of spatial 

relevance. 

Whether these error levels are acceptable in practice depends not on general benchmarks but 

on the specific application the detected UMC-centers are used for. Certain applications may 

have different requirements and tolerances for commission and omission errors (Czakon 

2019). The results indicate that UMC-centers may adequately replace EMP-centers in some 

applications. One such application in particular, the analysis of polycentricity, will be 

discussed in Section 5.3. Based on my investigations so far, I suggest that the accuracy may  

generally support three types of use-cases: Firstly, applications which approach centers via 

their economic importance rather than their spatial properties. Secondly, applications that  

allow a certain degree of fuzziness and do not require precise overlap. Thirdly, applications 

which have a high tolerance for commission errors. 

However, while the use of UMC data is plausible for these applications, the results of the study 

do not encourage universal substitution of EMP by UMC data. This is because despite the 

conditionally good agreement, the substantial spatial disagreements are not sufficiently  

systematic to be easily accounted for. 

One advantage of the cell-based analysis which produced these quantitative results is that it 

is an efficient way to assess agreement between two datasets. Yet, as became apparent, a purely 

cell-based analysis cannot adequately capture the spatial context within which detected  

centers appear. Nor does it consider connectivity and distances between cells. For cell-based  

metrics, there is no difference between a UMC-center that was located directly next to an EMP-

center -and thus might well be a result of minor scale or aggregation errors- and one that was 
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located further away. Both cases are equally false in the cell-based metrics of accuracy (a and 

b in Figure 26). In practice, it is unlikely that centers conform to the binary structure imposed 

by a grid-based classification. Rather, like many spatial objects, they have indeterminate and 

fuzzy boundaries (Burrough and Frank 2020). 

 
Figure 26: IoU compared to a hypothetical fuzzy metric of agreement. While the IoU is zero for anything but 
direct overlap, a fuzzy metric could distinguish between varying degrees of disagreement. 

As an alternative which could capture this spatial complexity, I considered the development 

of a fuzzy metric (c and d in Figure 26) which could recognize varying degrees of agreement 

(Schneider 2000; Dilo 2006). However, while such a metric may be less sensitive, I find no 

simple way to implement it without imposing additional parameters and normativity. I  

instead find the simple visual analysis of center maps provides a good, non-parametric 

complement to the quantitative metrics - at the cost of introducing a degree of subjectivity 

(Taubenböck et al. 2017) and reduced reproducibility. Still, it may be that the investigation of 

a fuzzy concept that is polycentricity could benefit from fuzzy metrics. Future studies could 

develop such metrics and test them on UMC data. 

5.2 Systematic analysis of morphological properties of correctly and incorrectly 
detected employment centers 
As mentioned in the previous section, identifying the properties of errors can have practical 

implications. This is particularly the case if, beyond mere co-occurrence, underlying causalities 

can be found which explain how the errors result from local morphology or geography. 
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Table 5: Key findings of the analysis of error causes 

The cell-based statistics of TP, FP, and FN already give some indication. They reveal that those 

centers which were not recognized via the morphology-based approach (FN) simply do not 

manifest very strong morphologic properties. Likewise, the false commissions (FP) do in fact 

manifest morphologies similar to most economic centers (TP and FN). This indicates that  

certain disparities are already present in the input data and propagate to the center detection. 

By extension, it appears that for certain urban areas the correlation between UMC and EMP is 

disturbed and diminished. In combination with the previous accuracy assessment, the  

morphological analysis suggests the that the proposition by Krehl (2015b) that employees 

work in buildings may be extended thusly: Concentrations of employees are often located in 

concentrations of buildings, as indicated by the high recall.  

But the inverse does not hold: There are cases where concentrations of buildings are used for 

other things than work. This is not particularly surprising and is in line with the findings of 

Krehl (2016a) and Taubenböck et al. (2017) who observe that the relationship between  

employees and floor space is one of correlation, but not a universal perfect match. What I did 

not expect is the observation that these cases, represented as FP, are more common than the 

true economic centers (TP). 

The exploratory analysis reveals that in many cases, these FP are extensive, planned residential 

suburbs of surprising built-up volume that are found in all four test sites. Frequently, these 

areas contain few to no blocks which register any employment. This agrees with the previous 

Question: Which morphologic or geographic characteristics favor or hinder agreement between 

morphologic-centers and employment-centers? 

5. True positives combine strong morphology with high employment. False 

positives manifested only high morphology; false negatives exhibited only high 

employment. 

6. True positives are common in downtowns or edge cities. False positives are 

produced by dense suburban neighborhoods, while most false negatives 

correspond to peripheral subcenters of logistic or administrative significance. 
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finding that the economic relevance of commission errors is much lower than their spatial  

extent (section 5.1). In terms of their location, no single pattern emerges. In some cases, they 

envelop true economic centers (TP), and it appears that the extent of these is merely  

overestimated. But in other cases, if they are sufficiently dense, they also may qualify as  

morphologic centers of their own. The presence of such dominant residential areas may even 

lead to omission errors on economic centers in their vicinity, especially if these do not 

themselves display strong morphology. All algorithms, but in particular the LR allows for 

competition between centers. In this, smaller EMP-centers with weaker morphology appear to 

be eclipsed by morphologically dense residential suburbs with surprising frequency. But how 

can this comparative weakness of some economic centers, that results in FN, be explained? It 

seems possible that it is in part due to certain jobs allowing for higher concentration (Krehl 

2015b). This proposition warrants further explanation: Beyond the CBD and the major edge 

cities, many economic centers are peripheral business parks and administrative, retail, or 

cultural centers of limited size (<5 km²). There, many service jobs may be concentrated in 

relatively small buildings dedicated to and optimized for a single use. Examples of such 

buildings may be malls, schools, or high-rise office buildings. The space between these 

buildings is left open for transport, parking spaces, and parks – which increase the areas 

attractivity to employees and customers, but do not contribute to the UMC. That this can be 

observed particularly in smaller, peripheral centers could be linked to the influence of land 

prices, which are lower in the periphery. In contrast, higher land prices in larger centers may 

discourage extensive open spaces there, provided that the traditional land value gradient 

holds, which is not a given in polycentric environments (Heikkila et al. 1989; Dubin and Sung 

1987). This is supported firstly by the visual observation that economic centers closer to the 

CBD tend to be well detected, and secondly by the previous finding that the omitted EMP-

centers (FN) contain fewer employees than detected EMP-centers (as indicated by the high 

RecallEMP). Not all FN can be plausibly explained in this way. In some cases, certain census 

blocks register employment numbers far above what appears plausible considering their 

physical volume, as in the case of the Dallas airport terminals (Figure 19-5). It could be 

suggested that this is at least partly due to the LODES’ nature of nominal workplace 

designation (Graham et al. 2014), which allows for jobs to be far more densified than buildings. 

Certainly, there are other explanations for such disagreements between morphology and 

employment, such as individual preferences for certain types of housing or varying 
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production needs of different sectors (Krehl 2016a; Krehl et al. 2016). Future studies could 

investigate the underlying mechanisms, which are likely manifold. My study contributes to 

this effort by suggesting a blueprint for the systematic error assessment. 

The causes of uncertainty that I identified in the previous section may be used as idealized 

patterns by an algorithm or human expert to enhance the results of center detection on UMC 

data substantially. Nevertheless, such postprocessing would reduce objectivity, and perhaps 

limit the comparability of the study. As a form of preprocessing, Krehl (2015b) experimented 

with ancillary land-use data to identify and eliminate residential areas from the input data. 

However, she found that mixed land use and limits in available data limit the power of this 

approach. For future research, it will be interesting to see how this study compares across 

different regions, particularly those with different levels of government-sponsored  

regulations, such as zoning policies and building restrictions (Krehl 2015b). In their absence, 

the relationship between residential space and commercial space may be less heterogeneous, 

as a split between economy and residence will be the result of various economic factors rather 

than enforced by policy (Anas, Arnott, and Small 1998). On the one hand, this reduces the 

feasibility of filtering out residential areas via land use maps, as done by Krehl (2015b). On the 

other hand, mixed land use might show a stronger spatial link between employment and 

building volume, thus increasing the suitability of UMC as a proxy for employment (Figure 

27). This is, at this point, speculation. Future research is required to examine the relationship 

of morphology and economy across different land use types. TanDEM-X derived UMC could 

be used alongside detailed land use information to realize these studies. 

 
Figure 27: Idealized scenarios illustrating potential effects of zoning on the relationship between UMC and EMP, 
represented by smoothed densities. 
Left scenario (a): Strong zoning reduces correlation between UMC and EMP. High concentration of employees in 
the commercial zone leads to areas of relative UMC dominance (x) and relative EMP dominance (y). 
Right scenario (b): Mixed land use distributes employment and results in high correlation between UMC and 
EMP distributions (z).  
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Of course, the UMC data is also subject to errors. In their validation of the TanDEM-X derived 

input data, Geiß et al. (2019) report systematic underestimation of built-up heights. 

Particularly, they admit that, due to layover of building over ground, height information 

cannot be gathered in places where high buildings are at low density. Thereby, they may offer 

an alternative explanation of the non-detection of loosely built-up economic centers. 

Notably, they also report that the estimation error of built-up density varies depending on 

morphology, underestimating built-up density where built-up heights are low. At first glance, 

this may seem counter to my observation that residential areas – if presumed to comprise 

buildings of low height - exhibit strong morphology. However, in my evaluation of the data 

set I find that some of these residential areas are not low-rise at all; rather, they exhibit built-

up heights which match those of CBDs. It is possible that the aforementioned underestimation 

of built-up density which Geiß et al. (2019) found does not apply to these areas. That may 

explain why I observe high UMC values for these areas – and why they are prone to produce 

FP. 

 
Figure 28: Built-up height and ground elevations in a transect over Pittsburgh. High measurements for built-up 
height occur in areas with strong elevation changes. 

Why these residential areas do occasionally produce such strong height values may at least 

partially be explained by the application of the morphological filtering to hilly terrain. If steep 
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hills cause local variations in elevation, non-systematic errors in nDSM estimations can arise. 

This is particularly the case if the bare earth pixels, between which the nDSM is interpolated, 

are irregularly spaced and not sufficiently dense. As a result, the nDSM may be over-or  

underestimated and elevation changes may be attributed to built-up height rather than nDSM 

elevation. This possibly occurred in Pittsburgh (Figure 28). North and south of the CBD in the 

valley, residential suburbs cover steep hills (which have already been discussed, see Figure 

20-7). There, comparatively large elevation changes occur with local rises in built-up heights 

that match the heights of the CBD. The effect of such errors is limited if they are spatially 

homogeneous, as no algorithms which I use in this study applies a fixed threshold.  

A further limitation of the dataset is that while it can be potentially derived globally, the 

underlying TanDEM-X data is only available for a timespan of 2012-2016, and not with the  

temporal regularity of survey data. This may make it less suitable for the analysis of highly 

dynamic regions such as China. 

Finally, the economic reference must be discussed. This study relies on the assumption that 

centers derived from employment data represent a valid ground-truth against which UMC-

derived centers can be compared. This assumption must be questioned as well: Firstly, the 

socioeconomic data may itself be flawed. Issues in data gathering and processing can occur 

and introduce errors into the data. Secondly, the plausibility of reducing the economic activity 

to a single location of employment is not self-evident. Unlike building volumes, economic  

activity is not a physical reality but a spatial phenomenon with an ambiguous spatial location. 

Ambiguity of workplace is already present in many sectors. It is likely to increase as  

skill-intensive services make up increasing parts of the economy (Buera and Kaboski 2012) and 

the Covid-19 pandemic is leading to an increase in remote work that can be expected to last in 

at least some countries and sectors (Brynjolfsson et al. 2020; EU Science Hub 2020). In some 

ways, this is not a new phenomenon. The separation of living and working activities 

developed jointly with the industrial economic model (Doling and Arundel 2020) and in many 

professions was not the norm for long periods of history. Yet, the otherwise very detailed 

LODES data does not accommodate even regular telework. All teleworking employees are 

assigned to the company’s main address, just as if they were commuting every day. And while 

reports of multiple worksites are possible, they are infrequent (Graham et al. 2014). That is not 

to say that the LODES data is an inadequate mirror of economic activity. But it is important to 
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be aware that the researcher’s choices on how the economic activity is defined and spatially 

located will strongly influence the outcome of a study. In my study, there are some cases in 

which single locations registered curiously high or low numbers of employees. One such  

example is the case of DFW airport, in which one terminal was assigned 29 000 employees 

while others registered zero. Likely, such cases contributed to disagreement between the  

detected EMP- and UMC-centers. Finally, the algorithms, if flawed, would impose their flaws 

on the EMP-based centers just as well as on the UMC-based centers. Hence, EMP-centers might 

not constitute a perfect reference even if the EMP data itself is technically flawless. 

Beyond the contribution of the input data and the algorithms, this study’s data structure  

certainly had an impact on the results and must be discussed. The aggregation of morphologic 

and economic data into grid cells is likely subject to the MAUP, which can distort results and 

impede understanding if it is not recognized and dealt with explicitly (Jelinski and Wu 1996; 

Weigand et al. 2019). The use of a grid is an established method to try and reduce the impact 

of the MAUP and provides clear benefits for the purposes of this study (see section 3.1). 

However, it does not constitute a general solution and the choice of grid-cell size, while not  

arbitrary, is normative. Similarly, the definition of the study area requires an isochrone whose 

time-distance is manually chosen by the analyst. The grid cells and the study area together 

define a singular scale of the study. But polycentricity can appear at many different scales and 

in different forms (Liu and Wang 2016), thereby the choice of scale invariably affects the 

study’s outcomes (Bartosiewicz and Marcińczak 2020). To give an example, reducing the study 

area of Dallas not include Fort Worth would have undoubtably affected results. And while 

alternative methods of defining study areas exist, they come with their own caveats 

(Taubenböck et al. 2019). Altogether, the influence of normativity that affects many spatial 

data analyses of polycentricity is also evident in this study and not easily resolved (Lee 2007). 

I acknowledge this limitation and discuss its impact on this study. 
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The most significant impact is likely on the 

statistic distributions of the input data. To 

stay with the previous example, reducing the 

extent of the Dallas test site would have 

meant the exclusion of large numbers of  

unbuilt or sparsely built grid cells, thereby 

changing the UMC distribution substantially 

(Figure 29). The same is, in principle, true for 

the EMP distribution, although it cannot be 

expected to be affected in precisely the same 

way.  

The distributions of the input data in turn affect the result of center detection algorithms 

(Zhang et al. 2008). Responding to these effects, researchers have proposed stabilizing the  

distribution by excluding outliers and applying transformations to the data (Fu et al. 2011; 

Zhang et al. 2008; Gimond 2013;Fu et al. 2014). I performed preliminary tests which indicated 

that this indeed has the potential to increase agreement between UMC and EMP. However, I 

suspect that such adjustments would have affected certain areas more than others, and thereby 

created geographic distortions. Further, effects would not have been uniform across analysis 

methods (such as those presented in section 5.3). Tuning the distribution to maximize 

agreement on a target measure would reduce the generalizability of the results in a way that 

could be considered overfitting. As the aim of my study was to compare the performance two 

datasets in already established methods, I did not investigate such tuning. However, I 

acknowledge that there is abundant room for future studies to explore preprocessing or tuning 

methods. 

  

Figure 29: Responsiveness of the distribution to the cho-
sen study area extent. The distance between the values 
at site X and the median changes if the study area is re-
duced. 
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5.3 Feasibility assessment of analyzing job distributions in city regions using 
UMC data 
The results of the feasibility assessment paint a diverse picture (Table 6). 

Table 6: Key findings of the feasibility assessment 

Certain measures, such as employment-share and centroid-based MNND show good  

agreement that suggests they may feasibly be calculated using UMC as a proxy. Other 

measures, such as LPI and edge-based MNND show low agreement and high variations. 

Hence, UMC can not universally substitute EMP. Rather, I suggest that there are certain types 

of measures for which the use of UMC is feasible. The findings of the quantitative analysis, as 

discussed in section 5.1, also support this notion. Consequently, it is advisable that before any 

analysis that uses UMC, the chosen measure should be considered with care. Some aspects 

which should be part of such considerations are suggested by the results of this study: 

Area-based measures, such as the area share of centers, 

the LPI, and the edge-based MNND, show poor 

agreement with high variability. It is likely that the 

high variability of the LPI is partially explained by the 

rather arbitrary merging of centers, which can strongly 

affect center size (Figure 30). Thus, the LPI has a 

requirement for spatial precision that is not supported 

by the UMC data, as can be seen by the low precisionArea 

(Section 4.1). The edge-based MNND is also affected strongly by the center extent, and, thus, 

the previously identified overestimation. The centroid-based MNND is less affected by 

overestimation (as illustrated by Figure 31) and shows much better agreement. This suggests 

that the core location of the centers can be feasibly approximated. However, the MNND 

considers differences in centroid location only indirectly and in an aggregated manner, and 

Question: Which analyses of polycentricity are feasible using purely UMC data? 

7. Most measures show only limited consistency between UMC-centers and EMP-

centers. 

8. Employment-based measures, and, to a lesser extent, location-based measures 

show fair and consistent agreement. 

Figure 30: Responsiveness of the LPI to 
shifts in center detection. The size of the 
largest patch (LP) and hence the largest 
patch index (LPI) can be strongly affected by 
minor shifts. 
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hence, only allows for limited conclusions about the location accuracy. Alternative measures 

which  

quantify differences in centroid location directly would give further insight, but I did not  

consider them for this analysis as they do not themselves constitute a measure of 

polycentricity.  

 
Figure 31: Responsiveness of the two MNND variants to variations in extent of detected centers. The centroid-
based MNND (a&b) only shows minor responsiveness to center extent. The edge-based MNND (c&d) responds 
much more strongly. 

A similar indifference to overestimation as observed for centroid-based MNND is shown by 

the global Moran’s I, as it does not depend on center detection at all, but rather the distribution 

of the input data. When evaluating the importance of subcenters via the employment shares, 

the UMC-centers and the EMP-centers agree well in terms of employment share covered.  

Indeed, they agree much better than in area covered. This also accords with my previous 

observation that employment-based accuracies are much higher than cellcount-based 

accuracies. The good agreement can be interpreted as an indication that UMC-centers, despite 

being larger, match EMP-centers in importance. A note of caution is due here, as this measure 

cannot truly be computed on UMC alone. Thus, these findings do not indicate that the UMC-

based center importance quantitively matches the EMP-based center importance. However, 

they do implicitly support the feasibility of subcenter importance estimation based on UMC.  

Altogether, these findings imply that for measures which do not depend on center area, the 

use of UMC as a surrogate may be possible using a correction factor. To determine this factor 

and its reliability, however, tests on larger numbers of cities are absolutely required and are 

worth targeting in future research. 

In conclusion, despite substantial variations across cities and algorithms, certain measures  

display good agreement between EMP-based and UMC-based results, especially for measures 
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which relate to the employment or location of centers. This is consistent with the results of the 

first part of the analysis, in which the visual analysis showed good agreement for the general 

pattern of center distribution and the employment-based accuracies. 

However, for measures which relate to area cover, the variations exceed the agreement  

substantially. As such, I cannot clearly attribute the occasional good agreement to causality 

when it might be caused by chance. While certain patterns appear to be consistent across test 

sites, the statistical power of four sites is insufficient to assess significance statistically. To some 

extent this is mitigated by the inclusion of different algorithms. Nevertheless, I refrain from 

statistical significance tests in favor of an exploratory perspective. I highly recommend that 

further studies with larger numbers of test sites perform such statistical significance tests.  

Further, regressions could identify which variations are caused by differences between the 

UMC and the EMP data, rather than test sites or center detection algorithms. Additionally, 

regressions could relate measures to additional explanatory factors (for an example, see Lv et 

al. 2020). If it can be confirmed that differences between UMC- and EMP-based measures show 

consistency, it is conceivable that a correction factor may be identified to the UMC. However, 

such a correction factor is still likely to be subject to regional variations. 

5.4 Influence of algorithm 
Within my test setting, characteristic patterns emerge for the centers detected by each  

algorithm: the MI identifies large patches of adjacent cells. With a particularly high recall, it 

identifies almost all economic centers at the cost of committing many commission errors in the 

process. The CB reaches the highest precision and appears to be particularly robust. Its results 

show lower variation across test sites, which could indicate that they are less influenced by 

site-specific variables and the dominance of local centers or the core city – as indeed was the 

intention behind the distance component of the CB (Taubenböck et al. 2017). The LR succeeds 

at identifying the core sites of few very significant centers, becoming less robust for smaller 

and more outlying centers. 

I believe that the study provides sufficient evidence to suggest a link between the algorithms 

underlying concepts and the outcome they produce. For example, the LR enforces a certain 

competition between proximate centers by explicitly eliminating center candidates based on 

their distance or their explanatory power. No such constraint is enforced by the MI. I believe 

that this shows in the outcomes in which LR centers tend to be more regularly spaced while 
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MI centers occur in groups (as exemplified by the large differences in the MNND, Figure 24). 

This suggests that the detected centers follow the structure imposed by the method and reflect 

the algorithms’ concepts of center and neighborhood. This is certainly not a new finding, as 

already in 1998, Anas, Arnott, and Small (1998) observed that the number and extent of  

subcenters are sensitive to their definition. This definition of centers, in turn, varies by algo-

rithm: Krehl (2016b) finds that LISA and LR are based on different notions of subcenters. From 

these observations, I conclude that it is crucial for any study to consider the possibility that its 

chosen measures of urban structure are affected by the algorithm. To give an example: When 

using the CB algorithm to detect whether an urban region contains dispersed centers at its 

outer edges, one should be aware that the algorithm implicitly encourages detection of smaller, 

outlying centers through its distance-based component. If the analysis then reports large  

numbers of dispersed centers, it must be discussed to what extent the outcomes are due to true 

dispersion or the underlying model specification (Taubenböck et al. 2017). 

To investigate such algorithm-specific details is beyond the scope of my work. But my findings 

are encouraging further tests using larger numbers of sites. These, in turn, would allow a com-

parison with sufficient statistical power to support general conclusions about the algorithms. 

Based on my findings within this study, I am confident that the TanDEM-X-derived UMC data 

would support such analyses, albeit in the scope of its own data inherent uncertainties. 

In terms of accuracy, no algorithm proved to be clearly superior to all others. This is in good 

agreement with the general finding of Grubesic, Wei, and Murray (2014) that no spatial clus-

tering algorithm is objectively superior. It also reinforces the idea that the choice of algorithms 

should be application specific. An additional consideration is comparability. Comparisons  

between studies should only be drawn if the algorithm is identical, as strong variations across 

algorithms strongly discourage comparison of results across algorithms. This is in line with 

the findings of Agarwal, Giuliano, and Redfearn (2012) who note significant differences across 

different studies with different algorithms in the Los Angeles region, with the number of  

detected centers ranging from 13 to 120. Even in my study, which uses precisely the same data 

basis for all algorithms, visible differences exist. That is not to say that there is no agreement 

between algorithms. In all test sites, all algorithms agree on the locations of the main center. 

That is not surprising as two of the algorithms (CB and LR) even presuppose the existence and 
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the location of such a center (see section 3.2). Yet in addition, the algorithms also agree on most 

major subcenters. 

Due to the limited number of test sites used in my study, the statistical power of these findings 

is limited, and they may not be generalized to other regions, particularly if those have different 

sizes and geographic characteristics.  

In conclusion, the choice of algorithm should depend on the application. However, consider-

ably more work is required to determine objective criteria for the algorithm selection.  

Furthermore, any study on urban form should also consider the algorithm’s influence on the 

target measure. Finally, my study shows that using multiple algorithms is a plausible  

alternative. Beyond reinforcing the generated results, it produces a richer, more nuanced view 

of the city.  

As conclusion to this discussion chapter, I suggest several recommendations concerning the 

further use of the TanDEM-X derived UMC (Table 7). 
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Table 7: Recommendations concerning the further use of TanDEM-X derived UMC data. 

Quantitative agreement 

Centers detected based on UMC data can be expected to be sufficiently accurate for certain  

applications, such as: 

 Applications which focus on economic properties of centers, rather than spatial  

properties. 

 Applications with a tolerance for commission errors. 

Patterns of disagreement 

Despite best efforts to mitigate issues of scale, aggregation, and normativity, they still affect the results, 

and should be expected to do so in future studies of polycentricity. 

Disagreements between UMC-centers and EMP-centers should not be considered as simply  

erroneous but reflect real and interpretable differences in UMC and EMP data. 

The exploration of these differences, through contrast of UMC and EMP data, may reveal  

valuable insights into urban spatial structure and tackle questions about our notion of  

workplace. 

Postprocessing of centers, preprocessing of UMC data through transformation and filtering based on 

land use, and tuning of algorithms have the potential to increase agreement further and may be fields of 

future research.  

Analyses of spatial structure 

UMC can substitute EMP in certain analyses of spatial structure. The measures should,  

however, be chosen with care. Certain guidelines are: 

 Measures are preferable if they are not particularly sensitive to variability in the centers’  spatial 

extents. 

 Measures of employment and location are preferable over measures of area.  

Algorithms 

No algorithm is objectively preferable over the others.  

Analyses should consider the ways in which the algorithm’s specification may impose its  

underlying center concept to the target measures. 

UMC data could be used to investigate algorithm-specific effects on polycentricity analyses at a large 

scale and with sufficient statistical power to draw generalizable conclusions. 
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6. Conclusion and Outlook 
6.1 Conclusion 
To provide the missing link between morphologic remote sensing data and socioeconomic 

survey data, I have devised a systematic procedure to compare the results of employment-

based and morphology-based center detections. The morphology-based approach reveals 

plausible centers which, despite capturing the economic structure of the cities well, show  

substantial spatial disagreement with employment centers. I conclude that TanDEM-X- 

derived morphologic data can serve as a surrogate for traditional employment data in certain 

applications, but not universally. 

Further, I find that many cases of disagreement follow systematic patterns and I suspect that 

there is a fair probability that many can indeed be plausibly explained by a characteristic  

mismatch between the spatial distributions of morphology and employment. For this reason, 

my work has led me to conclude that the morphologic perspective, as revealed by remote 

sensing, also provides a valid alternative view of the city. Its value, I believe, lies not simply 

in its agreement with economic data, but also in its contrast. Studying this contrast could itself 

provide important insights into the changing economic structure of cities in a time where there 

is disagreement about the future of work. I propose to see cases of a disagreement between 

morphologic and employment centers as not simply an error, but as a challenge to our  

assumptions. In that light, my results encourage us to reconsider our established concepts of 

workplace and of the distinction between commercial and residential spaces. 

6.2 Outlook to future work 
There is potential to significantly improve on this study by including more test sites. A greater 

number of sites could provide statistical evidence for this study’s quantitative results and test 

their sensitivity to choices of grid size and algorithmic parameters.  

As my findings also reveal differences between algorithms, it the performance of different  

algorithms might be a fruitful target for such a statistical analysis. This could identify which 

algorithms are best suited for a particular application, and to what extent the centers detected 

by an algorithm reflect the algorithm’s underlying model architecture and specification and 

are biased to replicate prior notions and assumptions. 
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Ideally, additional test sites would be located in different geographical regions where  

comparable socioeconomic data is also available. This would be supported by the global avail-

ability and consistency of the remote-sensing data. As I find non-negligible variation across 

test sites within the same country, the performance in other geographic environments should 

be carefully evaluated. My study could provide a blueprint for such evaluations. 

Research on cross-region comparisons is ongoing. If the global availability of TanDEM-X data 

can be leveraged in this manner, it opens the door for a new type of global studies of urban 

development patterns. 

In conclusion, I recommend that research on urban economy should further explore the use of 

globally available remote-sensing morphologic data while being aware of – and, indeed,  

utilizing - its contrast with socioeconomic data. 
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Appendix A: Site-specific cell counts 
 

N nT P nFP nT N nFN nUMC-center nEMP-center algorithm test site
31349 1141 2189 27824 195 3330 1336 MI
31349 914 1373 28206 856 2287 1770 CB
31349 240 593 30330 186 833 426 LR

9745 369 603 8690 83 972 452 MI
9745 314 523 8648 260 837 574 CB
9745 72 213 9391 69 285 141 LR

14558 630 921 12947 60 1551 690 MI
14558 409 442 13402 305 851 714 CB
14558 132 213 14141 72 345 204 LR

3939 77 294 3545 23 371 100 MI
3939 102 185 3492 160 287 262 CB
3939 18 97 3803 21 115 39 LR

3107 65 371 2642 29 436 94 MI
3107 89 223 2664 131 312 220 CB
3107 18 70 2995 24 88 42 LR

All

Atlanta

Dallas

Pittsburgh

Seattle  

Detailed cell counts by algorithmic center detection and test sites. 

N: Total number of cells in test site 

nUMC-center: Number of detected UMC-center cells 

nEMP-center: Number of detected EMP-center cells 

nTP, nFP, nTN,nFN : Number of cells of the respective case resulting from the comparison of EMP-
centers and UMC-centers. 
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Appendix B: Site-specific distributions of cell properties 
 

 

Detailed distributions by algorithmic center detection and test sites. 
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Appendix C: Alternative rank-size distributions 

 

Area-based rank-size distributions of detected centers by algorithmic center detection and 
test sites. 

 

Volume-based rank-size distributions of detected centers by algorithmic center detection and 
test sites. 
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